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Abstract. In this paper we describe a system that combines human
input and automatic grasp planning for controlling an artificial hand,
with applications in the area of hand neuroprosthetics. We consider the
case where a user attempts to grasp an object using a robotic hand,
but has no direct control over the hand posture. An automated grasp
planner searches for stable grasps of the target object and shapes the
hand accordingly, allowing the user to successfully complete the task.
We rely on two methods for achieving the computational rates required
for effective user interaction: first, grasp planning is performed in a hand
posture subspace of highly reduced dimensionality; second, our system
uses real-time input provided by the human user, further simplifying the
search for stable grasps to the point where solutions can be found at
interactive rates. We demonstrate our approach on a number of different
hand models and target objects, in both real and virtual environments.

Key words: dexterous grasping, human-machine interaction, hand pros-
thetics

1 Introduction

Current research in the field of neural prosthetics is advancing rapidly, as it
benefits from new insights into both human and robotic grasping. Prosthetic
devices controlled by cortical output combine a degree of human control with
artificial hardware and algorithms; while this direction of research appears to be
very promising, it also poses new problems regarding the interface between the
biological and artificial components.

In this paper we focus on the dexterous grasping problem. This can be for-
malized as the task of, given a robotic hand and a target object, determining
an appropriate wrist position and hand posture for a stable grasp. We consider
the case where the position of the hand relative to the target object can be
determined directly by a human user; recent results [1] have shown that three-
dimensional positioning of the tooltip of a robotic arm can be achieved under
neural control, therefore this assumption can also hold in situations where the
ability to actuate the arm directly is lost. However, controlling hand posture has
proven to be significantly more difficult. A number of possible approaches are
described in the literature, including electromyography (EMG) [2] and cortical
implants [3]. These studies have shown success in decoding a limited number
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of information channels, therefore controlling a highly dexterous hand during
grasping remains an open and challenging problem. Current approaches, such as
the one presented in [4], assume the user will be able to select from a small set
of pre-grasp shapes, and rely on the passive mechanical adaptability of the hand
to successfully complete the grasp.

Our goal in this paper is to provide an automated grasp planning algorithm
that compensates for the missing information that a human user cannot provide
directly and enables the use of a wide range of hand postures. We describe a
system that acts as an interface between a human operator and an artificial hand
used for grasping tasks. This system enables the user to achieve stable grasps by
controlling the position and orientation of the wrist, but with no direct control
over finger posture. An important requirement regards computational efficiency:
the system’s response should be fast enough to allow for interactive operation.
By satisfying this constraint we can effectively close the feedback loop, allowing
the human user to not only set initial guidelines for the automated system, but
also react to its behavior and actively assist in the successful completion of the
task.

For comprehensive reviews concerning fully autonomous grasp synthesis for
robotic hands we refer the reader to [5, 6]. The difficulty in designing effective
algorithms generally stems from the complexity of both the hand configuration
space and the contact space of the grasped object [7]. It is important to note
that our approach requires knowledge of the target object geometry, as well as
its initial position relative to the hand. For application in unstructured environ-
ments, it therefore requires a complementary system for object recognition and
localization such as [8]. However, controlled settings also play a very important
role in hand neuroprosthetics, as they are used for training purposes. Our system
can simplify the task of training a person to use an artificial hand, as it enables
successful task completion even with limited control information, allowing the
user to slowly develop better control abilities.

1.1 System Overview

The central component of our system is the grasp planning algorithm, which
runs on the platform provided by the GraspIt! simulator for robotic grasping
[9]. The simulator receives user input and sends it to the grasp planner which
processes it and outputs potential grasps, which are in turn used to generate
commands for the robotic hand. Even though the grasp planner runs in a sim-
ulated environment, the results can be applied to a real robotic hand, allowing
the user to interact with the hand directly and use it to pick up surrounding
objects. Later in this paper we will present our results using the Barrett robotic
hand. We have also tested our method on a range of more complex hand designs
(including the DLR hand, the Robonaut hand as well as human hand model)
using the virtual environment in GraspIt!. In order to successfully complete a
grasping task, our method proceeds through the following three stages:
- human input recording: when a Barrett robotic hand is used for grasping
tasks, the user can hold the hand and approach the target object (Figure 1a).
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a) b) c) d)

Fig. 1. a) real Barrett hand used to pick up an object; b) dexterous grasping using
a complex hand model in a simulated environment; c) potential contact forces consid-
ered for a given hand posture. Each cone shows the magnitude of the potential forces
applied by a contact, which is scaled depending on the distance to the object. d) by
re-parameterizing the spatial component of the search using variables φ, θ and d, we
constrain it to a conical region around the approach direction specified by the user.

The position of the hand relative to the target is tracked using a Flock of Birds
(Ascension Corp., VA) magnetic tracker. When operating in a simulated en-
vironment, the user can change the position of the virtual wrist by directly
manipulating the magnetic tracker (Figure 1b). In both cases, the user has no
control over finger posture except for a binary ”close all fingers” command.
- grasp planning: the automated grasp planner attempts to find a stable grasp,
considering the current approach direction given by the user. The details of the
planning algorithm are presented in section 2, while user interaction is discussed
in section 3. Once at least one acceptable grasp is found, the system can advance
to the next stage.
- grasp execution: the system positions the fingers of the hand according to the
best grasp currently available. This allows the user to react, by either continuing
to approach the object along the same direction or moving the hand to a new
position in order to search for a better grasp. Once the user is satisfied with the
hand posture, he can issue the ”close all fingers” command and complete the
grasp. An extensive set of grasping tasks examples is presented in section 4.

2 Low-dimensional grasp planning

In general, automatic grasp synthesis can be thought of the task of finding the
combination of hand posture (intrinsic degrees of freedom, or DOF’s) and posi-
tion (extrinsic DOF’s) that produces a stable grasp, according to a given grasp
quality metric. From this perspective, it can be approached as an optimization
problem, seeking to maximize the value of the grasp quality Q expressed as a
function over a high-dimensional domain:

Q = f(p,w) (1)

If d is the number of intrinsic hand DOF’s, p ∈ Rd represents the hand posture
and w ∈ R6 contains the position and orientation of the wrist. In this section,
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we address the intrinsic component p of the quality function, which is entirely
controlled by the automated grasp planner; the wrist component w, which is
directly affected by the human user, is discussed in the following section.

The traditional form for specifying a hand posture is to set a value for each in-
dividual DOF of the hand. For complex hands, such as the human hand modeled
in our study with d = 20, the high dimensionality of the posture space makes
direct searches for good grasps intractable. In order to meet the interactivity
constraint of our system, we perform the grasp planning task in a subspace of
highly reduced dimensionality. Our approach is based on the results of Santello et
al. [10], who have shown that the range of postures that humans use in everyday
grasping exhibits significant clustering in the d-dimensional DOF space. How-
ever, while human grasping subspaces can be determined through user studies,
defining similar subspaces for non-anthropomorphic robotic hands is an inter-
esting open problem. In previous work [11], we have applied this concept to five
hand models, using the results of Santello et al. for the anthropomorphic models
(such as the DLR and Robonaut hands) and empirically derived subspaces for
the non-anthropomorphic ones (such as the Barrett hand). Brown and Asada
[12] also present an anthropomorphic robotic hand with a low-dimensional con-
trol system along directions similar to those presented in [10]. A discussion on
different dimensionality reduction techniques for hand control is presented by
Peters and Jenkins [13], applied to teleoperation data on a Robonaut hand.

In our work, we consider a hand posture subspace defined by a number of
d-dimensional basis vectors called eigengrasps; the implication is that these
vectors can be linearly combined to closely approximate most common grasp-
ing positions. By choosing a basis comprising b eigengrasps, a hand posture p
placed in the subspace defined by this basis is uniquely defined by the vector
a ∈ Rb containing the amplitudes along each subspace axis. In previous work
[14], we have discussed the feasibility of finding good grasps for dexterous hands
by searching a subspace defined by two eigengrasps. This implies a significant
dimensionality reduction of the grasp quality function domain, which can be
expressed as

Q = f(a,w), a ∈ R2 (2)

However, this low-dimensional subspace is only useful as long as it contains
the hand postures needed for stable grasps of a large variety of objects. The
results presented in [14] show that, in general, postures where the hand conforms
perfectly to the surface of the target can not be found in eigengrasp space.
However, by searching this subspace we can usually find a posture that is very
close to a desired grasp. The eigengrasp space can therefore be thought of as a
pre-grasp, or planning space: the best pre-grasps found in this subspace have a
good chance of producing stable grasps by simply closing each finger until motion
is stopped by contact with the object. This suggests a two-stage grasp planning
algorithm, detailed in the remainder of this section: the first stage searches the
low-dimensional eigengrasp subspace, while the second stage tests the resulting
pre-grasps and outputs the best solutions.
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2.1 Grasp quality function and optimization algorithm

Most grasp quality metrics that have been proposed in the literature use as a
starting point a number of contacts between the hand and the target object.
However, our context is somewhat different: we need a metric that can asses
the quality of a pre-grasp, where the hand is very close, but not in contact with
the target. One possibility would be to simply close the fingers and compute
the resulting contacts; however, this is an expensive process that can only be
applied at interactive rates to a few pre-grasp postures. We therefore propose
an alternative quality function which is fast to compute, but only provides an
approximation of the final grasp quality. Our formulation is a modified version
of the Ferrari-Canny metric [15] intended to assess the potential quality of a
posture.

For a given hand shape, we assume that the hand can apply potential forces
to the target object through a number of pre-defined contact locations. The
potential forces are scaled according to the distance between each finger and
the target (Figure 1c). We then compute the total wrench space that can be
applied by the scaled potential forces, and apply the Ferrari-Canny metric [15]
on the resulting wrench space. The intuition behind this approach is that this
formulation rewards postures that bring the fingers as close as possible to the
object, but are also likely to create enveloping grasps with stable wrench spaces
and no weak points. This quality function is therefore used to guide the search
towards promising grasping postures and produce candidate pre-grasps.

Even when using a two-dimensional subspace to constrain the posture of the
hand, the additional variables needed to specify the position of the wrist make it
intractable to perform an exhaustive search under the time constraints imposed
by our application. We therefore perform the search using the simulated anneal-
ing [16] algorithm; the reduced dimensionality of the search domain allows this
algorithm to find effective hand postures at interactive rates (computation times
will be presented in section 4). We have implemented this algorithm using the
GraspIt! simulation engine. For each state generated during the annealing sched-
ule, GraspIt! uses forward kinematics to place the hand model in the appropriate
posture and checks for collisions against the object to be grasped as well as other
obstacles. If the state is found to be legal, we proceed to compute its associated
quality function value and continue the simulated annealing optimization pro-
cess. The hand postures with the highest quality values found during the search
are buffered and sent to the second stage of the planning process.

2.2 Final grasp computation

For each candidate pre-grasp resulting from the previous stage, we use the con-
tact detection engine within GraspIt! to compute the final grasp that results by
closing the fingers on the object. Once the contacts between the hand and the
object have been determined, we compute the exact quality value of the final
grasp by applying the Ferrari-Canny metric in its original form presented in [15].
If the grasp is found to have form-closure, it is presented as a potential solution,
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along with its associated quality value, to the next component of the system,
which is responsible for interaction with the human user.

When computing the final grasping posture resulting from a candidate pre-
grasp, we take into account specific mechanical properties of the hand, such as
passive adaptation to the shape of the target and soft fingertips. A number of
robotic hands, such as the Barrett Hand, the SDM Hand [17] and the CyberHand
[18] rely on passive mechanical adaptation, as it significantly increases grasp
stability without increasing the complexity of the control mechanisms. All of
the results involving the Barrett hand presented in this paper take into account
its adaptive actuation mechanism which allows distal joints to close even when
proximal joints controlled by the same motor have been stopped due to contact.
The ability to create stable, encompassing grasps with subsets of fingers is also
increased by using soft fingertips that deform during contact and apply a larger
space of frictional forces and moments than their rigid counterparts. In order
to take into account such effects, we use a fast analytical model for soft finger
contacts that we have introduced in previous work [19]. This enables the use
of rubber-coated fingertips for our robotic hands, without compromising the
accuracy of the grasp quality computations.

In our implementation, the two planning phases described in this section
(simulated annealing search for pre-grasps and final grasp testing) run in sepa-
rate threads. As soon as a candidate pre-grasp is found, it is queued for testing,
but the search for new candidates continues independently of the testing phase.
Also, candidate pre-grasps are independent of each other, and can be tested
simultaneously. This parallelism allows us to take advantage of the current evo-
lution in multi-core architectures, largely available on standard desktop PCs.

3 On-line human interaction

In order to uniquely define a grasp, a given finger posture has to be associated
with a hand position relative to the target object. In general, 3 variables are
needed to specify the position of the palm, and 3 more for its orientation. In
the context of our application, we expect the user to specify a desired approach
direction to the target; however, this does not fully eliminate the spatial compo-
nent of the grasp planning search. First, it is not practical to wait until the user
has brought the palm into a final grasping position before starting the search for
an appropriate finger posture, as this behavior would decrease the interactivity
of the system. Rather, it is preferable to start the search early, and attempt to
predict where the user intends to place the palm. Second, this prediction allows
the system to offer feedback to the user: as soon as an anticipated grasp is found,
the grasp planner can shape the fingers accordingly. This allows the users to de-
cide if the grasp is satisfactory and continue to approach the target, or choose
another approach direction if the system is unable to shape the fingers.

This behavior can be implemented efficiently by re-parameterizing the spatial
component of the grasp planner to a total of 3 variables, comprising an approach
distance and two angles, as shown in Figure 1d. By adding these 3 variables to the
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2 eigengrasp amplitudes that define hand posture, the automated grasp planner
will cover a conical region around the current approach direction. We can now
provide a complete step-by-step walkthrough of a grasping task, as it proceeds
through the following stages:
- as the user approaches the target object, the grasp planner searches for a
good grasp in a cone-shaped area around the given approach direction; when a
solution is found, it is used to set the hand posture, allowing the user to react.
- the planner continuously attempts to improve the current result, by finding
new grasps that either have a better quality metric or are closer to the current
position established by the user.
- if the planner is unable to find a grasp in the current search area, or user is
not satisfied with the resulting hand posture, the user can reposition the hand
and attempt to grasp a different part of the target object.
- if the user is satisfied with the hand posture, he continues along the current
approach direction. As the real hand position approaches the target grasp, the
fingers are gradually closed around the object. This allows the user to closely
predict where the object will be touched. Finally, the user issues a ”close all
fingers” command and completes the grasping task.

4 Dexterous grasping examples

Figure 2 presents the application of our method using the Barrett Hand in a
real environment, as well as the DLR hand, the Robonaut hand and a human
hand model in a simulated environment. In most cases, the images show only the
final grasp applied by the user; due to space constraints we are unable to include
images showing the evolution of the grasping task from approach direction, pre-
grasp and final grasp. In order to better evaluate the interactive nature of our
application, a movie showing a number of complete examples can be found at
http://www.cs.columbia.edu/∼cmatei/eh08.

For any given grasping task, the exact computational effort required to find
a stable grasp depends on the complexity of the hand and target object, as well
as the approach direction chosen by the user. On average, the first stage of the
grasp planning algorithm processes approx. 1000 hand postures per second, while
the second testing phase, running in parallel, can evaluate approx. 20 candidate
pre-grasps per second. In most cases, solution grasps are found at interactive
rates: in the example presented in Figure 2a, the grasp planner found 8 stable
grasps in 13.6 seconds of computation. These are representative numbers for the
behavior of the system, which generally requires less than 2 seconds to find a
solution grasp for a new approach direction.

The ability of the system to allow for successful task completion in a short
time is more difficult to quantify, as it also depends on how well the user reacts
to the behavior of the automated components. All the results presented in figure
2 were obtained at interactive rates, usually requiring between 5 and 15 seconds
from first approach to final grasp execution. For the more difficult tasks, taking
up to 30 seconds to complete, we found two main reasons that led to the increased
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a) Example of a complete grasping task: initial approach, finger-preshaping using grasp planning result,
continued approach and final grasp execution. Note that the flask is elevated on a narrow stand, allowing
the planner to place one finger underneath for increased grasp stability.

b) (from left to right) When the approach direction allows it, the planner will choose enveloping grasps
(images 1,2 and 4) over fingertip grasps (images 3 and 5), as they offer increased stability.

c) (from left to right) Two grasps of airplane model fuselage and three grasps of a book, each one
obtained from a different approach direction.

d) Grasping tasks performed in simulated environment using different hand models. For each case, the
images also show the user providing the approach direction via a magnetic tracker.

e) Successful grasping tasks performed using dexterous hands in a simulated environment; all presented
grasps have form-closure.

Fig. 2. Examples of grasping tasks in both real and simulated environments
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execution time: either the planner repeatedly failed to find solution grasps for
selected approach directions, or the human user could not interpret some of
the finger postures selected by the planner and had to attempt different grasps.
These cases represent a small minority of our tests and examples; however, the
tests were performed by well-trained users familiar with the inner workings of the
planning algorithm. As a next development step, we intend to test our system
in user studies with untrained subjects; the results will allow for a more precise
quantification of both the robustness and the efficiency of the system.

5 Conclusions

In this paper we have presented a novel method for human-robot interaction ap-
plied to dexterous grasping. The demand for such interfaces stems from the area
of hand neuroprosthetics, where a human user must interact with an artificial
limb using limited control methods. Our main contributions include:
- an on-line grasp planner that can find stable grasps of a target object fast
enough for interaction with a human user. This automated component has exclu-
sive control over the hand posture and continuously searches for solution grasps.
In order to achieve interactive rates, this search is separated into two processes:
the first one finds a small number of optimized pre-grasps in a hand posture
sub-space of highly reduced dimensionality, while the second one processes these
results and computes the quality of the final grasping positions.
- an interaction method that allows the user to provide input to the grasp plan-
ner, effectively guiding it towards grasping the intended area of the target. This
input simplifies the hand position and orientation components of the automated
planner, which only searches for good grasps in a small region around the ap-
proach direction desired by the user.
- a complete system that allows a human user to perform dexterous grasping
tasks with an artificial hand without having direct control over the posture of the
hand. We have tested this system in both real and simulated environments and
have presented results involving a number of different hand models and objects.

In future work, we intend to further explore the interplay between human and
automatic control for dexterous grasping. In the implementation presented here
we assume that the user has complete control over hand position, but none over
finger posture. However, our method has a native ability to adapt to changes to
these premises. As the automated planner searches a neighborhood around the
hand position given by the user, it can succeed in finding stable grasps even if
human position input is incomplete or unreliable (as in the case where the arm is
also under indirect neural control). We will also consider the case where limited
hand posture input is available from the user: since our search algorithm operates
in a low-dimensional subspace rather than on individual joint values, the final
hand posture can be significantly influenced using only one (or few) channels
of information. Furthermore, the user-specified posture does not need to match
the grasped object perfectly, as the planner will automatically refine it as much
as possible. We believe that this approach will prove a valuable component for
building robust, yet versatile and effective hand prostheses.
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