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Abstract— A dynamic model of a jump glider is presented
and correlated with the results obtained with a prototype glider.
The glider uses a carbon fiber spring and a main wing that
pivots approximately parallel to the airflow during ascent and
latches into place for a gliding descent. The robot demonstrates
longer traveled distance than an equivalent drag-free ballistic
mass. A detailed numerical and a simplified algebraic model are
also introduced, which are useful for exploring design tradeoffs
and performance. These models suggest ways to improve the
traveled distance and indicate that with modest variations in
the wing angle of attack during ascent, one can choose from a
variety of launch angles to accommodate variations in ground
friction without greatly compromising range.

I. INTRODUCTION

Jumping has long been recognized as an effective form of
locomotion for animals and robots that need to clear large
obstacles relative to body size. It is particularly effective
at small length scales, where the inherent strength/weight
ratio is high. Many successful jumping robots have been
demonstrated and a number of papers have focused on the
problem of maximizing energy storage and efficiently con-
verting stored elastic energy to kinetic energy for impressive
performance [1]–[10]. Several groups have also added added
deployable surfaces [11], [12] or fixed wings [13], [14] for
improved range and control.

In nature, animals like the flying squirrel [15], the flying
snake [16], and the flying fish [17] use aerodynamic surfaces
on their bodies to dramatically extend the range and accuracy
of their leaps, particularly when jumping from elevated
perches.

In comparison to a ballistic jumper, adding the ability to
glide can offer several advantages including:
• extended horizontal range for a given amount of stored
energy
• greater control over the details of the trajectory (e.g. to
allow a higher launch angle on slippery surfaces)
• a gentler landing.

However, the ability to achieve these benefits depends criti-
cally on how much extra weight and drag are associated with
the controllable airfoil surfaces.

The contribution of this paper is to examine in detail
the interrelationships among stored energy, lift, drag and
trajectory control for efficient jump gliding with a glider
that utilizes a pivoting wing. Section II presents the jump
glider design, including the pivotable wing and carbon fiber
bow spring. Section III presents a planar dynamic model
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Fig. 1. Jump glider design with pivoting wing and carbon fiber spring, in
the three principal states of a basic jump glide: launching, ascending, and
gliding.

of the glider. At the Reynolds numbers that apply for this
prototype, a flat plate model of lift and drag is appropriate.
The model elucidates the effects of friction at the wing
pivot and the location of the center of mass of the wing.
The results of experiments with the prototype are compared
with predictions from the dynamic model and shown to
match closely. However, for the purposes of exploring design
tradeoffs, it is desirable to have a simpler, algebraic model for
studying the effects of parametric variations. Such a model
is introduced in Section IV and shown to match both the
detailed model and empirical results reasonably well. Section
V presents conclusions to be drawn from this work and future
extensions to the models and jump glider design.

II. PROTOTYPE

As noted in [18] for the study of jumping insects, the ratio
of drag to inertial forces (hvA/m) should be minimized for
high efficiency during the ascending phase. In this equation,
hv is the corresponding height of a jump in vacuum (related
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to takeoff velocity), A the exposed area of the body and m
the mass of the system. The jump-gliding plane presented
here reduces the exposed wing area during ascent with a
pivoting wing that can passively align itself with the air flow.
The wing freely rotates for low drag during ascent but latches
into place with a magnet to provide lift on descent. The plane
is controlled using a single servo that adjusts the angle of
the elevator. The following subsections describe the plane,
the pivoting wing and the carbon fiber spring.

A. Airplane and wing design

The airplane was designed to have a high glide ratio
(i.e., high lift over drag, L/D) at the relatively low speeds
achievable from jumping. For an airplane with a wingspan
in the range of 0.5-1.0 m, flying at approximately 4 m/s,
the Reynolds number is about 30,000. At these scales the
maximum L/D of a rectangular wing with an aspect ratio
(A) of 6 can be expected to be around 8-12 [19], [20]. The
maximum L/D ratio occurs at 3-4o of angle of attack (AoA)
and at a lift coefficient of CL=0.4. The same studies show
that a rectangular planform (wing shape) withA=6 performs
better than a similar elliptical planform. Furthermore, a wing
withA=6 provides similar performance to a wing of higher
aspect ratio without the practical disadvantages of a very
long and slender wing. It was found that slightly better
performance could be obtained with a 5% cambered plate.
However, a flat wing was used in the present case for ease
of manufacturing and damage repair.

To allow our 30g prototype to glide, the lift has to equal
the gravity force, or mg = 1/2ρAv2CL. Solving for the
wing area, A, and keeping the desired AR=6, the wing was
sized to be 70 cm long with a cord of 11.5 cm. A thread
is connected between the wing tips and pulls the wing into
a slight upward bow (Fig 1), resulting in a slight dihedral
angle for stability and reducing the tendency of the wing
to bend excessively during the high acceleration associated
with jumping.

The wing aerodynamical center (i.e. the quarter cord) is
located just behind the center of mass (CM) of the airplane
while gliding, while the elevator aerodynamical center is
located 34 cm behind the CM. The elevator span is 14 cm
and has a cord of 8 cm. This configuration allows the airplane
to be longitudinally stable during gliding. The launch spring
is connected to the airplane with a pivot at its center of
mass, creating minimal angular acceleration and allowing for
straight jumps at various angles.

The wing is built out of 1 mm thick Pro-formanceTM

foam with a leading edge carbon fiber spar. The round
spar freely pivots within a styrene bushing attached to the
body, allowing the wing to pivot. Lower friction could be
achieved at this joint but is not needed, as will be shown
in the following sections. Latching is accomplished at the
end of the upward phase using two small magnets, one each
on the wing and the body. The body is built out of balsa
wood with 0.25 mm thick laser cut fiberglass FRP sheet
for reinforcement. The airplane also has onboard a 90mAh
LiPo battery and a 1.0g Micro 9-S-4CH receiver that controls

a 2.5g Blue Arrow Servo connected to the elevator. The
launch spring is currently manually loaded by pulling on a
Spectra line, which is then cut by a heated nichrome wire for
takeoff. This has proven to be sufficient to test jump-gliding
capabilities and can be modified for autonomous operation
in the future.

B. Spring design
The main criteria considered when designing the jumping

mechanism are the the mass of the foot, the force profile on
the ground and the energy density of the spring mechanism.
The mass of the foot should be minimized as it comes to
a stop at the end of the decompression phase, dissipating
kinetic energy in the process [2]. Equally important is the
profile of the ground reaction force. Traditional linear springs
have a triangular force profile that can cause premature lift-
off and high initial accelerations that excite various structural
modes. To overcome these limitations, one possibility is to
employ a geared power transmission system [1], [2]. Another
possibility is to use a bow spring providing a nearly constant
force profile. The advantages of a carbon fiber bow spring for
jumping have been noted previously [6]. Although a higher
specific energy can be obtained with elastomers, a carbon
fiber bow spring nonetheless provides a favorable energy
density per mass, σ2

f/ρE [21], without the deterioration over
time of rubber.

Symmetry axis

Fig. 2. Representation of half of the U-shaped carbon spring model used
to size the spring.

The spring, which is bent into a U shape, is an elastica
and can be approximated with a series of rigid elements
connected by torsional springs of stiffness ki = EIi/∆L,
where Ii is the second moment of area and ∆L is the
discretization length of each segment, as described in [22]
and illustrated in Fig. 2. To find the angular displacements,
qi, when the tips are held a distance Lcompression apart, it
suffices to minimize the potential energy:

minimize
qi

1

2

20∑
i=2

ki−1qi

subject to rend/0 · x̂ = 0

rend/0 · ŷ = Lcompression

This optimization problem can be solved using Lagrange
multipliers. Once the angular displacements are found, the
spring energy, tip forces, maximum bending moment and
maximum stress are calculated.



The model suggests that to provide at least 0.53J, enough
to propel a 30g airplane to a height of 1m with a forward
velocity of 4m/s, one can use two unidirectional carbon fiber
composite beams 15cm long, 3.8mm wide and 0.7mm thick.
The Young’s modulus of the composite was measured as
54GPa. When the distance between the tips of the spring is
compressed to 5cm the stored energy is 0.63J. The maximum
stress is 759MPa, only 38% of the 2GPa ultimate strength
of the unidirectional carbon fiber. With a density of 1550
kg/m3, the spring mass is 1.2g.
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Fig. 3. Measured and predicted force as a function of the distance between
the spring ends.

The static force profile of a prototype spring (10 mm wide
instead of 7.6 mm) is illustrated in Fig. 3. The force profile
is nearly constant with a force that varies from 6.8 to 10.4N.
As described in [6], the force profile can be adjusted and the
energy density optimized by varying the initial curvature and
the second moment of inertia along the beam. Fig. 3 shows
that the force measured in static tests trends as predicted
by the model. The discrepancy is about 1.5 N, or 14%, and
can be attributed mainly to the addition of some extra epoxy
to prevent delamination with repeated tests. The predicted
force is also quite sensitive to minor variations in the beam
thickness.

Figure 5 plots the measured magnitude of the ground
reaction force in the sagittal plane (non-sagittal forces are
small and approximately zero mean) for three successive
jumps at 45◦launch angle. The forces were measured at
1000 samples per second from an ATI-Gamma SI-32-2.5
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Fig. 5. Magnitude of the ground reaction force versus time for three
launches of the aircraft from a force plate.

force/torque sensor and filtered with a tenth order zero-phase
low-pass filter of degree ten and cut-off frequency of 100Hz
to remove sensor noise. The peak dynamic force is slightly
lower than the maximum static force, most likely a result
of some foot slippage during takeoff. Note that the ground
force magnitude remains above 6 N, or 2/3 of the peak force,
for most of the ground contact phase.

III. PLANAR DYNAMIC MODEL

The model used to describe the behaviors of the
jumpglider consists of two rigid bodies moving in a plane:
the airframe and the wing. For convenience, a reference
frame A is attached to the body. It is rotated with respect to
the Newtonian reference frame N by an angle qA (pitch)
around the unit vector ẑN . The reference frame W is
attached to the wing, and is rotated with respect to A by
an angle qW around ẑA. Using these definitions, one can
represent the positions of the center of mass of the airframe,
ACM, and the center of mass of the wing, WCM, as:

rACM/N0 = xx̂N + yŷN (1)
rWCM/N0 = rACM/N0 + LP/ACM x̂A − LWCM/P x̂W (2)

where LP/ACM is the distance from ACM to P along x̂A and
LWCM/P is the distance from P to WCM along x̂W .

The forces acting on the bodies include gravity on the
airframe and the wing (mAg and mWg applied at their
respective centers of mass), friction at the wing pivot point
P , and lift and drag on the wing, the elevator and the body.
These forces are illustrated in Fig. 4.

As noted earlier, for the Reynolds numbers that apply to
this jump glider, a flat plate model is appropriate to represent
the lift L and drag D on the wing and elevator [23]:

Li = ρAi||NvACi ||2 sinαi cosαi (3)
Di = ρAi||NvACi ||2 sin2 α (4)

where ρ is the air density and NvACi , Ai and αi are
respectively the velocity of the aerodynamic center (AC) in
reference frame N , the area and the angle of attack of the
aerodynamic surface i. In still air, α represents the angle
between the velocity of the AC and the vector from the
trailing edge to the leading edge. Drag opposes the velocity
of the AC while lift is perpendicular to it. Both forces are
applied at the quarter cord when measured from the leading
edge. An additional parasitic drag force is modeled on the
body (D0A = 1/2ρAW ||NvACM ||2CD0

) and applied at the
center of mass of the airplane.

Friction at the pivot is modeled as viscous damping and
creates a torque of Tf = −bW qW ẑA on the wing. Viscous
friction was chosen because of its simplicity in numeri-
cal simulation. Furthermore, because the wing pivots at a
roughly constant angular velocity through the ballistic phase
for jump angles between 30-65◦ a viscous term produces a
similar effect to Coulomb friction. Moreover, the frictional
torque is small compared to other terms.

At the apex of a jump, the wing latches into place for
gliding. To simulate this effect, a stiff torsional spring and



Fig. 4. Reference frames and forces on the plane body, wing, and elevator used in the detailed model. Left drawing highlights forces and moments on
the body, right drawing highlights forces and moments on the wing. Reaction forces at the wing pivot (P) not shown for simplicity.

damper are enabled when the absolute value of qW is
smaller than 2◦. For simplicity, the spring-powered launch is
approximated by specifying the initial velocity of the airplane
at take-off.

The acceleration of the center of mass of each body i
in frame N is obtained by differentiating its position twice
with respect to time in reference frame N and is denoted
as NaiCM . The angular velocity and acceleration of a body i
in reference frame N are respectively denoted as Nωi and
Nαi. Following a D’Alembert approach, the sums of the
forces and moments on the system are equated to the sums
of the inertial and other dynamic terms, referred to as the
effective forces and effective moments [24].

The three resulting vector equations consist of the sum of
forces on the system (FS ) equated to the sum of effective
forces (Eq. 5), the sum of moments around the airplane
center of mass (MS/ACM ) equated to the sum of the effective
moments of the system around the same point (Eq. 6), and
the sum of moments on the wing around the pivot (MW/P )
equated with the effective moment of the wing around that
point (Eq. 7).

FS = (mA +mW) ∗ (NaACM + NaACM) (5)

MS/ACM = IA/ACM ·NαA + IW/ACM ·NαW + ...

mW ∗ rWCM/ACM × NaACM (6)

MW/P = IW/P ·NαW +mW ∗ rWCM/P × NaP (7)

Four scalar equations are obtained by taking the dot
product of each side of these vector equations with respect
to appropriate unit vectors. Eq. 5 is dotted with x̂N and
ŷN . Eq. 6 and 7 are dotted with ẑN . The resulting scalar
equations are solved for ẍ, ÿ, q̈A and q̈W . In the present case
the solutions were obtained using Motion Genesis [25] and
solved numerically in Matlab.

A. Results

The airplane was launched at various angles and the
trajectory recorded at 200 fps with a high speed camera. The
elevator was manually controlled by first aligning it with the
launch angle to minimize drag on the way up and then flipped
to its trimmed position for gliding as the airplane reached its

apex. Figure 6 shows a typical flight for a launch angle of
60◦.

Fig. 6. Typical jumpgliding trajectory for the jump glider. Each image is
spaced by 150ms.

The camera was calibrated to compensate for distortion
and the center of mass position was tracked in each frame.
The resulting position was filtered by fitting a 12th order
polynomial. The high degree was necessary to accommodate
the change from ballistic motion to gliding. The polynomial
was then differentiated to obtain the velocity. The energy
level was calculated by adding potential and kinetic energies.
Results are illustrated in Figs. 7-9.

The model parameters used in these figures are: wing
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Fig. 7. Comparison of the experimental trajectory, the simulated trajectory
and a ballistic trajectory with the same energy and launch angle (58o).
Overlaid on that figure are cartoons of the jump glider states. The wing and
elevator are initially aligned with the launch angle (A). During the upward
phase, the wing freely rotates to stay aligned with the airflow (B). At the
apex (C), the wing reaches a horizontal orientation and latches to the body
while the elevator is moved up to its gliding position. The wing and elevator
remain in that configuration for the full glide phase (D).



area of 0.0805m2, elevator area of 0.0112m2, body area of
1.5×10−5m2, CD0

of 0.01, zero joint friction, body mass of
23.8g, wing mass of 6.2g, body inertia around its center of
mass of 3.0×10−4kgm2 and wing inertia around its center
of mass of 1.5×10−5kgm2. In simulation, the elevator was
oriented with the flow on the way up and switched to an angle
of 7.5◦ (upward) as the wing latched in place for gliding.
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Fig. 8. Comparison of experimental and simulated velocities during jump
gliding. The transition from ballistic motion to gliding happens at 0.6s.

As seen in Fig. 7 the model fits the experimental trajectory
during the ballistic and glide phases. The airplane does not
go as high as a drag-free ballistic trajectory with the same
launch angle (58o) because of body drag. Nonetheless, it
travels 40% further than the drag-free ballistic trajectory. The
distance is also 20% longer than the distance for a drag-free
ballistic trajectory with an ideal 45◦ launch angle (4.11m).
Note also that a 45◦ launch angle could be difficult to achieve
as it requires a coefficient of friction greater than one.

The velocities (Fig. 8) also show good agreement with the
model. The first phase (t < 0.6s) is essentially ballistic while
the second phase sees an increasing horizontal and (negative)
vertical velocity. This indicates that the elevator trim could
be increased to get a better, shallower glide.
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jump gliding.

The energy of the system (Fig. 9) is almost constant during
the ballistic phase, except for an initial drop caused by the
body drag at the high initial velocity. During the second
phase, the energy reduces slowly due to drag while gliding.

B. Influence of pivot friction

Friction at the wing pivot causes the angle of attack (α) to
be non-zero during the first phase, creating some additional
lift and drag. However, for a small angle of attack lift is
proportional to α and the drag is proportional to α2. Thus,
lift is the dominant force. In still air, lift is a conservative
force because it is orthogonal to the instantaneous direction
of motion. It changes the shape of the trajectory but not the
energy available to the glider. Small amounts of lift caused
by friction at the pivot affect the trajectory of the airplane
by slowing its forward velocity but simultaneously increasing
the height of the apex.
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Fig. 10. For small amounts of pivot friction, the maximum distance traveled
is not affected but the launch angle should be reduced to compensate for the
lift created. The different curves correspond to varying amounts of average
pivot friction expressed as a percentage of the maximum torque on the wing
due to gravity. For the glider prototype the pivot friction is approximately
0.07% of the maximum torque on the wing due to gravity.

To investigate how these changes in trajectory affect the
total distance, a glide controller acting on the elevator was
added to maintain the forward velocity that was experienced
at the apex for the duration of the glide. Simulations were
performed for different combinations of launch angles and
friction at the wing pivot. The results are illustrated in Fig.
10. For a frictionless pivot, the jump angle allowing the
airplane to reach the maximum glide distance is around 52◦.
As friction increases, the optimum jump angle is reduced,
due to the lift contribution, but the distance traveled remains
nearly constant. This insensitivity to modest amounts of pivot
friction motivates the choice of a passive solution for varying
wing angle, as adopted in the prototype.

C. Implications of Lift During Ascent Phase

The previous discussion of the effect of friction at the
pivot raises the point that small amounts of lift can be used
to alter the trajectory without sacrificing significant energy
due to increased drag. Thus by using the wing of the jump
glider as a control surface, one can achieve peak heights and
forward velocities optimal for gliding under a range of take-
off angles. This is particularly important considering that a
jump at 40◦ requires a ground coefficient of friction of at
least 1.19 while a jump at 60◦ requires a more reasonable
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Fig. 11. Influence of lift during the ascending phase. Solid lines represent
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coefficient of 0.57. As Fig. 11 illustrates, both the 40◦

and the 60◦ launches reduce the total travelled distance by
about one meter (14%) when compared to a 50◦ launch. By
using negative lift during the ascent one can recover the lost
distance for a jump at 60◦. Conversely, if takeoff conditions
favor a lower launch angle, one can use positive lift for a
launch angle of 40◦.

D. Influence of wing’s CM and AC

The influence of the position of the wing center of mass
and aerodynamical center on the ascending portion of the
flight can be understood by expanding Eq. 7. In this equation,
the sum of moments can be written as:

MW/P = rWCM/P ×mWg + rWAC/P × LW − bq̇W ẑN (8)

Note that in this equation the drag is ignored as, for small
angles of attack, it is negligible compared to the lift force.
Furthermore, shortly after takeoff the wing angular velocity,
NωW , reaches an almost constant rotation rate to remain
aligned with the flow. As the angular velocity is constant,
the angular acceleration of the wing, NαW , will be close
to zero, eliminating the first term on the left side of Eq. 7.
Combining Eq. 8 with the simplified version of Eq. 7, one
obtains:

0 = rWCM/P×mW (g−NaP)+rWAC/P×LW−bq̇W ẑN (9)

For ideal conditions with negligible friction, b, at the
wing’s pivot, very little lift, LW , needs to be generated
to balance this equation. With low amounts of lift, the
acceleration of the wing’s rotation point, NaP , is comparable
to the gravitational acceleration. In this case, the position of
the wing center of mass with respect to the rotation point,
rWCM/P , is not particularly important as g and NaP cancel
each other. This is the case for the glider presented in this
paper.

When friction at the wing pivot cannot be ignored, some
lift will be created to compensate for the moment created by
friction. This lift force changes the acceleration of the rota-
tion point and the term (g−NaP) becomes non-negligible.
In this case, the wing’s center of mass and aerodynamical
center positions become important design parameters.

IV. A SIMPLIFIED MODEL FOR DESIGN EXPLORATION

The model described in the previous section answers some
questions about the behavior of a jump glider. However it
requires numerical computations for every tested case. More
importantly, the model doesn’t naturally distill the intent of

a perfect jump glide. Thus, any poor design choices (e.g.
in the airframe or in the gliding controller) will allow the
numerical model to suggest suboptimal performance.

A simplified model was therefore developed to more
readily answer such questions as:

1) What is the maximum jump gliding distance?
2) What is the optimum jump angle, initial velocity and

starting jump height?
3) What are the most important design parameters?
The simplified model decomposes the flight into three

distinct phases: an initial ballistic phase up to the apex, a
transitional phase to reach the required gliding conditions and
a final gliding phase. This simplified model can be thought
of as a template for use with any controller implemented
on the airplane and by the designer to identify the best
possible performances. The following subsections describe
the simplified model by calculating the horizontal (∆x) and
vertical (∆y) distances traveled in each phase.

A. Ballistic phase

The first phase involves a typical ballistic trajectory. It
assumes that the wing, body and elevator create negligible lift
and drag. Under these conditions, and for an initial velocity
v and jump angle θ, the distances traveled are:

∆yB =
v2 sin2(θ)

2g
, ∆xB =

v2 sin(θ) cos(θ)

g
(10)

While this simplification would seem to preclude strategies
like using positive or negative lift as discussed in the pre-
vious section, the point is that such strategies involve small
amounts of lift and drag and do not substantially affect the
selection of airframe design parameters or traveled distance.

B. Transition

Adding a transition phase provides a better estimate of
the overall gliding distance, which will be underestimated
if it is assumed that the airplane commences gliding at the
apex. The underestimation arises because the plane continues
to accelerate along an almost ballistic trajectory until its
downward velocity matches the velocity required for gliding.
The vertical gliding velocity depends on the forward velocity
imparted initially by the jump and on the parameters defining
the airplane. To solve for the vertical velocity at which the
transition occurs, one can use the lift to drag ratio, L/D, for
flat plates at small angles of attack:

L

D
= −vx

vy
=

mg
m2g2

Aρv2 + 1
2AρCD0

v2
(11)

This equation is unfortunately difficult to solve for vy as it
implies a fifth order equation in vx. Furthermore, it is derived
for a small angle of attack, or large L/D ratio, when the
forward velocity is high compared to the vertical velocity.
This condition is hard to achieve for most small jumpers
due to the difficulty in storing enough energy in the spring
and achieving high L/D at small scale.

A more suitable approach in this case is to use a linear
approximation between a free fall glide (L/D = 0, vx = 0)



and a glide at the maximum L/D. Differentiating Eq. 11
with respect to the velocity v and equating to zero, one can
find the velocity at maximum lift to drag ratio and the value
of the maximum:

v2(L/D)max
=
mg

ρA

√
2

CD0

, (L/D)max =

√
1

2CD0

. (12)

Assuming that the forward velocity vx at maximum L/D
are approximately equal to v(L/D)max , and knowing that L/D
is equal to zero at zero forward velocity, one can approximate
the relationship between the lift to drag ratio and the forward
velocity as linear for vx < v(L/D)max :

L

D
≈ (L/D)max

v(L/D)max

vx = − 1

vyG
vx (13)

where the constant parameter vyG is defined as:

vyG = −
√
mg

ρA
(8CD0

)
1/4

. (14)

Using the preceding equations, the end of the transition
phase can be determined by equating the vertical velocity
during the ballistic transition phase to the vertical velocity
required to start gliding (i.e., vyG ). With the end of the tran-
sition phase known, it is possible to solve for the distance:

∆xT = −vyG
g
v cos θ , ∆yT =

1

2g
v2yG (15)

C. Gliding

Once the transition phase is over and the vertical velocity
is suitable for gliding, the airplane maintains a constant glide
slope determined by the L/D ratio. The distance during this
phase is:

∆xG =
L

D
(∆yB −∆yT + ∆h)

= −v cos θ

vyG

(
v2 sin2(θ)

2g
−
v2yG
2g

+ ∆h

)
(16)

where ∆h is the height drop between the start and finish
point.

D. Results

With each phase defined, it is possible to calculate the
total distance travelled:

∆x = ∆xB + ∆xT + ∆xG

=
v2 sin θ cos θ

g
− vyG

2g
v cos θ...

−v
3 sin2 θ cos θ

2gvyG
− v cos θ

vyG
∆h (17)

Under normal conditions, all terms of this equation are
positive as vyG is negative. Furthermore, even when only a
small lift to drag ratio is obtained by the gliding platform,
the second term will be small compared to the others.

We can now return to the three questions posed at the
beginning of this section. In answer to questions 1 and 2,
for a fixed airplane design (i.e. fixed vyG ), it is possible
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Fig. 12. h0 = 0 m and v0 = 6 m/s

to describe the evolution of the optimal jump angle as the
jump parameters v, θ and ∆h are varied by looking at Eq.
17. The first term of this equation favors a 45◦ jump angle
(due to sin θ cos θ), the third term favors a jump angle around
54◦ (sin2 θ cos θ) and the last term favors a horizontal jump
(cos θ). Each of these terms has a different importance as
v and ∆h are varied. The third term can be dominant at
higher launch speeds while the last term becomes dominant
for larger drops between the start and finish vertical positions.
This effect can be seen in Figs. 12 -13. The optimal jump
angle on a flat surface is 50-52◦ but reduces to 45◦ when
the drop height increases to 1 m.
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Fig. 13. h0 = 1 m and v0 = 6 m/s

In partial answer to question 3, we see that the distance
is also affected by the airplane design. To increase it, the
parameter vyG (Eq. 14) should be brought toward zero, which
means that the mass to lifting surface area ratio should be
decreased, along with the parasitic drag coefficient.

Figures 12 and 13 also reveal that the simplified model
over-predicts the traveled distance when compared to the
detailed model. This is because the full wing area is used
in Eq. 14 and, due to the design of the plane, the elevator
has to create some negative lift to maintain the required
moment balance during gliding. This reduces the effective
surface area responsible for creating lift. The area used by
the simpler model could be reduced to reflect this effect.
Even better, the airplane could be redesigned so that the
elevator creates negligible or positive lift while gliding.



Another difference is that the distance traveled in Fig. 7
is smaller than predicted by both the detailed model and the
simplified model in Fig. 12. The reason is that the results
from the detailed model in Fig. 12 were computed for zero
body area for purposes of comparison with the simplified
model. The effect of body area can be seen in Fig. 7 when
comparing the height reached by the ballistic trajectory and
the height reached by the experimental trajectory. It is also
seen as the initial energy drops in Fig. 9. This change of
trajectory cannot be attributed to the pivot friction, which
would keep the energy nearly constant, as discussed in
Section III-B. The models suggest that reducing the body
drag would allow the airplane to travel between 0.5-1.2m
farther. The current jump glider already travels further than
an equivalent drag free point mass launched at 45◦. An
appropriate next benchmark would be traveling a longer
horizontal distance than a lighter, wingless jumping robot
with the same initial energy, which could be accomplished
through reduced body drag (and/or reduced wing mass, better
control of the glide, improved L/D with wing curvature
and reduced wing mid section gap, or positive lift on the
elevator). The current jump glider travels 5.01m while a
23.8g ballistic jumper with 0.60J of energy would travel
5.18m when launched at 45◦, assuming that there is enough
friction at the foot to do so.

V. CONCLUSIONS AND FUTURE WORK

This paper verifies the intuitive conclusion that gliding
can increase the horizontal range of a jumping robot. The
presented models provide additional insight into the benefits
of controllable aerodynamic surfaces. For example, during
the upward ballistic phase, lift can be used to control the
apex height and forward velocity from a range of launch
angles without sacrificing significant energy in drag. As a
consequence, it is possible to choose a steeper launch angle
on a slippery surface without significantly reducing range.
In addition, in all phases of the maneuver, the aircraft can
benefit from the increased controllability offered by its wings
without suffering significantly from increased drag.

More generally, the models provide insight regarding
the effects of various design parameters on jump gliding
performance – for example, to explore the merits of a more
complex wing folding mechanism that reduces drag at the
expense of greater weight, or to evaluate the improvement
possible with a reduced body area.

Looking forward, improvements can be made to the
launching spring and platform design, but the main extension
will be to provide greater control during flight (e.g. to steer
around obstacles or to optimize the glide path), particularly
when jumping from a height.
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