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Integrated Ground Reaction Force Sensing and
Terrain Classification for Small Legged Robots

X. Alice Wu1, Tae Myung Huh1, Rudranarayan Mukherjee2, and Mark Cutkosky1

Abstract—We present the design and implementation of a
miniature tactile sensing array for ground reaction force mea-
surements in small legged robots. Dynamic ground pressure
data from the sensors were collected using a small two-legged
runner and used to train a support vector machine (SVM)
terrain classifier. Results show that tactile sensing data, in
combination with information about the motor torque and robot
gait, are sufficient to distinguish among hard, slippery, grassy and
granular terrain types with >90% accuracy in a single stride.
The most useful classifier features include stride frequency, peak
motor torque, and peak and average tactile sensor readings.

Index Terms—Force and Tactile Sensing, Multilegged Robots

I. INTRODUCTION

FOR small legged robots and animals, the details of
interactions between their feet and the ground can have a

profound effect on the speed and efficiency of locomotion. For
example, on grassy or granular terrain, the interactions may
dissipate significant energy due to friction as the feet deform
the surface. Conversely on hard and smooth surfaces, slippage
may be significant. Perhaps of most interest are leg and ground
interactions on granular media such as sand and loose soil,
which can have a considerable effect on limb kinematics and
locomotion performance [1,2].

Small animals use numerous mechanorceptors in their legs
and feet to monitor foot/ground interactions and adjust their
gait and speed accordingly. For example, in insects, campan-
iform sensilla and sensory hairs provide a dynamic measure
of contacts and loads in the limbs [3]. However, until very
recently, practical considerations including sensor size, robust-
ness and wiring have made it difficult to equip small robots
with anything approaching the sensory capabilities of small
legged animals. Dynamic tactile sensing on the feet would
allow small robots to sense the magnitude and location of
ground contact. Sensor information would also allow robots

Manuscript received: August 31, 2015; Revised December 17, 2015;
Accepted January 13, 2016.

This paper was recommended for publication by Editor John Wen upon
evaluation of the Associate Editor and Reviewers’ comments. This work
is supported in part by the Army Research Laboratory under the Micro
Autonomous Systems and Technology Collaborative Technology Alliance.
Alice Wu is supported by the NSF Graduate Research Fellowship. Tae Myung
Huh is supported by the Samsung Scholarship.

1X. Alice Wu, Tae Myung Huh, and Mark Cutkosky are with The
Center for Design Research, Stanford University, Stanford, CA 94305,
USA axwu@stanford.edu; taemyung@stanford.edu;
cutkosky@stanford.edu

2Rudranarayan Mukherjee is with NASA Jet Propulsion Labora-
tory, California Institute of Technology, Pasadena, CA 91101, USA
rudranarayan.m.mukherjee@jpl.nasa.gov

Digital Object Identifier (DOI): see top of this page.

Fig. 1: An instrumented curved leg on a two-legged runner in
grassy terrain.

to identify the terrain type and perform gait adjustments for
more efficient locomotion.

The main contribution of this paper is the use of an array of
miniature capacitive tactile sensors to directly measure ground
reaction forces (GRF) on the legs of small running robots.
The sensors are implemented on a curved C-shape leg as this
form factor is common in small legged robots [1,4,5]; however
the flexible design can be adapted to suit a wide variety of
appendage shapes and sizes. We first demonstrate the tactile
sensor’s ability to measure spatially-distributed normal GRF
over a variety of surfaces. We then show that dynamic GRF
sensing data allow us to segment running data into individual
strides and train a machine learning classifier to perform
terrain identification based on the magnitude and distribution
of forces on the legs in combination with motor torque and
stride frequency. Results are presented, with insights into
sensor features important to accurate terrain classification.

II. RELATED WORK

A. Ground Reaction Sensing

Numerous efforts have been made to perform terrain iden-
tification in larger mobile vehicles. Examples include the
use of dynamic vibration signals from inertial measurement
units (IMUs) and current/voltage measurements from motors
attached to the wheels or legs [6]–[10]. Others utilize vision
systems [11]–[15], sound [16], or tactile probes attached to a
robot traversing through various terrains [17]. Other investiga-
tors measure ground reaction forces directly using force torque
sensors [18,19] or tactile sensing arrays [20,21] mounted on
the feet.

In addition to terrain classification, ground reaction forces
can be used for feedback-control in larger mobile vehicles,



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

where the time constant permits within-stride response. In-
vestigations have included the use of ground reaction forces
to analyze stability via load transfer metrics [22,23] and to
optimize traction via constraints on friction [24]–[26].

Recent efforts have also been directed toward instrumenting
small legged robots with binary hair arrays, body tactile
bumpers, and leg strain sensing [27]. Others have employed
a large tactile array as an instrumented ground surface [28]
and performed terrain classification on small robots using
statistical moments of data sampled from on-board IMUs and
joint currents [29].

B. Tactile Sensing Technology

As detailed in several sensor review papers [30]–[33], many
transduction methods have been employed to measure contact
forces and pressure distributions including optical [34]–[37],
resistive [38]–[41], magnetic [42,43], and capacitive [44]–
[47]. Among these, optical and magnetic sensors that measure
deflections in a relatively thick, compliant skin are unsuitable
for the present application because they add too much bulk and
weight. In addition, some approaches, such as those based on
optical fibers, are challenging to adapt to legs that undergo
continuous rotation. Among other transduction technologies,
piezoresistive sensors based on conductive inks or polymers
are inexpensive and robust, but typically suffer from sub-
stantial hysteresis, which limits their use for dynamic tactile
sensing [30]. Another possibility is to pattern strain gages
directly onto the feet, but this solution requires instrumentation
quality amplifiers and again presents challenges for wiring
between continuously rotating legs and the robot body.

In comparison to other tactile sensing technologies, capac-
itive sensors have enjoyed a recent increase in popularity due
to the availability of inexpensive surface-mounted capacitance
to digital converters (CDCs) to provide active shielding, signal
processing and digital communication. Examples include sen-
sors for robot hands [48,49] and miniature surgical grippers
[50]. In the present application, capacitive tactile sensors based
on flexible circuits with surface-mounted CDCs are attractive
due to their low weight, robustness, and ability to wrap
around various geometries. For robots with rotary legs, the
minimization of wiring is an additional advantage.

III. SENSOR DESIGN AND INTEGRATION

A. Sensor and Leg Assembly

The sensors used here build upon a design introduced in
[47]. In this design, a sparse structure of silicone rubber is
used as the dielectric in a capacitive tactile sensor, which is
easily modified to match the desired force range and sensitivity
for a particular application.

The inner structure of the sensor assembly consists of a 4-
layer, 156 µm, 8mm wide polyimide flex circuit (FPBC) with
5 force sensing pads (25mm2 each), as seen in Fig. 2. Blind
vias minimize stray capacitance to both the external sensing
pads and the internal active shielding layers, allowing us to
achieve a high signal to noise ratio. The outer layer consists
of a sheet of conductive fabric (Less EMF RadioScreen). The
dielectric is an array of posts (TAP Silicone RTV, E = 840 kPa,
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Fig. 2: Sensor/leg assembly. The sensor consists of 5 taxels,
with taxel 1 at the tip of the leg (distal) and taxel 5 near the
hip (proximal); sensor assembly cross-section shown on left.

fill ratio = 16%) and is cast in place on the underside of the
fabric. To improve traction, another thin layer of silicone is
cast onto the outer surface of the conductive fabric.

To acquire ground reaction force data, the inner layer of the
sensor is bonded to a 3D-printed (Stratasys ABSplus) curved
robot leg (10mm wide, 30mm long measured from hip to toe)
with an adhesive (Loctite 401). The outer layer is then bonded
to the inner layer with a thin silicone adhesive (Smooth-
On, Inc. Sil-Poxy). The total sensor assembly (excluding leg)
weighs 0.95 g.

A 16-bit CDC (Analog Devices AD7147) samples the
sensing pads at ∼260Hz. Sensor data are acquired via I2C
through a microcontroller (Microchip PIC24F04KA201) and
sent to a PC via USB through slip rings.

B. Performance Analysis

1) Calibration: The curved sensor/leg assembly was cal-
ibrated using an Aurora Scientific Inc. 309C Dual-Mode
Muscle Lever System, which applied a 0.5Hz sinusoidal input
force between 0N and 5N for 10 successive cycles. A custom
linear bearing setup constrained the leg’s motion uniaxially,
with the leg orientation adjusted to bring each taxel in contact
with a force plate. Ground forces were measured using a
commercial force/torque sensor (ATI Gamma SI-32-2.5, accu-
racy: ±0.05N). Taxel pressure measurements over this range
demonstrate low hysteresis and are slightly nonlinear, which
can be accommodated using a polynomial fit [47]. Fig. 3 shows
typical calibrated sensor data as compared to forces measured
on the ATI load cell for uniaxial compressive loads; due to
bending of the leg, the match is close but not exact at the
peak forces.

2) Static and Dynamic Performance: The sensitivity of the
sensor is 670 counts/N averaged across 5 taxels. The RMS
noise is 9 counts at 260 Hz sampling rate, and thus limits
the effective resolution to 12 bits. The minimum resolvable
normal force is 13 mN or 1.3 grams. Although the sensor has
previously been tested for loads up to 100N in compression,
the maximum static force in this application is approximately
10 N without incurring structural damage to the leg. Dynamic
response of an equivalent sensor was previously characterized
in [51]. The experimental transfer function estimate (ETFE) of
the sensor showed that both magnitude and phase are relatively
flat through excited frequencies up to 100Hz, indicating that
the sensor is suitable for both static and dynamic sensing
applications.
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Figure 4 shows net force on the leg measured by the
tactile sensors compared to data from the ATI force/torque
sensor mounted beneath various materials on a test platform
(Fig. 5) for a single stride. The data are comparable, with
minor differences due to leg bending and the distribution of
the ground reaction force over multiple taxels.
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Fig. 3: Calibrated sensor performance compared to ATI load
cell for an arbitrary force trajectory (static uniaxial compres-
sion).
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Fig. 4: Calibrated single stride sensor data (solid) compared
to ATI load cell GRF data (dashed) over different terrains at
10 Hz leg frequency. Due to practical difficulties, it was not
possible to collect ATI data for running on granular media
(chia seeds).

IV. ROBOT PERFORMANCE AND TERRAIN SELECTION

A. Bipedal Runner
A two-legged runner (Fig. 1, Fig. 5), conceptually similar

to previous tethered runners that run in a circle [52]–[54],
albeit at a much smaller scale, was built to measure running
performance and ground reaction forces on a range of test
surfaces. The mass and dimensions are chosen to approximate
the behavior of small legged robots such as EduBot/SandBot
[1], Mini-Whegs [55] and the RoACH class of robots [4,5],
which employ curved legs for locomotion.

Two C-shaped legs are attached to the motor shaft (Maxon
DCX10L EB KL 12V, 16:1 planetary gearhead), 180 degrees
apart. The motor and legs are mounted on a 3D printed two-
axis gimbal structure that allows the entire assembly to pivot

freely about the vertical and horizontal axes. Adjusting the
counterbalancing allows one to control the effective inertia
and gravity force on the legs. Depending on balance, speed
and terrain type, the legs can walk, with little vertical motion,
or trot, with a significant hopping height on a circular track
with interchangeable terrain surfaces. Specifications of the
apparatus are provided in Table I.

Slip-rings connect wires from the rotating frames to a fixed
frame. A through bore slip-ring (Orbex Group, 503-0600)
connects wires from rotating leg sensors to the computer.
Another double slip-ring setup (Adafruit) connects all the
wires from the pivoting motor mount to a fixed frame. An
encoder (AVAGO HEDM 5500) measures the horizontal pivot
angle and robot body velocity. The same ATI sensor as used for
sensor calibration is installed beneath a portion of the circular
track to measure GRF for comparison to leg sensor signals.
A microprocessor (Texas Instruments TM4C123GH6PM) is
used for closed-loop stride frequency control and quadrature
encoder measurements at 1 kHz.

Fig. 5: Two-legged runner and gimbal apparatus with instru-
mented curved legs and circular track with interchangeable
surfaces.

TABLE I: Specifications for two-legged running robot.
Parameter (µ) Value Units
Effective mass (vertical contacts) 7.8 g
Effective mass (horizontal) 5.7 g
Leg mass 0.43 g
Leg length 30 mm
Leg stiffness 1325 N/m
Motor stall torque 4.38 mNm
Motor no load speed 11200 rpm
Gear ratio 16:1
Pivot radius 105 mm

B. Terrain Selection

Six representative terrain types, with variations in friction
and hardness, were prepared for GRF sensing and classifica-
tion experiments (Fig. 6 and Table II).

V. METHODS

A. Running Experiments

For each selected surface, stride frequencies from 6-16 Hz
by 2 Hz increments were examined. This frequency range was
chosen because it covers walking and running behavior of the
apparatus. For each terrain, 72 seconds of running data were
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Fig. 6: Surfaces used in experiment (described in Table II).

TABLE II: Terrains used in GRF sensing experiments; ma-
chine learning class labels listed in Section V-C.

Terrain Description Friction
Coef-
ficient
(µ)

Penetration
Depth
(mm)

Class
Label

1 125 µm
shore10A
silicone-lined
acrylic

1.6 0 HF

2 laminate tile 1.3 0 HF
3 Teflon 0.04 0 LF
4 thick-pile car-

pet
0.9 7 D

5 synthetic
grass

1.1 4 D

6 chia seeds 0.6 12 G

collected for each stride frequency. For all ground surfaces
except PTFE (Teflon) sheet, the silicone outer skin of the leg
made contact directly with the surface; for Teflon, the leg was
wrapped in a thin film of PTFE tape because silicone/Teflon
contact has high adhesion and does not slip at light loads.
High speed videos were recorded at 400 fps to observe ground
interactions in detail. However, these visual data were not used
for terrain classification.1

Figure 7 shows the behavior of the robot on different
surfaces at each stride frequency. For all surfaces, the appara-
tus is predominantly walking at 6 Hz. On surfaces 1, 2, 4,
and 5, the robot demonstrated the most consistent running
behavior and the lowest variations in forward body velocity
at 10 Hz. Beyond 10 Hz the robot began to exhibit some
airborne behavior. This hopping behavior is most noticeable
at frequencies above 14 Hz on thick carpet and synthetic
grass. On Teflon, the apparatus stalled due to slip at 8 Hz
and 14 Hz, but managed to propel itself forward sporadically
at other frequencies. In the granular chia seeds, the runner
consistently increased its forward body speed with increasing
stride frequency, indicating that this terrain had a qualitatively
viscous effect on locomotion.

B. Feature Extraction

In order to examine GRF when the leg is in contact with
the ground, we segmented the data into strides based on the
contact period associated with each stride frequency. A peak
detection algorithm was used to find the peak sensor force
(calculated as the maximum absolute value of summation of
5 taxel signals) within the stride period. After the peaks were

1Videos can be found in the multimedia extension and at: http://bdml.
stanford.edu/Main/BipedalRunnerExperiments
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Fig. 7: Average body velocity and velocity RMSE across
different surfaces.

found, the start and end points of each stride were determined
via thresholding with respect to the RMS value of the sensor
noise floor. In the end, 150 ground contact stride segments
from every frequency were extracted for each of the terrains
tested.

We are interested in performing terrain identification using
data obtained from each robot stride. Accordingly, relevant
sensor and motor torque waveform features that captured the
characteristics of leg/ground interactions were extracted from
each stride segment for training and testing our classifier. In
addition to sensor and motor information, stride frequency is
used as a classifier feature since the walking or running dy-
namics of the apparatus vary with stride frequency. A similar
strategy was adopted by [29,56] to allow terrain classifiers to
adapt to different dynamic regimes. Table III lists features used
by the classifier.

TABLE III: Machine Learning Feature Set
Index Feature Name

1 Robot stride frequency
2 Sensor force (net) peak amplitude
3 Sensor force (net) width
4 Sensor force (net) area under curve (impulse)
5 Motor torque peak amplitude
6 Peak motor torque:peak sensor force ratio
7 Sensor force (net) average amplitude
8 Motor torque average amplitude
9 Average motor torque:average sensor force ratio

10 Motor torque width
11 Motor torque area under curve

12-16 Individual taxel (1-5) force peak amplitude

C. Machine Learning

We posit that a terrain classifier for gait adaptation is useful
when it can inform a robot of the locomotion-related properties
of the surface it is walking on. Such a terrain classifier is most
helpful when the robot is transitioning between two disparate
surfaces (such as running on a surface like concrete versus
running on a softer and more dissipative surface like sand)
rather than two similar surfaces (such as transitioning from
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concrete to a plastic laminate floor). From Figs. 4 and 7, we
see that the ground reaction forces and average body velocity
are similar for surfaces with comparable friction and stiffness.
Prior work by [18] similarly suggests that terrain classification
based on physical properties will better reflect the influence
of the terrain type on the robotic gait and lead to improved
terrain classification results.

To train and test our classifier, we combined sensor and
motor torque data from the 6 terrains into 4 representative
terrain classes based on their friction and stiffness properties:
1) a high friction hard surface class (HF) consisting of the
thin silicone-lined acrylic surface and the laminate tile; 2) a
low friction hard surface class (LF) consisting of Teflon; 3)
a deformable surface class (D) consisting of thick-pile carpet
and synthetic grass; and 4) a granular class (G) consisting of
chia seeds. Since the LF and G classes only contain data from
one type of terrain, we randomly sampled an equal amount of
data from the HF and G classes to form an overall data set
consisting of 3600 total instances (stride segments), with 900
instances from each class.

We used WEKA 3.7 [57] for classifier training and testing.
Our classifier is a support vector machine (SVM) trained
via a sequential minimal optimization (SMO) algorithm us-
ing the Pearson VII function-based universal kernel (PUK)
[58,59]. Classifier accuracy is evaluated using 10-fold cross-
validation. We used an SMO-based SVM classifier because of
its versatility, speed and robustness. SVM classifiers have also
demonstrated good results when used for terrain classification
based on high-frequency vibration signals [8,29,60].

Since the characteristics and distribution of our feature set
have not been well studied previously, it is difficult to optimize
kernel selection for our classifier without time-consuming
optimization procedures. Compared to linear, polynomial and
RBF kernel functions, the PUK has been shown to be a robust
and generic alternative capable of providing equal or better
mapping than traditional SVM kernels, leading to an equal
or better generalization performance of SVMs [59]. Note that
WEKA’s SMO implementation solves multi-class problems via
pairwise classification [61].

VI. RESULTS AND DISCUSSION

A. Ground Reaction Force Sensing

Figure 8 shows normal GRF data for each of the 5 taxels
on four different surfaces. Qualitatively we see that on a stiff
surface, most of the force is concentrated on a single taxel
over a short period of time. On a deformable surface such
as thick carpet, the force profile becomes more temporally
distributed and covers multiple neighboring taxels. Lastly, we
see that in granular material, through the first phase of the
stride (0-50ms), the proximal taxel 5 experiences most of the
ground contact force as the leg penetrates down and backwards
into the granular material. This first push displaces some of
the material and propels the body forward. Due to the curved
shaped of the leg, neighboring taxels 2-4 experience mostly
shear forces (not captured by the normal force taxels) as
the leg begins to slip tangentially in the circular depression
surrounding the first impact. In the second phase of the stride

(50-120ms) the distal tip of the leg (taxel 1) starts to make
contact with the surface and experiences normal force loads
as the leg further displaces the granular material.

Visualization of three classification features (peak ampli-
tude, width, area under curve) at a constant stride frequency
demonstrates qualitatively the separation of terrain classes into
distinct populations (Fig. 9).
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Fig. 8: Individual taxel forces recorded on different surfaces
at 10 Hz stride frequency, from left: a) silicone-lined acrylic,
b) teflon, c) thick-carpet, d) chia seeds.

B. Terrain Classifier Performance

Using the full feature set (Table III), the classifier achieves
an overall accuracy of 94.4% for terrain classification across
the 4 terrain classes (HF, LF, D, G). Table IV shows that
the classifier performed best on granular surfaces, with an
accuracy of 98.4% and worst on low-friction surfaces, with
an accuracy of 92.7%. In general, stiff, high friction surfaces
are more likely to be misclassified as low-friction surfaces,
and vice versa, since both surfaces have low deformability, so
peak and average sensor readings can be similar.

In addition to high accuracy and robustness, the terrain
classifier demonstrates the potential for real-time implementa-
tion with offline model parameter fitting. Using the MATLAB
profiler (1000 executions, 1 ms clock precision, 2.6 GHz clock
speed) under Windows 7 OS without code optimization, our
classifier trains the SVM in 2 seconds while executing terrain
classifications in 1 ms per stride on average.

C. Sensor Feature Analysis

We performed feature analysis on our classifier using a
greedy stepwise search algorithm to develop insights into the
best sensor features for terrain classification. Feature merit
scores are presented in Fig. 10. Results show that the top
three features with the best scores are motor torque amplitude,
frequency, and torque area under curve.

In the present case, with a single motor directly connected
to the shaft propelling the legs, the motor torque is a good
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Fig. 9: Selective plot of classifier features at 10 Hz stride frequency: tactile sensor (right) and motor torque (left).

TABLE IV: Terrain classifier performance using complete
feature set from Table III.

High
friction 

(Hf)

Low
friction 

(Lf)

Deformable
(D)

Granular
(G)

High friction (Hf) 92.89% 4.44% 2.56% 0.11%
Low friction (Lf) 5.89% 92.67% 1.00% 0.44%
Deformable (D) 1.22% 3.67% 93.44% 1.67%
Granular (G) 0.00% 0.78% 0.78% 98.44%
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TABLE V: Terrain classifier performance using only stride
frequency and tactile sensor features.

High
friction 

(Hf)

Low
friction 

(Lf)

Deformable
(D)

Granular
(G)

High friction (Hf) 84.33% 13.00% 2.56% 0.11%
Low friction (Lf) 5.89% 84.11% 6.67% 3.33%
Deformable (D) 1.33% 9.89% 86.00% 2.78%
Granular (G) 0.00% 0.78% 0.44% 98.78%
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Tr
ue

 C
la

ss

TABLE VI: Terrain classifier performance using only stride
frequency and motor torque features.

High
friction 

(Hf)

Low
friction 

(Lf)

Deformable
(D)

Granular
(G)

High friction (Hf) 84.56% 9.44% 5.33% 0.67%
Low friction (Lf) 13.33% 80.22% 0.67% 5.78%
Deformable (D) 3.22% 3.00% 84.33% 9.44%
Granular (G) 0.00% 5.56% 1.44% 93.00%
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indication of the effort required to move at a particular speed.
It is also closely related to the horizontal ground reaction force.
Hence it is not surprising that the motor peak and average
torque are especially useful features for terrain classification.
However, in other small robots the connection between the
motor and the legs maybe less direct and a single motor may
be driving all the legs – those in stance and those in flight. In
such cases the peak motor torque may be a less useful feature.
Therefore, to evaluate the effectiveness of sensor features and
stride frequency alone, we re-trained and tested the classifier
with a subset of features.

Using only sensor data and stride frequency as training
features, we achieved 88.3% overall accuracy (worst accuracy
for low-friction of 84.1% and best for granular media of
98.8%). When motor torque information is not present, sensor
peak force and area under the curve had the highest influence
on classifier accuracy (Fig. 10). Using only motor torque
and stride frequency as training features, we achieved 85.5%
overall accuracy (again, worst for low-friction, LF, and best
for granular media, G). Thus, where peak motor torque is not a
reliable indication of the peak ground reaction force, using the
tactile sensors alone can produce a relatively reliable terrain
classification.

Note also that we are currently performing terrain classifi-
cation with data from a single stride. In practice, the accuracy
should improve if results from multiple consecutive steps are
considered since terrain data maybe spatially and temporally
correlated [62].
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Fig. 10: Feature scores across all training features (top),
feature scores across only sensor features and stride frequency
(bottom); higher scores indicate more contribution to classifier
accuracy. Feature index provided in Table III.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We present the design and use of an array of capacitive
tactile sensors mounted on a flexible printed circuit with local
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signal processing and communications, intended to measure
the ground reaction forces for small legged robots.

Using signal features from the sensors, we were able to
train and test a SVM classifier to perform single stride
terrain classification with better than 90% accuracy on several
representative types of terrain. For the apparatus tested, the
peak and average motor torque were directly related to the
ground reaction forces and yielded the highest classifier feature
scores. When this information is not available, or is not as well
correlated with ground forces, using only the tactile sensor
data and information about stride frequency can also provide
a reliable terrain identification in most cases.

B. Future Work

1) Sensor Development: For an arbitrary terrain, a robot’s
leg motor torque information is related to kinetic friction and
to the effort required to maintain velocity on dissipative terrain.
The normal force taxels provide information related to surface
deformability. A full-package sensing solution would measure
both normal force and either shear force along the leg or
torque where the leg is attached to its shaft. The availability
of this information at rates above 100 Hz makes closed-loop
gait control and adaptation possible.

2) Applications: In this work we attached our tactile sen-
sors to a C-shaped leg. However, the tactile sensor can easily
be adapted to other leg shapes and sizes. For example, the
sensor can easily be scaled for heavier loads in larger robots
simply by adjusting the stiffness of the dielectric layer. In the
near future we hope to attach the sensor to a small quadrupedal
or hexapedal robot to capture live GRF measurements and
perform real-time terrain classification. We would also like to
perform terrain identification on a greater variety of outdoor
surfaces such as soil, gravel and sand, to study the robust-
ness of our classifier on these complex deformable terrains.
Furthermore, we hope to use the sensors to characterize robot
leg collisions with obstacles, which could permit more robust
trajectory control in cluttered terrain [63].
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