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Abstract— We present a simple statistical model to predict
the maximum pulling force available from robot teams. The
expected performance is a function of interactions between
each robot and the ground (e.g. whether running or walking).
We confirm the model with experiments involving impulsive
bristlebots, small walking and running hexapods, and 17 gram
µTugs that employ adhesion instead of friction. With attention
to load sharing, each µTug can operate at its individual limit
so that a team of six pulls with forces exceeding 200 N.

I. INTRODUCTION

Among the potentially useful capabilities of miniature
robots is the ability to form teams that can exert forces
and manipulate objects much larger than themselves. In
this regard, the collective actions of leaf cutter ants are
a common source of inspiration [1]–[3]. However, with a
few exceptions, microrobots can exert only small forces
individually, and the ability to exert large forces in teams
is comparatively unexplored.

In this paper we examine the characteristics of small
robots that make them inherently more or less suited to
pulling heavy loads. An interesting result is that optimizing
a single robot to exert the maximum peak force when
pushing or pulling an object may render it less suitable for
working in a team. Equally important are the characteristics
of the interaction between each robot’s feet and the ground.
A reliance on Coulomb friction severely limits the force
that each robot can exert and correspondingly limits the
capabilities of the team.

We explore these issues in three broadly defined classes
of mobile robots: impulsive, smooth-gaited, and winching.
The winching robots are based on µTugs [4], which use
controllable adhesion instead of friction to interact with the
ground. Each µTug can pull a large load in proportion to its
weight and, with some attention to configuration and control,
a team of µTugs can achieve a nearly proportional increase
in load carrying ability with increasing numbers of robots.
For example, six µTugs, each with a mass of 17 g, can pull a
1800 kg automobile and driver on polished concrete (Fig. 1).

The paper first introduces the concepts of smooth versus
impulsive gaits and then introduces a statistical model to
predict how effectively their forces against the ground will
add. The model requires no particular assumptions about the
details of robot/ground interactions, inertial dynamics, fric-
tion, etc. The results of the statistical prediction are compared
with experiments and logical extensions of the model are
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Fig. 1. A 1800 kg automobile is pulled by a team of 6 µTug robots on
a concrete floor with load sharing for a combined force of 200 N.

explored to give insights into load sharing mechanics within
a team.

A. Related work

While there are many interesting examples of terrestrial
microrobots [5]–[7], in most cases, these rely on friction
between the robot and the ground. As noted in [8], it is
often desirable to operate in a regime where such robots
can exploit the difference between static and dynamic co-
efficients of friction. Alternatively, microrobots can utilize
anisotropic friction or adhesion with the ground or on vertical
surfaces [4], [7], [9]–[13].

There are several examples of prior work on cooperating
teams of robots (e.g., [14]–[16]) but most of these focus
on design of systems for individual control of externally
actuated robots, cost reduction for feasible manufacturing,
or strategies for cooperation.

II. MECHANICS OF MICROROBOT LOCOMOTION

We begin with a discussion of the mechanics of gait
and force generation for the three broad classes of robots
previously mentioned. Let tp be the stride period of the
robot’s gait, and tc be the duration of contact between the
foot and the ground in a stride period, during which the robot
exerts a horizontal force fc. We allow the foot contact time
to be in the range 0 < tc ≤ tp. The ratio tc/tp allows us to
distinguish among impulsive, smooth and winch gaits.

A. Impulsive gait

Running robots like the MIT Cheetah [17] are intentionally
impulsive. The choice of a galloping gait with just one, or



a b

Fig. 2. (a) Horses gallop with a chariot. Force is applied in bursts as feet
strike the ground. The gait has an airborne phase, so a consistent pulling
force is impossible. (b) A team of mules pulls a plow by walking with at
least two feet on the ground at any time, providing a consistent force [21].

even zero, feet in contact with the ground at each instant
gives the legs maximum time to recycle for the next stride.
A characteristic of impulsive locomotion is that tc � tp.
In the case of the horses and chariot in Fig. 2a, momentum
is large and carries the load forward, sustained by a steady
sequence of impulses from the feet.

At the opposite extreme, tiny “bristlebots” are also impul-
sive. Locomotion proceeds by a series of many extremely
small and brief impulsive interactions with the ground. As
noted in [18] this yields controllability benefits, especially
for systems prone to “stiction.”

An advantage of such gaits for small robots is that they do
not require a complex power transmission system to convert
between a small, high speed actuator to comparatively long
strides and high forces. Instead, one can use an oscillatory
actuator–for example, a small motor and eccentric mass,
or a piezoelectric actuator–that operates at high speed. The
inertial forces produced by such an actuator, combined with
a significant difference between the static and dynamic
coefficient of friction, are sufficient to propel the robot.

An additional useful characteristic of impulsive locomo-
tion is that the peak force associated with each foot/ground
contact can be quite large, exceeding the weight of the
robot [19]. Hence a small robot employing impulsive lo-
comotion can slowly move a large object by repeatedly
“hammering” at it. However, as we will see in the next
section, this characteristic makes impulsive robots inherently
more difficult to harness in teams.

B. Smooth gait

Fig. 2b illustrates two mules pulling a plow with a smooth
gait. The resistance of the plow precludes any coasting
between footfalls. The mules instead use a smooth walking
gait, and the force they apply to the plow is relatively
constant. Many robots as they transition from running to
walking will apply a more uniform horizontal force, provided
that the legs have a sufficiently long stride length that tc is a
large fraction of tp. Interestingly, small insects that run with
a “groucho gait” (i.e., with a bouncing periodic motion but
no airborne phase) can, due to their long limbs, produce an
oscillating but not impulsive force profile [20]. Of course,
wheeled and tracked vehicles also exhibit a smooth gait.

C. Winch gait

The winch gait involves moving forward typically for
more than one body length, planting one or more feet in

contact with the ground, and then pulling on a load using
a winch or similar mechanism. This mode of locomotion is
typically slow, but has the advantage of a very long stroke
length in comparison to body length. Therefore, any lost
motion that is consumed in elastic deformation with each
loading/unloading cycle is a small fraction of the overall
work. While this mode does not allow momentum transfer
across gait cycles, it does have the advantage of maintaining
motion in a single cycle, thus pulling against kinetic friction
more than static friction. Another way of achieving a uniform
traction force with adhesion could be to employ adhesive
belts, as demonstrated in some climbing robots [11], [12].
However, this solution introduces engineering challenges for
steering while maintaining uniform adhesive pressure, which
is important for maximum performance. The authors have
found that they can obtain higher performance by bonding
controllable adhesives to tiles that attach and release from
the surface [22].

As shown in [4], small robots that utilize controllable
adhesion in combination with a winch gait can pull loads
many times their weight. In the next section we consider
how to harness robots in teams for a larger combined load.

III. CONSIDERATIONS FOR EFFECTIVE LOAD SHARING

We now consider the effect of gait on the ability to share
loads. We seek to maximize the pulling capability of small
teams of microrobots, with the aim of generating larger-than-
human scale forces. Since we are interested in the case where
the robots are much smaller than the load, the power output
of the robots is necessarily small with respect to the load, and
the load will be moved quasistatically. As a result, the metric
we are primarily interested in is the peak force generated
by the team of robots, rather than simply the power output
or mean force. We assume that the robots will need to act
against static friction, and momentum cannot be stored in
the motion of the load.

We want to examine load sharing among N robots. We
begin with the case of robots in parallel, with no effort taken
to synchronize gaits. In this case, we assume that the time
offsets between robot gaits are independently drawn from
the uniform distribution from 0 to tp. A representative time
course of N robots is presented in Fig. 3a. This implies that
the probability that a given robot is pulling at arbitrary time
t∗ is

p = tc/tp (1)

Then the number of robots n ≤ N pulling together
at an arbitrary time t∗ follows the binomial distribution:
n ∼ B(N, p). The total force follows the same distribution
scaled by fc.

The mean of a binomial distribution is always Np, mean-
ing that the average force exerted by N robots is

Fmean = Nfcp (2)

Analysis of the peak force is slightly more involved. We
break this into two parts: estimating the effective number of
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Fig. 3. (a) Uncoordinated pulling with N robots: Each robot takes strides
of duration tp, of which the foot is in contact for tc. Phase delay between
robots is assumed independent and uniformly random from 0 to tp. (b)
Example GRF of gaits of constant impulse demonstrating a range of cases
from a sharp impulse at maximum frictional capacity: (i) tc/tp = 0.085, to
the same body weight operating at nearly constant force (iv). (c) Coordinated
pulling: phase delay is independent and uniformly random from 0 to tφ,
due to errors in synchronization.

robots acting together as a function of p, and estimating the
peak force capability of a robot as a function of p.

Because the probability of all N robots pulling together
quickly becomes negligible for small p or large N , we define
an effective number of robots Ne to reflect the number of
robots we expect to see pulling together some fraction of
the time. Since the binomial distribution is only defined over
integers in [0, N ], we define Ne as a linear interpolation to
improve fit to measured data as follows:

Definition III.1. Let c(x1, N, p) be the cumulative distribu-
tion function of the binomial distribution B(N, p) evaluated
at integer x1 ∈ [0, N ]. Let I(x2, N, p) be a linearly interpo-
lated CDF of B:

I(x2, N, p) = c(bx2c, N, p)+
x2 − bx2c
dx2e − bx2c

· (c(dx2e, N, p)− c(bx2c, N, p)) (3)

We then define Ne(N, p) as x such that I(x,N, p) = 0.95

This expression corresponds to the number of robots we
expect to see pulling together 5% of the time from a team
of N robots operating at p. Note that Ne is a function of
N and p; for clarity, we simply note it as Ne; N and p
where specified will be clear from context. We have found
that interpolating between discrete values of the binomial
distribution gives good results in practice.

For values of p near one, Ne ≈ N , i.e., the peak force
produced by N robots is N times the peak force of one
robot. As p → 0, Ne approaches 0 monotonically, though
Ne is less sensitive to p near 1. Depending on application,
Ne could be defined with different percentiles to reflect how
often the target peak force is required.

To model the force as a function of p, we first begin
with the theoretical maximum. Since the robots have no net
vertical acceleration, the average force they can exert is at
most µemg, where µe is the effective coefficient of friction,
and mg is the weight. Given this time averaged force, a robot
can exert a constant impulse per stride; varying tc then gives
differing peak forces, as seen in Fig. 3b.

The theoretical maximum is not achieved in practice, so
we define a ground reaction force efficiency as

ηGRF =
fcp

µemg
(4)

A robot has ηGRF < 1; in general, ηGRF depends on p.
For modeling the force capabilities of a robot, we define

a normalized force Fn as a function of p, normalizing the
peak force by ηGRF · µemg, which is the same as normal-
izing by the time-averaged force. This is a nondimensional
measure representing force as a multiple of the robot’s static
capability, and is equal to 1 at p = 1 by definition.

Taken together, these results show that impulsive robots
do not share load well, but make up for it by applying very
high peak forces. Indeed, if we assume that a robot has
constant impulse as p varies, then the model suggests that the
robot should be as impulsive as possible to maximize peak
force. Robots with a smooth gait will have tc approaching
tp; in this case, all robots are likely to pull together, and
F ≈ N · fc. Winched robots will only be pulling for a
fraction of the stroke, and by the nature of the winching
gait cannot exploit dynamics to increase peak force. Peak
force remaining constant as p varies means that to maximize
team efficiency p should be as large as possible. There is
still a performance loss because p cannot be 1 for this gait.

However, winched robots tend to have longer step periods
tc, and this allows them to take advantage of in-phase pulling.
Figure 3c shows a representative set of robots taking coordi-
nated steps, slightly offset from each other. For simplicity we
assume that this offset is uniform, following U(0, tφ). With
this upper bound, we know that all pulling strokes of the
robots will occur within a window tc + tφ. The probability
that any given robot is pulling at time t∗ is

p =
tc

tc + tφ
. (5)

So for synchronized robots, load sharing is effective when
tφ � tc, and ineffective when tφ is comparable to or larger
than tc. For winching robots, this is easily implemented due
to the large step contact times, tc. For more impulsive robots,
synchronization becomes increasingly difficult, making load
sharing less effective.

IV. EXPERIMENTS

For experiments in load sharing we used several represen-
tative types of microrobots in different configurations. The
first of these is Hexbug Nano, a commercially available toy
bristlebot (Fig. 4a, left). The second is Hexbug Scarab, with
silicone rubber added to the feet and tested with either 59 g or
32 g payload (Fig. 4a, middle). Varying the payload allows us



TABLE I
ROBOT AND OPERATION PARAMETERS

Scarab

Nano Walking Running µTug

Gait Impulsive Smooth Impulsive Winch
Length [mm] 43.9 54.8 54.8 28.6
Mass [g] 7.65 78.1 49.0 17.7
Stride Frequency [Hz] 27.8 2.9 16.9 0.015
Stride Length [cm] 0.02 2.0 2.0 10
Peak Forward GRF [N] 0.15 0.5 0.8 38
Mean Forward GRF [N] 0.039 0.29 0.16 36
tp [s] 0.036 0.34 0.059 68
tc [s] 0.0071 0.23 0.010 65
ηGRF 0.04 0.9 0.8 0.9

to compare running and walking modes at a constant input
power, with more weight resulting in a walking gait, and
lighter weight in a running gait. The third type of microrobot
is a µTug modified for increased actuator performance and
durability (Fig. 4a, right). The relevant parameters of each
of these configurations are summarized in Table I.

Other metrics commonly used to analyze gaits include the
Froude number and the specific resistance [23]. However,
these numbers are not particularly meaningful for the tested
robots, which do not exhibit either a typical walking or
trotting gait. The impulsive robots, like many other small
robots that rely on friction, have substantial slippage, and the
adhesive robots have an unusual gait with a long crawling
“stride” followed by pulling with a winch. As a result, the
most useful parameter for comparing the gaits is simply p,
which is inversely correlated with Froude number.

a

b

Fig. 4. (a) The four robots used in testing. From left, a Hexbug Nano,
Hexbug Scarabs for walking and running, and a µTug. (b) Bristlebots in
parallel. Load cell is out of frame towards the top, acrylic frame was used
to constrain lateral motion. Tow lines are traced with black for contrast.

A. Methods

Force generation for Hexbug Nanos was measured by
connecting the robots using a Kevlar tendon to an ATI
Gamma F/T sensor sampled at 1 kHz. The robots were
constrained laterally by placing them in corrals, with care
to ensure minimal effect on forward force (Fig. 4b). The
batteries were replaced for each test to ensure repeatable
performance.

Both walking and running tests for the Hexbug Scarabs
were conducted using the same basic framework. The robots

were wired to external power supplies to enable gait adjust-
ment for walking and running modes. Lateral motion was
constrained using a pair of parallel plastic rails protruding
between the robot legs and body. The rails were spaced far
enough to ensure the robots didn’t bind and, as with the
Nanos, the friction in the pulling direction was negligible
with respect to the measured force. Out of the box, the
Scarabs walk with an alternating tripod gait using hard plastic
feet. These were modified by adding silicone rubber pads, to
increase the coefficient of friction (µk ≈ 0.4).

For both sets of tests, we used two metrics to describe
the force profiles: the mean force, taken as the average force
during the test; and the peak force, which we defined as the
force at the 95th percentile of all local peaks during the test.
This latter measurement represents the magnitude of the peak
force that is expected to occur relatively often, rather than
the measurement of the single best peak, which is likely an
outlier.

The µTugs were tested on a glass surface using a strain
gauge load sensor on each robot to measure pulling forces.
Data were sampled at 125Hz using a Phidgets 20 kg Micro
Load Cell and a PhidgetsBridge. Each µTug was powered
using a separate DC power supply to allow for tuning of
the robots’ force output. The duty cycle to each robot was
controlled using MOSFETs controlled from a common signal
to maintain synchronization. The mean force was defined as
the mean force applied during a pull. The peak force is the
mean value of peaks greater than 0.1 s wide during the pull.

V. RESULTS

Fig. 5 shows for each robot type: GRF measurements,
total peak team force, and force per robot. For total team
force, model fits using the model described in Sec. III are
presented as dotted lines. For the impulsive, walking, and
running robots, fcp was estimated as the time-averaged force
per robot when testing the maximum number of robots. The
fraction of time spent applying an impulse, p, was calculated
by finding the fraction of time spent above half-maximum
of the peak force. This force level is shown in the first
row of Fig. 5 as dashed lines. The µTugs were run in
synchronization, and p was calculated using measured values
of tc and tφ. The model-predicted force output is plotted
alongside measured data in the second row as dotted lines.
The individual results will be examined in the following
subsections.

A. Impulse Driven Bristlebots

Bristlebots tested in parallel (Fig. 5, column a) demon-
strated the basic relationship between peak force and sub-
sequent additional force expected by the model. As shown
in (i), the robot ground reaction force is highly impulsive.
Hence the peak pulling force for a single robot can be high—
in this case 0.15N, representing a force about twice its
weight. Subsequent robots added substantially less additional
peak force—an average of 0.03N or about half a body weight
each, over the next 19 robots. The model estimates that 20
robots will generate 0.9N of force, 20% greater than the
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Fig. 5. Combined data for the 3 different robots tested. Column a: Bristlebot impulse robots. Column b: 6 legged robots walking and running. Column c:
Winch gait µTugs. The first row (i,iv,vii) is representative GRF data for each condition, the second (ii,v,viii) shows the 95th percentile force as a function
of robots in the team, and the third row (iii,vi,ix) shows the same force data normalized by number of robots. Note the trends in v: for single robots,
running provides greater peak force, but as the number of robots increases, walking robots surpass them with superior load sharing.

observed 0.75N. This is reasonably accurate, given that we
expect the model to over-predict performance for impulsive
forces; the flat force profile assumed in the model becomes
increasingly unrepresentative of the true force.

For comparison, smoothly moving robots of equal weight
and frictional properties could have contributed up to 0.9N
each. This means that the impulsive bristlebots only have
an efficiency ηGRF of about 0.04. The high-speed video
included in the media file shows why: each robot is mainly
hopping up and down with only a slight forward bias and
never makes full use of the available friction.

One way to improve load sharing is to synchronize the
impulses. This was done using a voice coil actuator to
seismically excite the robots on a rigid plate. However,
this reasonable effort at synchronization was not any better
than the unsynchronized case. This is largely because of the
variability of bounce heights; a difference of only 0.5mm
corresponds to a difference of time in the air of 0.01 s,
or about 5 times tc, which is not tight enough to improve
performance.

As a rough estimate, it would take over 4000 bristlebots
hooked up in parallel to pull a car. This number of robots
is so large that it exceeds the available perimeter of the car.

A convenient alternative way to exert large forces would be
to arrange some robots in series; data comparing series and
parallel performance are presented in Fig. 6.

The first robot in the series test again provides 0.14N,
but in this case the subsequent 19 robots only provide a
vanishingly small average additional force of 0.008N per
robot. This trend is generally seen whenever extra mass is in
the force path, which produces the effect of attenuating sharp
force transients. Similar effects would be seen for tendons of
finite stiffness absorbing cyclic energy, as well as non-rigid
loads consisting of spring-mass networks.

B. Legged Robots Walking or Running

Unlike the bristlebots, the legged robots present an oppor-
tunity to observe the effects of varying gait. By driving the
motor to make the feet slip when pulling under the robot’s
own weight, the robots can achieve a smooth walking gait.
Extra weights were added (56 g) to keep a consistent gait that
did not stall. By fixing the power used by the motors, but
reducing the added weight, we make the same robots shift
to a running gait. This gait has the same robot kinematics,
but is fast enough that the feet leave the ground, bouncing
and running similarly to many running robots [6], [24], [25].
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Fig. 6. (a) Two different pulling conditions for bristlebot: robots in series
are attached to a single tendon, connected to the load; robots in parallel
have individual tendons that merge at the load. (b) Peak force output with
increasing numbers of robots for parallel and series cases. (c) Force per robot
for parallel and series cases, indicating that additional robots contribute less
extra capability.

The robots in both these operating conditions were much
better than the nano bristlebots at using the available friction
(ηGRF of 0.9 and 0.8 for walking and running respectively).
However, as seen in Fig. 5(iv), they had very different ground
reaction forces in the two gaits. Running is impulsive, while
walking is much smoother.

In both cases, the robots have similar normalized force
curves Fn(p). The running robots have an initially higher
peak force corresponding to a high enough normalized force
to offset the weight difference. However, the load sharing
effectiveness becomes important as more robots are added.
As seen in Fig. 7, as p decreases, the load sharing decreases
significantly. This results in the behavior shown in Fig. 5(v);
the walking robots have better load sharing, and soon over-
take the running robots in terms of peak performance.

While here we fixed power and varied mass, if the opposite
is done the model predicts that running will always have
higher peak forces. This result was confirmed in practice for
up to five robots. Critically, this does not take into account
the large increase in power required to achieve such a gait.

C. Winching µTugs

The µTugs presented in [4] used gecko-inspired adhesives
to apply human scale loads. The robots are constructed with
a single flat foot to maximize contact area and therefore ad-
hesive capability. The result is a gait consisting of a sequence
of long static winch pulls with uniform force, followed by
forward motion or steering as the winch unwinds. The time
scales of this gait make synchronization much easier than for
the impulsive robots, and p of nearly unity can be achieved
using any sort of inter-robot communication or coordination.

When the high pulling force of the µTugs is combined
with load sharing, a team of seven can provide a peak force
of 375N (85 lbf) in shear (Fig. 8).
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Fig. 7. Model and experimental results for load sharing among five legged
robots varied from walking to running gaits. Normalizing the measured force
by the force from a single robot allows us to isolate the effect of load sharing
irrespective of force capability. By varying the power input by a factor of
4, the robots operate at p from 0.52 to 0.14.

D. Active Load Sharing

As demonstrated in [26], one of the biggest challenges
in making efficient use of an adhesive system is loading
the adhesive up to but not over its limit. While there are
several passive options that equally distribute force, they are
all limited by the weakest element in the set. Even worse,
some require an estimate of the weakest element’s long term
performance on any surface at the time of construction.
Having each tile equipped with feedback and an independent
actuator can avoid these problems.

To get the peak value of 375N shown in Fig. 8 each robot
was placed on glass and independently loaded by increasing
the motor drive voltage until adhesive slipping occurred.
When testing in concert, each robot is controlled to exert
its individual maximum force so that the total force is more
than seven times that of the weakest team member. Indeed,
the sum of the peak values measured at any time through the
test is nearly equal to the sum of the independently measured
peak results.

VI. DISCUSSION: MODEL INSIGHTS

Before we discuss predictions from the statistical model,
we first look at the fit between model and measured data.
Fig. 5(ii,v,viii) show the predicted load sharing forces for
the tested number of robots of each type. The fit in (v) and
(viii) is very good, and as previously noted, the fit in (ii) is
overpredicting the results as expected due to the sharpness
of the impulsive spikes.

A closer look at the legged robots as they move from
walking to running gaits provides more insight into how
these robots interact as a team. Fig. 7 shows the expected
load sharing in terms of Ne for five robots as p changes. To
obtain these data, total force from a team of five robots was
measured at different values of p. The force capabilities of
a single robot were also measured at the same values of p.
Fig. 7 therefore plots team force capability independent of
individual robot performance.

There is a good match in this test for p from 0.52 to
0.14. The model therefore gives us a good idea of how load
sharing is affected by p: load sharing performance decreases
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Fig. 8. Tuning data and results for a team of 7 µTugs. (a) Individual
force capability of each robot (red) and the peak measured force during the
team test (blue). Due to the open loop control, robot 4 (starred) exceeded
its capability and ended the test by slipping. (b) Combined force of the
team, with the maximum force possible with a passive system in green,
and theoretical active load sharing limit in red. Note that measured force
exceeds the theoretical limit of a passive system.
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Fig. 9. Solid blue, Ne: as in Fig. 7, the effective number of robots in
a load sharing team, for N = 5, as a function of p. Combining this with
individual robot normalized forces, we predict the force capability of robot
teams: solid red is the normalized force, Fn, for a single legged robot as p
varies; red crosses show data used to fit Fn. Multiplying Fn by the number
of effective robots, Ne, gives the predicted normalized force from a team
of 5 legged robots (solid black); gray circles show corresponding measured
values. Dashed red is the normalized force, Fn, for a single µTug . Scaling
by Ne yields (dashed black) predicted force from 5 µTugs. Because the
shape of Fn is different in the two cases, optimum value of p for the µTug
is close to 1.

as p decreases. All else being equal, operating at lower p
means that on average fewer robots are doing useful work
at a given time.

We now address the normalized force component of the
model. Fig. 9 includes a fit of the normalized force, Fn,
generated by a single legged robot. In this case, data were
taken for single robots, and normalized by the friction-
limited steady force capability, µemg. These normalized data
are plotted as red crosses, and were used to fit Fn. The fitting
function (solid red) has the form c1/p

c2+(1−c1), and is thus
defined to be 1 at p = 1; this is a known point representing a
steady force using kinetic friction. While we expect constant-
impulse force to vary as 1/p, we allow the power of p to vary
to obtain a better fit to the measured data. The impulse of
the fitted force profile is very close to constant, but this also
predicts that the force diverges to infinity as p approaches 0.
Since we know the robot will break before applying infinite
force we cap its force capabilities at 10% over the peak
experimentally measured force, apparent for p ≤ 0.1.

Plotting the product NeFn with respect to p gives the

normalized performance of a team of robots. In Fig. 9, this is
the solid black curve. Also plotted are the same experimental
data presented in Fig. 7, but normalized by steady-state
force, not force at the operating p (gray circles). These data,
which are measured for five robots, closely match the force
predicted by the model from measurements of one robot.

Conveniently, with frictional walking robots, power can
be traded for speed, permitting a wide range of p values
from 0.52 to 0.14 and thus extra individual capability. In this
particular case, the gain outweighs the loss in load sharing,
and the peak team force occurs when the robots are operated
near the break point of the force profile.

In general, the best p for peak load depends on the shape
of the normalized force curve. When combined with the
statistical model for load sharing, a given team size will
have a resulting capability depending on p. For a given task
with a minimum force requirement, the team will either be
incapable of performing the task, or there will be a region
of feasible p. Within this region, one can optimize for other
constraints. In the case of these walking robots with a high
power cost associated with making more impulsive forces,
the team will likely be optimized to maximize p while still
achieving the minimum force, maximizing team efficiency.

This example changes dramatically when we consider the
adhesives used by the µTugs. Unlike the frictional case, the
behavior of the adhesive does not allow dynamic boosting of
the maximum force capability, and in fact will not adhere for
tc < 5ms. The resulting normalized force curve is nearly flat
through the entire range of p. As seen in Fig. 9, the maximum
peak capability occurs essentially at p = 1.

Together, these trends suggest a design procedure for
robot teams. Having determined the required force for a
task, robots can either be added to the system, or tuned
for improved peak force. The result is a set of feasible
team configurations whose performance can be predicted via
use of the model and characterization of a single robot.
The system can be optimized within the set of feasible
configurations for cost, efficiency, speed, etc.

VII. CONCLUSIONS AND FUTURE WORK

When combining small robots in teams to pull large
loads, it is important to consider the details of their ground
reaction forces. For robots with a smooth gait, the result of
adding robots is straightforward, especially for the quasistatic
loads explored. However, for robots with an impulsive gait,
the picture is more complicated. The performance of the
legged robots walking and running reveals a crossover in
performance; the best single robot in terms of peak force
capability is not necessarily the best robot to use in a team.

While it was not within the scope of this paper, we note
that for many payloads, the use of impulsive robots requires
that one must consider the dynamics of the load as well,
including impedance matching, etc.

The developed statistical model shows good results in
predicting the behavior of teams of robots within measure-
ment noise and is reasonably accurate for both impulsive
and smooth robot gaits. Although the assumptions made in



the model are less valid for highly impulsive robots, the
results of experiments are predicted well enough for at least
a qualitative understanding of the phenomena involved. For
microrobots much smaller than those tested, the details of
their dynamics and ground interactions will be different.
However, the statistical model is independent of such details,
as it depends only on contact duration versus stride length.

A basic design methodology was suggested for designing
teams of robots based on trading off peak force and gait
smoothness versus the number of required robots for a
given set of task requirements. These principles were applied
to make a team of µTugs capable of pulling a 1800 kg
automobile, while crawling on polished concrete.

A. Future work

Although the adhesive force profile is not highly depen-
dent on the loading rate, careful use of the adhesive can yield
up to a 25% boost in peak force capability. Future work will
include rapidly-loaded adhesive robots that exploit this effect,
and using active sensing [27] to monitor and control the force
applied by each robot in a team, increasing robustness on
imperfect surfaces.
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