

!

Abstract— This paper describes the design, creation, and
validation of an infrastructure for grasping. The infrastructure
is premised on the ability to use large amounts of memory to
store grasping algorithms in a database that can be applied
broadly with any hand on any arm. This effort includes the
development of a software architecture; a language syntax for
configuration, shape-matching, and algorithms for grasping;
and software for organizing grasp selection, configuring initial
template grasps through human supervision, refining grasp
placement, and refining grasp forces. An accurate dynamic
simulation of a variety of robotic manipulators, hands, and
objects was used to validate the approach, with positive results.
The presented database approach supports generic algorithms
for both fingertip and whole hand grasping of a variety of
object types. Fingertip and whole hand grasps are also known
as precision grasp and power grasp respectively in some
literature, for example [1]. Algorithms based on grasp
templates created by human supervisors and refined through
automated refinement work effectively and efficiently. The
presented techniques work with several types of force and
touch sensors and with a variety of object shapes and physical
consistencies.

Index Terms – Robot grasping, grasp database, simulation,
validation, toolkits, robotic hand.

I. INTRODUCTION
Grasping and manipulating objects is one of the most

important capabilities needed for a robot to interact with the
world. Its insufficiency has been identified as one of the
primary obstacles to wide adoption of robots. Many
techniques have been proposed for grasping, including
control-based methods [2], Jacobian Techniques [3],
dynamic programming [4], the use of prototypes [5], human
demonstration [6], State Vector Machines, [7], shape
primitives [8], and the optimization of distance metrics [9],
among many others. These methods have had some specific
success in the lab, but automatic generic grasping in the field
is still out of reach. The best example we have for
successful generic grasping is that of humans and
manipulative animals. Though the functioning of
mammalian brains transcends human understanding, it is

This work was supported by NSF SBIR contract 0712300

clear that when presented with a new object in new context,
a grasp is chosen based on stored past experience with
similar objects and similar context. It is this concept that we
have exploited and taken to its logical limit.

The form of the approach is a reusable software tool.
Robotic-hand development companies make hardware, but
typically rely on their customers to add software. These
customers, therefore, are often research organizations or
product companies with special and limited grasping-
software development efforts. A new, generic toolkit for
grasping has the potential to revolutionize both robotics and
prosthetics. With this eventual goal in mind, the objectives
of our research are to design and implement in C++ a
comprehensive database framework for grasping rigid, soft,
and articulating objects and to validate the framework
through simulation using humanoid hands available today.
This includes the following components:

1. The creation of a database architecture that supports

the broad solution of real-world problems. The
architecture must allow rapid access and fast
computation for use in real time.

2. The application of XML to grasping-algorithm
design. XML is a widely accepted standard
language for storing and exchanging complex
information. We selected and defined a
specialization of XML for the grasping database
through the creation of an XML schema describing
a grasping language.

3. The establishment of ways to measure the quality of
object matches and interpolate between near-
matches to select the best grasping algorithm. This
includes combining shape matching with surface-
property matching to define object similarity in a
new, powerful way.

4. The implementation of a caching mechanism to only
load parts of the grasping database as needed in
order to exploit very large (multi-terabyte)
databases using only a few gigabytes of Random
Access Memory (RAM).

Design, Creation, and Validation of a Comprehensive Database
Infrastructure for Robotic Grasping

Ying Li, Justin Keesling, James English, and Neil Tardella

Energid Technologies Corporation

124 Mount Auburn Street, Suite 200 North, Cambridge, MA 02138

{ying, jckeesling, jde, nmt}@energid.com

Proceedings of the 2nd Biennial IEEE/RASEMBS International

Conference on Biomedical Robotics and Biomechatronics

Scottsdale, AZ, USA, October 1922, 2008

9781424428830/08/$25.00 ©2008 IEEE 335

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

5. The implementation of a tool for building large
grasping databases. This Database Construction
Tool combines automated software with human
supervision and includes human interfaces,
refinement algorithms, and digital simulation.

The design of an interface for SolidWorks, a popular robot
design tool that accepts common data formats for defining
robotic manipulators and hands.

II. DATABASE SOFTWARE ARCHITECTURE
The grasp-algorithm database is organized into a tree
structure as shown in Fig. 1, enabling the best grasping
algorithm to be selected while matching the shape,
articulation, and surface properties of the object to be
grasped. Each leaf node in the tree provides a specific
algorithm whose implementation is limited only by the
interface structure and C++. Each branch node implements
a fast comparison method to eliminate large portions of the
tree below it. A tree structure such as this provides for
virtually unlimited growth, as new algorithms for new
shapes can be added without disturbing existing algorithms
or adding significant unwanted computational cost.

 Fig. 1. The grasping approach.

The input to the database is an object description and a

grasp-type descriptor. When an object is given, a sequence
of increasingly narrow families is identified using the object
descriptor, shape, and surface properties. The output of the
database after this search is a set of finger paths and forces.
An advanced new language based on XML was designed
and used to represent this database.

III. DATABASE CONSTRUCTION TOOL

A significant challenge exists in creating the tool for
building the grasp-algorithm database described above. The
tool must be able to build a new database from a
hand/manipulator description, a set of objects, and a set of
environments. The organization of the tool we used is
shown in Fig. 2.

Fig. 2. Organization of the database construction tool.

At first, the system constructor will build up a world
model that can represent hand/manipulator, environment
instances and new object instances using some data
structure. Secondly, the grasp for the object or a similar
object is found in the database using a matching metric. The
grasp will be presented to a supervisor if the object or a
similar object exists. Here, the grasp is defined as grasping
kinematic and dynamic components of the
hand/manipulator. The grasp can also be generated using a
human-supervised grasp creator if a similar object and its
grasp cannot be found in the database. The similar grasp or
generated grasp is defined as the initial grasp. Thirdly, the
refinement manager refines the initial grasp to form force
closure algorithmically through re-positioning better contact
positions/forces with the help of human supervisors. Lastly,
the refined grasp for the new object will be stored in the
database. In the process of creating and refining the grasp,
we take advantage of the grasp experience of human
supervisors.

A. System Constructor

As shown as a component in Fig. 2, the System
Constructor module builds a 3D world model that can
represent the hand, manipulator, environment, and new
object instances. This is implemented using Energid’s
software tools for robotic simulation. The System
Constructor supports all robots, hands, and environmental
objects, which can be kinematically redundant or
bifurcating, and can have any type of joint—including
rotational, prismatic, cylindrical, four-bar, and others.
Objects can be grouped, and they can move freely or be
attached to the environment. Of special importance, the
manipulator, hand, environment, and objects to be grasped
all use the same software representation and data structure.
The framework supports articulated and morphing links,

Database Construction Tool

Human Supervisors

XML
Database

EnvironmentObjects Hand/
Manipulator

System
Constructor

Grasp
Creator

Refinement
Manager

Database
Interface

336

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

enabling the system to be scaled to support articulated,
flexible, soft, and fragile objects. Chains, rope, pillows, and
glasses, for instance, can be grasped.

B. Grasp Creator
Also shown in Fig. 2 is the Grasp Creator module. The

Grasp Creator supports the creation of new grasps (in the
case of completely novel objects) or refinement of existing
grasps (in the case of grasps to similarly shaped objects
already existing in the database). For a new object, a grasp
for a similar object is searched for in the database using a
matching metric. In an intuitive and repeatable procedure,
the found grasp is presented to the supervisor, and the grasp
is defined through both the grasping kinematic and dynamic
components of the hand. Completely new grasps can be
generated using a human-supervised process if a similar
object and its grasp cannot be found in the database. The
new grasp is then added to the database as the initial grasp
for the new object. This is illustrated in Fig. 3.

Fig. 3. An example of a supervised grasp created with our software tool.
The Schunk (SDH) hand is being used to grasp a pen.

1) Software Interface
The software interface can be illustrated by example. Fig.

3 shows a human-generated grasp of a pen using a
commercial Schunk hand. This grasp was generated using
the sliders and intuitive configuration interface shown in
Fig. 4. Joint positions and orientations were set through
sliders, mouse movement, and numerical configuration. The
position and orientation of the wrist can also be controlled
by changing the values of x, y, z, yaw, pitch, and roll shown
in the upper part of Fig. 4. The grasp can also be defined as
fingertip positions in world coordinates or relative to other
parts of the hand, such as the palm, as shown in Fig. 5.
Hand locations, fingertip positions, and joint angles can all
be controlled directly by human supervisors during grasp
database construction.

Fig. 4. Joint-control sliders are part of the rich interface created to support
human supervision of grasp construction.

Fig. 5. Fingertip contact positions can also be set through the software
interface. Inverse kinematics algorithms are used to then set the joints.

2) Input Devices
Input devices we have found to be helpful for configuring

the grasps include the P5 sensing glove, the Polhemus
tracker, and the SpaceNavigator. These are shown in Fig. 6.
The input framework for grasp control based on these input
devices is flexible and generic. With these input devices,
the human supervisor can use the best device for each stage
to control the hand model in the virtual environment and to
move and pre-shape the hand for creating grasps.

 (a) (b) (c)

Fig. 6. Input devices that support rapid creation of the grasping database.
(a) shows the P5 Virtual Hand Tracking device; (b) shows the
SpaceNavigator; and (c) shows the RF-based Polhemus tracker. Energid
implemented the Grasp Creator module with interfaces to these devices—
the images are of the Energid systems.

337

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

3) Grasp Alignment

Once a hand grasp is selected from the database or
generated through the supervision interface, it must be
aligned to the object shape. The goal of the alignment
process is to find a transformation to be applied to the hand
pose so the desired contact points on the hand are brought
into correspondence with points on the object [10].

Grasp alignment algorithms of this type have been
developed for use in the framework. Two simple examples
are grasps for near-spherical and near-cylindrical objects
using fingertips. These are illustrated in detail here for the
commercial Schunk hand. The idea is to align the grasp
geometry center of the hand to the geometry center of the
object to be grasped.

Fig. 7 shows three contact points P1, P2, and P3 in the
palm frame as derived for the Schunk hand. A frame (Xh,
Yh, Zh) is generated from the three contact points. The Xh
axis direction is the same as the line P1P2, and the Yh
direction is pointing toward the palm from the triangle. Zh is
determined by Xh and Yh. The origin of the frame is selected
as the point P1. For a cylindrical grasp, the geometry center
Ch is calculated as

!!!! P3P2P1
2
1

4
1

4
1

""#hC !!!!!!!!!!!!!!!!!!!!!!!!!!!!! (1)

For a sphere grasp, Ch is calculated as

!!!! P3P2P1
3
1

3
1

3
1

""#hC !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2)

(a) A frame (Xh, Yh, Zh) is generated from the three contact points.

 (b) Cylindrical-type grasp. (c) Spherical-type grasp.

Fig. 7. Pose alignment for cylindrical- and spherical-type three-finger
grasps.

This tailored approach serves as a component in one of the
many algorithms used to build the database shown in Fig. 1.

C. Refinement Manager
1) Repositioning fingers

 After creation of an idealized grasp for a generic shape,
the Refinement Manager module shown in Fig. 2 modifies
the template grasp for specific object variations of surface
properties and shape. It forms actual or approximate force
closure algorithmically through repositioning the contacts
and adjusting forces. As an example, Fig. 8 shows a refined
grasp using a simulation of NASA’s Robonaut [11].

Fig. 8. Grasping refinement with Robonaut using high fidelity dynamic
simulation software. First an idealized grasp is created, then this is refined
using the exact object description.

2) Force Refinement
The Refinement Manager in Fig. 2 includes both position

and force refinement. As shown in Fig. 9, a robotic hand
typically has several constrained fingers with active joints
which are capable of exerting force on the object to be
grasped.

 Fingertip Grasp Whole Hand Grasp

Fig. 9. Force refinement for two families of grasps.

The grasp modes are classified into fingertip grasps and
whole hand grasps. A fingertip grasp mode is used when
grasping a small object or when manipulating the object in a
dexterous manner, having a small contact area at each
fingertip, as shown in Fig. 9 on the left. The whole hand
grasp mode, as shown in Fig. 9 on the right, is used when
grasping a large object or when applying a large force to the
object. Whole hand grasping gives a large contact area
between the hand and the object. To create the fingertip
grasp, we assume the fingers apply forces to the object
through contact points. The contact points at the fingertip
can exert any directional force.

After selecting nominal force values, it is necessary to
modify them based on the exact object shape. A force
refinement algorithm for fingertip grasping has been

338

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

developed. In it, we assume the fingers apply forces to the
object through the fingertip contact points shown in Fig. 10.

Fig. 10. Finger forces applied to the object.

Let the contact force of the hand be

$ % 13
21 R &'# mT

mh ffff ! (3)

Where

$ % T
iziyixi ffff # (4)

The contact points at the fingertips can exert any directional
forces. If the external force is defined as Fe, equilibrium
equations [12] for an object can be written as

 0FG #" ehf (5)

where G is the grasp matrix.
To achieve a stable grasp, it is expected that all the

applied finger force directions are close to the contact
normal of on the object. This allows an objective function
for minimization to be defined as follows:

 (
#

)#
m

i imax

iz
i f

f
w

1
* (6)

where wi is the weight for finger i. As an example, a higher
weight may be given for thumb, index, and middle fingers
than for pinky and ring fingers for a humanoid hand.

For force calculation, the criterion function in (6) is
optimized subject to (5), friction specifications, force
direction constraints, and limitations on the force angle. For
a whole hand grasp, the object is enveloped by the hand.
There might be many contacts between the hand and object.
It is not necessary to refine the contact force over each
contact to ensure individual stability. Instead, we use the
interface shown in Fig. 5 refine whole-hand grasps through
positioning.

Unlike in the case of fingertip grasps, whole hand grasps
may have the middle links of the fingers and palm
contacting the object. The forces exerted at such contact
points are powerful phenomena to leverage for grasping. If
no sensors are present those contact points must be regarded
as passive contact points, and the forces exerted are regarded
as passive contact forces. Based on this premise, we
designed a force control class using only the thumb as an
active contact point to apply force, while position control is
applied to the other fingers and the palm. We tested

applying active force with this algorithm to grasp a variety
of objects. Simulation results showed that various successful
grasps can be achieved with this approach. For a good grasp
pose, when the active force is applied to the object through
the thumb, the passive forces can be exerted at other
contacts and automatically balance the active force and
external force (for example, gravity) to generate a successful
grasp.

D. Grasping force control system
Fig. 11 illustrates one of the force control systems used to

implement the algorithms in Fig. 1. The sensor processor
works with both real hardware sensors and simulated
sensors. The sensor reading simulator is used to model
sensor readings during simulation. The model is based on
proximity measures between the manipulator and the
environment. The actual force that the sensor experiences is
calculated from the sensor reading and compared against the
desired force for that sensor. The output of this module is
the difference between the desired force and the measured
force, and this value is provided to the force control module.
A high bandwidth touch sensor was modeled through digital
simulation. The sensor can be attached to a link, with a
known location and direction with respect to the primary
frame of the link. The sensor is represented by a union of
convex shapes as part of the link to which it is attached. The
proximity calculation routine we implemented is capable of
reporting the distance query to the individual shape level.

Fig. 11. A diagram of the force control system.

E. Database Interface
A key part of the database interface module shown in Fig.

2 is the shape matching algorithm. When a new object is
given, using the XML-based language, the grasp for that
object or a similar object is found in the database using a
matching metric. This metric combines shape, articulation
properties, and surface properties. Our approach is to
condense the object description into a set of keys based on
the most important properties of the object. The keys are
defined using a variety of algorithms, including articulation
analysis [13] [14], and shape analysis [15]. We analyzed a
number of potential components during the study. One
valuable component was a feature-based method [16] for
whole object shape matching. The algorithm relies on both
surface properties and the distance and angle between
surface points.

339

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IV. GENERIC ALGORITHMS FOR USE ON ANY ROBOTS
Energid Technologies' innovation is an algorithm

database approach to robotic grasping tailored to real-time
applications. The proposed algorithm database provides
end-effector trajectories and forces to complete a grasp on
both man-made and natural objects. The database is
constructed using a combination of human input, object
metrics, grasp algorithms, refinement algorithms, and digital
simulation. It leverages the unique control algorithms
provided through Energid’s Actin toolkit and is described
using the Extensible Markup Language (XML), with each
database instantiation corresponding to one grasping
mechanism, such as a pincher, hand, or pair of hands. It is
one software system that supports the full spectrum of
grasping mechanisms, from rudimentary grippers to
complex cooperating hands. The focus is real-time
operation, and in all cases, the database entries give the
grasp in a fraction of a second. The database is organized to
have log(N) access time, for N database entries.

V. SIMULATION RESULTS

A. Grasp Demonstrations
For the demonstrations described in this section, we used

Robonaut [11], Schunk LWA [17], and Mitsubishi PA-10
[18] robotic arms and Robonaut [19] and Schunk (SDH)
hands [20]. Many objects were tested for grasping. Shown
in the figures are a capsule, pen, barbell, golf ball and tennis
ball. Fingertip grasps are used for grasping and manipulating
the tiny objects. Fig. 12 shows a PA-10 arm with a Schunk
hand is used to grasp a pen. Whole hand grasps were also
tested, using Robonaut to grasp a capsule, and tennis ball, as
shown in Fig. 13 and Fig. 14. The grasp for these different
size balls was refined algorithmically and automatically.

For the grasps in Fig. 13 and Fig. 14, the thumb was
controlled in simulation to apply active force to the object.
Position control was applied to the other fingers and the
palm. Passive forces can be exerted at other contacts and
the system can automatically balance the active forces and
external forces.

Fig. 15 shows a golf ball grasp using the combination
system of the Schunk arm and Robonaut hand. Only
position control is applied to all the fingers and palm for the
grasp, the fingertips envelop the ball from the bottom of the
shape. The passive force exerted at the contact points
balance the external force to grasp the golf ball successfully.

Fig. 12. PA-10 with a Schunk hand grasping a writing pen.

Fig. 13. Grasping a cylinder with whole hand.

Fig. 14. Grasping a tennis ball with whole hand.

Fig. 15. Example grasp with only passive contacts using the Schunk LWA3

with the Robonaut Hand.

B. Parametric Study Tool
To quantify performance, we developed several tools,

including a parametric study tool that evaluates grasp
success for various configurations within a task space. Fig.
16 shows the configuration used for the study results shown
in TABLE !.

Fig. 16. Parametric study configuration.

A capsule was perturbed from its nominal position in both

the x and z directions (+/- 5cm, 0, +/- 2.5cm). For each of

340

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

these locations, four orientations were set (0, -2.5, -5.0, -7.5
degrees), yielding a total of 100 trials. TABLE !(a) shows
the results of the parametric study using an initial palm
placement position. Note there are two trials where the
grasp fails. The objects move away due to forces exerted
with position errors. A revised grasp was defined by adding
a 3mm offset to the palm in the +y (vertical) direction, and a
rerun of the study gave 100% grasp success, as shown in
TABLE I(b). The appropriate offset of palm from the object
gives the object a small moving space during grasping, so
that the hand can completely conform to the object surface
and avoid errant forces. This and the other tools (such as the
validation tool shown in Fig. 8) developed will play an
important role in future grasp database development efforts.

TABLE !
EXAMPLE PARAMETRIC STUDY RESULTS

(a)

(b)

Comparison of original palm location (a) with new palm location (b). Green
indicates all orientations passed, yellow indicates one failed grasp out of the
three orientations, with the failed angle shown. This tool provides fast
evaluation of grasp changes.

VI. CONCLUSION
In this effort we undertook the design, creation, and

validation of a comprehensive infrastructure for grasping.
The infrastructure supports selecting different positioning
and force-control algorithms for different grasping tasks
based on a tree-structured database. For populating this
database, we presented several example algorithms, which
represent only archetypes. Many more algorithms can be
supported [21] [22]. These algorithms and the grasping
infrastructure were tested within a high fidelity simulation,
giving positive results.

REFERENCES

[1] Y. Yokokohji, N. Muramori, Y. Sato and T. Yoshikawa, “Designing
and Encountered-type Haptic Display for Multiple Fingertip Contacts
Based on the Observation of Human Grasping Behaviors,” The
International Journal of Robotics Research, Vol. 24, No. 9, pp. 717-
729, 2005.

[2] J. A. Coelho and R. A. Grupen, “A Control Basis for Learning
Multifingered Grasps,” Journal of Robotic Systems, 14(7), pp. 545-
557, 1997.

[3] R. Platt Jr., A.H. Fagg,, R.A. Grupen, “Extending Fingertip Grasping
to Whole Body Grasping,” Proceedings of the Int. Conference on
Robotics and Automation (ICRA'03), pp. 2677-2682, 2003.

[4] N.S. Pollard, “Parallel Algorithms for Synthesis of Whole-Hand
Grasps,” Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Albuquerque, NM. 1997.

[5] N.S. Pollard, “Parallel Methods for Synthesizing Whole-Hand Grasps
from Generalized Prototypes,” Ph.D. Thesis, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 1994.

[6] S.B. Kang, Robot Instruction by Human Demonstration, Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1994.

[7] R. Pelossof, A. Miller, P. Allen, and T. Jebara, “An SVM Learning
Approach to Robotic Grasping,” Proceedings of the IEEE
International Conference on Robotics and Automation, New Orleans,
Louisiana, pp. 3212-3218, April, 2004.

[8] A.T. Miller, S. Knoop, P.K. Allen, H.I. Christensen. "Automatic grasp
planning using shape primitives." Proceedings of the IEEE
International Conference on Robotics and Automation, Taipei,
Taiwan, pp. 1824-1829, September 2003.

[9] X. Zhu and J. Wang, “Synthesis of Force-Closure Grasps on 3-D
Objects Based on the Q Distance,” IEEE Transactions on Robotics
and Automation, vol. 19, no. 4, August 2003.

[10] Y. Li, J. L. Fu and N. S. Pollard, “Data Driven Grasp Synthesis using
Shape Matching and Task-Based Pruning,” IEEE Transactions on
Visualization and Computer graphics, Vol. 13, pp. 732-747, 2007.

[11] R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W.
Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F Rehnmark,
“Robonaut: NASAapos;s space humanoid,” Intelligent Systems and
Their Applications, Vol. 15 (4), pp.57-63, 2000.

[12] Y. Nakamura , K. Nagai, T. Yoshikawa: “Dynamics and Stability in
Coordination of Multiple Robotic Mechanism,” Int. J. Robotics
Research, vol. 8, no. 2, pp. 44-61, 1998.

[13] T. Tung and F. Schmitt, “Augmented Reeb Graphs for Content-based
Retrieval of 3D Mesh Models,” International Conference on Shape
Modeling and Application, pp157-166, 2004.

[14] D. Bespalov, W.C. Regli, and A. Shokoufandeh, “Reeb Graph Based
Shape Retrieval for CAD,” Proceedings of DETC’ 03, Chicago,
Illinois, September, 2003.

[15] J. Pu, S. Jayanti, S. Hou and K. Ramani, “Similar 3D Model Retrieval
Based on Multiple Levels of Detail,” the 14th Pacific Conference on
Computer Graphics and Applications, pp.103-112, Taipei, Taiwan,
October 2006.

[16] R. Ohbuchi, T. Minamitani and T Takei, “Shape-Similarith search of
3D models by using Enhanced Shape Functions” Theory and practice
of Computer Graphics, pp. 97-104, Birmingham, UK, June, 2003.

[17] http://robotgossip.blogspot.com/2005/12/light-weight-arm.html
[18] http://www.roboticsonline.com/buyers_guide/newproducts/details.cfm

?id=301
[19] C.S. Lovchik and M. A. Diftler “The Robonaut hand: a dexterous

robot hand for space,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 1999.

[20] http://www.schunk.com/schunk/schunk_websites/news/news_detail.ht
ml?archive=2006&article_id=7212&submenu=206&submenu2=244&
country=USA&lngCode=EN&lngCode2=EN.

[21] W.-K. Chen, Linear Networks and Systems, CA: Wadswort T. B.
Martin, R.O. Ambrose and M.A. Diftler, “Tactile Gloves for
Autonomous Grasping with the NASA/DARPA Robonaut,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), New Orleans, LA, April 2004.

[22] K. Bernardin, K. Ogawara and K. Ikeuchi “A Sensor Fusion Approach
for Recognizing Continuous Human Grasping Sequences Using
Hidden Markov Models,” IEEE TRANSACTIONS ON ROBOTICS
AND AUTOMATION, pp. 47-57, Vol.21, No. 1, 2005

341

Authorized licensed use limited to: Stanford University. Downloaded on April 2, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

