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VARYING SPRING 

PRELOADS TO 

SELECT GRASP 

STRATEGIES IN AN 

ADAPTIVE HAND 



PROJECT BACKGROUND 

 Autonomous undersea dril l ing platform 
 Remote, inaccessible 

 Two robot arms with interchangeable end-effector 
 Tools for repeated operations 

 Hand that accommodates many shapes and sizes  
 Able to pick up heavy objects 

 Won’t damage light objects 



Wrap grasp 

 Large objects 

 Secure grasp, many points of contact 

Pinch grasp 

 Small objects 

 Relies on friction 

 Dexterous 

 Requires full actuation 

 “Power-pinch” grasp 

 Grasp small objects securely 

 Don’t care about dexterity 

 Doesn’t require full actuation 

GRASP STRATEGIES 



 Hands generally pinch 
smaller objects with 
fingertips 
 Few contacts 

 Point or line contacts 

 Requires soft pads to 
improve contact 

 Underactuated hands 
cannot fully control finger 
configuration 
 SDM Hand, Meka Hand rely 

on kinematics & springs 

 Robotiq adaptive gripper 
keeps fingertips parallel  
 Less reliance on friction 

MOTIVATION – PINCH GRASPS 



SEABED HAND 



RANGE OF GRASPABLE OBJECTS 



 

THE HAND IN ACTION 



 3 Motors 
 Open / Close Fingers 
 Located in the base 

 Drives a leadscrew 

 Reconfigure Fingers 
 Located in the base 

 Rotates two motors 90 
degrees 

 Stiffen the fingers 
 Cable drive located in base 

 Pulley differential stiffens 
the finger 

 Issues 
 High-friction 

 Complicated 

 

BASIC DESIGN 



Adaptive mechanism 

Lowers sensing and 
control requirements 

Protects the motor and 
transmission from 
shock and vibration 

Actuators  

Small, low-power,  
non-backdriveable 

Located in the finger 

Simpler design 

 

SPRING PRELOAD MECHANISM 



Assumptions: 

Frictionless 

Circular object 

 Contact points are only a 
function of position. 

Symmetric 

Two-phalanx contact 

Finger position is a 
function of xc. 

VARIABLES AND EQUATIONS 



SMALL SPRING PRELOAD 



MEDIUM SPRING PRELOAD 



WAYS TO UNDERSTAND GRASPING 



Effective stiffness 

 𝑘𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝜕𝐹

𝜕𝑥
   

Lower preloads  

 Lower grasp stiffness 

 Higher range of 
perturbations 

Higher preloads 

 Higher effective stiffness 
– more precise 

 Lower range of 
perturbations 

STIFFNESS INTERPRETATION 



No single preload 

can grasp all objects 

Tradeoff between 

versatility and 

optimality 

Fingertip 

interference 

considered 

RANGE OF OBJECTS WHICH CAN BE 

GRASPED 



 Integrate pulling 
forces over the 
distance traveled 

Minimum Potential 
energy when f=0 

Potential Grasp 
Metric 

Useful for design 

Symmetric curves are 
good 

 

POTENTIAL ENERGY 



Three-phalanx 

Start in stable grasp 

Quasi-static 

Let velocity go to zero 

No contact friction, but 
spring is damped 

Four Cases: 

SEABED HAND ANALYSIS 



WORKING MODEL SIMULATION 



GRASPING A SMALL OBJECT 



FORCES IN SEABED HAND 



FORCES IN SEABED HAND 



FORCES IN SEABED HAND 



FORCES IN SEABED HAND 



Trade-off  

 Object size 

 Posture 

 Effective grasp stiffness 

 Disturbance force rejection 

 Energy absorption 

Example Tasks 

 Impacts:  
Small preload  Low grasp stiffness 

 Precision:  
High preload  High grasp stiffness 

 Slow-speed manipulation 

 

DISCUSSION 



Adaptive mechanism 

Lowers sensing and 
control requirements 

Protects the motor and 
transmission from 
shock and vibration 

Actuators  

Small, low-power,  
non-backdriveable 

Located in the finger 

Simpler design 

 

SPRING PRELOAD MECHANISM 



 Introduced the “power -pinch” 

Wider Range of Objects – 10:1 

 Improved Grasp Stability 

Next Steps 

Optimize kinematics. 

Use grasp metrics as a design tool. 

Develop new control strategies for 

spring preload mechanism 
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