Actin to Adept Control

Due to peculiarities of the Adept and its TCP communication timing and our workaround to achieve real-time trajectory control, setting up Actin to control the Adept was somewhat problematic. This will server as a quick explanation of the solution we’ve come to.

Overview of Adept Issues

OS timing

The Adept is a real time system with the ability to schedule and prioritize tasks/programs. We only use one program on the highest priority task, so for our purposes it runs with a 16ms major cycle.

Real Time Trajectory Control

The Adept is an industrial robot, intended to execute motion through desired waypoints for pick-and-place style assembly. As such, the built in motion commands are blocking in that a move command called in software will block until the last motion has completed (essentially you can queue up the next move command, but no more). In addition, once a move has started, there is no graceful way to stop or cancel it and replace it with a new command.

The workaround that has been used by other students in the lab is the built-in Alter() command. This command takes Cartesian coordinates (x, y, z, yaw, pitch, roll) commands in either the world frame or the tool frame, and adds them on to the current motion command. It is intended for small adjustments to previously programmed waypoint motion. The alteration made through Alter() is executed at the start of the next 16ms major cycle; the entire alteration is attempted in one cycle, so large Alter() commands cause the robot to move too far, too fast, and shut itself down.

We use the Alter command to generate the entire trajectory by executing a single move command at the beginning of the program, then continually calling alter to move to the next point in the trajectory.
TCP Hardware and Software Interface

The software interface to the underlying TCP hardware is very limited. Adept software can essentially read/write to an attached TCP socket, and check the status after either of those function calls (status returns things like “good read”, “no data”, “object not attached”, etc).

However, the hardware seems to have some timing issues. Writing to the TCP socket seems to tie it up for a highly variable amount of time; anywhere from 4-20ms. A read() will not return data until after this period has elapsed. Both read() and write() calls can be made with “no wait” parameters, although in the case of a write this simply means that the hardware does not request and ACK from the recipient and therefore the software does not block at the write() call waiting for the hardware to indicate it has received an ACK.

Actin Code

The Actin code can be broken up into three components; the Viewer, the main plugin, and the plugin’s comm-handling thread. A brief description of their roles and interactions in normal operation follows. There are some additional things going on at startup, but they are not covered here.

Viewer

The viewer runs at nominally 128Hz. At each timestep it sends the current time and joint commands to the main plugin (via setJointCommands()).

Main Plugin

The plugin handles taking the data from the viewer, interpolating it to evenly spaced 16ms samples, and getting it ready to be sent to the Adept. When a new set of time and joint command data is sent to setJointCommands(), the last time and joint command is used to build linearly interpolated joint commands for every 16ms sample that lies between the last and the current command time. These commands are then added to a FIFO structure (implemented using a Deque).

Comm Thread

The comm thread waits for a request for data from the Adept. This request includes the number of skipped cycles due to timing issues. It then accesses the FIFO deque holding the latest set of joint commands. The first the items are assumed to be the ones sent during the last communication, so up to three + the number of skipped cycles are removed from the deque. However, only enough are removed so that the deque has at least three items in it. After this process, the next three items in the deque are sent to the Adept, though not removed.

Adept Code

The software running on the adept is a single program with a main loop that requests data, reads it from Actin, and performs three Alter cycles. The exact process in this main loop is as follows:

1. Compute forward kinematics to convert joint commands to Cartesian cords

2. Call Alter with those coords

3. Write a request for data to Actin; do not wait for an ACK

4. Wait until the next 16ms cycle starts

5. Compute forward kinematics to convert joint commands to Cartesian cords

6. Call Alter with those coords

7. Wait until the next 16ms cycle starts

8. Compute forward kinematics to convert joint commands to Cartesian cords

9. Call Alter with those cords

10. Read the next packet of data from Actin; this call is set to be blocking.

11. Wait until the next 16ms cycle starts

The write and read operations are separated by Alter() calls and multiple 16ms in an attempt to make sure that the TCP hardware does not cause any delays. In practice, the only missed Alter cycles we see can be traced to slow responses from Actin; likely due to the fact that it is running on a Windows PC and cannot guarantee that the comm handler checks for requests in a timely manner.
