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Abstract— This paper describes the design, creation, and 
validation of an infrastructure for grasping. The infrastructure 
is premised on the ability to use large amounts of memory to 
store grasping algorithms in a database that can be applied 
broadly with any hand on any arm.  This effort includes the 
development of a software architecture; a language syntax for 
configuration, shape-matching, and algorithms for grasping; 
and software for organizing grasp selection, configuring initial 
template grasps through human supervision, refining grasp 
placement, and refining grasp forces.  An accurate dynamic 
simulation of a variety of robotic manipulators, hands, and 
objects was used to validate the approach, with positive results.  
The presented database approach supports generic algorithms 
for both fingertip and whole hand grasping of a variety of 
object types.  Fingertip and whole hand grasps are also known 
as precision grasp and power grasp respectively in some 
literature, for example [1]. Algorithms based on grasp 
templates created by human supervisors and refined through 
automated refinement work effectively and efficiently.  The 
presented techniques work with several types of force and 
touch sensors and with a variety of object shapes and physical 
consistencies.   
 

Index Terms – Robot grasping, grasp database, simulation, 
validation, toolkits, robotic hand.  

 

I. INTRODUCTION 
Grasping and manipulating objects is one of the most 

important capabilities needed for a robot to interact with the 
world.  Its insufficiency has been identified as one of the 
primary obstacles to wide adoption of robots. Many 
techniques have been proposed for grasping, including 
control-based methods [2], Jacobian Techniques [3], 
dynamic programming [4], the use of prototypes [5], human 
demonstration [6], State Vector Machines, [7], shape 
primitives [8], and the optimization of distance metrics [9], 
among many others.  These methods have had some specific 
success in the lab, but automatic generic grasping in the field 
is still out of reach.  The best example we have for 
successful generic grasping is that of humans and 
manipulative animals. Though the functioning of 
mammalian brains transcends human understanding, it is 
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clear that when presented with a new object in new context, 
a grasp is chosen based on stored past experience with 
similar objects and similar context.  It is this concept that we 
have exploited and taken to its logical limit. 

The form of the approach is a reusable software tool. 
Robotic-hand development companies make hardware, but 
typically rely on their customers to add software.  These 
customers, therefore, are often research organizations or 
product companies with special and limited grasping-
software development efforts.  A new, generic toolkit for 
grasping has the potential to revolutionize both robotics and 
prosthetics.  With this eventual goal in mind, the objectives 
of our research are to design and implement in C++ a 
comprehensive database framework for grasping rigid, soft, 
and articulating objects and to validate the framework 
through simulation using humanoid hands available today.   
This includes the following components: 

 
1. The creation of a database architecture that supports 

the broad solution of real-world problems.  The 
architecture must allow rapid access and fast 
computation for use in real time. 

2. The application of XML to grasping-algorithm 
design. XML is a widely accepted standard 
language for storing and exchanging complex 
information. We selected and defined a 
specialization of XML for the grasping database 
through the creation of an XML schema describing 
a grasping language. 

3. The establishment of ways to measure the quality of 
object matches and interpolate between near-
matches to select the best grasping algorithm.  This 
includes combining shape matching with surface-
property matching to define object similarity in a 
new, powerful way. 

4. The implementation of a caching mechanism to only 
load parts of the grasping database as needed in 
order to exploit very large (multi-terabyte) 
databases using only a few gigabytes of Random 
Access Memory (RAM). 
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5. The implementation of a tool for building large 
grasping databases.  This Database Construction 
Tool combines automated software with human 
supervision and includes human interfaces, 
refinement algorithms, and digital simulation.  

The design of an interface for SolidWorks, a popular robot 
design tool that accepts common data formats for defining 
robotic manipulators and hands. 

 

II. DATABASE SOFTWARE ARCHITECTURE 
The grasp-algorithm database is organized into a tree 
structure as shown in Fig. 1, enabling the best grasping 
algorithm to be selected while matching the shape, 
articulation, and surface properties of the object to be 
grasped.  Each leaf node in the tree provides a specific 
algorithm whose implementation is limited only by the 
interface structure and C++.  Each branch node implements 
a fast comparison method to eliminate large portions of the 
tree below it.  A tree structure such as this provides for 
virtually unlimited growth, as new algorithms for new 
shapes can be added without disturbing existing algorithms 
or adding significant unwanted computational cost. 

 

 

       Fig. 1.  The grasping approach. 

 
 
The input to the database is an object description and a 

grasp-type descriptor.  When an object is given, a sequence 
of increasingly narrow families is identified using the object 
descriptor, shape, and surface properties.  The output of the 
database after this search is a set of finger paths and forces. 
An advanced new language based on XML was designed 
and used to represent this database. 

III. DATABASE  CONSTRUCTION TOOL 

A significant challenge exists in creating the tool for 
building the grasp-algorithm database described above.  The 
tool must be able to build a new database from a 
hand/manipulator description, a set of objects, and a set of 
environments.  The organization of the tool we used is 
shown in Fig. 2. 

 

Fig. 2.  Organization of the database construction tool. 

At first, the system constructor will build up a world 
model that can represent hand/manipulator, environment 
instances and new object instances using some data 
structure.  Secondly, the grasp for the object or a similar 
object is found in the database using a matching metric.  The 
grasp will be presented to a supervisor if the object or a 
similar object exists.  Here, the grasp is defined as grasping 
kinematic and dynamic components of the 
hand/manipulator.  The grasp can also be generated using a 
human-supervised grasp creator if a similar object and its 
grasp cannot be found in the database.  The similar grasp or 
generated grasp is defined as the initial grasp.  Thirdly, the 
refinement manager refines the initial grasp to form force 
closure algorithmically through re-positioning better contact 
positions/forces with the help of human supervisors.  Lastly, 
the refined grasp for the new object will be stored in the 
database.  In the process of creating and refining the grasp, 
we take advantage of the grasp experience of human 
supervisors.  

A. System Constructor 

As shown as a component in Fig. 2, the System 
Constructor module builds a 3D world model that can 
represent the hand, manipulator, environment, and new 
object instances.  This is implemented using Energid’s 
software tools for robotic simulation. The System 
Constructor supports all robots, hands, and environmental 
objects, which can be kinematically redundant or 
bifurcating, and can have any type of joint—including 
rotational, prismatic, cylindrical, four-bar, and others.  
Objects can be grouped, and they can move freely or be 
attached to the environment.  Of special importance, the 
manipulator, hand, environment, and objects to be grasped 
all use the same software representation and data structure.  
The framework supports articulated and morphing links, 
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enabling the system to be scaled to support articulated, 
flexible, soft, and fragile objects.  Chains, rope, pillows, and 
glasses, for instance, can be grasped. 

B. Grasp Creator 
Also shown in Fig. 2 is the Grasp Creator module.  The 

Grasp Creator supports the creation of new grasps (in the 
case of completely novel objects) or refinement of existing 
grasps (in the case of grasps to similarly shaped objects 
already existing in the database).  For a new object, a grasp 
for a similar object is searched for in the database using a 
matching metric.  In an intuitive and repeatable procedure, 
the found grasp is presented to the supervisor, and the grasp 
is defined through both the grasping kinematic and dynamic 
components of the hand.  Completely new grasps can be 
generated using a human-supervised process if a similar 
object and its grasp cannot be found in the database.  The 
new grasp is then added to the database as the initial grasp 
for the new object.  This is illustrated in Fig. 3. 

 

 
Fig. 3.  An example of a supervised grasp created with our software tool. 
The Schunk (SDH) hand is being used to grasp a pen. 

 
 
1) Software Interface 
The software interface can be illustrated by example.  Fig. 

3 shows a human-generated grasp of a pen using a 
commercial Schunk hand.  This grasp was generated using 
the sliders and intuitive configuration interface shown in 
Fig. 4.  Joint positions and orientations were set through 
sliders, mouse movement, and numerical configuration.  The 
position and orientation of the wrist can also be controlled 
by changing the values of x, y, z, yaw, pitch, and roll shown 
in the upper part of Fig. 4.  The grasp can also be defined as 
fingertip positions in world coordinates or relative to other 
parts of the hand, such as the palm, as shown in Fig. 5.  
Hand locations, fingertip positions, and joint angles can all 
be controlled directly by human supervisors during grasp 
database construction. 

 
Fig. 4.  Joint-control sliders are part of the rich interface created to support 
human supervision of grasp construction. 

 

 
Fig. 5.  Fingertip contact positions can also be set through the software 
interface.  Inverse kinematics algorithms are used to then set the joints. 

 
2) Input Devices 
Input devices we have found to be helpful for configuring 

the grasps include the P5 sensing glove, the Polhemus 
tracker, and the SpaceNavigator.  These are shown in Fig. 6.  
The input framework for grasp control based on these input 
devices is flexible and generic.  With these input devices, 
the human supervisor can use the best device for each stage 
to control the hand model in the virtual environment and to 
move and pre-shape the hand for creating grasps.  
 

       
     (a)            (b)        (c) 

Fig. 6.  Input devices that support rapid creation of the grasping database.  
(a) shows the P5 Virtual Hand Tracking device; (b) shows the 
SpaceNavigator; and (c) shows the RF-based Polhemus tracker. Energid 
implemented the Grasp Creator module with interfaces to these devices—
the images are of the Energid systems. 
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3) Grasp Alignment 

Once a hand grasp is selected from the database or 
generated through the supervision interface, it must be 
aligned to the object shape.  The goal of the alignment 
process is to find a transformation to be applied to the hand 
pose so the desired contact points on the hand are brought 
into correspondence with points on the object [10].  

Grasp alignment algorithms of this type have been 
developed for use in the framework.  Two simple examples 
are grasps for near-spherical and near-cylindrical objects 
using fingertips.  These are illustrated in detail here for the 
commercial Schunk hand.  The idea is to align the grasp 
geometry center of the hand to the geometry center of the 
object to be grasped. 

Fig. 7 shows three contact points P1, P2, and P3 in the 
palm frame as derived for the Schunk hand.  A frame (Xh, 
Yh, Zh) is generated from the three contact points.  The Xh 
axis direction is the same as the line P1P2, and the Yh 
direction is pointing toward the palm from the triangle.  Zh is 
determined by Xh and Yh.  The origin of the frame is selected 
as the point P1.  For a cylindrical grasp, the geometry center 
Ch is calculated as 

!!!! P3P2P1
2
1

4
1

4
1

""#hC !!!!!!!!!!!!!!!!!!!!!!!!!!!!! (1) 

For a sphere grasp, Ch  is calculated as 

!!!! P3P2P1
3
1

3
1

3
1

""#hC !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 

 

  
(a) A frame (Xh, Yh, Zh) is generated from the three contact points. 

 
 

 

             
 
       (b)  Cylindrical-type grasp.                  (c) Spherical-type grasp. 

Fig. 7.  Pose alignment for cylindrical- and spherical-type three-finger 
grasps. 

 
This tailored approach serves as a component in one of the 
many algorithms used to build the database shown in Fig. 1. 

C. Refinement Manager 
1) Repositioning fingers 

    After creation of an idealized grasp for a generic shape, 
the Refinement Manager module shown in Fig. 2 modifies 
the template grasp for specific object variations of surface 
properties and shape.  It forms actual or approximate force 
closure algorithmically through repositioning the contacts 
and adjusting forces.  As an example, Fig. 8 shows a refined 
grasp using a simulation of NASA’s Robonaut [11]. 

 

Fig. 8.  Grasping refinement with Robonaut using high fidelity dynamic 
simulation software.  First an idealized grasp is created, then this is refined 
using the exact object description.  
 

2) Force Refinement 
The Refinement Manager in Fig. 2 includes both position 

and force refinement.  As shown in Fig. 9, a robotic hand 
typically has several constrained fingers with active joints 
which are capable of exerting force on the object to be 
grasped.  

 
 
           Fingertip Grasp                                  Whole Hand Grasp 

Fig. 9.  Force refinement for two families of grasps. 

The grasp modes are classified into fingertip grasps and 
whole hand grasps.  A fingertip grasp mode is used when 
grasping a small object or when manipulating the object in a 
dexterous manner, having a small contact area at each 
fingertip, as shown in Fig. 9 on the left.  The whole hand 
grasp mode, as shown in Fig. 9 on the right, is used when 
grasping a large object or when applying a large force to the 
object.  Whole hand grasping gives a large contact area 
between the hand and the object.  To create the fingertip 
grasp, we assume the fingers apply forces to the object 
through contact points.  The contact points at the fingertip 
can exert any directional force. 

After selecting nominal force values, it is necessary to 
modify them based on the exact object shape.  A force 
refinement algorithm for fingertip grasping has been 
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developed.  In it, we assume the fingers apply forces to the 
object through the fingertip contact points shown in Fig. 10. 
 

 
Fig. 10.  Finger forces applied to the object. 

 
Let the contact force of the hand be 
 

$ % 13
21 R &'# mT

mh ffff !      (3) 
 
Where 

$ % T
iziyixi ffff #                                (4) 

The contact points at the fingertips can exert any directional 
forces.  If the external force is defined as Fe, equilibrium 
equations  [12] for an object can be written as 

  0FG #" ehf                                              (5) 

where G is the grasp matrix. 
To achieve a stable grasp, it is expected that all the 

applied finger force directions are close to the contact 
normal of on the object. This allows an objective function 
for minimization to be defined as follows: 

      (
#

)#
m

i imax

iz
i f

f
w

1
*                                       (6)             

where wi is the weight for finger i.  As an example, a higher 
weight may be given for thumb, index, and middle fingers 
than for pinky and ring fingers for a humanoid hand. 

For force calculation, the criterion function in (6) is 
optimized subject to (5), friction specifications, force 
direction constraints, and limitations on the force angle.  For 
a whole hand grasp, the object is enveloped by the hand. 
There might be many contacts between the hand and object. 
It is not necessary to refine the contact force over each 
contact to ensure individual stability.  Instead, we use the 
interface shown in Fig. 5 refine whole-hand grasps through 
positioning.   

Unlike in the case of fingertip grasps, whole hand grasps 
may have the middle links of the fingers and palm 
contacting the object.  The forces exerted at such contact 
points are powerful phenomena to leverage for grasping.  If 
no sensors are present those contact points must be regarded 
as passive contact points, and the forces exerted are regarded 
as passive contact forces.  Based on this premise, we 
designed a force control class using only the thumb as an 
active contact point to apply force, while position control is 
applied to the other fingers and the palm.  We tested 

applying active force with this algorithm to grasp a variety 
of objects. Simulation results showed that various successful 
grasps can be achieved with this approach.  For a good grasp 
pose, when the active force is applied to the object through 
the thumb, the passive forces can be exerted at other 
contacts and automatically balance the active force and 
external force (for example, gravity) to generate a successful 
grasp.  

D. Grasping force control system 
Fig. 11 illustrates one of the force control systems used to 

implement the algorithms in Fig. 1.  The sensor processor 
works with both real hardware sensors and simulated 
sensors.  The sensor reading simulator is used to model 
sensor readings during simulation.  The model is based on 
proximity measures between the manipulator and the 
environment.  The actual force that the sensor experiences is 
calculated from the sensor reading and compared against the 
desired force for that sensor.  The output of this module is 
the difference between the desired force and the measured 
force, and this value is provided to the force control module. 
A high bandwidth touch sensor was modeled through digital 
simulation.  The sensor can be attached to a link, with a 
known location and direction with respect to the primary 
frame of the link.  The sensor is represented by a union of 
convex shapes as part of the link to which it is attached.  The 
proximity calculation routine we implemented is capable of 
reporting the distance query to the individual shape level.  
 
 

 
 

Fig. 11.  A diagram of the force control system. 
 
 

E. Database Interface 
A key part of the database interface module shown in Fig. 

2 is the shape matching algorithm.  When a new object is 
given, using the XML-based language, the grasp for that 
object or a similar object is found in the database using a 
matching metric.  This metric combines shape, articulation 
properties, and surface properties.  Our approach is to 
condense the object description into a set of keys based on 
the most important properties of the object.  The keys are 
defined using a variety of algorithms, including articulation 
analysis [13] [14], and shape analysis [15].  We analyzed a 
number of potential components during the study.  One 
valuable component was a feature-based method [16] for 
whole object shape matching.  The algorithm relies on both 
surface properties and the distance and angle between 
surface points. 
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IV. GENERIC ALGORITHMS FOR USE ON ANY ROBOTS 
Energid Technologies' innovation is an algorithm 

database approach to robotic grasping tailored to real-time 
applications.   The proposed algorithm database provides 
end-effector trajectories and forces to complete a grasp on 
both man-made and natural objects.  The database is 
constructed using a combination of human input, object 
metrics, grasp algorithms, refinement algorithms, and digital 
simulation.  It leverages the unique control algorithms 
provided through Energid’s Actin toolkit and is described 
using the Extensible Markup Language (XML), with each 
database instantiation corresponding to one grasping 
mechanism, such as a pincher, hand, or pair of hands. It is 
one software system that supports the full spectrum of 
grasping mechanisms, from rudimentary grippers to 
complex cooperating hands.  The focus is real-time 
operation, and in all cases, the database entries give the 
grasp in a fraction of a second.  The database is organized to 
have log(N) access time, for N database entries.  

V. SIMULATION RESULTS 

A. Grasp Demonstrations 
For the demonstrations described in this section, we used 

Robonaut [11], Schunk LWA [17], and Mitsubishi PA-10 
[18] robotic arms and Robonaut [19] and Schunk (SDH) 
hands [20].  Many objects were tested for grasping.  Shown 
in the figures are a capsule, pen, barbell, golf ball and tennis 
ball. Fingertip grasps are used for grasping and manipulating 
the tiny objects.  Fig. 12 shows a PA-10 arm with a Schunk 
hand is used to grasp a pen.  Whole hand grasps were also 
tested, using Robonaut to grasp a capsule, and tennis ball, as 
shown in Fig. 13 and Fig. 14.  The grasp for these different 
size balls was refined algorithmically and automatically. 

For the grasps in Fig. 13 and Fig. 14, the thumb was 
controlled in simulation to apply active force to the object. 
Position control was applied to the other fingers and the 
palm.  Passive forces can be exerted at other contacts and 
the system can automatically balance the active forces and 
external forces.  

Fig. 15 shows a golf ball grasp using the combination 
system of the Schunk arm and Robonaut hand.  Only 
position control is applied to all the fingers and palm for the 
grasp, the fingertips envelop the ball from the bottom of the 
shape.  The passive force exerted at the contact points 
balance the external force to grasp the golf ball successfully.  

 

 
Fig. 12.  PA-10 with a Schunk hand grasping a writing pen. 

 
Fig. 13.  Grasping a cylinder with whole hand. 

 

 
Fig. 14.  Grasping a tennis ball with whole hand. 

 

 
Fig. 15.  Example grasp with only passive contacts using the Schunk LWA3 

with the Robonaut Hand. 

 

B. Parametric Study Tool 
To quantify performance, we developed several tools, 

including a parametric study tool that evaluates grasp 
success for various configurations within a task space.   Fig. 
16 shows the configuration used for the study results shown 
in TABLE !. 
 

 
Fig. 16.  Parametric study configuration. 

 
A capsule was perturbed from its nominal position in both 

the x and z directions (+/- 5cm, 0, +/- 2.5cm).   For each of 
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these locations, four orientations were set (0, -2.5, -5.0, -7.5 
degrees), yielding a total of 100 trials.  TABLE !(a) shows 
the results of the parametric study using an initial palm 
placement position.  Note there are two trials where the 
grasp fails.  The objects move away due to forces exerted 
with position errors.  A revised grasp was defined by adding 
a 3mm offset to the palm in the +y (vertical) direction, and a 
rerun of the study gave 100% grasp success, as shown in 
TABLE I(b).  The appropriate offset of palm from the object 
gives the object a small moving space during grasping, so 
that the hand can completely conform to the object surface 
and avoid errant forces.  This and the other tools (such as the 
validation tool shown in Fig. 8) developed will play an 
important role in future grasp database development efforts. 
 

TABLE ! 
EXAMPLE PARAMETRIC STUDY RESULTS 

 

 
(a) 

 

 
(b) 

Comparison of original palm location (a) with new palm location (b).  Green 
indicates all orientations passed, yellow indicates one failed grasp out of the 
three orientations, with the failed angle shown.  This tool provides fast 
evaluation of grasp changes. 

VI. CONCLUSION 
In this effort we undertook the design, creation, and 

validation of a comprehensive infrastructure for grasping. 
The infrastructure supports selecting different positioning 
and force-control algorithms for different grasping tasks 
based on a tree-structured database.  For populating this 
database, we presented several example algorithms, which 
represent only archetypes.  Many more algorithms can be 
supported [21] [22].  These algorithms and the grasping 
infrastructure were tested within a high fidelity simulation, 
giving positive results.     
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