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Abstract—1In this paper, we build upon recent advances in
neuroscience research which have shown that control of the
human hand during grasping is dominated by movement in
a configuration space of highly reduced dimensionality. We
extend this concept to robotic hands and show how a similar
dimensionality reduction can be defined for a number of different
hand models. This framework can be used to derive optimization
algorithms that simplify the task of finding stable grasps even
for highly complex hand designs. Furthermore, it offers a unified
approach for controlling different hands, even if the kinematic
structures of the models are significantly different. We illustrate
these concepts by building a comprehensive grasp planner that
can be used on a large variety of robotic hands under various
constraints.

I. INTRODUCTION

One of the hardest problems in robotic grasping is the
creation of control algorithms for new hand designs that are
beginning to rival the human hand in complexity. Researchers
studying robotic grasping have struggled to at least partially
replicate human versatility when designing artificial coun-
terparts. This can be seen as a natural consequence of the
current demand to push robots out of controlled environments
and into the complex and cluttered human surroundings that
characterize everyday life.

If we wish to reproduce human-like grasping it would seems
natural to draw inspiration not only from the hardware of the
human hand, but also from the software; that is, the way the
hand is controlled by the brain. This may initially sound like an
overly lofty goal: a large part of the human cortex is dedicated
to grasping and manipulation, and it would seem reasonable
to assume that all of this cognitive machinery is dedicated
to finely controlling individual joints and generating highly
flexible hand postures. However, recent results in neuroscience
research [1] point to the contrary, emphasizing that a majority
of the human hand control during common grasping tasks
lacks individuation in finger movements.

Attempts to formalize human tendency to simplify the space
of possible grasps can be traced back to Napier’s pioneering
grasp taxonomy [2], updated later by Cutkosky [3]. While the
configuration space of dexterous hands is high-dimensional
and very difficult to search directly, these studies show that
most useful grasps can be found in the vicinity of a small
number of discrete points. These points can be thought of as
pre-grasp shapes, or starting positions for finding a good grasp
for a new object [4].

In this work we extend this concept by replacing the discrete
set of pre-grasp shapes with a continuous subspace derived
from analysis of human hand motion during grasping. This
subspace can be searched directly and we show that the
result of this search is often close enough to a final grasping
position that a simple heuristic can be used to derive a force-
closure grasp. By performing this search in hand configuration
space, we can use forward kinematics to explicitly avoid
unfeasible hand positions and collision with obstacles. As a
result, our method is well-adapted for operation in cluttered
environments.

We note that choosing a good grasp can also be formu-
lated as a problem in the contact space of the object to be
grasped, which is almost always lower dimensional than hand
configuration space. We refer the reader to [5] for a review
of such methods. While the contact space can be discretized
and searched completely [6], such approaches usually require
inverse kinematics in order to guarantee that the contacts are
physically satisfiable by a real robotic hand. Rezzoug and
Gorce [7] solve this problem using supervised learning, and
produce a hand configuration such that the fingertips satisfy
a number of given point contacts (if possible). However, this
approach does not guarantee that the hand is not in collision
with the object or obstacles at points other than the predefined
contacts. An alternative to the use of inverse kinematics is
presented by Platt er al. [8, 9], starting with the hand in
contact with an object and using gradient descent to adjust
the contacts.

II. EIGENGRASPS

Any hand posture is fully specified by its joint values, and
can therefore be thought of as a point in a high-dimensional
joint space. If d is the number of degrees of freedom (DOF)
of the hand, than a posture p can be defined as
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where 6; is the value of i-th degree of freedom.

As we have already mentioned above, previous research
suggests that most grasping postures derive from a relatively
small set of discrete pregrasp shapes. This would imply that
the range of postures used in everyday grasping tasks will
exhibit significant clustering in the d-dimensional DOF space.
Santello et al. [1] verified this hypotheses by collecting a large
set of data containing grasping poses from subjects that were
asked to shape their hands as if they were grasping a familiar



object. Principal Component Analysis of this data revealed that
the first two principal components account for more than 80%
of the variance, suggesting that a very good characterization
of the recorded data can be obtained using a much lower
dimensionality approximation of the joint space.

In our work, we will refer to the Principal Components
of these postures as eigengrasps. The implication is that they
form a low-dimensionality basis for grasp postures, and can
be linearly combined to closely approximate most common
grasping positions. Each eigengrasp e; is a d-dimensional
vector and can also be thought of as direction of motion in
joint space. Motion along one eigengrasp direction will usually
imply motion along all (or most) degrees of freedom of the
hand.
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By choosing a basis comprising b eigengrasps, a hand
posture placed in the subspace defined by this basis can
be expressed as a function of the amplitudes a; along each
eigengrasp direction:

b
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and is therefore completely defined by the amplitudes vector
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A. Effective Degrees of Freedom

The first question to consider is how many eigengrasps
need to be considered so that the subspace that they define
closely approximates the required range of hand postures.
Based on the results of Santello et al., we have used the two
dominant eigengrasps of the human hand in our work, and
will show how they produce good results. It is important to
note that our study is primarily concerned with grasp synthesis
for common everyday objects and that another choice of
eigengrasps might be necessary in a different problem domain
such as complex manipulation tasks, or with another dataset,
containing unusually shaped or difficult to grasp objects.

An intriguing corollary question is whether the results
obtained using such a small set of eigengrasps imply that
the other DOF’s of the hand are useless. We can provide
two arguments to the contrary: as shown in [1], eigengrasps
3 through 6 (in decreasing order of importance), while ac-
counting for less than 20% of the variance in hand posture,
do not represent noise and are shown to be related to the
object to be grasped. Furthermore, the study presented by
Santello et al. was performed in the absence of the real object,
as subjects reproduced grasps from memory. This suggests
that initial grasp planning stages do indeed take place in a
low dimensional space, but during the final stages the shape
of the object forces the hand to deviate from eigengrasp
space in order to conform to the object surface. From this
perspective the space defined through eigengrasps can be seen
as a pregrasp or grasp planning space, as we shall expand upon
later.

B. Application for Robotic Hand Models

Although the work of Santello et al. is centered on the
study of the human hand, we have found this approach to
be extremely useful for robotic hands as well. In our study,
we have applied the eigengrasp concept to a total of 4 hand
models: the Barrett hand, the DLR hand [10], the Robonaut
hand [11] and finally a human hand model. All our hand
models, as well as the eigengrasps used in each case, are
presented in table 1.

For the human hand we have chosen eigengrasp directions
based on the published results in [1], taking advantage of
the fact that they have been derived through rigorous study
over a large number of recorded samples. Since such data
is not available for robotic hand models, we have derived
eigengrasps attempting to define grasp subspaces similar to the
one obtained using human hand eigengrasps. In most cases,
such decisions could be made based directly on the similarities
with the human hand. For example, the MCP and IP joints
can be mapped to the proximal and distal joints of robotic
fingers. In the case of the Barrett hand, changes in the spread
angle DOF were mapped to human finger abduction. While
we found our choices to produce good results, the optimal
choice of eigengrasps for non-human hands, as well as the
choice of which eigengrasps to use for a particular task, are
open questions and interesting directions for future research.

The eigengrasp concept allows us to design flexible control
algorithms that operate identically across all the presented
hand models. The key to our approach is that the eigengrasps
encapsulate the kinematic characteristics of each hand design.
This enables control algorithms that operate on eigengrasp
amplitudes to ignore low-level operations and concentrate on
the high-level task. We believe this method to be similar
in spirit to certain aspects of human brain operation, with
individual function grouped together in control synergies.
Another advantage is the significant dimensionality reduction
(by as much as a factor of 10 for complex hands) obtained by
operating in the reduced basis eigengrasp space as opposed to
the full joint space. In the next section we will derive a grasp
planning algorithm that makes use of both these concepts.

ITIT. GRASP PLANNING USING EIGENGRASPS

In essence, the grasp planning task can be thought of as
an optimization problem in a high-dimensional space that
describes both hand posture (intrinsic DOF’s) and position
(extrinsic DOF’s). Consider the goal of minimizing an energy
function of the form:

E = f(p,w) “4)

If d is the number of intrinsic hand DOF’s then p € R?
represents the hand posture and w € RS contains the position
and orientation of the wrist.

Intuitively, this energy function has to be related to the
quality of the grasp. However, most formulations pose a
number of problems. First, it can be very difficult, or even
impossible, to compute an analytical gradient. Second, such
functions are highly non-linear, as small changes in both finger



Eigengrasp 1

Model |DOFs

Eigengrasp 2

Finger abduction

Description min | max Description min | max
Barrett 4 Spread angle opening w —> ' Finger flexion %’
DLR 12 Prox. joints flexion Dist. joints flexion

Thumb flexion

Thumb flexion
MCP flexion
Index abduction

Robonaut| 14

Thumb flexion
MCP extension
PIP flexion

Thumb rotation

20 Thumb flexion
MCP flexion

Index abduction

Human

Thumb flexion
MCP extension
PIP flexion

TABLE I
EIGENGRASPS DEFINED FOR THE ROBOTIC HAND MODELS USED IN THIS PAPER.

posture and wrist position can drastically alter the quality
of the resulting grasp. Finally, the legal parameter space is
complex, having to satisfy multiple constraints: prevent inter-
penetration with the object to be grasped as well as potential
obstacles, and maintain joint values within their acceptable
ranges.

A. Optimization Algorithm

We directly address all of these problems by using simu-
lated annealing as the preferred optimization algorithm. We
give a brief description of this algorithm here and refer the
reader to [12] for an in-depth review.

During each iteration of this algorithm, a neighbor of the
current solution is generated by randomly sampling each of
the input variables of the energy function. A decision is then
made whether to replace the current state with the new one,
based on the difference in energy between the two. During
early stages, neighboring states are generated by sampling
the entire space of the input variables, and the probability of
moving to a new state is high even if the jump increases the
energy of the system. As the annealing schedule matures, new
states sample an increasingly smaller neighborhood around
the current solution, and jumps are made only to states that
minimize the energy.

The stochastic nature of simulated annealing makes it a
particularly good choice for our task. Since new states are gen-
erated as random neighbors of the current state, computation of
the energy gradient is not necessary, and the algorithm works
well on non-linear functions. Furthermore, the possibility of
an “uphill move” to a state of higher energy allows it to escape
local minima which can trap greedier methods such as gradient
descent. However, the random exploration of the input domain

Fig. 1. Desired contact locations for DLR, Robonaut and Human hands
means that high dimensionality of the parameter space will
severely affect the computational efficiency of this algorithm.
We therefore propose performing the optimization in eigen-
grasp space, as opposed to DOF space. The energy function
takes the form
E = f(a,w) ®)

where a € R? is the vector of eigengrasp amplitudes. This
effectively reduces the parameter space to 8 dimensions (2
eigengrasp amplitudes plus 6 extrinsic DOF’s) from as high
as 26 dimensions in the case of the human hand.

The energy function formulation that we propose simply
attempts to bring a number of pre-selected contact points on
the robotic hand in contact with the object (figure 1). The
energy contains two terms: the first one sums the distances
between the desired contact points and the object surface
while the second one sums the angular differences between
the orientation of the surface normals at the contact locations
and the closest point on the object. By sampling the palm and
all the links of the robotic hand, as in figure 1, we expect the
energy function to be minimized when the hand is wrapped
around the object generating a large contact area.

In most cases, the resulting hand posture creates an en-
veloping grasp of the object, especially for complex hand
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Fig. 2. Simulated annealing example over 100,000 iterations. Each image
shows the best state found until iteration k.

models grasping objects similar in size to the hand. However,
there exist cases where the desired contact locations are all
very close to the object surface without generating a stable
grasp. Furthermore, small objects might be impossible to
completely wrap the hand around, and an acceptable minimum
of the energy function will not exist. We will discuss possible
solutions to this problem in the next section.

B. Grasp Planning Results

We have implemented the simulated annealing approach us-
ing the publicly available Grasplt! simulation engine [13]. For
each state generated during the annealing schedule, Grasplt!
uses forward kinematics to place the robotic hand model in
the correct posture and checks for collisions against the object
to be grasped as well as other obstacles. If the state is found to
be legal, the corresponding energy function is computed and
the annealing algorithm proceeds as described above.

We will first analyze the behavior of the simulated annealing
algorithm in more detail, using a typical example that involves
the Robonaut hand grasping a glass. This optimization, as
well as all examples shown in this paper was performed over
100,000 iterations. Figure 2 shows the temporary solution (best
state found so far) at various points during the optimization.
We can observe what is considered typical behavior for a
simulated annealing implementation: at first, the search goes
through random states, accepting bad positions as well as
good positions. As the annealing schedule progresses, the
search space is sampled more often in the vicinity of the good
states, while bad states are no longer accepted. Finally, in the
later stages, the search is confined in a small neighborhood
around the best state, which is progressively refined. The total
time required for the optimization was 173 seconds, with the
most significant amount of computation used for checking the
feasibility of each generated state (i.e. checking for collisions
and inter-penetrations).

An extensive example set is shown in figure 3: for each
hand-object combination the image shows the pre-grasp found
by the optimization algorithm. We note that, in most cases,

Fig. 4. Grasp planning taking into account arm and obstacle constraints

planning in the reduced space spanned by only two eigen-
grasps does not result in a posture where the robotic hand
conforms perfectly to the surface of the object. However, the
result is often close enough to such a posture that a stable grasp
can be obtained by using a simple heuristic: the pre-grasp is
modified by closing each finger until contact with either the
object or another finger prevents further motion. This method
produces a force-closure grasp in 18 out of the 24 cases shown
in figure 3.

So far, we have considered strictly the relationship between
a robotic hand and the object to be grasped. Consider however
the case of a service robot operating in a human environment:
the feasibility of a grasp also depends on the kinematics
of the robotic arm that the hand is attached to, as well as
any external obstacles. We believe that the dimensionality
reduction approach presented here can be successfully used
in such situations. For each state that is generated during the
simulated annealing search, we have extended the feasibility
check to find an appropriate position for the robotic arm using
inverse kinematics. If such a position is found and no obstacle
collision is detected, then the state is deemed legal. Figure 4
shows pre-grasp results obtained using the eigengrasp planning
approach for the Barrett and Robonaut hands attached to a
Puma robotic arm.

IV. FUTURE RESEARCH DIRECTIONS

As we have previously mentioned, the energy function
formulation used in our search algorithm attempts to wrap
the hand around the object and create an envelopping grasp.
However, there exist cases where such a grasp might not
be feasible, or desirable. For example, obstacle constraints
might prevent the hand from wrapping around the object, or a
more flexible manipulation-type grasp might be preferable to
a power grasp.
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Fig. 3.

The most direct method for obtaining such a grasp is to
use only a subset of the desired contact locations shown in
figure 1. The subset comprising only fingertip contacts is a
natural candidate, but using such a small contact set raises an
additional problem: it is generally easy to place all fingertips
on the object surface without necessarily obtaining a stable
grasp. To address this problem we also propose a modified
version of the energy function that includes a built-in notion
of grasp quality.

While a number of grasp quality metrics have been pre-
sented in the literature, our context is somewhat different:
we require a metric that can take into account not only
existing contacts between the hand and the object, but also
potential contacts that can be realized by small changes in the
current state. In this sense, the ideal metric would assess the
potential of a hand posture, and determine whether the anneal-
ing algorithm will search its neighborhood for progressively
better states. One possible quality metric that can be modified
according to these requirements is the one described by Ferrari
and Canny [14]. In its original form, the process involves
building the space of wrenches that can be applied by a grasp
(the grasp wrench space, or GWS) by taking the convex hull of
the wrenches that can be applied through each contact. In our
implementation, object contacts are replaced by the desired
contact locations exemplified in figure 1. When computing
the GWS, we scale the wrenches that can be applied at each

Eigengrasp planner test using 4 hand models to grasp each of 6 objects

Fig. 5.

Grasp planning using only fingertip contacts

desired contact location depending on the distance between the
desired contact and the object surface. Thus, if this distance
is small, the contact will have a positive contribution to the
grasp, and states that bring it closer to the object surface will
be rewarded by a higher quality value. If, on the contrary, the
desired contact is far from the object, it will not significantly
affect the grasp quality measurement.

Once the grasp quality term is computed, it is included in the
energy function in negated form, as the annealing algorithm
attempts to minimize the energy value. Its contribution biases
the search algorithm toward states that not only bring the
hand in contact with the object, but also create stable grasping
postures. We have found that these formulations work well in
practice, as shown in figure 5. We are currently aiming to build
upon these results and derive an energy function formulation
which would guarantee stable grasps while eliminating the
need to pre-specify desired contact locations on the hand.



Finally, the tests presented in this paper have been per-
formed using a grasping simulator and taking advantage of
complete knowledge of the object geometry. We believe that
this environment is ideal for evaluating the theoretical possibil-
ities of such a method, as it also provides a direct verification
of the results using rigorous quality metrics. However, general
robotics applications usually have less information available
about the object to be grasped, such as a single laser scan or
perhaps sparse stereo, with substantial occlusions. There are
two general approaches for dealing with such incomplete data:
attempt to construct or recover a full object model [15], or use
only the observed data without any additional model build-
ing [16]. The eigengrasp dimensionality reduction presented
here makes no assumptions about the object at all. However,
the particular cost functions we use do require a full 3D model.
Platt et al. [8] showed how a grasp control function can be
constructed even with limited knowledge of object geometry,
and a promising direction for future research will be designing
similar cost functions for use with our method.

V. CONCLUSIONS

In this paper we have built upon recent results in neuro-
science research, which show that human hand control for
common grasping tasks mostly takes place in a space of
much lower dimensionality than the number of degrees of
freedom of the human hand. We have extended this concept
for a number of robotic hands: for each model, we have
defined a low dimensional subspace of the degrees of freedom
space, determined by a number of basis vectors which we call
eigengrasps.

As long as the eigengrasp space provides a good approxi-
mation of the hand motion required for a given task, control
algorithms can be designed to operate in this space and take
advantage of the dimensionality reduction. In the case of grasp
planning, data collected from human users has shown that this
is indeed the case. In this paper we show that this is also the
case for complex robotic hands: after optimizing the pre-grasp
hand posture in eigengrasp space, we can use simple heuristics
to find stable grasps even for complex hand models that have
traditionally been very difficult to plan for.

The eigengrasp framework acts not only to reduce control
complexity, but also as an interface between the kinematic
structure of the hand and higher-level task planning. Therefore,
for a given task, it is possible to use a unified treatment
for a number of robotic hand models, even though the
kinematic specifications may be significantly different. We
have illustrated this concept by using the eigengrasp planner
on four robotic hands, with the number of intrinsic DOF’s
ranging between 4 and 20. The results show that it is indeed
possible to apply an identical control algorithm to all of these
hand models and obtain consistent results. Furthermore, the
planning method we have presented can take into account
robotic arm constraints as well as external obstacles.

While this work has been focused on the task of grasp-
ing everyday objects, we believe that eigengrasp-like control
synergies can be found for many other domains. Since the

published experimental data we draw upon was collected
under such assumptions, we found it unjustified to generalize
our particular choices of eigengrasps without further analysis.
However, the effectiveness of the grasp planning algorithm
based on relatively few eigenvectors of hand motion suggests
that identifying similar dimensionality reduction strategies for
other domains will prove a fruitful area of future research.
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