Category: MedicalRobotics

1.  MR-Compatible Instrumented Tools

Optical fibers can be used to create MR-compatible tools such as biopsy needles for performing MR-guided interventions. For example, fiber Bragg grating (FBG) sensors are small (micron-scale), immune to electromagnetic interference, and can sense strains down to a pico-strain. They can be used to enhance minimally invasive image-guided procedures by sensing tool shapes, forces, and temperatures.

Here is some markup that works if you have a large figure where you want a smaller version to initially show on the page and, when you click on it, it zooms in.

Needle deflections occur in almost all tissues.
The following will now appear to the left of the floating figure

1.1  Force sensing needle

A tip force sensing needle provides useful information during image-guided insertion of tools through various membranes during diagnostic and therapeutic procedures.

Configuration of force sensing needle

Configuration of force sensing needle

The following will now appear to the left of the floating figure

1.2  Shape sensing needle

A 3D shape-sensing needle allows interventional radiologists to know the trajectory and profile of their flexible tools in real-time, allowing manipulation of the tool towards its intended target.

1.3  MR-compatible passive manipulator

A passive master/slave manipulator enables remote trans-perineal needle placement into the prostate or other pelvic structures under direct MR guidance by a physician.

1.4  Steerable needle

Active needle design with SMA actuator and flexible section

A steerable active needle provides the direct control capability of needle tip orientation, with which the needle effectively makes a detour to avoid prohibited areas or to follow a new trajectory. Optical actuation schemes make the needle MR-compatible, so that it can reduce the number of biopsy trials to reach a target precisely.

The active needle also includes optical sensors within the thin needle to measure its curvature and temperatue change for the closed loop control.

The target organ for this active needle is currently human prostate, stiffer than liver, and the needle's behavior will be investigated inside the fabricated tissue phantoms satisfying mechanical or thermal requirements.

2.  Sensing for Robot-Assisted Surgery (RAS)

2.1  Instrumented tools: slip sensing

Grasping and manipulation of biological tissue are crucial processes during minimally invasive surgery (MIS). Surgeons attempt to maintain their view and control tissue position by tailoring their selection of grasper type to the given task and modulating the grasper jaws to provide just enough force to prevent tissue slip, but not so much that damage occurs. To enable atraumatic and reliable grasping, it would be useful to detect slip. Because the grasped object (biological tissue) is moist, conformable, and delicate, and because the sensor must work in a surgical environment, this application requires a departure from conventional slip sensing methods.

3.  Recent Publications

(from MedicalRoboticsPublications)


Ryu, S., Fan Quek, Z., Koh, J-S, Renaud, P., Black, R.J., Moslehi, B., Daniel, B., Cho, K-J and Cutkosky, M.R., "Design of an Optically Controlled MR-compatible Active Needle," accepted for ,IEEE Transactions on Robotics (2015)

Elayaperumal, S., Renaud, P., Cutkosky, M.R., Daniel, B.L.,"A Passive Parallel Master-Slave Mechanism for MRI-Guided Interventions,",Journal of Medical Devices, ASME,2014, DOI 10.1115/1.4028944

Elayaperumal, S., Plata, J.C. Holbrook, A.B., Park, Y-L, Butts Pauly, K., Daniel, B.L., Cutkosky, M.R.,"Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,",IEEE Transactions on Medical Imaging, vol.33, issue 11, pp.2128 - 2139, Nov. 2014, DOI 10.1109/TMI.2014.2332354

Park, YL; Elayaperumal, S.; Daniel, B.; Ryu, SC; Shin, M; Savall, J.; Black, R.J.; Moslehi, B.; Cutkosky, M.R., “Real-Time Estimation of Three-Dimensional Needle Shape and Deflection for MRI-Guided Interventions,” Mechatronics, IEEE/ASME Transactions on , vol.15, no.6, pp.906-915, Dec. 2010

Conference Proceedings

Bae, J.H. *, Han ,A.K.*, Ploch, C.J., Daniel, B.L. , Cutkosky, M.R. , "Haptic feedback of membrane puncture with an MR-compatible instrumented needle and electroactive polymer display," Accepted to IEEE World Haptics 2017 (preprint).

Bae, J.H., Ploch, C., Yang, M.A., Daniel, B.L., and Cutkosky, M.R., "Display of Needle Tip Contact Forces for Steering Guidance," Haptics Symposium 2016 IEEE, 332-337.

Burkhard, N., Steger, R., Cutkosky, M.R., "Sensing slip of grasped wet, conformable objects," Accepted to IEEE IROS 2017.

Burkhard, N., Frishman, S., Gruebele, A., Whitney, J.P., Goldman, R., Daniel, B.L., Cutkosky, M.R., "A rolling-diaphragm hydrostatic transmission for remote MR-guided needle insertion," IEEE ICRA 2017 (pdf). Best Robotics Paper Finalist

Elayaperumal, S., Bae, J.H., Daniel, B.L. and Cutkosky, M.R.,"Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle," IROS,2014,vol.,no.,pp.3975 - 3981,14-18 Sept. 2014 doi:10.1109/IROS.2014.6943121

Elayaperumal, S.; Bae, J.H.; Christensen, D.; Cutkosky, M.R.; Daniel, B.L.; Black, R.J.; Costa, J.M.; Faridian, F.; Moslehi, B., "Mr-compatible biopsy needle with enhanced tip force sensing," World Haptics Conference (WHC), 2013 , vol., no., pp.109,114, 14-17 April 2013 doi: 10.1109/WHC.2013.6548393

Lin, M.A., Bae, J.H., Srinivasan, S., Perkins, S.L., Leuze, C., Hargreaves, B., Cutkosky, M.R., Daniel, B.L., “MRI-guided Needle Biopsy using Augmented Reality,” to be presented at International Society for Magnetic Resonance in Medicine 25th Annual Meeting and Exhibition (ISMRM 2017) (preprint).

Y-L. Park, S. Elayaperumal, S. Ryu, B. Daniel, R. J. Black, B. Moslehi, and M. R. Cutkosky. “MRI-compatible Haptics: Strain sensing for real-time estimation of three dimensional needle deflection in MRI environments", International Society for Magnetic Resonance in Medicine (ISMRM) 17th Scientific Meeting and Exhibition, Honolulu, Hawaii, April 18-24, 2009

Y-L. Park, S. Elayaperumal, B.L. Daniel, E. Kaye, K.B. Pauly, R.J. Black, and M.R. Cutkosky, “MRI-compatible Haptics: Feasibility of using optical fiber Bragg grating strain-sensors to detect deflection of needles in an MRI environment”, International Society for Magnetic Resonance in Medicine (ISMRM) 2008, 16th Scientific Meeting and Exhibition, Toronto, Canada, May 2008

S. Ryu, Z. F. Quek, P. Renaud, R. J. Black, B. Daniel, and M. R. Cutkosky. "An Optical Actuation System and Curvature Sensor for a MR-compatible Active Needle," IEEE International Conference on Robotics and Automation (ICRA), St. Paul, Minnesota, May 14-18, 2012

S. Ryu, P. Renaud, R. J. Black, B. Daniel, and M. R. Cutkosky. “Feasibility Study of an Optically Actuated MR-compatible Active Needle," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, California, September 25-30, 2011

Page last modified on July 14, 2017, at 02:16 PM