

Energid Actin™ Developer’s Guide
Version 2.0

Energid Technologies

124 Mount Auburn Street

Suite 200 North

Cambridge, MA 02138

www.energid.com

Copyright © 2008 Energid Technologies. All rights reserved.

 2

Energid Actin™ Toolkit
Version 2.0

Trademarks
Energid, Actin, Selectin, Actin Control, Actin Design, and Actin Validate are trademarks of Energid
Technologies. Linux is a trademark of Linus Torvalds. Windows, Visual Studio, and Visual C++ are
trademarks of Microsoft Corporation. SolidWorks is a trademark of SolidWorks Corporation. 3DS
Max is a trademark of Autodesk, Inc. Skype is a trademark of Skype Technologies S.A. All other
trademarks mentioned in this document are property of their respective owners.

Technical Support
Energid Technologies Corporation
124 Mount Auburn Street
Suite 200 North
Cambridge, MA 02138
Phone: (888) 547-4100
Fax: (888) 522-5689
http://www.energid.com
support@energid.com

Actin 2.0 libraries are compiled using Linux, Microsoft Visual C++ 2005, or Microsoft Visual C++
2008. For Microsoft Visual C++, they use the multithreaded DLL runtime library.

 3

Table of Contents
1 Actin™ Capabilities Overview ... 14

1.1 Extensible Markup Language (XML) ... 14
1.2 Mathematical and Geometrical Tools.. 14
1.3 Automatic Kinematic Control.. 15
1.4 Dynamic Simulation .. 15
1.5 Parametric Studies ... 16
1.6 Monte Carlo Studies .. 16
1.7 Rendering... 16
1.8 Machine Vision.. 16
1.9 Network Communications ... 16
1.10 Third-Party Integration .. 16

2 Quick Start .. 17
2.1 Loading a Stated System ... 17
2.2 Viewing a Stated System... 17
2.3 Defining a Velocity-Control System ... 18
2.4 Defining a Position-Control System.. 20
2.5 Placing an End Effector ... 20
2.6 Moving the End Effector along a Path .. 22
2.7 Creating a Simulation .. 23
2.8 Additional Capability .. 24
2.9 Building ... 24

2.9.1 General Setup .. 25
2.9.2 Compiler Setup.. 25
2.9.3 Linker Setup .. 25
2.9.4 Libraries .. 26

3 ActinViewer .. 29
3.1 File Options ... 30

3.1.1 Open .. 30
3.1.2 Merge .. 30
3.1.3 State... 31
3.1.4 Save Operations... 31

3.2 Mouse Interaction Modes .. 31

3.2.1 Eyepoint Mode ... 31

 4

3.2.2 Guide Mode ... 32

3.2.3 Center of Interest (COI) Mode ... 32
3.3 Information Overlays... 32

3.3.1 Bounding Volumes .. 33

3.3.2 Mass Property Ellipsoids ... 33

3.3.3 Show Frames .. 33
3.4 Running Simulation... 34
3.5 Controlling End-Effectors ... 35

3.5.1 Select Active End Effector .. 35
3.5.2 Edit and Add End Effectors... 37

3.6 Working with Path Files .. 38
3.6.1 Record a Path .. 38
3.6.2 Playback Mode.. 38
3.6.3 Save and Load Path File.. 39

3.7 Manipulator Configuration .. 39
3.7.1 Changing Joint Positions... 40
3.7.2 Changing End-Effector Positions.. 41
3.7.3 Changing the Fixed Link... 41

3.8 Data Capture .. 43
3.8.1 Saving Captured Information in Different File Formats ... 43
3.8.2 Displaying Captured Information in Interactive Plots... 47

3.9 Time Scaling.. 51
4 Guiding Software Principles ... 52

4.1 This Document .. 52
4.1.1 Overview ... 52
4.1.2 Component Representation ... 52

4.2 Source Code... 52
4.2.1 Name Space... 52
4.2.2 Classes... 52
4.2.3 Identifiers .. 52
4.2.4 Protection .. 53
4.2.5 Virtualness... 53
4.2.6 Constness... 53

 5

4.2.7 Pointers.. 53
4.2.8 Factory Methods.. 53
4.2.9 Multiple Inheritance .. 53
4.2.10 Units.. 53
4.2.11 Macros .. 54
4.2.12 Raster Data.. 54
4.2.13 Filenames .. 54
4.2.14 Extension Avoidance .. 54
4.2.15 Exception Handling .. 54
4.2.16 Friends .. 54

5 Fundamental Classes... 55
5.1 Data Structures .. 55

5.1.1 Vector .. 55
5.1.2 Tensor.. 55
5.1.3 List... 55
5.1.4 Map ... 55
5.1.5 Set.. 55
5.1.6 Tree ... 56

5.2 Basic Types.. 56
5.3 Basic Kinematics ... 56

5.3.1 Position.. 57
5.3.2 Orientation... 58
5.3.3 Coordinate System Transformation... 59
5.3.4 Rigid-Body Velocity ... 61

5.4 Basic Dynamics ... 62
5.4.1 Rigid-Body Acceleration... 62
5.4.2 Rigid-Body Force.. 64
5.4.3 Rigid Body Mass Properties.. 65

6 XML.. 68
6.1 Overview ... 68
6.2 XML Objects ... 68

6.2.1 Basic Types for Simple Data... 72
6.2.2 XML Object Containers for STL Containers .. 77
6.2.3 Compound XML Objects .. 85
6.2.4 Variable Compound XML Objects ... 90

 6

6.3 XML Reading and Writing XML Objects... 102
6.3.1 Top Level Interface for Reading and Writing ... 103
6.3.2 Direct Interface to the XML Reader and Writer ... 105

6.4 Schema... 110
6.4.1 XML Namespaces ... 110
6.4.2 Schema Auto-Generation .. 113

7 The Link.. 117
7.1 Coordinate Systems ... 118
7.2 Link Kinematics .. 118

7.2.1 General Kinematics ... 118
7.2.2 Denavit-Hartenberg... 119
7.2.3 General Joint Velocity and Acceleration... 120

7.3 Mass Properties.. 123
7.4 Physical Extent .. 123

7.4.1 Composable Tree Structure ... 123
7.4.2 Shape Primitives.. 124
7.4.3 Fundamental Geometrical Shapes ... 124
7.4.4 Primary Shapes.. 126

7.5 Surface Properties.. 137
7.6 Bounding Volumes .. 138
7.7 Actuators.. 139
7.8 Actuator Database Interface .. 140

7.8.1 Selecting Actuator Components.. 141
7.8.2 Managing Database ... 146

7.9 Spring and Damper Properties... 150
7.9.1 Approach ... 150
7.9.2 Implementation.. 151
7.9.3 Example... 151

7.10 Child Links .. 152
7.11 Methods for Calculating Link Data ... 153
7.12 Example Code.. 154

7.12.1 Creating a Sphere-Shaped Link .. 154
8 The Manipulator.. 159

8.1 Reference Frames .. 160
8.2 Methods for Calculating Manipulator Data ... 161

 7

8.3 Link and Manipulator References ... 162
8.4 Example Code.. 165

8.4.1 Creating a Bitmapped Base Link... 165
8.4.2 Creating a Mechanism with One Joint .. 167

9 The Stated System... 170
9.1 Description of EcStatedSystem ... 170

9.1.1 Description of EcManipulatorSystem ... 172
9.1.2 Description of EcManipulatorSystemState ... 174

9.2 Description of EcVisualizableStatedSystem ... 175
9.3 Example ... 176

10 Velocity Control... 181
10.1 Algorithmic Description .. 181

10.1.1 Core Algorithmic Framework... 181
10.1.2 Robust Extension .. 183
10.1.3 Reduced Control Calculation .. 184
10.1.4 End-Effector Error Filter... 185

10.2 Implementation.. 188
10.2.1 Velocity Control System... 188

10.3 Velocity Control Types ... 199
10.3.1 Singularity Avoidance .. 200
10.3.2 Torque Minimization .. 200
10.3.3 Collision Avoidance.. 201
10.3.4 Minimum Kinetic Energy Control .. 201
10.3.5 Minimum Potential Energy Control.. 201
10.3.6 Accuracy Optimization ... 201
10.3.7 Joint-Limit Avoidance .. 202
10.3.8 Strength Optimization... 202
10.3.9 Statistical Error Reduction.. 204
10.3.10 Table Function .. 206
10.3.11 Composable Table Functions.. 210

10.4 End-Effector Descriptions ... 213
10.5 External-Force Optimization through Momentum Constraint... 214

10.5.1 Organization.. 214
10.5.2 Derivation ... 215
10.5.3 Example .. 219

 8

10.6 Control System Parameter Provision... 219
10.6.1 Soft-Constraint End Effectors... 220

10.7 Example Code.. 222
10.7.1 Minimum Potential Energy Control for the PUMA.. 222

11 Position Control ... 227
11.1 Position Control System Container ... 227
11.2 Position Control System .. 227
11.3 Position Control System With Look-Forward Simulation .. 230

12 Dynamic Simulation .. 234
12.1 Force Response.. 234

12.1.1 Architecture... 234
12.1.2 Spring Displacement Model ... 235
12.1.3 Non-Conservative Forces.. 236

12.2 Articulated Dynamics .. 245
12.2.1 Composite Rigid-Body Inertia Simulation Algorithm.. 245
12.2.2 Articulated-Body Simulation Algorithm .. 250
12.2.3 Dynamics Example ... 252

12.3 Actuator Modeling... 253
12.3.1 Dry (Stick-Slip) Friction for Actuators... 253
12.3.2 Gear Backlash and Joint Elasticity.. 258
12.3.3 Power Conversion... 261

12.4 Feedforward-Feedback Joint Controller .. 264
12.4.1 Feedback Proportional-Plus-Derivative Feedback Controller 264
12.4.2 Feedforward Dynamics ... 264
12.4.3 The Complete Implementation.. 267
12.4.4 Integration of Dynamic Simulation with the Kinematic Control System 267

12.5 Numerical Integration.. 269
12.5.1 Implementation ... 269
12.5.2 Integration of Base Motion ... 271

13 Collision Avoidance and Reasoning .. 274
13.1 Collision Avoidance Algorithm... 274
13.2 Manipulator Self-Collision Avoidance.. 274

13.2.1 Example: Creating a Self-Collision Link Map ... 276
13.3 Manipulator-Manipulator Collision Avoidance... 278
13.4 Manipulator-Environment Collision Avoidance ... 278

 9

13.5 System Collision Exclusion... 278
13.6 Collision Avoidance as a Function of Material Type .. 281
13.7 Collision Response .. 282
13.8 Example: Creating a Collision Avoidance Control Node.. 282
13.9 Distance Queries.. 285

13.9.1 Task Space Bounding Volumes .. 288
13.9.2 Bounding Volume Hierarchy .. 290
13.9.3 Traversing the hierarchy ... 291
13.9.4 Example: Adding a Bounding Volume Hierarchy to a shape 292

13.10 Penetration Depth Calculation... 293
13.10.1 Sphere-Sphere ... 294
13.10.2 Capsule-Sphere ... 294
13.10.3 Capsule-Capsule ... 294
13.10.4 Box-Sphere ... 295
13.10.5 Box-Capsule.. 295
13.10.6 Lozenge-Sphere .. 295
13.10.7 Lozenge-Capsule... 295
13.10.8 Lozenge-Lozenge.. 296
13.10.9 Cylinder-Sphere .. 296
13.10.10 Cylinder-Capsule .. 298
13.10.11 Cylinder-Half Space ... 302
13.10.12 Cone-Sphere ... 303
13.10.13 Cone-Capsule.. 305
13.10.14 Cone-Half Space... 305
13.10.15 Implementations ... 306

13.11 Line Segment Intersection ... 307
13.11.1 Sphere ... 307
13.11.2 Cylinder .. 308
13.11.3 Capsule.. 310
13.11.4 Ellipsoid .. 310
13.11.5 Tetrahedron ... 311
13.11.6 Half Space... 313
13.11.7 Oriented Box... 314
13.11.8 Cone Frustum.. 316
13.11.9 Lozenge... 317

 10

13.11.10 Union .. 317
13.11.11 Intersection ... 318

14 Force Control and Grasping... 319
14.1 Force Control... 319

14.1.1 Design ... 319
14.1.2 Implementation ... 320

14.2 Grasping... 323
14.2.1 Interface .. 323
14.2.2 Decision Tree .. 325
14.2.3 Organization of Each Grasping Algorithm ... 326
14.2.4 Prototype Grasp Creation.. 327

15 Data Capture .. 328
15.1 Path Saving and Following.. 328

15.1.1 State Path .. 328
15.1.2 Guide Frame Path ... 331

15.2 Storage and Display of Simulation Data ... 332
15.2.1 Design of Data Capture... 332
15.2.2 Configuration Example ... 339

16 Studies.. 346
16.1 Parametric and Monte Carlo Studies ... 346

16.1.1 Design ... 346
16.1.2 Implementation ... 349

16.2 Simulation Visualization ... 353
16.3 Randomization and Monte Carlo Simulation .. 355

16.3.1 Randomization of System Properties.. 355
16.3.2 Randomization of State Variables... 356

16.4 Mass Properties Randomization .. 357
16.4.1 Background... 357
16.4.2 Mass .. 359
16.4.3 First Moment... 360
16.4.4 Second Moment .. 362
16.4.5 Validity of Randomized Mass Properties ... 364
16.4.6 Ellipsoid Volume .. 364
16.4.7 Ellipsoids from Mass Properties ... 367

16.5 Coding Examples... 368

 11

16.5.1 Parametric Study... 368
16.5.2 Monte Carlo Study.. 370

17 Rendering... 371
17.1 Overview ... 371
17.2 EcWindow: Base Rendering Window Class ... 372

17.2.1 EcWindow::Impl... 373
17.3 2D Rendering Windows .. 374

17.3.1 EcSimpleWindow ... 374
17.3.2 EcFBOWindow... 375

17.4 3D Rendering Windows .. 376
17.4.1 EcSGWindow ... 376
17.4.2 EcRenderWindow... 377

17.5 Qt-Based Classes ... 378
17.5.1 EcSGWidgetQt ... 378
17.5.2 EcCamera.. 378
17.5.3 EcBaseViewerMainWidget... 380
17.5.4 EcBaseViewerMainWindow... 380

17.6 User Input .. 381
17.6.1 EcSGBaseInputHandler .. 381
17.6.2 EcDefaultInputHandler ... 381

18 Plugin Interfaces .. 383
18.1 Control Plugins .. 383
18.2 Interface Plugins .. 385

18.2.1 EcPlugin.. 385
18.2.2 EcPluginManager.. 386
18.2.3 Viewer Plugins.. 386

19 Filters ... 387
19.1 Filter Enumeration... 389
19.2 Filter Arguments Class .. 389
19.3 Filters Class ... 390
19.4 Filter Stream Class... 391
19.5 Filter Inheritance.. 393
19.6 TEA Data Encryption Filter Details .. 393
19.7 Base 64 Encoding Filter Details .. 396

20 Network Operation... 397

 12

20.1 Low-level Sockets ... 398
20.1.1 Hierarchy .. 398
20.1.2 Base Socket Class ... 398
20.1.3 Tcp Socket .. 400
20.1.4 Udp Socket.. 402

20.2 Mid-Level Classes ... 403
20.2.1 Hierarchy .. 404
20.2.2 Protocols ... 404
20.2.3 Transports ... 409

20.3 CommFactory Utility Class ... 414
20.4 Complete Examples ... 415

20.4.1 Viewer... 415
20.4.2 Tcp Client and Server with base64 encoding and bzip compression...................... 416
20.4.3 Low-level UDP Example .. 419

21 Models and Other Format Loading.. 422
21.1 Overview of Converters... 422

21.1.1 Point Polygon Format ... 423
21.2 Description for Adding New Converters ... 424
21.3 SolidWorks Plugin Converter.. 424

21.3.1 Model Setup.. 425
Mass Properties ... 432

22 Analysis Tools ... 436
22.1 Using Simulink to Drive Actin with Desired End Effector Positions 436

23 Boost .. 447
1.1 What is Boost... 447
1.2 Why use Boost... 448
1.3 Overview of Boost libraries... 448

1.3.1 Boost.Assign ... 448
1.3.2 Boost.Conversion .. 449
1.3.3 Boost.Filesystem ... 449
1.3.4 Boost.Foreach.. 450
1.3.5 Boost.Format ... 450
1.3.6 Boost.Iostreams ... 450
1.3.7 Boost.Numeric... 451
1.3.8 Boost.Program_Options .. 452

 13

1.3.9 Boost.Regex .. 454
1.3.10 Boost.Signals .. 455
1.3.11 Boost.Smart_Ptr .. 456
1.3.12 Boost.Thread... 457

24 Bibliography .. 462

 14

1 Actin™ Capabilities Overview
You are probably reading this because you want to control, design, or validate a robotic mechanism.
There are tasks you want to accomplish, and you would like programming tools to support you. This
is what the Energid Actin™ toolkit provides. Actin™ is an intuitive C++ software toolkit for
manipulator control and simulation. Actin has three components that work together to meet your
needs. Actin Control™, Actin Design™, and Actin Validate™. It allows you to control, design, and
validate complex robotic mechanisms.

Actin Control’s primary purpose is to calculate joint positions and rates that set robotic end effectors
where you want them. It provides tools for geometric reasoning. It supports cooperation of multiple
robotic manipulators. And it provides ways to capture and reason with camera imagery. It supports
three-dimensional rendering and can be used for network TCP/IP communications that provide
control.

Actin Design’s primary purpose is enable desiners with only initial ideas to bring them to practical
reality as quickly as possible. Actin Design provides a library of actuators and other robotic
components that can be used to quickly construct models for testing using Actin’s control systems.
It includes a plugin to other design tools, such as SolidWorks, that enable fast testing integrated with
designers’ favorite tools. Actin Design supports quick kinematic and dynamic tests to be combined
with outmated control system construction.

Actin Validate’s purpose is to assess the performance of complete robot designs for application to
particular tasks. It can be used to kinematically and dynamically simulate physical environments. It
also supports Monte Carlo simulation and Parameter Optimization analysis. Included are high-
fidelity articulated dynamics and impact dynamics.

This section gives an overview of the capabilities in all of these packages. Specific capabilities to
each version of Actin are provided in the package-specific documentation. Each package of Actin™
includes a set of libraries and header files that can be used with your C++ project to easily add
manipulator-control and simulation capability. These toolkit components can be integrated into your
existing code or used to build a new program. Both Linux and Windows are supported.

1.1 Extensible Markup Language (XML)
Components are configurable using XML, and you can easily connect your code with components
from the Actin toolkit to build XML-configurable C++ objects. In addition to reading and writing
themselves in XML, all XML-configurable objects can write their own validating schemas. So if
you use the Actin™ toolkit to build your system, you will also be designing an XML language that
can be used with other commercial software products.

1.2 Mathematical and Geometrical Tools
The Actin™ toolkit includes a number of tools for easy and efficient mathematical and geometric
calculation. These include three-dimensional vector math and matrix routines. Conversion utilities
for three-dimensional quantities are included. Orientations can be set from quaternions, Euler
angles, Rodrigues parameters, angle-axis, direction cosine matrices, and so forth. These are all
optimized for performance. With the Actin™ toolkit, you do not have to re-implement these basic
functions.

 15

1.3 Automatic Kinematic Control
Actin™ calculates the joint rates or positions to give desired hand velocities or positions. All is done
automatically, based only on the manipulator model description. This is the strength of the Actin™
toolkit—the ability to control almost any robotic manipulator using just its kinematic description.
Manipulators with any number of links, any number of bifurcations (branches), nonstandard joint
types, and nonstandard end-effector types are supported.

1.4 Dynamic Simulation
Actin™ provides dynamic simulation capability. This includes full and accurate Newton-Euler rigid
body dynamics on all articulated links and impact dynamics between obstacles. Dynamics are
calculated for nontraditional joint types, as well. Both the Composite Rigid Body Inertia (CRBI)
algorithm and the Articulated Body Inertia (ARBI) algorithm are implemented. The CRBI algorithm
is an Order(n3) method, which is efficient for mechanisms with few—less than 15 or so—degrees of
freedom (DOF), while the ARBI algorithm is an Order(n) method, efficient for high-DOF
mechanisms.

Figure 1-1: Dyanmic simulation of a humanoid robot. This robot model is provided courtesy of
Vecna Robotics.

 16

1.5 Parametric Studies
Actin provides capability for parametric and Monte Carlo studies. A parametric takes discrete steps
through changes in initial state or system parameters and tabulate simulation results. The design of
the parametric study includes 1) representation changes to the initial state and system, and 2) a
representation of the results of the simulation runs. A parametric study will allow the user to easily
change in fixed increments initial configurations, control parameters, surface properties, weights,
lengths, end effectors, motor torques, and actuator effectiveness, and tabulate the results of those
changes. Results include measures of sensor saturation, visibility, speed, mobility, balance, end-
effector placement, and manipulation.

1.6 Monte Carlo Studies
A Monte Carlo study is performed by selecting random initial values for the system and state
parameters. In addition, noise is input to sensor and actuator models. The noise models for the
sensors and actuators is built into the classes that define them. The initial conditions for the system
state are selected based on a set of probability density functions, as are the selected values for a time
sequence of desired end-effector positions. In Actin, Monte Carlo studies can be used to perform
parameter-optimization analysis to determine the best design values.

1.7 Rendering
Actin™ provides cross-platform rendering and visualization capability. Any manipulator can be
viewed through an easy-to-use interface that pops up a window with an animation. Any number of
manipulators can be shown in the visualization. The specular properties of polygons can be set,
polygons can be bit mapped, and any number of lights can be configured. These tools provide
capability for intuitive debugging and for creating human-machine interfaces for remote supervision
and teleoperation.

1.8 Machine Vision
Actin™ includes methods for capturing images with a USB camera, firewire camera, or frame
grabber. It also includes algorithms for analyzing captured images and using the results as
information to feed back to the controller. The toolkit includes camera calibration algorithms that
allow for the automatic calculation of camera parameters, such as focal length and
position/orientation. These tools provide capability for making vision-based robotic control systems.

1.9 Network Communications
The toolkit includes C++ classes for network communications. Sockets are implemented both for
TCP/IP and UDP/IP communications. A networking stream class is implemented to allow the
transmission of XML data from one network location to another. This allows front-end and back-
end components to be implemented on different computers for remote supervision and teleoperation.

1.10 Third-Party Integration
Actin supports integration with a variety of third-party software. It includes plug-in support for
SolidWorks, integration with Matlab Simulink, integration with Skype, and the ability to load
formats from 3D Studio Max and VRML.

 17

2 Quick Start
If you would like to just start quickly and cover the details later, this section is for you. Example
code will be presented for creating, writing, and reading a position control system for a Robotics
Research Corporation RRC K-1207i manipulator.

2.1 Loading a Stated System
An example manipulator system, the RRC K-1207i, is defined in an example file that is distributed
with the Actin™ software. This file, “rrcK1207i_system.xml,” contains the description of an object
of the class EcStatedSystem. To load this file, the C++ code in Text Box 2-1 can be used.

Text Box 2-1: Example code for loading a manipulator description. This is Example Section #1 in
the quick-start example code.

2.2 Viewing a Stated System
To see what this manipulator looks like, you can load the file “rrcK1207i_system.xml” using the
viewer that is provided with the toolkit. To enable viewing in your own code, you can use the class
EcRenderWindow, as shown in Text Box 2-2 below

 // declare an error return code
 EcBoolean success;

 // add the file location to the search path
 EcFileUtil::addDirectory(EcFileUtil::getDataDirectory() +
 EcString("/actinExamples"));

 // declare a filename
 EcString filename="rrcK1207i_system.xml";

 // declare a visualizable stated system object
 EcVisualizableStatedSystem visStatedSystem;

 // load the stated system from an XML file
 success = visStatedSystem.readFromFile(filename);

 // make sure it loaded properly
 if(!success)
 {
 EcWARN("Could not load stated system.\n");
 return;
 }

 18

Text Box 2-2: Example code for visualizing the manipulator. This continues from the code shown
in Text Box 2-1. It is Example Section #2 in the quick-start example code.

2.3 Defining a Velocity-Control System
The next task is to define a velocity control system. This is done using the code shown in Text Box
 2-3. In this set of code, first a convenient reference is set for the manipulator. Then the link at the
end of the kinematic chain starting with the manipulator is looked up. This is used to construct a
frame end effector that is rigidly attached to this last link.

A velocity-control expression is constructed. An EcControlExpressionCore object is chosen to
perform the inverse kinematics calculation. This object requires three child members: a matrix, a
vector, and a scalar. The matrix is used to measure the joint rates, and the vector is used to
determine desired change in joint values. The scalar parameter makes a tradeoff between the joint-
rate measure and the joint value measure. In this case, the mass matrix is used to weight the joint
rates and joint-limit avoidance is used to determine desired joint positions.

To this core velocity control algorithm, a joint-rate filter and an end-effector error filter are added.
These prevent the joint rates and hand-motion error from exceeding specified bounds. Any number
of filters can be chained together as shown to build a general control expression. The control
expression and the end-effector definition are then added to the individual velocity control
description. Since in this case there is only one manipulator being controlled, the velocity control
system only has one description.

 // instantiate a renderer
 EcRenderWindow renderer;

 // set the size of the window
 renderer.setWindowSize(256,256);

 // set the system
 if(!renderer.setVisualizableStatedSystem(visStatedSystem))
 {
 return;
 }

 // view the system
 renderer.renderScene();

 // pause one second
 EcSLEEPMS(1000);

 19

 // make a convenient reference to the manipulator
 const EcIndividualManipulator& manipulator =
 visStatedSystem.statedSystem().system().manipulators()[0];

 // look up the last link
 EcManipulatorLinkConstPointerVector linkPointerVector;
 manipulator.collectLeafLinks(linkPointerVector);

 // make a frame end effector
 EcFrameEndEffector frameEnd;

 // put the end effector into an end-effector set
 frameEnd.setLinkIdentifier(
 EcXmlString(linkPointerVector[0]->label()));
 frameEnd.setFrame(EcCoordinateSystemTransformation());
 EcEndEffectorSet eeSet;
 eeSet.addEndEffector(frameEnd);

 // create a velocity-control core
 EcControlExpressionCore expCore;

 // set the matrix, vector, and scalar for the core
 expCore.setMatrixElement(EcControlExpressionMassMatrix());
 expCore.setVectorElement(EcControlExpressionJointLimitAvoidance());
 expCore.setScalarElement(
 EcExpressionScalarConstant::objectWithValue(-1.0));

 // add a joint-rate filter
 EcControlExpressionJointRateFilter rateFilter;
 EcExpressionGeneralColumn jointWeights;
 jointWeights.assign(manipulator.jointDof(),0.1);
 rateFilter.setWeightsElement(jointWeights);
 rateFilter.setUnfilteredRatesElement(expCore);

 // add an end-effector error filter
 EcControlExpressionEndEffectorErrorFilter eFilter;
 EcExpressionGeneralColumn handWeights;
 handWeights.assign(6,1.0);
 eFilter.setWeightsElement(handWeights);
 eFilter.setUnfilteredRatesElement(rateFilter);
 eFilter.setStopsAtLimits(EcTrue);

 // put the system in a container and add it to the velocity control
 // description
 EcControlExpressionContainer container;
 container.setTopElement(eFilter);

 20

Text Box 2-3: Example code for building a velocity control system. This continues from the code
shown in Text Box 2-2 and is Example Section #3 in the quick-start example code.

2.4 Defining a Position-Control System
The velocity control system can now be added to a position control system. This is done using the
code shown in Text Box 2-4. In this set of code, the velocity control system is set, the time step is
set, and the maximum number of iterations per cycle is set (this is only used if the CPU is not able to
run in real time). Then the two-pass flag is set. This generally should be used, as it protects the
manipulator from inappropriate behavior at singularities.

Text Box 2-4: Example code for building a position control system. This continues from the code
shown in Text Box 2-3 and is Example Section #4 in the quick-start example code.

2.5 Placing an End Effector
The position control system can now be used to place an end effector. This is done using the code
shown in Text Box 2-5. First the current pose of the end effector is calculated. This is offset in
position while keeping the same orientation. This new hand pose is then set as the desired hand
pose, and the position control system is polled for a new manipulator configuration every 20
milliseconds. The configurations are those calculated by the position control system to take the end
effector to the desired location. Each of these configurations is rendered, and at the end,
convergence to the desired pose is verified.

 // add the expression and end effector to a velocity control
 // description
 EcIndividualVelocityControlDescription indVelContDesc;
 indVelContDesc.setControlExpression(container);
 indVelContDesc.setEndEffectorSet(eeSet);

 // add the velocity control description to a velocity control
 // system
 EcVelocityControlSystem velContSys;
 velContSys.addControlDescription(indVelContDesc);

 // a variable holding the position control system
 EcPositionControlSystem posContSys;

 // set the velocity control system
 posContSys.setVelocityControlSystem(velContSys);

 // set the time step
 posContSys.setTimeStep(0.012);

 // set the maximum number of iterations
 posContSys.setMaxIterations(16);

 // set the use-two-passes flag
 posContSys.setUseTwoPasses(EcTrue);

 // set the stated system
 posContSys.setStatedSystem(&visStatedSystem.statedSystem());

 21

Text Box 2-5: Example code for placing an end effector. This continues from the code shown in
Text Box 2-4 and is Example Section #5 in the quick-start example code.

 // get the current offset in system coordinates
 EcCoordinateSystemTransformation
 initialPose=posContSys.actualPlacement(0,0);

 // set the desired position to be offset from the current position
 // by 0.5 m along the x-axis and 1.2 m along the z-axis
 EcCoordinateSystemTransformation finalPose = initialPose;
 finalPose.outboardTransformBy(EcVector(-0.5,0.0,-1.2));
 posContSys.setDesiredPlacement(0,0,finalPose);

 // a state to update and render, and an object to hold the
 // final pose
 EcManipulatorSystemState dynamicState;
 EcCoordinateSystemTransformation calculatedFinalPose;

 // set the system
 if(!renderer.setVisualizableStatedSystem(visStatedSystem))
 {
 return;
 }

 // execution parameters
 EcU32 steps=100;
 EcReal simRunTime = 2.0;
 EcReal simTimeStep = simRunTime/steps;

 // move to the desired pose, and render every timestep
 for(ii=0;ii<steps;++ii)
 {
 // get the current time
 EcReal currentTime=simTimeStep*ii;

 // calculate the state at current time
 posContSys.calculateState(currentTime,dynamicState);

 // show the manipulator in this position
 renderer.setState(dynamicState);
 renderer.renderScene();
 EcSLEEPMS(static_cast<EcU32>(1000*simTimeStep));
 }

 // check for accuracy
 calculatedFinalPose = posContSys.actualPlacementVector()[0].
 offsetTransformations()[0];
 if(!calculatedFinalPose.approxEq(finalPose,1e-5))
 {
 EcWARN("Did not converge.\n");
 return;
 }

 22

2.6 Moving the End Effector along a Path
The code shown in Text Box 2-6 uses the position control system to trace a path with the end
effector. It sets a new, but fixed, orientation and a new, changing, position each time step. The
orientation is about 180 degrees away from the starting orientation, and the position is a point along
a circle with a 0.2 m radius. The end effector makes three loops around the circle. An image of
what you should see when running this code is given in Figure 2-1.

Text Box 2-6: Example code for tracing a path with the end effector. This continues from the code
shown in Text Box 2-5 and is Example Section #6 in the quick-start example code.

 // execution parameters
 steps=400;
 simRunTime = 10.0;
 simTimeStep = simRunTime/steps;
 EcReal radius=0.2;
 EcU32 loops=3;
 EcOrientation orient(0,0,0,1);
 EcReal startingTime=posContSys.time();

 // move to the desired pose, and render the position every
 // time step
 for(ii=0;ii<steps;++ii)
 {
 // get the current time
 EcReal currentTime=simTimeStep*ii;

 // set the pose
 EcCoordinateSystemTransformation pose;
 pose.setOrientation(orient);
 EcReal angle=Ec2Pi*loops*currentTime/simRunTime;
 EcVector offset=radius*EcVector(cos(angle),sin(angle),0);
 pose.setTranslation(finalPose.translation()+offset);
 posContSys.setDesiredPlacement(0,0,pose);

 // calculate the state at current time
 posContSys.calculateState(
 currentTime+startingTime,dynamicState);

 // show the manipulator in this position
 renderer.setState(dynamicState);
 renderer.renderScene();
 EcSLEEPMS(static_cast<EcU32>(1000*simTimeStep));

 }

 23

Figure 2-1: An image of the RRC K-1207i tracing the circle when the example code in Text Box
 2-6 is run. When the example code executes, a window pops up showing this image.

2.7 Creating a Simulation
A simulation can be created using the position control system. This is shown in the code in Text
Box 2-7. A simulation animates and—optionally—dynamically simulations the manipulator. A
simulation can be saved as XML in plain or compressed format. Both forms are saved in the
example code below. Either form can be loaded by the ActinViewer that is provided with the toolkit
and used for interactive manipulation. A screen capture of the ActinViewer showing an interactive
session started by loading “quickStartSimulation.xml.gz” is given in Figure 2-2.

Text Box 2-7 Example code for saving the system as a simulation. A simulation can be loaded and
interactively controlled using the ActinViewer. This continues from the code shown in Text Box
 2-6, and is Example Section #7 in the quick-start example code.

 // a variable holding the simulation
 EcSystemSimulation simulation;

 // reset time to zero and add the position control system and
 // visualization parameters
 posContSys.setTime(0.0);
 simulation.setFromPositionControlSystem(posContSys,
 visStatedSystem.visualizationParameters());

 // save the simulation as a plain XML file
 simulation.writeToFile("quickStartSimulation.xml");

 // save the simulation as a compressed XML file
 simulation.writeToFile("quickStartSimulation.xml.gz");

 24

Figure 2-2: The ActinViewer can be used to load the simulation files created with Text Box 2-7.
With the viewer, you can interactively place the end effector (by moving and rotating the red-green-
blue frame shown), and the control system will automatically place the joints. This can be done with
or without dynamic simulation. You can also change the view parameters, and save and replay
paths.

2.8 Additional Capability
This quick-start example showed how to assign a control system to a manipulator. Only one
manipulator was used with one end effector and one type of control system. The manipulator itself,
which was a simple linear chain, was not defined, but rather loaded from a file. Dynamic simulation
was not used. Network communication was not used, nor was visual feedback. The sections to
follow describe these and the many other capabilities present in the Actin™ toolkit.

2.9 Building
To build a new application, the general process requires setting up the compiler options,
setting up the linker options, and linking in the appropriate libraries.

 25

2.9.1 General Setup

The build instructions require that the environment variable named EC_TOOLKITS be
specified. This variable should point to the location of the toolkits directory of the Actin
install. If an Actin installer CD was used to install Actin, then the environment variable
should already be defined.

2.9.2 Compiler Setup
To compile the application source files, the compiler's include path must be defined, and
several flags must be specified.

2.9.2.1 Include Path
The include path must point to the Actin headers. If the EC_TOOLKITS environment
variable is defined, then the include path can simply be set to “${EC_TOOLKITS}\include”
in the project settings.

2.9.2.2 Flags
There are six compiler flags that must be added to the project settings. A list of these flags
follows:

 /DBOOST_ALL_NO_LIB

 /DNOMINMAX

 /D_CRT_SECURE_NO_DEPRECATE

 /D_SCL_SECURE_NO_WARNINGS

 /DWIN32_LEAN_AND_MEAN

 /D_WIN32_WINNT

Both /D_CRT_SECURE_NO_DEPRECATE and /D_SCL_SECURE_NO_WARNINGS are
not strictly required for compilation; however, they remove warnings that can safely be
ignored. Of all of the flags, only /D_WIN32_WINNT requires a value. It should be set to
0x501 if building on Windows XP, and it should be set to 0x600 if building on Windows
Vista.

2.9.3 Linker Setup
In order to link the application binary files, the linker's library path must be defined.
Additionally, a linker flag is required.

2.9.3.1 Library Path
The library path must point to the Actin libraries and their dependencies. If the
EC_TOOLKITS environment variable is defined, then the library path can simply be set to
“${EC_TOOLKITS}\lib” in the project settings.

 26

2.9.3.2 Flags

In order to prevent linker errors, the flag /NODEFAULTLIB:MSVCRT must be specified in
the project settings.

2.9.4 Libraries
It is important to determine which libraries need to be linked into the application. Although
it is possible to determine the dependency libraries by trial-and-error, this section should
help reduce the guess work.

2.9.4.1 Library Descriptions
The following table provides a short description for all of the libraries bundled with Actin.

Library Name Source Description
cluster Energid Library for modeling cluster
control Energid Library of controlling manipulators
convertSimulation Energid Library for converting different 3D model formats into a

simulation
convertSystem Energid Library for converting different 3D model formats into a

system
date_time Boost Library for easily working with dates and times
dynamicSystems Energid Library for modeling dynamic systems
excelXml Energid Library for working with Excel worksheets
filesystem Boost Library for working with file paths
filterStream Energid Library of filtered streams
foundCore Energid Library containing highly-reusable foundational

components
function Energid Library containing utility functors
geometry Energid Library for composing complex 3D geometries
grasping Energid Library for modeling grasping algorithms
hardwareInterface Energid Library for working with serial connections
imageSensor Energid Library for modeling image sensors
inputDevice Energid Library for modeling input devices
interface Energid Library of simulation interfaces
iostreams Boost Library for creating filtered streams
manipulator Energid Library for modeling robotic manipulators
matrixUtilities Energid Library for working with matrices

 27

measure Energid Library for measuring manipulators
program_options Boost Library for creating command line interfaces
regex Boost Library for native C++ regular expressions
serial Energid Library for working with serial connections
serialization Boost Library for easily serializing objects to/from streams
signals Boost Library for creating callbacks though signals and slots
simulation Energid Library for creating dynamic simulations
simulationAnalysis Energid Library for analyzing simulation results
simulationStudy Energid Library for creating simulation studies
socket Energid Library of higher-level socket classes
stream Energid Library of higher-level stream classes
thread Boost Library for creating multi threaded applications
transport Energid Library for transporting objects through a Skype

connection
unitTestFramework Boost Library for unit testing software
visualization Energid Library of classes related to 3D visualization
vrml97 Energid Library for working with Vrml97 3D file formats
walking Energid Library for modeling walking robots
xml Energid Library for marshaling objects to/from xml

Table 2-1: The libraries bundled with Actin.

2.9.4.2 Naming Convention
All of the Actin libraries contain debug and release variants. It is important that debug
libraries are linked to debug applications and release libraries are linked to release
applications. It is easy to distinguish the debug and release libraries, as the debug libraries
have a “d” appended to the library name. For instance, the release version of the foundCore
library is foundCore.lib, and the debug version of the library is foundCored.lib.

2.9.4.3 Dependency Chain
When linking in a library, it is necessary to also link in dependency libraries. The following
table shows the dependency chain.

Library Name Dependencies
cluster xml
control measure simulation walking

 28

convertSimulation convertSystem simulation
convertSystem manipulator vrml97
date_time NONE
dynamicSystems matrixUtilities
excelXml xml
filesystem NONE
filterStream iostreams foundCore
foundCore thread
function matrixUtilities
geometry manipulator visualization matrixUtilities
grasping control
hardwareInterface xml
imageSensor manipulator
inputDevice manipulator
interface control
iostreams NONE
manipulator convertSystem function geometry imageSensor
matrixUtilities xml
measure control manipulator
program_options NONE
regex NONE
serial foundCore
serialization NONE
signals NONE
simulation control convertSimulation grasping simulationAnalysis

simulationStudy
simulationAnalysis simulation
simulationStudy manipulator signals
socket foundCore
stream socket
thread NONE
transport regex signals foundCore filterStream socket
unitTestFramework NONE

 29

visualization geometry
vrml97 foundCore
walking control
xml stream filterStream

Table 2-2: Library dependencies.

From recursive application of the table, an application that depends on the stream library will also
need socket, foundCore, and thread.

3 ActinViewer
Energid’s ActinViewer serves as both a useful tool and an introduction to the Actin toolkit, as it is
built using the toolkit and all the capabilities of ActinViewer are available through the toolkit.
ActinViewer is a visualization tool for running simulations. ActinViewer can be used to both
simulate motion of robots and to directly control physical robots if properly set up. This chapter is
intended to be a complete guide for AcinViewer. ActinViewer is built on top of the Actin toolkit. For
a graphical interface, it uses Qt so it is cross-platform and has been tested to run on Windows XP,
Windows Vista, and many variants of Linux. Figure 3-1 shows ActinViewer in action with a system
of two 12-DOF manipulators.

Figure 3-1: The system with two manipulators used to demonstrate ActinViewer features.

 30

3.1 File Options
The following options are related to file operations.

3.1.1 Open
To open an Actin model file, select Open from the File menu or press Ctrl+O. This will bring up a
File Open dialog. You can also open another file format and ActinViewer will convert that file into
an Actin file format. The list of supported file formats is given in the table below.

Supported format File extensions

Energid
Xml
3DS
ASE
CFG
DTED
SDTED
S3DS
SASE
Tecplot
VRML97
OpenSceneGraph
OpenFlight
VEC

*.ecx; *.ecz
*.xml; *.xml.gz
*.3ds
*.ase
*.cfg
*.dted
*.sdted
*.s3ds
*.sase
*.stec
*.wrl
*.osg; *.ive; *.zip
*.flt
*.vec

Figure 3-2: File formats supported by ActinViewer.

Another way to open a file is to drag a file from Windows Explorer (or equivalent program under
Linux) and drop it inside ActinViewer. The drag-and-drop mechanism only allows supported file
formats (determined by the file extension) to be dropped and opened in ActinViewer.

3.1.2 Merge
The merge operation allows another Actin model to merge with the currently open model. This
allows you to combine two or more Actin models together to create a new model. With an open
model, simply select Merge from the File menu or press Ctrl+M. This will bring up a File Open
dialog so you can select the file to merge. An example of the merge operation of two Actin models is
illustrated in the figure below.

+

 31

Figure 3-3: Merge operation with two Actin models.

3.1.3 State
There are two options for state actions. The first option is “Load State …” This will bring up a dialog
that allows the user to load a state saved in a file into the simulation. This will cause all the
manipulators in the system to move to the loaded state. The second option is “Save State …” This
allows the user to save the current state of the system so that it can be loaded later.

3.1.4 Save Operations
Save (Ctrl+S)

This option saves the currently open Actin model into the same file. If the model is not an Actin
model, then it will bring up a dialog to let the user save the model as an Actin model in a new file.

Save Image As

Save a snapshot of the current view of ActinViewer. Currently .tif is the only supported image
format.

Save Depth Buffer As

Save a snapshot of the depth buffer of the current view of ActinViewer. Currently .tif is the only
supported image format.

3.2 Mouse Interaction Modes
Mouse interaction is an important part of ActinViewer. ActinViewer can be placed into one of three
different mouse interaction modes, Eyepoint, Guide, or Center of Interest (COI).

3.2.1 Eyepoint Mode
The default mode is Eyepoint. This allows you to move your point of view around the object.
Pressing the left mouse button and dragging changes the rotation about the center of interest. Using
one of the following combinations will increase or decrease the eyepoint distance from the center of
interest – scroll wheel, middle mouse button while dragging up/down, or left+right mouse buttons
while dragging up/down.

While in this mode, you may temporarily switch to either guide or COI mode by pressing and
holding down the Shift or Ctrl key respectively.

Note - The eyepoint is always looking and rotating about the center of interest.

=

 32

3.2.2 Guide Mode
Guide mode places a set of red, green, and blue unit axes into the scene to denote X, Y and Z
respectively. This is used to ‘guide’ a selected end-effector to a desired position and orientation
within the scene.

On first press, the Select End-Effector dialog box will be displayed to select an end-effector (EE).
More detail on the Select End-Effector dialog can be found in the next section when we discuss
controlling end-effectors. The currently selected EE will be used when in guide mode. To select a
different EE, use the pull-down menu just to the right of the guide button icon.

This mode lets you translate (left mouse button) and rotate (right mouse button) as well as zoom in
and out (scroll wheel / middle mouse button).

Pressing the Shift key will momentarily place you in Eyepoint mode.

Note – if you are using a point end-effector, then rotating the guide frame will have no effect on EE
placement. In addition, end-effector movement only occurs while the simulation is running. Press
the Play button on the Simulation toolbar to start or continue the simulation.

3.2.3 Center of Interest (COI) Mode
Sometimes it is desirable to focus on one particular area over another. Moving the COI allows one
to more easily manipulate the eyepoint around this location. The COI is denoted by a reddish-orange
sphere within the scene. The left mouse button will translate the COI along the X and Y axes, while
the middle mouse wheel / button will translate along the Z axis.

Pressing the Shift key while in this mode will temporarily place you in Eyepoint mode.

3.3 Information Overlays
In ActinViewer, you can display some information visually by overlaying it on to the robots in the
system. In this section, a model of the 7-DOF Mitsubishi PA-10 manipulator will be used for
illustration purposes.

Figure 3-4: PA-10 manipulator with no overlay.

 33

3.3.1 Bounding Volumes
Pressing the Bounding Volumes button on the toolbar shows the bounding volumes of all links of all
manipulators in the system. Bounding volumes are displayed in a transparent green color. Bounding
volumes can be of any shape but the most common is the capsule. Bounding volumes are used in
collision reasoning to speed up distance calculations.

Figure 3-5: PA-10 manipulator with bounding volumes.

3.3.2 Mass Property Ellipsoids
Pressing the Mass Property Ellipsoids button will overlay the mass property ellipsoids onto the links
of manipulators. This is a great visualization tool to help verify whether the mass properties (inertia
matrices) are reasonable.

Figure 3-6: PA-10 manipulator with mass property ellipsoids.

3.3.3 Show Frames
Sometimes it is very insightful to be able to see all the frames (primary and D-H) of the robot.
Clicking on the Show Frames button will show all those frames as well as the world coordinate
frame. The world coordinate frame is typically designated by the frame with the longest axes. For all

 34

frames, the red, green, and blue axes represent the X, Y, and Z axes, respectively. The primary frame
and the D-H frame of a link can occasionally coincide so they will appear as one frame. This is the
case for all links of the PA-10 manipulator as shown below.

Figure 3-7: PA-10 manipulator with primary and D-H frames.

Naturally, these information overlays can be turned on/off independent of one anther and therefore
can be combined as shown in Figure 3-8

Figure 3-8: PA-10 manipulator with all information overlays.

3.4 Running Simulation
A key purpose of ActinViewer is to let the user run robot simulations, either dynamic or kinematic.

To start a simulation, the user simply presses the play button. The simulation will keep running.
At this point, the user can select an active end-effector and control it using the mouse. This process is

detailed in Section 3.5. The pause button allows the user to pause the simulation. To resume the

simulation, simply press the play button again. To stop and reset the simulation, press the stop

 button. This will bring the simulation back to the initial state.

 35

3.5 Controlling End-Effectors
Using ActinViewer, it is possible to use the mouse to command one end-effector at a time to go to an
arbitrary position and orientation in space as long as it’s within the arm’s workspace. The Guide
Frame is what ActinViewer uses to specify the desired position of an end-effector The figure below
shows a Guide Frame (with red, green, and blue axes, which correspond to the X, Y, and Z axes,
respectively).

Figure 3-9: The Guide Frame is shown with the red, green, blue axes.

3.5.1 Select Active End Effector

Before you can move the Guide Frame, you need to first enter the Guide mode by pressing .
The first time you enter the Guide mode, the Select End Effector dialog will show up. In this dialog,
you can select which end-effector to be active (i.e. which one you want to follow the Guide Frame)
by choosing from the End Effectors drop-down box. In addition, you can edit or remove any existing
end-effector or add a new one.

 36

Figure 3-10: Select End Effector dialog.

Once OK is selected and if the simulation is running (see Section 3.4 on how to run simulations),
you should be able to move the Guide Frame within ActinViewer by dragging with either the left or
right mouse buttons depressed. Holding down the left mouse button will allow you to change the
position of the Guide Frame and the right mouse button allows you to rotate the Guide Frame. Using
one of the following combinations will move the Guide Frame in and out of ActinViewer – scroll
wheel, middle mouse button while dragging up/down, or left+right mouse buttons while dragging
up/down.

If ActinViewer is already in the Guide mode (the Guide mode button is already depressed like this

) or if an active end-effector has previously been selected, you can get to the Select End

Effector dialog by pressing the down-arrow button on the right of the Guide mode button.

This will drop down the menu item. Select it to bring up the Select End
Effector dialog.

Another, perhaps more convenient, way to select the active end-effector is to use the mouse picking
process. Move the mouse so the cursor hovers above the link whose end-effector you would like to
control. Then, right-clicking on it will bring up one of the two context menus shown in Figure 3-11,
depending on whether there is an existing end-effector attached to the selected link.

(a)

(b)

Figure 3-11: End Effector context menu for (a) link with existing end-effector or (b) link without
end-effector.

 37

If there is already an end-effector attached to the selected link, the context menu in Figure 3-11(a)
will show up and let you either set it as the active one, edit it, or remove it. If there is no end-effector
for that link, then you have an option to add one to that link.

3.5.2 Edit and Add End Effectors

By pressing the edit button in the Select End Effector dialog (Figure 3-10) or selecting
Edit End Effector from the context menu in Figure 3-11(a), you can edit the properties of the
selected end-effector. This will bring up the Edit End Effector dialog shown in Figure 3-12.
Depending on the type of end-effector selected, the end-effector will either move to a specific
position in space (with a point end-effector) or position and orientation (with a frame end-effector).
The type of end-effector can be selected with the drop-down list below under the Edit End-Effector.

Figure 3-12: Edit End Effector dialog.

There are two ways to add an end-effector to a link. The first method is to use the add
button in the Select End Effector dialog (Figure 3-10). You will need to select which link to add an
end-effector by selecting the desired link from the Available Links drop-down box on the right.

Pressing the button will then add that link to the End Effectors drop-down box on the

left. You can then select the newly added end-effector and press the button to edit the
end-effector’s properties to the desired values. Alternatively, you can select Attach End Effector
from the context menu in Figure 3-11(b). Simply move the mouse to hover above the desired link
and right-click the mouse to bring up the context menu. Selecting the Attach End Effector will bring
up the Add End Effector dialog, which looks just like the Edit End Effector dialog in Figure 3-12.
Change the end-effector’s properties as desired and press the OK button to add the end-effector. Or
press the Cancel button to if you change your mind and cancel the add process.

The difference between a frame end-effector and a point end-effector can be seen in the images
below. Note that with a point end-effector the orientation of the end-effector is arbitrary—only the
position of the Guide Frame is important). With a frame end-effector (shown on the right) both
position and orientation are considered—note that the last link is aligned along the blue axis of the
Guide Frame.

 38

(a) (b)

Figure 3-13: Point and frame end-effectors. (a) The arm moved to the guide frame using a point
end-effector (i.e. position only). (b)The arm moved to the guide frame using a frame end-effector
(i.e. frame end-effector).

3.6 Working with Path Files
ActinViewer allows you to capture paths of the robot for future playback. This is very useful for
certain applications.

3.6.1 Record a Path

Pressing the record button puts ActinViewer into the record mode. When in this mode, the

record button will remain depressed like this and the robot positions will be stored in memory
until the record button is pressed again. Positions can be stored in one of two formats: Manipulator
(Joint) mode, or Guide Frame mode. In Manipulator mode the viewer records all of the joint angels
for the robot at each timestep, whereas in Guide Frame mode only the commanded gripper positions
at each timestep are recorded. This means that a Guide Frame mode path file may result in different
joint positions when rerun depending on the control method being used for the manipulators. For
instance, a control system configured to minimize kinetic energy will result in different joint angle
trajectories than a control system configured to minimize potential energy. A path file recorded in
Manipulator mode, by contrast, is guaranteed to always give the same joint trajectories. By default

ActinViewer records in Manipulator mode. You can enter Guide Frame mode by pressing and

can revert back to Manipulator Mode by pressing .

3.6.2 Playback Mode
Once a path is recorded or loaded from a path file (see the next section on how to save and load a

path file), the playback mode button will be enabled . It is necessary to specify that you
would like to playback the path and not just run a simulation. Press the playback mode button to

enter the playback mode. The playback mode button will remain depressed . While in the

playback mode, hitting the play button will replay the path. Opening the dropdown list for the
Playback mode button will bring up the options shown in Figure 3-14. The Repeat Playback option
allows you to select whether or not the playback should be repeated. Repeat Playback means that at

 39

the end of the path file, ActinViewer will go back to the beginning of the file and repeat the path.

This repeat process will run indefinitely until the stop button is hit.

Figure 3-14: Playback mode options.

If the recorded path is in the Guide Frame mode, it is possible to only allow certain manipulators to
follow the path while letting other manipulators be controlled by the user using the mouse. For
example, you may want a robot to follow a predefined end-effector path but also want the robot
reactively avoid an obstacle whose motion you can control using the mouse. To do this, select the
Guide Frame Manipulators option in Figure 3-14 to bring up the following dialog. Assuming that
manipulator [0] is the robot and manipulator [1] is an obstacle, then selecting manipulator [0] and
deselect manipulator [1] as depicted in Figure 3-15 will force the robot to follow the path while let
the obstacle be controlled by the user using the mouse.

Figure 3-15: Select manipulators for Guide Frame path playback.

3.6.3 Save and Load Path File

The save path button allows you to save a path just recorded. A Save File dialog box will
appear asking for the name and location of the file to be saved.

The load path button allows you to load a previously saved path file. Once loaded, the
playback/record mode buttons should automatically change to indicate whether the path is in Guide
Frame mode or Manipulator mode. To playback the loaded path, just follow the instruction in
Section 3.6.2 Playback Mode.

3.7 Manipulator Configuration
Oftentimes, the user may wish not only to know the numerical values of joint positions of a
manipulator but also to move some joints to some specific values. He also may wish to do the same
things with the end-effector placements. These tasks can be accomplished via the manipulator

 40

configuration dialog. To invoke the dialog, click on the configuration button in the toolbar. This
dialog has two tabs: Joints and End-Effectors.

3.7.1 Changing Joint Positions

Figure 3-16: The "Joints" tab of the manipulator configuration dialog.

In “Joints” tab shown in Figure 3-16, the dialog displays the joint positions of a manipulator in a
tabular format along with the lower and upper limit of each joint. The user can select to view the
joint positions of another manipulator from the drop-down box on the left. Also displayed is the
position of the “fixed link”. For manipulators with a fixed base, the fixed link is always the base link.
Note that the drop-down list for “Fixed Link” is greyed out because this particular manipulator has a
fixed base. Section 3.7.3 provides the details on the fixed link. The user can change the joint values
in one of two ways. The first method is to edit a value directly into the cell. In the figure above, the
value of “link-0” is being edited. A change that the user makes to a joint value will be validated
against those limits before the change can take effect. Alternatively, the user can simply slide the
slider in the rightmost column. Sliding to the left will decrease the joint value while sliding to the
right does the opposite. Not only can the joint values be changed, the values of the base position and
joint limits can be edited as well.

 41

3.7.2 Changing End-Effector Positions

Figure 3-17: The "End-Effectors" tab of the manipulator configuration dialog.

The “End-Effectors” tab shown in Figure 3-17 is similar to the “Joints” tab. It displays all the
positions (placements) of all end-effectors belonging to a manipulator. Again, the values of these
placements can be directly edited in the cell. In the picture above, the X position of the end-effector
attached to “link-8” is being edited. The rightmost column shows the links to which the end-effectors
are relatively defined. If an end-effector is not relative to any link, then “None” will be shown.
Although the two quantities are often equal, the desired and actual locations of an end-effector can
sometimes be different. The user can select which of the two he wishes to examine by selecting the
appropriate radio button on the left. Note, however, that if the actual positions are selected, he will
NOT be able to edit the values in the table. The user can also choose to view the end-effector
positions in either the system coordinate frame or in the the relative link’s frame.

3.7.3 Changing the Fixed Link
For manipulators with a floating base such as humanoid robots or the hexapod shown below, it is
sometimes more desirable to change the joint positions with respect to a link other than the base link.
This link is refered to as the “fixed link.” Figure 3-19 shows the “Joints” tab with a floating-base
manipulator, allowing the fixed link drop-down list to be enabled. This provides the user a means to
set the fixed link to be any link as desired by selecting from the drop-down list. When a link is
selected to be the fixed link, the position (x, y, z, Yaw, Pitch, and Roll) of that link in the system
coordinate frame will be shown in the top table on the right. When the value of any joint position is
changed either through the slider or direct editing in the cell, the robot will move while the chosen
link remains stationary. In this particular case, the link labeled “link_0_0_0_0”, which is one of the
feet, is chosen as the fixed link in Figure 3-19.

 42

Figure 3-18: The hexapod used to illustrate the "fixed link" concept.

Figure 3-19: The "Joints" tab of the manipulator configuration dialog with a floating-base
manipulator and the “fixed link” is set to a link other than the base link.

 43

The fixed link concept is useful in some circumstances. For example, one may wish to visualize what
the robot would look like if a joint position is changed while one of the feet is kept on the ground.To
see the effects of the fixed link, consider the two configurations of the hexapod shown in Figure
 3-20. The configuration on the left is a result of the normal case in which the base link is the fixed
link. When the value on one of the joints in the righ leg changes, the right leg moves up. In the
configuration on the right, the right foot link is chosen to be fixed base. When the same joint changes
its position, the right foot remains fixed to the ground while the whole robot moves up instead.

(a) (b)

Figure 3-20: Two hexapod configurations with the exact same set of joint positions when (a) the
base is the fixed link (b) the foot link on the right is the fixed link.

3.8 Data Capture
Data capture is a mechanism through which the user can select to store or display any data relevant
to a simulation. The detailed discussion of the data capture mechanism is given elsewhere. This
section is meant to provide instructions of how to conveniently set up data capture through
ActinViewer.

Although information capture can be configured programmatically or through XML, the easiest way
may be through interactive GUI. There are actually two separate but somewhat related features. The
first one is using GUI to save the captured information in different file formats. The second is using
GUI to display captured information in real-time scrolling plots. This section is intended as a guide
on how to use these new GUI features using a system with two 12-dof manipulators for
demonstration.

3.8.1 Saving Captured Information in Different File Formats
The “Configure Data Capture” dialog shown in Figure 3-22 is where the user configures what
information to capture and save. It can be invoked via Analysis->Configure Data Capture Storage in

the main menu.

As can be seen, there are three panels in the dialog.

 44

1. The “System” panel consists of a tree view in which the system is shown and the “Save
Options…” button. A system consists of a list of manipulators that in turn consists of a list of
links.

2. The “Manipulator Data Capture Types” panel consists of a tree view that shows all the
available manipulator-level data types that can be captured and the “Select All” and
“Deselect All” buttons. Notice that if a link is selected in the tree view of the System panel,
then this panel is disabled since it is not applicable to links.

3. The “Link Data Capture Types” panel consists of a tree view that shows all the available
link-level data types that can be captured and the “Select All” and “Deselect All” buttons.

The “Select All” and “Deselect All” buttons are provided for convenience so that the user needs not
to tirelessly click on every single checkbox in front of each data capture type. However, by following
the tips below on how to select what information to capture will virtually eliminate the need for
clicking these buttons.

1. Check/uncheck the checkbox in front of the desired manipulator to select/deselect all
manipulator-level data types and all link-level data types of all links in the manipulator.

2. Check/uncheck the checkbox in front of the desired link to select/deselect all link-level data
types of that link.

3. Click on the desired manipulator (not the checkbox in front of it) and check/uncheck the
checkbox in front of a data capture type to select/deselect the data capture type. If the data
capture type is a link-level one, this will select/deselect that data capture type for all the links
in the manipulator.

In the dialog in Figure 3-22, notice that there are three states for the checkbox – unchecked,
partially checked, and checked. The table below describes the meanings of these check states for
all the components.

 45

Data Capture Type Check State Manipulator Link

Manipulator is
highlighted

Link is highlighted

Unchecked

No data type is
selected for the
manipulator or any
of its links.

No data type is
selected for the
link.

Manipulator-level data
type: this data type is
not selected for this
manipulator.

Link-level data type:
this data type is not
selected in any of its
links.

This link-level data
type is not selected for
this link.

 Partially
Checked

Some manipulator-
level data types or
some link-level
data types of some
links are selected.

Some but not all
link-level data
types are selected
for the link.

Manipulator-level data
type: this data type is
selected for this
manipulator but some
elements are disabled.

Link-level data type:
this data type is
selected for some but
not all of its links.

This link-level data
type is selected for this
link but some elements
are disabled.

 Checked All manipulator-
level data types and
all link-level data
types of all links
are selected.

All link-level
data types are
selected for the
link.

Manipulator-level data
type: this data type is
selected for this
manipulator with no
element disabled.

Link-level data type:
this data type is
selected for all of its
links.

This link-level data
type is selected for this
link with no element
disabled.

Figure 3-21: Meanings of different check states for different components.

 46

(a)

(b)

Figure 3-22: A GUI dialog for configuring information capture. (a) Checkboxes in front of the first
manipulator and its links are partially checked since only “Joint Positions” data type is selected.
Also, the “Manipulator Data Capture Types” and “End Effector Data Capture Type” panels are
disabled since link-0, which does not have manipulator-level or end-effector level data types, is
active. (b) Checkboxes in front of the first manipulator and its links are checked since all the data
capture types are selected.

 47

Clicking on the “Save Options…” button in the “System” panel will take the user to the dialog
depicted in Figure 3-23 that lets him choose how and where to save the simulation information
outputs. The dialog shows all the available formats (with their corresponding file extensions) to
which the simulation outputs can be saved. If none of the formats is chosen, then no information will
be saved. Again, the “Select All” and “Deselect All” buttons are provided for convenience. The user
can choose the file name and the location in which the output file(s) will reside. The location can be
either directly entered by hand or more conveniently by clicking the “Browse…” button. The file
extensions will be added automatically to the file name, depending on the selected formats. For
example, in the configuration shown in Figure 3-23, the simulation information will be saved in two
files: SimOutputs.m and SimOutputs.xml in the C:/Temp folder. Currently, the supported formats are
XML, MATLAB, Mathematica, and comma-delimited text, which can be loaded into Excel.

Figure 3-23: A GUI dialog for saving information in different formats.

3.8.2 Displaying Captured Information in Interactive Plots
The real-time displaying of captured information was designed to be as flexible as possible. The user
can choose to have as many real-time plots as he wishes. Selecting Analysis -> Manage Data Plots

 in the main menu brings up the dialog shown in Figure
 3-24. Through this dialog, the user can create a new plot, edit or delete an existing plot, and show
any plot that has been created.

 48

Figure 3-24: A GUI dialog for managing real-time plots of captured information.

Clicking the “Edit…” or “New…” button will bring up the dialog shown in Figure 3-25, which is
used to configure what information to capture and display in a plot. It is very similar to the dialog in
Figure 3-22 with the following key differences.

1. This dialog does not have a “Save Options…” button.
2. This dialog has an entry to edit the title of the plot.
3. Through this dialog, the user can choose to have the captured information to be displayed on

either the left and/or the right Y-axis through the Y-Axis drop-down list . The
captured data for both Y-axes are totally independent. They can even be the same.

4. Through this dialog, the user can choose the desired type of the plot through the Plot Type

drop-down list . Currently, two plot types are supported– the scrolling plot
and the bar chart.

The tips on how to select what information to capture and the meanings of the states of the
checkboxes are the same as those for Figure 3-22, which were described in the previous section.

Once the captured information for a plot has been configured, the plot can be created and shown by
clicking the “Show” button in the dialog in Figure 3-24. The plot “widgets” were implemented using
the Qwt toolkit (http://qwt.sourceforge.net), which is a collection of Qt widgets used in technical
applications.

 49

(a)

(b)

Figure 3-25: A GUI dialog for configuring information capture for a real-time plot (a) for the left Y-
axis and (b) for the right Y-Axis. The configurations of the two axes can be done independently.

Figure 3-26 shows different views of the same real-time scrolling plot displaying the captured
information that was configured by the dialog in Figure 3-25. Note the left and right Y-axes with
different scales. Within the scrolling plot, the user can adjust the time scale interactively by using the

 50

spinner or the slider. This will cause the plot to scroll at varying speed. The larger the time scale, the
slower the plot scrolls. Figure 3-26 (a) and (b) show the same plot but with different time scales.
Conveniently, the user can also choose to show or suppress any curve in the plot by clicking on its
legend. In Figure 3-26 (c), the joint position (red curve) and joint velocity (blue curve) of link-0 are
suppressed. Furthermore, multiple real-time plots can be displayed simultaneously when the
simulation is running as illustrated in Figure 3-27. It should be cautioned here that displaying a real-
time scrolling plot takes a fair amount of resources in terms of computational time and memory.
Therefore, displaying too many scrolling plots all at once could potentially deteriorate the simulation
run-time performance.

(a)

(b)

(c)

Figure 3-26: A real-time scrolling plot displaying captured information (a) with a time scale of 5
seconds; (b) with a time scale of 15 seconds; and (c) with a time scale of 15 seconds and with some
curves suppressed.

 51

Figure 3-27: Simulation is running with two real-time plots (one scrolling plot and one bar chart).

3.9 Time Scaling
The viewer includes configurable time scaling as part of the simulation. Time scaling is controlled
through the member variable m_TimeScaleFactor of the class EcViewerParameters. Setting this
parameter to a value less than one in the XML description of a simulation induces simulation
execution at that fraction of wall-clock time, and setting it greater than one induces simulation at
faster than wall-clock time.

 52

4 Guiding Software Principles

4.1 This Document
Though Actin comes with a number of applications, it is primarily a software toolkit that can be
integrated into any application. This section gives principles used in developing the toolkit.

4.1.1 Overview
This document is intended to guide the reader in understanding the Actin™ code and how to use it to
develop C++ software. It assumes that the reader has familiarity with C++ and the language used to
describe its constructs. To make it readable, this document is not comprehensive. The many details
left out of this document can be found in the class documentation, which is also provided with the
toolkit.

4.1.2 Component Representation
Quantities are represented in this document as described below:

• Class names are italicized, for example: EcVector.

• Variable names are italicized, for example: m_Position.

• Filenames are quoted, for example: “ecVector.h”.

• Code is represented with a fixed font, for example: vector.setX(2.0);

4.2 Source Code
In developing this software toolkit, Energid Developers have defined and adhered to a set of guiding
principles to make it easier to understand and use the toolkit. These are described below.

4.2.1 Name Space
To prevent conflicts with other code that will be linked to ours by customers, all values with global
scope are prefixed with the letters “Ec”. This includes class names, macros, and utility functions.

4.2.2 Classes
With few exceptions, classes include implementation of the “big four” methods: the constructor, the
destructor, the copy constructor, and the equal operator. The copy constructor and equal operator are
deep (e.g., the contents of a pointer are copied, not the pointer value itself) except where noted in the
class documentation and header files. If any of the big four are not implemented, they are protected
in the header file.

Where relevant, classes have a clone operator. This is also called a virtual constructor—it returns a
new’ed copy of itself as a pointer of its appropriate base class. Clone methods make a deep copy.
This allows objects to be used as prototypes. Most classes also implement operator==() for testing.

4.2.3 Identifiers
All member functions besides constructors and destructors begin with a lower-case letter and use the
camel-hump style, with each word in the name beginning with a capital, for example, printResults.

 53

All member variables begin with the prefix “m_”, followed by a capital letter if the variable
represents a member object or basic type. For example, m_Range.

Static member variables begin with the prefix “m_the”. For example, m_theCount. Class names
begin with the prefix “Ec” followed by a capital and use the camel-hump style. For example,
EcPolygonRootFinder.

Accessors use const type& variableName() or getVariableName(const type& var). Mutators use
setVariableName(const type& var). (Basic types, like int and double, are typically passed by value,
but objects are passed by reference.)

4.2.4 Protection
Member variables are always protected—no variables or methods are private. This allows you more
flexibility when subclassing. Whenever there is a chance a method might be correctly called within
another object, it is declared public, even if it is not used in a public manner in the toolkit code.

4.2.5 Virtualness
Member functions as a rule are declared virtual. This provides maximum flexibility in subclassing.
A few special, basic classes (EcVector, EcOrientation, and EcXmlBasicType, EcXmlVector,
EcXmlOrientation, EcCoordinateSystemTransformation EcGeneralForce, and EcGeneralMotion)
are nonvirtual to improve runtime.

4.2.6 Constness
All member functions that do not modify member data are declared const. It can be appropriate to
have both const and nonconst versions of a method, such as when returning const and nonconst
pointers or references. Accessors that return member variables return const references. Mutators
pass const references. Static member variables that are not basic types (int, double, etc.) are const.

4.2.7 Pointers
Pointers are always set to EcNULL (which equals 0) when they are not valid. Note it is always safe
to delete a null pointer to an object. It is not always safe to delete[] a null array pointer, and these
should be checked first. Member pointer variables are prefixed with "m_p”, for example m_pImage.

4.2.8 Factory Methods
Objects are created in virtual factory methods. That is, “new” is rarely used outside of methods
specifically for creating objects. Generally, factory methods should be prefixed with “new”. For
example, EcImage* newImage(). The use of factory methods allows you to subclass an object and
replace member variables with subclassed versions.

4.2.9 Multiple Inheritance
Multiple inheritance is not used in the toolkit.

4.2.10 Units
All units are SI unless the variable or method name includes the units. For example, lengthInches
would be the length in inches, while length would be the length in meters.

 54

4.2.11 Macros
Macros and macro-like functions are all named starting with “Ec” followed by upper-case letters.
For example a macro to warn the user would be EcWARN.

4.2.12 Raster Data
Raster data is ordered consistently using one of two methods.

• Image and image-like raster data are ordered such that image(x,y) has x incrementing left to
right and y incrementing top to bottom (i.e., [column,row]). Position (0,0) is always in the
upper left-hand corner.

• Matrices and other non-image mathematical formulations are ordered such that matrix(i,j)
has i incrementing top to bottom and j incrementing left to right (i.e., [row,column]). As
with images, position (0,0) is the upper left-hand corner entry.

4.2.13 Filenames
Classes are defined in .h files and implemented in .cpp files. Each set of .h and .cpp files defines
only one class. Filenames should be similar to class names, with “ec” as a prefix. So,
“ecJointActuator.h” would be the filename for class EcJointActuator, and “ecPolygon.h” would be
the filename for EcPolygon. In all cases, filenames start with a lower-case letter.

4.2.14 Extension Avoidance
Microsoft-specific extensions are avoided in the toolkit, which builds under Windows and Linux.

4.2.15 Exception Handling
In the toolkit, exception handling is avoided in favor of null pointer return in most cases. This
allows general good practice (checking pointers) to overlap with error handling and leads to less
cluttered, faster code. There are three areas in which exception handling may be used.

• When it is required by other (third party) software.
• When there is no appropriate return type to flag an error.
• When an error condition requires a lot of information or information that is different from

nonexception cases.

4.2.16 Friends
The use of friend classes is avoided in the toolkit. Friendship is not inherited, complicating reuse.

 55

5 Fundamental Classes

5.1 Data Structures
The data structures that will be used in the description of the Actin™ toolkit include the vector,
tensor, list, map and tree. In the description below, constant time refers to the ability to perform an
operation in a fixed amount of time regardless of the number of elements in the data structure. The
term linear time refers to the ability to perform a task in a time that is proportional to the number of
elements in the data structure. The term NULL refers to any symbol representing emptiness—for
C++ pointers this is usually the zero value.

5.1.1 Vector
A vector data structure is a container of any data type that allows constant-time access to any
element. Inserting or deleting elements requires linear time. It is equivalent to a standard array as
used in C++, with the addition that part of this data structure is its size. Characteristically, data in a
vector cannot be easily inserted or deleted. Vectors are used widely in the toolkit for storing and
accessing data that is fixed in size, such as joint positions, joint rates, vertices, end-effectors, and so
forth.

5.1.2 Tensor
A tensor is an array of n-dimensional data that allows access in constant time for fixed n. A vector is
a substitute for a one-dimensional tensor, but it is given its own category above because of its
importance. Another important type of tensor is the array, which is a two-dimensional tensor. Data
in a tensor cannot be easily inserted or deleted. Tensors are used widely in the toolkit for
multidimensional data, such as images, Jacobians, link-collision maps, and so forth.

5.1.3 List
A list data structure is a linear sequence of elements each of which holds a reference or pointer to its
predecessor and its successor. The head of the list has a NULL predecessor and the tail has a NULL
successor. All elements can be accessed sequentially in linear time, though linear time is also
required to access any particular element. Elements can be inserted and deleted in constant time.
Lists are not used widely in the toolkit.

5.1.4 Map
A map data structure represents a one-to-one mapping between data types, often using a hash table.
For example, a map might provide integers (the values) as a function of strings (the keys). A map
represents this data in a way that allows constant- or log-time (depending on the implementation)
access to a value given its key. Maps are used widely in the toolkit for organization. After loading,
for each manipulator, links are mapped with string labels as keys.

5.1.5 Set
A set data structure represents a collection of unique types. If a type is added to a set more than
once, only one resides in the set. A set represents this data in a way that allows constant- or log-
time (depending on the implementation) access to a given value in the set. Sets are used sparingly in
the toolkit for organization.

 56

5.1.6 Tree
A tree data structure is a collection of elements into a hierarchy such that each element has a unique
parent but may have multiple children. The root of the tree has a NULL parent. Accessing any
particular element in the tree may require log or linear time, depending on organization. Searches
and operations can proceed in depth-first or breadth-first ordering. Trees are used widely in the
toolkit to implement control systems that can be configured at run time.

5.2 Basic Types
The table below lists the basic data types used in the toolkit and their description. More complex
classes are created by composing these. Note that all class names in this document are prefixed with
“Ec”. This parallels their implementation in code to avoid namespace conflicts with other source
code.

Class Description

EcReal 64-bit floating-point value.

EcU32 32-bit unsigned integer.

EcInt32 32-bit signed integer.

EcU16 16-bit unsigned integer.

EcInt16 16-bit signed integer.

EcU8 8-bit unsigned integer.

EcInt8 8-bit signed integer.

EcAngle A floating-point value in the range (-π, π]. The sine and cosine of the
angle are stored in the class for fast trigonometric processing.

EcNonNegReal Non-negative 64-bit floating point value.

EcString A variable-length array of Unicode characters.

EcBoolean A Boolean value.

Table 5-1: Basic data types.

5.3 Basic Kinematics
For the most part, class details will not be described in this document, but rather in the class
documentation. However, because of their importance throughout the toolkit, position, orientation,
coordinate system transformations, and rigid-body motion will be described in detail.

 57

5.3.1 Position
Position is defined using the EcVector class. This class holds three real values representing x, y, and
z coordinates. It also provides a number of methods for working with vectors. Given three
EcVectors, a, b, and c, the following table shows some of the more useful methods.

Method Examples Description

EcVector a(x, y, z); This constructor creates a vector holding the
three specified values.

a+=b; a-=b; a=b+c; a=b-c; Various math operators are defined among
vectors.

a*=r; a=r*b; a=b*r; a=b/r; Various math operations with scalars are also
defined.

a==b; Equality is defined, which returns EcTrue if
both vectors are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue
if all the elements are within the tolerance of
each other.

r=a.dot(b); a=b.cross(c);

Dot and cross product are defined.

r=a.mag(); r=a.magSquared();
r=a.distanceTo(b);
r=distanceSquaredTo(b);

Various Euclidean norms are defined. The
squared values are faster to calculate because
they do not require a square root.

a=b.unitVector(); a.normalize(); Methods are included for normalizing vectors.

r=a.x(); r=a.y(); r=a.z(); Accessors for the three elements.

a.setX(r); a.setY(r); a.setZ(r); Mutators for the three elements.

r=a[0]; r=a[1]; r=a[2]; Indexing can be used to get nonconst references
to the three elements. These can be used for
accessing the elements or setting them.

a=EcVector::zeroVector(); This method returns a const reference to a static
member variable. It can be used for error
recovery from a method that returns a reference
to a vector.

Table 5-2: Select methods in the EcVector class. For a complete description, please see the class
documentation.

 58

5.3.2 Orientation
Orientation is defined using the EcOrientation class. Each member of this class holds four values,
{w, x, y, and z} that define a quaternion that represents the orientation of an outboard frame, j, with
respect to an inboard frame, i. This quaternion translates into a direction cosine matrix through the
following formula:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−−−+
+−−−

=
22

22

22

2212222
2222122
2222221

yxwxyzwyxz
wxyzzxwzxy
wyxzwzxyzy

R

(4-1)

Note that, with this formalism, Q={1,0,0,0} corresponds to the identity matrix and the negative of a
quaternion gives the same rotation as the original. (This formalism can be easily converted to the
other common form by ordering the entries {x, y, z, and w}.)

The EcOrientation class provides a number of methods for extracting information about orientation,
transforming orientations, and working with vectors. Its methods are defined in the table below.
Given three EcOrientations, a, b, and c, the following table shows some of the more useful methods
that can be used.

Method Examples Description

EcOrientation a(w, x, y, z); This constructor creates an orientation with the
specified quaternion values. The four values are
normalized to a unit vector.

a.set(w, x, y, z); This assigns the specified quaternion values to a
pre-existing orientation. The four values are
normalized to a unit vector.

a*=b; a=b*c; Various operators are defined among orientations.
Orientation multiplication is not commutative.

w=a*v; Transformation of vectors is defined.

a==b; Equality is defined, which returns EcTrue if both
quaternions are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if
all the quaternion elements are within the tolerance
of each other.

a.invert(); a=b.inverse(); Inversion routines are defined.

a.setFrom321Euler(psi,th,phi);
a.get321Euler(psi,th,phi);
a.setFromAngleAxis(angle,axis);
a.getAngleAxis(angle,axis);
a.setFromDcmRows(r0,r1,r2);
a.getDcmRows(r0,r1,r2);

Various methods are available for setting the
orientation from other representations and
calculating the equivalent in other representations.
More conversions are available than those shown
here—please see the class documentation for more.

 59

a=EcOrientation::identity(); This method returns a const reference to a static
member variable representing no orientation change.
It can be used for error recovery from a method that
returns a reference to a vector.

Table 5-3: Select methods in the EcOrientation class. For a complete description, please see the
class documentation.

5.3.3 Coordinate System Transformation
A coordinate system transformation includes both translation and reorientation. Our implementation
class is EcCoordinateSystemTransformation, which holds one EcVector object and one
EcOrientation object. These represent the position and orientation of a new frame (the outboard
frame) expressed in a reference frame (the inboard frame). There are a number of ways to interpret
the meaning of a coordinate system transformation. Our primary interpretation in this document is
the following: It is a device for transforming quantities represented in the outboard frame to be
represented in the inboard frame.

V

End-Effector
Frame 2

Rotation

Translation
End-Effector

Frame 1

2
V1

Figure 5-1: A coordinate system transformation is represented using the
EcCoordinateSystemTransformaton class, which includes an EcVector translation and an
EcOrientation orientation. The EcCoordinateSystemTransformation can be viewed as representing
frame 2 in frame 1 as shown above. The translation is represented in frame 1 coordinates. A vector
represented in frame 2 can be multiplied by a coordinate system transformation to give the same
point in frame 1 coordinates. That is, if v2 was the variable representing v2 as shown above, and c
was the variable representing the coordinate system transformation giving frame 2 in frame 1, then
“v1=c*v2;” would calculate v1 as shown above.

To increase speed, simplified states of an EcCoordinateSystemTransformation are tracked and used
when transforming quantities. Each EcCoordinateSystemTransformation has a mode, with four
options as shown in the table below.

EcCoordinateSystemTransformation
Mode

Description

ARBITRARY The translation and orientation may take on any

 60

values.

NO_TRANSLATION There is no change in translation. The translation
vector equals {0,0,0}.

NO_ROTATION There is no change in orientation. The orientation
quaternion equals {1,0,0,0}.

NO_CHANGE There is no change in position or orientation.

Table 5-4: The EcCoordinateSystemTransformation mode. This value is used to optimize
calculations performed with the object.

The most common methods provided by the EcCoordinateSystemTransformation class are shown in
the table below, where a, b, and c represent EcCoordinateSystemTransformation objects.

Method Examples Description

EcCoordinateSystemTransformation
(translation, orientation);

This constructor creates a coordinate system
transformation with the specified position and
orientation.

v=a.translation();
a.setTranslation(v);

q=a.orientation();
a.setOrientation(q);

Methods to get and set the position (an EcVector) and
the orientation (an EcOrientation).

a.mode(); Access to the mode (as described through Table 5-3).

a*=b; c=a*b; Transformation combination. If a represents frame A
in reference coordinates and b represents frame B in
frame A coordinates, then c=a*b represents frame B in
reference coordinates.

a==b; Equality is defined, which returns EcTrue if both
transformations are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if all
the position and orientation elements vary by less than
the tolerance.

a.invert(); a=b.inverse();

Inversion routines are defined.

a=EcOrientation::identity(); This method returns a const reference to a static
member variable representing no translation or
orientation change. It can be used for error recovery
from a method that returns a reference to a vector.

 61

Table 5-5: Select methods in the EcCoordinateSystemTransformation class. For a complete
description, please see the class documentation.

5.3.4 Rigid-Body Velocity
The motion of rigid bodies and reference frames is described in the toolkit using the
EcGeneralMotion class. EcGeneralMotion is typedef’ed to EcGeneralVelocity to represent frame
velocity. Each EcGeneralVelocity object has one EcVector representing linear velocity of a point
and one EcVector representing angular velocity about that point. Each EcGeneralVelocity object
must have a point of application and a frame of representation—these are implicit. This is illustrated
in the figure below.

Figure 5-2: Reference-frame and rigid-body velocity are represented using EcGeneralVelocity
objects, which comprise vectors of linear and angular velocities (vr and ω

r
, respectively). These

quantities are defined in an implicit reference frame at the origin of the moving frame or at an
implicit point on a moving rigid body. EcGeneralAcceleration has a similar form.

Method Examples Description

EcGeneralVelocity(linear, angular); This constructor creates a general velocity from a
linear and an angular component.

a.linear(); a.setLinear(v);

a.angular(); a.setAngular(w);

Methods to get and set the linear and angular
components (both EcVectors).

a+=b; a-=b; a=b+c; a=b-c; Various math operators are defined among
EcGeneralVelocity objects.

a*=r; a=r*b; a=b*r; Various math operations with scalars are also
defined.

a==b; Equality is defined, which returns EcTrue if both
objects are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if

Reference Frame

ω
z

v
z

Reference Frame Point of Application

ω
z

v
z

Moving
Rigid
Body

Moving
Coordinate

System

 62

all the position and orientation elements vary by
less than the tolerance.

a.transformBy(xform);
a.transformBy(orient);
a.transformBy(vector);

Routines to transform the EcGeneralVelocity
object by moving the point of application,
changing the reference frame, or both.

Table 5-6: Select methods in the EcGeneralMotion class. EcGeneralVelocity shares this interface.
For a complete description, please see the class documentation.

Tools are also provided for integrating EcGeneralMotion objects. Integrating EcGeneralVelocity to
get an EcCoordinateSystemTransformation describing the position and orientation requires some
calculation.

Let TQQQQ],,,[3210 represent a quaternion describing the position of a moving coordinate system
and T],,[210 ωωω represent the angular velocity of the moving coordinate system in reference frame
(not moving frame) coordinates. The time derivative of the quaternion can be calculated using the
following formula, which is a consequence of (4-1):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

0

012

103

230

321

3

2

1

0

2
1

ω
ω
ω

QQQ
QQQ
QQQ
QQQ

Q
Q
Q
Q

&

&

&

&

.

(4-2)

As a user of the toolkit, you do not need to work with this or other quaternion formulas. Equation
(4-2) is implemented in the EcOrientation class. Let q be an EcOrientation object, w be angular
velocity represented in reference-frame coordinates, and vQdot be a length-four real vector. Then
q.quaternionRateFromReferenceFrameAngularVelocity(w,vQdot); will
calculate the quaternion rate as shown in (4-2). Methods for calculating the quaternion rate from
angular velocity represented in moving coordinates, calculating angular velocity from quaternion
rates, and integrating angular velocity are all part of the implementation of EcOrientation in the
toolkit—details are given in the class documentation.

5.4 Basic Dynamics
Just as with kinematics, for the most part, class details will not be described in this document, but
rather in the class documentation. However, because of their importance, acceleration, force, and
mass properties will be described in detail.

5.4.1 Rigid-Body Acceleration
As was mentioned previously, the motion of rigid bodies and reference frames is described in the
toolkit using the EcGeneralMotion class. EcGeneralMotion is typedef’ed to EcGeneralAcceleration
to represent acceleration. Each EcGeneralAcceleration object has one EcVector representing linear
acceleration of a point and one EcVector representing angular acceleration about that point. Each As
with EcGeneralVelocity, each EcGeneralAcceleration object must have an implicit point of
application and a frame of representation. EcGeneralAcceleration is illustrated in the figure below.

 63

Reference Frame

α

a
Moving

Coordinate
System

Figure 5-3: Reference-frame and Rigid-body acceleration are represented using
EcGeneralAcceleration objects, which contain vectors for linear and angular velocity (ar and α

r
,

respectively). These are defined in an implicit reference frame at the origin of the moving frame or
at an implicit point on a moving rigid body.

Method Examples Description

EcGeneralAcceleration(linear,
angular);

This constructor creates a general acceleration
from a linear and an angular component.

a.linear(); a.setLinear(a);

a.angular(); a.setAngular(alpha);

Methods to get and set the linear and angular
components (both EcVectors).

a+=b; a-=b; a=b+c; a=b-c; Various math operators are defined among
EcGeneralAcceleration objects.

a*=r; a=r*b; a=b*r; Various math operations with scalars are also
defined.

a==b; Equality is defined, which returns EcTrue if two
objects are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if
all the position and orientation elements vary by
less than the tolerance.

a.transformBy(xform);
a.transformBy(orient);
a.transformBy(vector);

Routines to transform the EcGeneralAcceleration
object by moving the point of application,
changing the reference frame, or both.

Table 5-7: Select methods in the EcGeneralAcceleration class. These are the same methods as for
EcGeneralVelocity. For a complete description, please see the class documentation.

 64

5.4.2 Rigid-Body Force
The sum of forces applied to a rigid body can be represented through a vector linear force and a
vector moment applied to a point of application. This is illustrated in the figure below.

Reference Frame Point of Application

f
Inertial
Body

n

Figure 5-4: The force applied to a body is represented using EcGeneralForce objects, which contain
vectors for linear force and angular moment (f

r
 and nr , respectively). These are defined in an

implicit reference frame at an implicit point of application.

Method Examples Description

EcGeneralForce(linear, angular); This constructor creates a general force from a
linear and an angular component.

a.linear(); a.setLinear(f);

a.angular(); a.setAngular(n);

Methods to get and set the linear and angular
components (both EcVectors).

a+=b; a-=b; a=b+c; a=b-c; Various math operators are defined among
EcGeneralForce objects.

a*=r; a=r*b; a=b*r; Various math operations with scalars are also
defined.

a==b; Equality is defined, which returns EcTrue if both
are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if
all the position and orientation elements vary by
less than the tolerance.

a.transformBy(xform);
a.transformBy(orient);
a.transformBy(vector);

Routines to transform the EcGeneralMotion
object by moving the point of application,
changing the reference frame, or both.

a.addLinear(f); a.addAngular(n); Routines to add linear and angular components.

Table 5-8: Select methods in the EcGeneralForce class. These are similar to those for
EcGeneralVelocity and EcGeneralAcceleration.

 65

5.4.3 Rigid Body Mass Properties
Rigid body mass properties include the 10 parameters needed for dynamics calculation: the scalar
mass, the vector first moment of inertia, and the 3×3 symmetric second moment of inertia. For the
first and second moments of inertia, there is an implied reference frame. The second moment is
represented with point of application at the origin of the reference frame, not at the center of mass.

Reference
Frame

Mass m

Center of Mass c

Second Moment
of Inertia I

V

Figure 5-5: Rigid-body inertia includes the scalar mass m, the first moment of inertia, which is
defined as the center of mass times the mass, and the second moment of inertia.

The mass of rigid body defined over volume V is given by

∫=
V

dVm ρ , (4-3)

where ρ is the mass density for the differential volume dV. This is a single scalar.

The first moment is given by

∫=
V

dVrh ρr
r

, (4-4)

where rr is the vector pointing to the differential volume dV. The second moment is defined through
a three-dimensional vector and is equal to cmr , where cr is the center of mass.

Second moment of inertia is defined through a symmetric 3x3 matrix:

 66

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzyzxz

yzyyxy

xzxyxx

III
III
III

I ,

(4-5)

The values Ixx, Iyy, and Izz are the diagonal elements, given by

∫
∫
∫

+=

+=

+=

V
zz

V
yy

V
xx

dVyxI

dVzxI

dVzyI

ρ

ρ

ρ

)(

)(

)(

22

22

22

(4-6)

The off-diagonal elements are defined as follows:

∫
∫
∫

−=

−=

−=

V
yz

V
xz

V
xy

dVyzI

dVxzI

dVxyI

ρ

ρ

ρ

(4-7)

The second moment of inertia is represented through the class EcSecondMoment.

Method Examples Description

EcSecondMoment(jxx,jyy,jzz,jxy,jxz,
jyz);

This constructor creates a second moment from
the entries in the matrix representation.

a.jxx(); a.jyy(); a.jzz(); a.jxy();
a.jxz(); a.jyz();

Methods to get individual components.

a.set(jxx,jyy,jzz,jxy,jxz,jyz); Method to set values.

a+=b; a-=b; a=b+c; a=b-c; Various math operators are defined.

a*=r; a=r*b; a=b*r; Various math operations with scalars are also
defined.

a==b; Equality is defined, which returns EcTrue if both
are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if
all the position and orientation elements vary by

 67

less than the tolerance.

a.transformBy(orient);

Routines to transform the object through rotation.

a.spatialMatrix(); Gets the inertia as a 3x3 matrix.

a.getPrincipalAxes(); Gets the orientation of the frame aligned with the
principal moments.

Table 5-9 Select methods in the EcSecondMoment class.

The complete mass properties are represented by combining a scalar for mass, an EcVector for first
moment, and an EcSecondMoment for second moment. This class, EcRigidBodyMassProperties,
includes the methods shown in the table below.

Method Examples Description

EcRigidBodyMassProperties(mass,
firstMoment, secondMoment);

This constructor creates a second moment from
components.

a.mass(); a.firstMoment();
a.secondMoment();

Methods to get individual components.

a.set(mass, firstMoment,
secondMoment);

Method to set values.

a+=b; a-=b; a=b+c; a=b-c; Various math operators are defined.

a==b; Equality is defined, which returns EcTrue if both
are equal.

a.approxEq(b,tol); Fuzzy equality is defined, which returns EcTrue if
all the position and orientation elements vary by
less than the tolerance.

a.transformBy(orientation);
a.transformBy(translation);
a.transformBy(xform);

Routines to transform the object through rotation,
translation, or general coordinate system
transformation.

a.calculateForce(velocity,
acceleration);

Calculates the force required to produce the
specified frame velocity and frame acceleration.

a.calculateAcceleration(velocity,
force);

Calculates the acceleration produced by the
specified force when the body has the specified
velocity.

Table 5-10 Select methods in the EcRigidBodyMassProperties class.

 68

6 XML

6.1 Overview
The Actin™ Toolkit provides extensive support for reading and writing XML configuration files.
The toolkit contains XML objects that enable the developer to provide read and write support for any
class member variable. By turning the class and member variables into XML objects, the member
variables can be seamlessly read from or written to an XML file. These XML objects can also be
member variables in other XML objects. Through this approach, complex class structures can have
read and write capability throughout the class hierarchy.

This section is broken down into three components: 1) a description of the XML objects and how
the developer can reuse them to create new objects with read and write capability, 2) a description of
the XML reader and writer, and 3) a description of the XML schema auto-generator.

6.2 XML Objects
Through the use of the Actin™ Toolkit, the developer can create new C++ classes with XML read
and write support. These classes can contain a spectrum of data types ranging from simple data to
complicated hierarchies. For example, a class can include simple data, other classes made up of
simple data, classes nested with other classes, and complex classes that are defined during run-time
(i.e., polymorphically).

All XML objects build upon the abstract base class EcXmlObject. Table 6-1 shows the methods
defined through this class. Through inheritance of EcXmlObject, read and write support is available
to any class.

Method Description

Big Four Most classes within the code base require the “Big Four”: default
constructor, destructor, copy constructor, and assignment
operator.

== Equivalence operator.

clone Abstract method for cloning XML object.

selfTest Abstract method for executing self test.

equality Abstract virtual equality to an EcXmlObject pointer

newObject Abstract virtual new to an EcXmlObject pointer

xmlInit Initialize XML object.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Writes the schema for this object to an XML stream. See Section

 69

 6.4 for more details.

isBasicType Return true if object is a basic type; otherwise return false. The
default is false. EcXmlBasicType and EcXmlEnumType override
this method and return true. This is currently only used for
schema generation and the EcXmlVectorType writer.

readFromStream Read object from an istream. See Section 6.3 for more details.

writeToStream Write object to an ostream. See Section 6.3 for more details.

readFromFile Read object from a file. See Section 6.3 for more details.

writeToFile Write object to a file. See Section 6.3 for more details.

readFromFilePlain Read object from an uncompressed file. See Section 6.3 for
more details.

writeToFilePlain Write object to an uncompressed file. See Section 6.3 for more
details.

readFromFileWithCompression Read object from a compressed file. See Section 6.3 for more
details.

writeToFileWithCompression Write object to a compressed file. See Section 6.3 for more
details.

readFromUrl Read object from URL. See Section 6.3 for more details.

readFromBuffer Read object from a buffer. See Section 6.3 for more details.

writeToBuffer Write object to a buffer. See Section 6.3 for more details.

readFromCompressedBuffer Read object from a compressed buffer. See Section 6.3 for more
details.

writeToCompressedBuffer Write object to a compressed buffer. See Section 6.3 for more
details.

readFromTcpSocket Read object from TCP socket. See Section 6.3 for more details.

writeToTcpSocket Write object to TCP socket. See Section 6.3 for more details.

createSchema Write a complete schema. This is called by writeToPlainFile,
and it generates the schema for the XML object.

xmlInitialized Get XML initialized flag. This flag is set upon read and write
initialization.

 70

setXmlInitialized Set XML initialized flag. This flag is set upon read and write
initialization.

specified Get specified flag. This bit is set upon reading from an XML file
or from the copy constructor.

setSpecified Set specified flag. This bit is set upon reading from an XML file
or from the copy constructor.

Table 6-1: List of methods in EcXmlObject. The blue highlighted methods are the typically
overridden methods.

Although all of the methods are virtual and can be overridden through inheritance, the highlighted
methods are likely candidates for being overridden. The read, write, writeSchema, and xmlInit
methods are described in Section 6.2.4. The abstract methods, clone, selfTest, equality, and
newObject, are described here and have the following prototypes.

Text Box 6-1: The abstract method prototypes of EcXmlObject.

An example definition for the clone method is shown in Text Box 6-2. Each XML object needs it
own clone definition.

Text Box 6-2: Example definition for the clone method.

An example definition for the selfTest method is shown in Text Box 6-3. This example contains
testing for the read, write, copy constructor, assignment, and equivalence methods. The developer

EcXmlObject* EcXmlExample::clone
 (
) const
{
 return (new EcXmlExample(*this));
}

 /// return cloned object
 virtual EcXmlObject* clone
 (
) const=0;

 /// perform self test
 virtual EcBoolean selfTest
 (
) const=0;

 /// equality - a virtual equality to an EcXmlObject pointer
 virtual EcBoolean equality
 (
 const EcXmlObject* other
) const=0;

 /// creates new object - a virtual new to an EcXmlObject pointer
 virtual EcXmlObject* newObject
 (
) const=0;

 71

can add testing for all aspects of the class. As code problems surface, the self-test can be updated to
minimize the chance of the problem reoccurring.

Text Box 6-3: Example definition for the selfTest method. This is in the XML example code.

EcBoolean EcXmlExample::selfTest
 (
) const
{
 EcBoolean retVal=EcTrue;

 // create three test objects
 EcXmlExample* value1=new EcXmlExample;
 EcXmlExample* value2=new EcXmlExample;
 EcXmlExample* value3=new EcXmlExample;

 // get a test value for first test object
 *value1 = EcXmlExample::testObject();

 // test write/read for test object
 EcString filename=EcString("EcXmlExample.xml");

 value1->writeToFile(filename);
 value2->readFromFile(filename);

 // compare the original to the read value
 if(!(*value1==*value2))
 {
 retVal=EcFalse;
 }

 // test the assignment operator
 *value3=*value1;

 // compare the original to the copied value
 if(!(*value1==*value3))
 {
 retVal=EcFalse;
 }

 // test the copy constructor
 EcDELETE(value3);
 value3=new EcXmlExample(*value1);

 // compare the original to the copied value
 if(!(*value1==*value3))
 {
 retVal=EcFalse;
 }

 // clean up
 EcDELETE(value1);
 EcDELETE(value2);
 EcDELETE(value3);

 return retVal;
}

 72

The equality method is illustrated in Text Box 6-4 and performs a virtual test on the equality of the
two XML objects.

Text Box 6-4: Example definition for equality method.

The newObject method is illustrated in Text Box 6-5 and is a factory method for creating a new
XML object.

Text Box 6-5: Example definition for the newObject method.

The Actin™ Toolkit defines several types of XML objects: 1) basic types for simple data, 2) XML
containers for Standard Template Library (STL) containers, 3) a static compound type and 4)
variable compound types.

6.2.1 Basic Types for Simple Data
There are two classes for defining basic data types: EcXmlBasicType and EcXmlEnumType. The
basic XML object enables the reading and writing of simple data types such as strings and floats.
The enumeration type enables the reading and writing of enumerations. The simple data managed by
these simple XML objects represents the content (i.e. leaf nodes) in the XML files. Figure 6-1
illustrates the classes that provide support for enumerations and basic data such as strings and floats.
Table 6-2 provides a summary description of these classes.

EcBoolean EcXmlExample::equality
 (
 const EcXmlObject* other
) const
{
 EcBoolean retVal=EcTrue;

 // cast XML object to EcXmlExample
 const EcXmlExample* cast=
 dynamic_cast<const EcXmlExample*>(other);

 // test equality
 if(!cast || !(*this==*cast))
 {
 retVal=EcFalse;
 }

 return retVal;

}

EcXmlObject* EcXmlExample::newObject
 (
) const
{
 return new EcXmlExample();

}

 73

EcXmlObject

EcXmlEnumTypeEcXmlBasicType

EcBaseXmlBasicType

Figure 6-1: Inheritance diagram for simple XML objects. These objects provide read and write
support for the simple member variables of a configurable XML object.

Class Description Example XML

EcXmlBasicType

 <ElementType>

XML basic type for adding
C++ basic types to an XML
description file. See Table
 6-3 for a list of type
definitions.

<alpha>1e-008</alpha>

EcXmlEnumType

 <ElementType>

XML enumeration type for
adding self describing
enumeration types to an
XML description file.
ElementType is an integral
C++ type. See Table 6-5 for
a list of type definitions.

<dhType>genPaul</dhType>

Table 6-2: XML types for defining simple member variables that have XML read/write support.
The member variables are registered by the registerComponents method for the class, which needs to
be a compound XML object as defined below (Table 6-17). These XML types are templates with
many specific type definitions predefined at the bottom of the header files.

6.2.1.1 EcXmlBasicType
The following example, Text Box 6-6, illustrates how simple types can be used. The example
variables, input and output, are XML objects using the EcXmlBasicType class. The list of type
definitions is in Table 6-3. Although this example shows a legitimate way for using XML objects,
generally the XML objects are class member variables. Table 6-4 shows the methods available
through EcXmlBasicType.

 74

Text Box 6-6: Example code using EcXmlBasicType variables. Table 5-2 shows the format for the
XML file. This is Example Section #2 in the XML example code.

Type Definition Template Type

EcXmlReal EcReal

EcXmlU32 EcU32

EcXmlInt32 EcInt32

EcXmlU16 EcU16

EcXmlInt16 EcInt16

EcXmlU8 EcU8

EcXmlInt8 EcInt8

EcXmlAngle EcAngle

EcXmlNonNegReal EcNonNegReal

EcXmlBoolean EcBoolean

EcXmlString EcString

Table 6-3: Type definitions for EcXmlBasicType contained in ecXmlBasicType.h.

 // create a test value for writing
 // EcXmlReal is a type definition of EcXmlBasicType<EcReal>
 EcXmlReal output2=5.0;
 EcXmlReal input2;

 // write/read the test value
 EcString filename = "EcXmlBasicType.xml";

 output2.writeToFile(filename);
 input2.readFromFile(filename);

 // print the output and input
 EcWARN("Example: EcXmlBaseType.\n");
 std::cout << "Output: " << output2 << std::endl;
 std::cout << "Input: " << input2 << std::endl;

 75

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

cast operator Cast to a basic type.

< Less than operator.

clone Clone XML object.

equality Equality for an EcXmlObject pointer

newObject Factory method for an EcXmlObject pointer

selfTest Execute self test.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

isBasicType Returns true due to being a basic type

value Get value of basic type.

setValue Set value of basic type.

nullObject Static method for getting an empty object.

testValue Get a sample value for testing.

setValueFromString Set the value from a string.

Table 6-4: List of methods in EcXmlBasicType. The methods for EcXmlBasicType are nonvirtual
and inlined for speed. See the class documentation for details.

6.2.1.2 EcXmlEnumType
The following example, Text Box 6-7, illustrates how enumeration types can be used. The example
variables, input and output, are XML objects using the EcXmlEnumType class. The list of type
definitions is in Table 6-5. Table 6-6 shows the methods available through EcXmlEnumType.

 76

Text Box 6-7: Example code using EcXmlEnumType variables. This is Example Section #3 in the
XML example code.

Type Definition Template Type

EcXmlEnumU32 EcU32

EcXmlEnumInt32 EcInt32

EcXmlEnumU16 EcU16

EcXmlEnumInt16 EcInt16

EcXmlEnumU8 EcU8

EcXmlEnumNonNegReal EcNonNegReal

Table 6-5: Type definitions for EcXmlEnumType contained in ecXmlEnumType.h..

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

 // create a test value for writing
 // EcXmlEnumU16 is a type definition of EcXmlEnumType<EcU16>
 EcXmlEnumU16 output3=0;
 EcXmlEnumU16 input3;

 // create strings for enumerations
 output3.setEnumString(0, "Enum0");
 output3.setEnumString(1, "Enum1");
 input3.setEnumString(0, "Enum0");
 input3.setEnumString(1, "Enum1");

 // write/read the test value
 filename = "EcXmlEnumType.xml";

 output3.writeToFile(filename);
 input3.readFromFile(filename);

 // print the output and input
 EcWARN("Example: EcXmlEnumType.\n");
 std::cout << "Output: " << output3.enumString() << std::endl;
 std::cout << "Input: " << input3.enumString() << std::endl;

 77

cast operator Cast to a basic type

< Less than operator.

clone Clone XML object.

equality Equality for an EcXmlObject pointer

newObject Factory method for an EcXmlObject pointer

selfTest Execute self test.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

isBasicType Returns true due to being a basic type

value Get enumeration value.

setValue Set enumeration value.

enumString Return the enumeration string based on current value.

setEnumString Set the specified enumeration string for the given value.

findEnumString Lookup the given string and return the appropriate
enumeration.

nullObject Static method for getting an empty object.

testValue Get a sample value for testing.

Table 6-6: List of methods in EcXmlEnumType. See the class documentation for details.

6.2.2 XML Object Containers for STL Containers
The Actin™ toolkit uses several STL containers. For read and write support, several XML
containers were created to complement the STL. Figure 6-2 illustrates the classes that provide
support for STL containers. Table 6-7 provides a summary description of these classes.

EcXmlPairTypeEcXmlMapType

EcXmlObject

EcXmlVectorType EcXmlSetType EcXmlPairTypeEcXmlMapType

EcXmlObject

EcXmlVectorType EcXmlSetType
Figure 6-2: Inheritance diagram for STL XML objects. These objects provide read and write
support to the STL containers.

 78

Class Description Example XML

EcXmlVectorType

 <ElementType>

XML vector type for adding
general vectors to an XML
description files. See Table
 6-8 for a list of type
definitions.

<jointTorques size=”2”>
 <element>1</element>
 <element>-2</element>
</jointTorques>

or

<jointTorques size=”2”>
 <group>1 -2</group>
</jointTorques>

EcXmlMapType

 <KeyType, ValueType>

XML map type for adding
general maps to an XML
description file. See Table
 6-10 for a list of type
definitions.

<integerMap>
 <element>
 <key>string1</key>
 <value>1</value>
 </element>
 <element>
 <key>string2</key>
 <value>2</value>
 </element>
</integerMap>

EcXmlSetType XML set type for adding
general sets to an XML
description file. See Table
 6-12 for a list of type
definitions.

<setType size="3">

 <group>4 7 8</group>

</setType>

EcXmlPairType XML pair type for adding
general pairs to an XML
description file. See Table
 6-14 for a list of type
definitions.

<pairType>

 <first>string1</first>

 <second>string2</second>

</setType>

Table 6-7 XML types for defining STL container member variables that have XML read/write
support. The member variables are registered by the registerComponents method for the class,
which needs to be a compound XML object as defined below (Table 6-17). Most of these XML
types are templates with many specific type definitions predefined at the bottom of the header files.

6.2.2.1 EcXmlVectorType
The following example, Text Box 6-8, illustrates how vector types can be used. The example
variables, input and output, are XML objects using the EcXmlVectorType class. The list of type
definitions is in Table 6-8. Table 6-9 shows the methods available through EcXmlVectorType.

 79

Text Box 6-8: Example code using EcXmlVectorType variables. This is Example Section #5 in the
XML example code.

Type Definition Template Type

EcXmlU32Vector EcXmlU32

EcXmlU32VectorVector EcXmlU32Vector

EcXmlInt32Vector EcXmlInt32

EcXmlInt32VectorVector EcXmlInt32Vector

EcXmlInt16Vector EcXmlInt16

EcXmlU16Vector EcXmlU16

EcXmlInt8Vector EcXmlInt8

EcXmlU8Vector EcXmlU8

EcXmlRealVector EcXmlReal

EcXmlRealVectorVector EcXmlRealVector

EcXmlRealVector3D EcXmlRealVectorVector

EcXmlStringVector EcXmlString

 // create a test value for writing
 // EcXmlRealVector is a type definition of
EcXmlVectorType<EcXmlReal>
 EcXmlRealVector output5;
 EcXmlRealVector input5;

 output5.resize(3);
 output5[0]=0;
 output5[1]=1;
 output5[2]=2;

 // write/read the test value
 filename = "EcXmlVectorType.xml";

 output5.writeToFile(filename);
 input5.readFromFile(filename);

 // print the output and input
 EcWARN("Example: EcXmlVectorType.\n");
 std::cout << "Output: " << output5[2] << std::endl;
 std::cout << "Input: " << input5[2] << std::endl;

 80

EcXmlStringVectorVector EcXmlStringVector

EcXmlStringVector3D EcXmlStringVectorVector

EcXmlBooleanVector EcXmlBoolean

EcXmlBooleanVectorVector EcXmlBooleanVector

Table 6-8: Type definitions for EcXmlVectorType contained in ecXmlVectorType.h.
EcXmlVectorType can be of any EcXmlObject type – not just basic types.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

Constructor with vector size Construct object and allocate vector size.

[] Get/Set by index.

clone Clone XML object.

equality Equality for an EcXmlObject pointer

newObject Factory method for an EcXmlObject pointer

selfTest Execute self test.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

pushBack Push a copy of an object onto the vector.

vectorContainer Get the vector container.

reserve Reserve space in the vector container.

resize Resize the vector container.

clear Clear all entries in the vector container.

assign Assign an object to a range of values.

 81

size Get the length of the vector.

leftRotate Left rotate by the specified amount.

nullObject Static method for getting an empty object.

testValue Get a test value of the element type.

Table 6-9: List of methods in EcXmlVectorType. See the class documentation for details.

6.2.2.2 EcXmlMapType
The following example, Text Box 6-9, illustrates how map types can be used. The example
variables, input and output, are XML objects using the EcXmlMapType class. The list of type
definitions is in Table 6-10. Table 6-11 shows the methods available through EcXmlMapType.

Text Box 6-9: Example code using EcXmlMapType variables. This is Example Section #4 in the
XML example code.

 // create a test value for writing
 // EcXmlStringU32Map is of type EcXmlMapType<EcXmlString,EcXmlU32>
 EcXmlStringU32Map output4;
 output4.add(EcString("key"),5);
 EcXmlStringU32Map input4;

 // write/read the test value
 filename = "EcXmlMapType.xml";

 output4.writeToFile(filename);
 input4.readFromFile(filename);

 // print the output and input
 EcWARN("Example: EcXmlMapType.\n");
 EcXmlU32 value;
 output4.lookup(EcString("key"), value);
 std::cout << "Output: " << value << std::endl;
 input4.lookup(EcString("key"), value);
 std::cout << "Input: " << value << std::endl;

 82

Type Definition Template Type

EcXmlStringStringMap <EcXmlString,EcXmlString>

EcXmlStringInt32Map <EcXmlString,EcXmlInt32>

EcXmlStringU32Map <EcXmlString,EcXmlU32>

EcXmlStringRealMap <EcXmlString,EcXmlReal>

EcXmlStringBooleanMap <EcXmlString,EcXmlBoolean>

EcXmlStringStringRealMap <EcXmlString,EcXmlStringRealMap>

EcXmlStringStringBooleanMap <EcXmlString,EcXmlStringBooleanMap>

Table 6-10: Type definitions for EcXmlMapType contained in ecXmlMapType.h. EcXmlMapType
can be of any EcXmlObject type – not just basic types. The first type has the same restrictions as
STL maps. That is, it is required to have a sorting operator.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

clone Clone XML object.

equality Equality for an EcXmlObject pointer

newObject Factory method for an EcXmlObject pointer

selfTest Execute self test.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

lookup Lookup a value from a key.

lookupPointer Lookup a value pointer from a key.

add Add a key/value pair.

 83

erase Erase a key/value pair.

clear Erase all key/value pairs, leaving an empty map.

mapContainer Get the map container.

keyIndex Get the index (the order in the map) of a key.

indexKey Get the key at an index location (the order in the map).

size Get the size of the map container.

nullObject Static method for getting an empty object.

testKey Get a test key of the element type.

testValue Get a test value of the value type.

Table 6-11: List of methods in EcXmlMapType. See the class documentation for details.

6.2.2.3 EcXmlSetType
EcXmlSetType is an XML object containers for STL sets. The list of type definitions is in Table
 6-12. Table 6-13 shows the methods available through EcXmlSetType.

Type Definition Template Type

EcXmlU32Set <EcXmlU32>

Table 6-12: Type definition for EcXmlSetType contained in ecXmlSetType.h. EcXmlSetType can
be of any EcXmlObject type – not just basic types. The template type has the same restrictions as
STL sets. That is, it is required to have a sorting operator.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

clone Clone XML object.

equality Equality for an EcXmlObject pointer

newObject Factory method for an EcXmlObject pointer

 84

selfTest Execute self test.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

add Add a key/value pair.

erase Erase a key/value pair.

clear Erase all key/value pairs, leaving an empty map.

setContainer Get the set container.

size Get the size of the map container.

nullObject Static method for getting an empty object.

Table 6-13: List of methods in EcXmlSetType. See the class documentation for details.

6.2.2.4 EcXmlPairType
EcXmlPairType is an XML object containers for STL pairs. The list of type definitions is in Table
 6-14. Table 6-15 shows the methods available through EcXmlPairType.

Type Definition Template Type

EcXmlStringStringPair <EcXmlString, EcXmlString >

EcXmlStringU32Pair <EcXmlString, EcXmlU32>

EcXmlU32U32Pair <EcXmlU32, EcXmlU32>

Table 6-14: Type definition for EcXmlPairType contained in ecXmlPairType.h. EcXmlPairType
can be of any EcXmlObject type – not just basic types. The first and second template types have the
same restrictions as for STL pairs. That is, they are required to have a sorting operator.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

 85

clone Clone XML object.

equality Equality for an EcXmlObject pointer

newObject Factory method for an EcXmlObject pointer

selfTest Execute self test.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

first Get the first value.

setFirst Set the first value.

second Get the second value.

setSecond Set the second value.

set Set both the first and second values.

pairContainer Get the pair container.

nullObject Static method for getting an empty object.

Table 6-15: List of methods in EcXmlPairType. See the class documentation for details.

6.2.3 Compound XML Objects
Compound XML objects enable a developer to build detailed objects using simple XML objects or
other compound XML objects. Figure 6-3 illustrates the compound XML class.
EcBaseExpressionTreeElement is the compound type needed for base expression tree containers.
Table 6-16 provides a summary description of this class.

 86

EcXmlObject

EcXmlCompoundType

EcBaseExpressionTreeElement

EcXmlObject

EcXmlCompoundType

EcBaseExpressionTreeElement

Figure 6-3: Inheritance diagram for the compound XML objects. Analogous to C++ class, this
compound type can contain a combination of simple objects, STL containers, and other static and
variable compound objects.

Name Description

EcXmlCompoundType Defines an abstract XML type with a fixed set of compound
XML data. Each element in the set is registered in
registerComponents. The EcGeneralMotion class is an
example compound XML object containing two
EcXmlVectors for linear and angular motion.

EcBaseExpressionTreeElement Defines an abstract XML base class for the element types of
EcBaseExpressionTreeContainer and the other variable
compound types. It holds the pointer to the container for all
expression elements. For example, EcExpressionElement
inherits this base class.

Table 6-16: Base classes for defining compound XML object types. For a complete description, see
the class documentation.

6.2.3.1 EcXmlCompoundType Description
Many classes in the toolkit have member variables that are statically defined at load-time, but are
configurable during run-time (e.g., through a configuration file). The EcXmlCompoundType class is
generally used for classes like these. Table 6-17 shows the methods of EcXmlCompoundType. The
methods highlighted in blue are often overridden by the developer and are described in more detail in
this section.

Method Description

Big Four Most classes within the code base require the “Big Four”: default
constructor, destructor, copy constructor, and assignment
operator.

== Equivalence operator.

 87

registerComponents Abstract method for registering the components of the XML
object.

xmlInit Initialize XML object. It also calls registerComponents.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

readValueFromSpecialToken Read value from unregistered token. Specialized reading can be
done here. The default method prints a warning that an
unregistered token was encountered.

registerComponent Register a single component.

componentMap Get a reference to the component map.

registerAttributeComponent Register a single attribute component.

attributeComponentMap Get a reference to the component attribute map.

hasChildren Return EcTrue if there are children elements.

hasAttributes Return EcTrue if there are attributes in the element.

readValueFromToken Reads an XML object corresponding to a token from a stream.

readAttributeFromToken Reads an XML attribute corresponding to a token.

newComponentMap Factor method for the component map.

createComponentMap Create a component maps.

createAttributeComponentMap Create attribute component map.

Table 6-17: List of methods in EcXmlCompoundType. The blue highlighted methods are the
typically overridden methods. See the class documentation for details.

The abstract method, registerComponents, is used for registering the member variables, attributes,
and enumerations of the class. If none of these items exist, the method can be empty. Text Box 6-10
shows an example definition.

 88

Text Box 6-10: Example definition for registerComponents. If EcXmlExample is subclassed, its
registerComponents method will need to call EcXmlExample’s version.

The registerComponents method is called from the xmlInit method of the EcXmlCompoundType
class. xmlInit does not generally need to be overridden – that is, the definition in
EcXmlCompoundType is usually appropriate for its children. Text Box 6-11 shows an example
definition for xmlInit. Class specific initializations can be added to this method. If EcXmlExample is
further subclassed, the children of EcXmlExample need to call EcXmlExample::xmlInit instead of
EcXmlCompoundType::xmlInit.

Text Box 6-11: Example definition for xmlInit.

Text Box 6-12 shows an example definition for read. The read method generally performs three
actions:

1. Pre-load initializations such as freeing memory.

2. Read configuration file for the registered variables and their children.
EcXmlCompoundType::read iterates over the registered variables. If EcXmlExample is
subclassed, the subclass needs to call EcXmlExample::read.

3. Post-load initializations. At this point, the configuration file settings can be used for
initialization.

Steps 1 and 3 are often omitted. With steps 1 and 3 omitted, the EcXmlExample::read method can
also be omitted. With this omission, the EcXmlCompoundType::read method would be called in its
place.

EcBoolean EcEndEffector::xmlInit
 (
)
{
 if(EcXmlCompoundType::xmlInit())
 {
 // place class specific XML initializations here
 return EcTrue;
 }
 else
 {
 return EcFalse;
 }

}

void EcEndEffector::registerComponents
 (
)
{
 // register components (string, XML object reference)
 registerComponent(EcLinkIdentifierToken,&m_LinkIdentifier);
 registerComponent(EcRelativeLinkDataToken,&m_RelativeLinkData);
 registerComponent(EcIsHardConstraintToken,&m_IsHardConstraint);
 registerComponent(EcEditingLabelsToken,&m_EditingLabels);
}

 89

The read method can also be customized for speed. For example, the EcXmlVectorVector class is a
highly used class with a customized read function for faster reading. The tradeoff is that less error
checking is performed during reading. Section 6.3 describes these read functions.

Text Box 6-12: Example definition for the read method.

Text Box 6-13 shows an example definition for write. The write method generally performs two
actions:

1. Write configuration file for registered variables and their children.
EcXmlCompoundType::write iterates over the registered variables. If EcXmlExample is
subclassed, the subclass needs to call EcXmlExample::write.

2. Write unregistered variables.

Step 2 is often unnecessary. If step 2 is omitted, the EcXmlExample::write method can also be
omitted. With this omission, the EcXmlCompoundType::write method would be called in its place.

Text Box 6-13: Example definition for the write method.

Text Box 6-14 shows an example definition for writeSchema. The writeSchema method generally
performs two actions that are analogous to the steps for the write method:

EcBoolean EcEndEffector::write
 (
 EcXmlWriter& stream
) const
{
 EcBoolean retVal= EcXmlCompoundType::write(stream);

 // Manually write out unregistered variables here

 return retVal;

}

EcBoolean EcEndEffector::read
 (
 EcXmlReader& stream
)
{
 // Place load initializations here. For example, pointers to
members
 // about to be loaded can be deleted. Oftentimes, nothing needs
to be
 // done before reading.

 EcBoolean retVal= EcXmlCompoundType::read(stream);

 // Now that the configuration file settings have been loaded for
this
 // object, further initializations can be performed here.

 return retVal;

}

 90

1. Write schema for registered variables and their children.
EcXmlCompoundType::writeSchema iterates over the registered variables. If EcXmlExample
is subclassed, the subclass needs to call EcXmlExample::writeSchema.

2. Write schema for unregistered variables.

Step 2 is often unnecessary. If step 2 is omitted, the EcXmlExample::writeSchema method can also
be omitted. With this omission, the EcXmlCompoundType::writeSchema method would be called in
its place.

Text Box 6-14: Example definition for the writeSchema method.

The readValueFromSpecialToken method is only needed when unregistered variables are read.
Generally, this method is left empty which is the default definition in EcXmlCompoundType.

6.2.3.2 Adding Child Members to EcXmlCompoundType
The primary benefit of subclassing from EcXmlCompoundType lies in the ability to easy add new
data to the object in form of a member variable that is subclassed from EcXmlObject. Any subclass
of EcXmlObject can be added as a child member to a subclass of EcXmlCompoundType through the
following procedure:

1. Add the new object as a class member variable and include it in the copy constructor and
operator=() definitions.

2. Establish a new string token to define it

3. Register the new variable with the token inside the class

6.2.4 Variable Compound XML Objects
Variable compound XML objects enable a developer to build detailed objects with a selection of
subclassed compound XML objects. Figure 6-4 illustrates the compound XML class. Table 6-18
provides a summary description of the variable compound classes.

EcXmlVariableVectorType

EcXmlBaseVariableCompoundType

EcBaseExpressionTreeContainerEcXmlVariableElementType

EcXmlObject

EcXmlVariableVectorType

EcXmlBaseVariableCompoundType

EcBaseExpressionTreeContainerEcXmlVariableElementType

EcXmlObject

EcBoolean EcEndEffector::writeSchema
 (
 EcXmlSchema& stream
) const
{
 EcBoolean retVal= EcXmlCompoundType::writeSchema(stream);

 // Manually write out schema for unregistered variables here

 return retVal;

}

 91

Figure 6-4: Inheritance diagram for the variable compound XML objects.

Name Description

EcXmlBaseVariableCompoundType Defines an abstract base class for the following three classes:
EcXmlVariableElementType, EcXmlVariableVectorType,
EcBaseExpressionTreeContainer. These classes are for
building useful containers.

EcXmlVariableElementType

 <ExpressionType>

Defines a container that can hold any compound and variable
compound object.

EcXmlVariableVectorType

 <ElementType>

Defines an abstract XML type with a vector of configurable
(i.e., polymorphic) compound XML data types. Each element
in the vector has a common base class as defined by
ElementType. All options for the vector elements must be
registered in registerComponentCreators or set through a
factory method. The EcEndEffectorVector class is an
example. The options for the vector are EcPointEndEffector,
EcFrameEndEffector, and EcXyEndEffector with each using
the EcEndEffector base class which is the ElementType.

EcBaseExpressionTreeContainer

 <ExpressionType>

Defines an abstract XML base class for a logical expression
tree. Each element in the tree has a common base class of
ExpressionType. All options for the tree elements must be
registered in registerComponentCreators. The
EcExpressionContainer class is an example. There are many
expression element options defined in EcExpressionContainer
with each having a common base class called
EcExpressionElement which is the ElementType.

Table 6-18: Base classes for defining compound XML object types. For a complete description, see
the class documentation.

6.2.4.1 EcXmlBaseVariableCompoundType
EcXmlBaseVariableCompoundType is an abstract base class for EcXmlVariableElementType,
EcXmlVariableVectorType, and EcBaseExpressionTreeContainer. Each of theses classes is a
container that holds other compound XML objects. These containers can be subclassed to develop
new containers that have registered members which can be defined polymorphically as specified by
the XML file. Figure 6-5 illustrates how the container is assigned its content.

 92

Container

A B C

Container

A B

C

XML

C++ Classes Matching
the Container’s Interface

Class C is selected using
XML

Figure 6-5: Each of the containers defined through EcXmlBaseVariableCompoundType provides an
interface. There may be multiple classes that can meet this interface—such as those illustrated as A,
B, or C. These classes may be defined using dynamic link libraries that are written after the simulator
is created or they can be added through a factory object. This will support easy enhancement of the
simulator. The object used at run time is specified though an XML language.

Table 6-19 shows the methods of EcXmlBaseVariableCompoundType.

Method Description

Big Four Most classes within the code base require the “Big Four”: default
constructor, destructor, copy constructor, and assignment
operator.

== Equivalence operator.

token Abstract method for getting a string token which describes the
object.

registerComponentCreators Abstract method for registering the components creators of the
XML object.

xmlInit Initialize XML object. It also calls registerComponentCreators.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

readValueFromToken Abstract method that reads an XML object corresponding to a
token from a stream. The three subclasses define this method, so
the developer can generally use it as is.

registerComponentCreator Register a single optional component.

 93

newObjectFromToken Create a new object from its token.

Table 6-19: List of methods in EcXmlBaseVariableCompoundType. The blue highlighted methods
are the typically overridden methods.

The token and registerComponentCreators methods are the only “blue” methods that are unique
from the EcXmCompoundType class. These abstract methods need a definition by the subclass.
Example definitions are in Text Box 6-15 and Text Box 6-16.

Text Box 6-15: Example definition for token. classToken is a static function defined by
EcXmlExample.

Text Box 6-16: Example definition for registerComponentCreators. The methods, classToken and
creator, are defined below

Each registered variable needs a static classToken and creator method. Here are example definitions
for these methods.

void EcExpressionContainer::registerComponentCreators
 (
)
{
 // register component creators (string, &creator())

 // register scalar constants
 registerComponentCreator
 (
 EcExpressionScalarConstant::classToken(),
 EcExpressionScalarConstant::creator
);

 // register plus
 registerComponentCreator
 (
 EcExpressionPlus::classToken(),
 EcExpressionPlus::creator
);

}

const EcString& EcExpressionContainer::token
 (
) const
{
 return EcExpressionContainerToken;

}

 94

Text Box 6-17: Example definition for creator.

Every subclass of EcXmlBaseVariableCompoundType now has a member variable that is an instance
of the class EcXmlFactory. A factory creates objects of any XML-configurable class from a string
token.

The interface to EcXmlFactory is defined primarily through the following two methods:
 virtual void registerComponentCreator
 (
 const EcToken& token,
 EcXmlObjectCreator creator
);

 virtual EcXmlObject* newObjectFromToken
 (
 const EcToken& token
) const;

The first method, registerComponentCreator() registers a static creator method with a token. This
can be called any number of times with new creator functions and new tokens. Once all the relevant
creator functions have been registered, newObjectFromToken() can be called to allocate memory and
create a new object of the type signaled by the token—provided this token had been used in an
earlier registration. (The method returns NULL if no creator function is registered for the given
token.)

This new use of EcXmlFactory standardizes the method of creating objects for all subclasses of
EcXmlBaseVariableCompoundType. It also plays a new, important role. A developer creating a new
system can register creators with a master factory that is used throughout the load process. So, rather
than register new creator functions in remote portions of the XML database that defines the robot
simulation, the creator function can be registered in one place.

The process of loading new object types using this new method is described through the following
steps:

1. Create an EcXmlFactory object. Call it “factory,” say.

2. Register the new class type you want to load by calling factory.registerComponentCreator()
with a creator function and a unique string token.

3. Create an EcXmlReader object. Call it “reader,” say.

4. Provide a pointer for the factory to the reader, through reader.setFactoryPointer().

5. Create an object of the type you want to read. Call it “object,” say.

6. Read the object from an XML file that contains the new type of data you want to load using
object.read(reader).

EcXmlObject* EcExpressionScalarConstant::creator
 (
)
{
 EcXmlObject* retVal=new EcExpressionScalarConstant ();

 return retVal;
}

 95

6.2.4.2 EcXmlVariableElementType
The EcXmlVariableElementType class inherits the EcXmlBaseVariableCompoundType class and
supports the development of containers that have registered members that are defined
polymorphically as specified by the XML file. This class is unique in that it can contain one
EcXmlCompoundType, EcXmlVariableVectorType, EcXmlVariableElementType, or
EcBaseExpressionTreeContainer object. The table below shows the methods of
EcXmlVariableElementType.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

readValueFromToken Reads an XML object corresponding to a token from a stream.

element Get a pointer to the contained element.

setElement Set the element through a copy.

Table 6-20: List of methods in EcXmlVariableElementType. The blue highlighted methods are the
typically overridden methods.

6.2.4.3 EcXmlVariableVectorType
The EcXmlVariableVectorType class supports the development of vectors where each element is
defined polymorphically as specified by the XML file. The table below shows the methods of
EcXmlVariableVectorType.

Method Description

Big Four Most classes within the code base require the “Big Four”: default
constructor, destructor, copy constructor, and assignment
operator.

== Equivalence operator.

Constructor with vector size Construct object and allocate vector size.

[] Get/Set by index.

registerComponentCreators Abstract method for registering the components creators of the
XML object.

 96

xmlInit Initialize XML object. It also calls registerComponentCreators .

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

writeSchema Write the schema for this object to an XML stream.

readValueFromToken Reads an XML object corresponding to a token from a stream.

pushBack Push a copy of an object onto the vector.

vectorContainer Get the vector container.

reserve Reserve space in the vector container.

resize Resize the vector container.

clear Clear all entries in the vector container.

assign Assign an object to a range of values.

size Get the length of the vector.

registerComponentCreator Register a single optional component.

newObjectFromToken Get a reference to the component map.

Table 6-21: List of methods in EcXmlVariableVectorType. The blue highlighted methods are the
typically overridden methods.

6.2.4.4 EcBaseExpressionTreeContainer
The EcBaseExpressionTreeContainer class inherits the EcXmlBaseVariableCompoundType class
and supports the development of containers that have registered members that are defined
polymorphically as specified by the XML file. This container supports the development of tree
structures such as unary and binary trees. The table below shows the methods of
EcBaseExpressionTreeContainer.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

read Reads an XML object from an XML stream.

write Writes an XML object to an XML stream.

 97

writeSchema Write the schema for this object to an XML stream.

setTopElementContainerToThis Set the container pointer for the top element to this.

readValueFromToken Reads an XML object corresponding to a token from a stream.

topElement Get a pointer to the top expression.

setTopElement Set the top expression through a copy.

setAndDeleteTopElementPointer Set the top expression pointer and later deletes this pointer.

Table 6-22: List of methods in EcBaseExpressionTreeContainer. The blue highlighted methods are
the typically overridden methods.

The setTopElementContainerToThis method is the only “blue” method that is unique from the other
complex XML class methods. Here is an example definition of setTopElementContainerToThis.

Text Box 6-18: Example definition for setTopElementContainerToThis.

6.2.4.5 EcBaseExpressionTreeElement
The EcBaseExpressionTreeElement class inherits the EcXmlCompoundType class and is a base class
for all the elements that get registered in registerComponentCreators of
EcBaseExpressionTreeContainer. It holds a pointer to the container, and it contains the get and set
methods for the container. The table below shows the methods of EcBaseExpressionTreeElement.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

token Abstract method for getting a string token which describes the

void EcExpressionContainer::setTopElementContainerToThis
 (
)
{
 // m_pTopElement points to the top element in the tree.
 // it is contained in EcBaseExpressionTreeContainer
 if(m_pTopElement)
 {
 m_pTopElement->setContainer(this);
 }
}

 98

object.

registerComponents Registers components for class.

setContainer Set the container.

container Get the container.

Table 6-23: List of methods in EcBaseExpressionTreeElement. The blue highlighted methods are
the typically overridden methods.

The setContainer method is generally overridden for branching classes such as for
EcExpressionBaseBinary. Here is an example definition of setContainer.

Text Box 6-19: Example definition for setContainer.

Below is an illustration of the read, write, writeSchema, and readValueFromSpecialToken methods
from EcExpressionBaseBinary. The EcExpressionBaseBinary class is a branching class that does
not have any registered variables of its own, but creates new elements based on the registered
components of the container. The container class is EcExpressionContainer. These examples
illustrate some of the variations that can occur.

Text Box 6-20: Example definition for the EcExpressionBaseBinary read method.

void EcBaseExpressionTreeElement::setContainer
 (
 const EcXmlBaseVariableCompoundType* container
)
{
 m_pContainer=container;

 // If EcXmlExample is a branching class (e.g., EcExpressionBaseBinary)
 // set containers for children here.
}

EcBoolean EcExpressionBaseBinary::read
 (
 EcXmlReader& stream
)
{
 // free memory and set the child pointers to null.
 EcDELETE(m_pLeft);
 EcDELETE(m_pRight);

 EcBoolean retVal=EcExpressionElement::read(stream);

 return retVal;

}

 99

Text Box 6-21: Example definition for the EcExpressionBaseBinary write method.

EcBoolean EcExpressionBaseBinary::write
 (
 EcXmlWriter& stream
) const
{
 // write all the composite types
 EcBoolean retVal=EcExpressionElement::write(stream);

 // write the left child
 if(m_pLeft)
 {
 stream.writeStartTag(m_pLeft->token());

 m_pLeft->write(stream);

 stream.writeEndTag();
 }

 // write the right child
 if(m_pRight)
 {
 stream.writeStartTag(m_pRight->token());

 m_pRight->write(stream);

 stream.writeEndTag();
 }

 return retVal;

}

 100

Text Box 6-22: Example definition for the EcExpressionBaseBinary writeSchema method.

EcBoolean EcExpressionBaseBinary::writeSchema
 (
 EcXmlSchema& stream
) const
{
 // write all the composite types
 EcBoolean retVal = EcExpressionElement::writeSchema(stream);

 if(container())
 {
 // create left child
 container()->writeSchema(stream);

 // create right child
 container()->writeSchema(stream);
 }

 return retVal;

}

 101

Text Box 6-23: Example definition for the EcExpressionBaseBinary readValueFromSpecialToken
method.

6.2.4.6 EcXmlFactory
The variable compound class containers have a creator map that holds the options for each container.
The options are set through the registerComponentCreator method. The EcXmlFactory class enables

EcBoolean EcExpressionBaseBinary::readValueFromSpecialToken
 (
 const EcToken& token,
 EcXmlReader& stream
)
{
 EcBoolean retVal=EcTrue;

 if(container())
 {
 // create the element from a creator function in the container's map
 EcExpressionElement* element=
 dynamic_cast<EcExpressionElement*>(
 container()->newObjectFromToken(token));

 // if there was no registered function for the token or it was not
 // registered as an EcExpressionElement, an error occurred.
 if(element==0)
 {
 retVal=EcFalse;
 }
 else
 {
 // if the pointer is OK, set its container to this.
 element->setContainer(container());

 // and read the data from the stream
 element->read(stream);
 }

 // set the left and right elements in that order
 if(m_pLeft==0)
 {
 // we haven't yet set the left child--set it now
 m_pLeft=element;
 }
 else
 {
 // we have set the left element--set the right one
 EcDELETE(m_pRight);
 m_pRight=element;
 }
 }
 else
 {
 // warn the user
 EcWARN("Bad token: %s on line %d\n",
 token.c_str(),stream.lineCountOfFile());
 return EcFalse;
 }

 return retVal;

}

 102

the developer to add options without having to subclass the registerComponentCreator. The table
below shows the methods of EcXmlFactory.

Method Description

Big Four Most classes within the code base require the “Big Four”:
default constructor, destructor, copy constructor, and
assignment operator.

== Equivalence operator.

registerComponentCreator Add a token and creator to the factory map.

newObjectFromtoken Given a token, return an object.

Table 6-24: List of methods in EcXmlFactory.

Here is example code for using the factory class.

Text Box 6-24: Example code for XML factory class.

This concludes the description of the XML objects. The next section describes the XML reader and
writer streams used by the XML objects.

6.3 XML Reading and Writing XML Objects
The previous section shows how to create XML objects. This section shows how to read and write
the XML given an XML object. Many of the details of actually reading and writing XML are hidden
in the XML objects. This section describes the interface to the XML reader and writer so that a
developer can directly utilize this interface when necessary.

// initialize the factory
EcXmlFactory factory;
factory.registerComponentCreator

(
EcFirstClass::classToken(),
EcFirstClass::creator
);

factory.registerComponentCreator
(
EcSecondClass::classToken(),
EcSecondClass::creator
);

// add factory to XML reader
EcXmlReader reader;
Reader.setFactoryPointer(&factory);

// read XML file and set test object
// XML file can contain new tokens as contained in factory above.
testObject.readFromFile(filename);

 103

6.3.1 Top Level Interface for Reading and Writing
There are several options for reading and writing XML data including plain text, compressed text,
URLs (read only), TCP streams, and general streams. The XML files can also contain XLinks which
redirect the XML reader to a URL for getting XML fragments.

6.3.1.1 Plain Text, Compressed Text, and URLs
Two primary functions exist in EcXmlObject for reading and writing XML files: readFromFile and
writeToFile. Given an XML object and a file name with .xml or .ecx file extension, these functions
can read and write the files. Depending on the file name, these functions can read/write a plain,
compressed, or URL file. If the file name ends with “.gz” (the typical gzip suffix) or .ecz, then the
file is inflated upon reading and compressed upon writing. If the file name starts with “http://”, then
the URL is read.

Text Box 6-25 shows an example for reading and writing an XML file. Text Box 6-26 illustrates
options for filename specification.

Text Box 6-25: Example code for reading and writing an XML file.

Text Box 6-26: Example filenames supported by the toolkit. The URL option only works when
reading XML files.

The compression option uses ZLIB. ZLIB compression is compatible with GZIP, so any third party
GZIP utility can open these files.

6.3.1.2 TCP Streams
TCP streams provide capability to read and write to a TCP socket. This is useful for a distributed
environment. Text Box 6-27 contains an example usage for reading and writing to TCP streams.

 // Plain text
 EcString filename="xmlObject.ecx";

 // Compressed text
 EcString filename="xmlObject.ecz";

 // URL
 EcString filename="http://www.energid.com/XML/xmlObject.xml";

 // write XML object to file
 xmlObject.writeToFile(filename);

 // read XML object from file
 xmlObject.readFromFile(filename);

 104

Text Box 6-27: Example code for reading and writing an XML file using a TCP socket. pSocket is
a pointer to a TCP socket. An IP address and port is all that is needed to open the TCP socket. The
toolkit also provides mutex support which may be needed for controlling communication between a
client and server.

6.3.1.3 Generic Streams
The XML reader and writer utilize the standard template library istream and ostream respectively. A
developer can create new streams based on istream and ostream for XML reading and writing. The
methods, readFromStream and writeToStream, are used for this purpose. These methods take a
stream reference instead of a filename. The developer needs to open the stream before the call. Text
Box 6-28 shows an example.

Text Box 6-28: Example use of readFromStream and writeToStream. This example uses a string to
transfer the contents of one XML file to another. readFromBuffer and writeToBuffer are available to
perform this task more concisely. This is Example Section #9 in the XML example code.

Through the use of readFromStream and writeToStream, the developer can create new streams for
use in the toolkit. Several streams have been created that are available to the user. The table below
shows the list of options.

 // Transfer internal data from xmlObject1 to xmlObject2 through a string.
 // This is equivalent (albeit slower) to writing
 // xmlObject1=xmlObject2

 // create output string stream
 std::ostringstream outputStream;

 // put xmlObject1’s data into string stream
 xmlObject1.writeToStream(outputStream, “buffer”);

 // transfer data to xmlString.
 // xmlString contains full contents of an XML file.
 EcString xmlString = outputStream.str();

 // create input string stream, and initialize with xmlString
 std::istringstream inputStream(xmlString);

 // put contents of xmlString into xmlObject2
 xmlObject2.readFromStream(inputStream, “buffer”);

 // Create a socket
 EcTCPSocket* pSocket = new EcTCPSocket();

 // Connect to the server
 pSocket->connect(EcString("127.0.0.1"), 6689);

 // write XML object to socket
 xmlObject.writeToTcpSocket(pSocket);

 // read XML object from socket
 xmlObject.readFromTcpSocket(pSocket);

 105

Stream Name Include File Open File Example

Compressed Input Stream ecIfGzStream.h EcIfGzStream ifs(filename);

Compressed Output Stream ecOfGzStream.h EcOfGzStream ofs(filename);

TCP I/O Stream ecTcpStream.h EcTcpStream tcp(pSocket);

HTTP Input Stream ecIfHttpStream.h EcIfHttpStream ifs(url);

Compressed I/O String Stream ecGzStringStream.h EcGzStringStream ifs(string);

Table 6-25: List of available streams.

6.3.1.4 XLinks
Similarly to HTML, XLink provides a hyperlink capability to XML using an attribute-based syntax.
Although XLink has a wider range of capabilities, our code base supports the HTML-like absolute
and relative unidirectional hyperlinks. The XML standard defines an XLink namespace for this task.
Text Box 6-29 illustrates the usage of XLink.

Text Box 6-29: XLink example.

Line 1 defines the namespace for XLink. Line 2 and Line 4 illustrate absolute and relative URLs
respectively (these two lines are redundant – only one of them is needed). The absolute URL
capability enables users to get XML files from any worldwide location. The relative URL capability
provides a useful technique for putting “include” files in an XML file. This will enable the larger
input files to be broken down by objects into more manageable files. These smaller files can be
reused in several locations. Although the include files are fragments of a larger XML input file, each
fragment must also be a well-formed XML file.

6.3.2 Direct Interface to the XML Reader and Writer
The XML reader and writer can be called directly for reading or constructing an XML file. This
interface is sometimes needed when building new XML objects.

6.3.2.1 XML Reader
Table 6-26 shows the methods available for reading XML files. The readXml method reads events
based on XML syntax and stores the information of that event in the EcXmlReader object. An event
can be a start tag, empty tag, content, end tag, end-of-file, and error. The event type is returned by
readXml and it can also be accessed through mode. Each tag (i.e., start, empty, and end tag) has an
element name that can be accessed through element. If the event is a start tag or empty tag, attribute
names and values may be available. The numOfAttributes method returns the number of attributes
read. The attribute names and values can be returned through attributeName and attributeValue.
The attribute name and value pairs are stored in a stack. Every time attributeValue is called, the

1 <root xmlns:xlink = "http://www.w3.org/1999/xlink">
2 <include xlink:type = "simple" xlink:href =
3 "http://www.energid.com/XML/EcTableFunctionContainer.xml"/>
4 <include xlink:type = "simple" xlink:href =
5 "EcTableFunctionContainer.xml"/>
6 </root>

 106

stack is popped and the next attribute pair is available. The remainingNumOfAttributes method is
available for determining the current size of the attribute stack. If the event is content, then the
content, contentByWord, and contentCount methods are available for getting the content. content
returns the whole content as a string. contentByWord and contentCount are useful for getting list
content one word at a time. Since content is returned as a string, string streams are useful for
converting to other types of data.

A set of fast methods are available for quickly reading an XML file. Error checking and storage of
XML data is turned off when using these methods. For example, the element method will return an
empty string when only fast methods are used.

Method Description

readXml Finds the next start tag, content, end tag, or end of file –
whichever is next in the stream.

mode Gets the XML_READER_MODE from the last readXml call
which can be EOF_FOUND, START_TAG, END_TAG,
EMPTY_TAG, CONTENT, or ERROR_FOUND.

element Gets start tag element name.

attributeName Gets next attribute name.

attributeValue Gets next attribute value. Prior to returning the value, the current
attribute name and value are deleted from memory.

numOfAttributes Gets number of attributes in start tag.

remainingNumOfAttributes Gets the remaining number of attributes in memory.

content Get content.

contentByWord Get content by word. This is useful for content lists.

contentCount Get the number of words in content.

filename Get the filename.

lineCountOfFile Get the current line number in file.

nextMatchingEndTag Skip to next matching end tag in file. This is useful if the XML
object does not recognize the element name in the start tag. The
full tag is skipped by this method call.

stream Get stream reference. The XML object can use the stream to
parse the file using an alternate method.

getComplexStartTagFast Fast approach for getting next start tag. It is assumed that the
start tag has attributes. Returns element name.

 107

getSimpleStartTagFast Fast approach for getting next start tag. It is assumed that there
are no attributes in start tag. Returns element name.

getAttributeValueFast Fast approach for getting next attribute value. Returns next
attribute value.

getLastAttributeValueFast Needed for getting last attribute value. It reads up to content or
next start tag. Returns last attribute value.

getContentByWordFast Fast approach for getting content word by word. Returns next
content word. The number of words needs to be known through
the attributes or known a priori (e.g., EcXmlVector is always of
size 3).

getEndTagFast Fast approach for getting end tag.

Table 6-26: List of methods in EcXmlReader.

Text Box 6-30 illustrates some of the methods of EcXmlReader. This example resembles the read
method of EcXmlVectorVector for reading one EcXmlVector.

 108

Text Box 6-30: Example of reading an XML file. This example was largely extracted from
EcXmlVectorVector for the reading of one EcXmlVector.

6.3.2.2 XML Writer
Table 6-27 shows the methods available for writing XML files. The writeStartTag method writes
out a start tag with the element name that is passed to it. When the root element is written (i.e., the
first start tag), a header is written prior to the tag. The majority of elements in the toolkit are part of
a namespace. There are a few elements that are generic and belong to the parent’s namespace. For
example, the “element” tokens of EcXmlVectorVector are not associated with any namespace. The
writeStartTagUsingParentNamespace method is used for these start tags. A start tag can optionally
have attributes. The attribute name is written using setAttributeName. Attribute values are written
using the << output operator. If the start tag has children, the EcXmlObject write method traverses
the children. If the start tag has basic content (e.g., int, float, …), the << output operator is also used
for writing the content. The << operator can be used repetitively for list content. The default
number of columns for list data is 10, which can be changed through setNumOfContentColumns.
The writeEndTag method closes the element.

 // create XML reader (assume ifs, an istream, is available)
 EcXmlReader stream(filename,ifs);

 // read empty tag with 3 attributes (EcXmlVector)
 EcXmlFileReader::XML_READER_MODE mode = stream.readXml();

 // empty tag expected for EcXmlVector
 if (mode != EcXmlFileReader::EMPTY_TAG)
 {
 EcWARN
 ("EcXmlVector Error: file not well formed.\n\tEmpty tag expected."
 "\n\tFile: %s\n\tLine: %d",
 stream.filename(), stream.lineCountOfFile());
 }

 // could warn if size != 3 which is necessary for EcXmlVector
 EcU16 size = stream.numOfAttributes();

 // loop through attributes
 for(EcU32 ii=0; ii<size; ++ii)
 {
 // the attribute name
 EcString token = stream.attributeName();

 if (token == EcVectorXToken)
 {
 m_Vector[0]=atof(stream.attributeValue().c_str());
 }
 else if (token == EcVectorYToken)
 {
 m_Vector[1]=atof(stream.attributeValue().c_str());
 }
 else if (token == EcVectorZToken)
 {
 m_Vector[2]=atof(stream.attributeValue().c_str());
 }
 }

 // no need to read end tag, because this tag was empty

 109

Method Description

writeStartTag Write start tag.

writeStartTagUsingParentName
space

Write start tag. The element does not have a namespace so the
parent’s namespace is used.

setAttributeName Write attribute name.

<< Output stream operator for writing data (i.e., attribute values and
content).

setNumOfContentColumns Sets the number of content columns. Used for lists.

writeEndTag Write end tag.

indent Get indent string.

setIndent Set indent string.

defaultIndent Get default indent string.

setDefaultIndent Set default indent string.

header Get header for XML file.

setHeader Set header for XML file.

defaultHeader Get default header for XML file.

setDefaultHeader Set default header for XML file.

styleSheet Get style-sheet name.

setStyleSheet Set style-sheet name.

defaultStyleSheet Get default style-sheet name.

setDefaultStyleSheet Set default style-sheet name.

schemaInstance Get schema instance.

setSchemaInstance Set schema instance.

defaultSchemaInstance Get default schema instance.

setDefaultSchemaInstance Set default schema instance.

 110

schemaLocation Get schema location.

setSchemaLocation Set schema location.

defaultSchemaLocation Get default schema location.

setDefaultSchemaLocation Set default schema location.

setLanguageSelection Set XML language (e.g., MCML).

setDefaultLanguageSelection Set default XML language.

Table 6-27: List of methods in EcXmlWriter.

Text Box 6-31 illustrates some of the methods of EcXmlWriter. This example resembles the write
method of EcXmlVectorVector for writing one EcXmlVector.

Text Box 6-31: Example of writing an XML file. This example was largely extracted from
EcXmlVectorVector for the printing of one EcXmlVector.

6.4 Schema

6.4.1 XML Namespaces
The Actin™ Toolkit uses several XML namespaces. These namespaces impact the schema auto-
generator in several ways, so a brief discussion of XML namespaces is warranted. The toolkit has
four namespaces as shown in Figure 6-6.

 // create XML writer (assume ofs, an ostream, is available)
 EcXmlWriter stream(filename,ofs);

 // write the start tag
 stream.startTag(EcElementToken);

 // write the attribute name and value for X.
 stream.attributeName(EcVectorXToken);
 stream<<x;

 // write the attribute name and value for Y.
 stream.attributeName(EcVectorYToken);
 stream<<y;

 // write the attribute name and value for Z.
 stream.attributeName(EcVectorZToken);
 stream<<z;

 // No content … empty tag
 stream.endTag();

 111

Figure 6-6: The toolkit contains four XML namespaces: simulation, control, manipulator, and core.
The upper namespaces import the lower namespaces. The prefix matches the last token of the URI.

The four XML namespaces were created to support the robotics simulation, control, and manipulator
and core algorithms. If the developer uses the toolkit to create a simulation, then the “simulation”
namespace is the root namespace, which means that the root element of the XML file is in the
“simulation” namespace. In general, the “simulation” namespace imports the other namespaces in
the order presented in Figure 6-6. Intermediate namespaces can also be skipped; for example, the
“simulation” namespace elements can have “core” elements as their immediate children.

The XML writer within the toolkit places namespaces on all elements, but not on attributes. It is
assumed that attributes belong to the namespace of their element, unless explicitly placed in another
namespace. All elements and attributes are defined as tokens in the token header files for their
respective project. The XML namespace is embedded within the token using the following syntax.

Text Box 6-32: Token syntax.

Here is an example:

 const EcToken tokenContainer = “URI#token”;

Simulation
sm

http://www.energid.com/namespace/sm

Namespace
Prefix

URI

Control
ct

http://www.energid.com/namespace/ct

Manipulator
mn

http://www.energid.com/namespace/mn

Core
cr

http://www.energid.com/namespace/cr

Simulation
sm

http://www.energid.com/namespace/sm

Namespace
Prefix

URI

Control
ct

http://www.energid.com/namespace/ct

Manipulator
mn

http://www.energid.com/namespace/mn

Core
cr

http://www.energid.com/namespace/cr

 112

Text Box 6-33: Token example.

This notation (i.e., the use of the ‘#’ delimiter) is a common notation used in literature. Since
namespace prefixes are re-definable within the XML file, use of the URI is often preferable to the
prefix. This notation is also convenient for our purposes, because it is easy to parse and place in an
EcToken object. EcToken is a class that contains a string for the token and a string for the URI.

XML namespaces are specified as URIs. Since these URIs are more verbose than is desired for
typical input file syntax, an abbreviated string is used in the form of a namespace prefix for each
element. The prefixes are fully defined within the XML file. Although the prefixes could be
anything as defined in the XML file, use of the namespace prefixes is recommended. But if a user
chooses a different prefix (say because of a conflict), the XML reader and toolkit would work just
fine.

Let us look at a few examples of XML namespace usage in our XML files. Here is the root element
for “simulation.xml” which initializes the simulator.

Text Box 6-34: Simulation namespace example using a default namespace.

The “simulation” element is part of the “simulation” namespace as defined by the namespace
attribute. The attribute defines “simulation” as the default namespace. This is done by specifying no
namespace prefix with the “simulation” URI. Alternatively, the tag could have looked like this

Text Box 6-35: Simulation namespace example with a specified prefix.

Both notations work equivalently.

The “simulation” element has a “maxIterations” child element in the “control” namespace as shown
below:

Text Box 6-36: Control namespace example.

The namespace prefix is defined to be “ct” for the “control” namespace. Since this is the first
occurrence of this namespace, it needs to be defined in the start tag. As a coding standard, our code
base only writes one default namespace. Therefore, all imported namespaces have an explicitly
defined namespace prefix. A user can redefine the default namespace to be any of the four
namespaces.

The XML reader is less restrictive than the writer. For example, XML namespaces are optional, and
multiple default namespaces are allowed by the XML reader.

 <ct:maxIterations
 xmlns:ct="http://www.energid.com/namespace/ct">16</ct:maxIterations>

 <sm:simulation xmlns:sm="http://www.energid.com/namespace/sm">

 <simulation xmlns="http://www.energid.com/namespace/sm">

 const EcToken EcTableFunctionInterpolatorToken =
 "http://www.energid.com/namespace/cr#tableFunctionInterpolator";

 113

6.4.2 Schema Auto-Generation
An XML schema defines a class of XML documents in much the same way a C++ class defines a
class of objects. Taking this analogy further, an XML file is an instance document of the schema
just like a C++ object is an instance of its class. Multiple schemas importing multiple namespaces
can be combined to define a larger class of XML documents; much the same way inheritance works
in C++. Through the capabilities available through a schema, flexible XML vocabularies can be
defined that mirror the complex data structures defined in the toolkit. Although XML files are not
compiled like C++ code, there are third-party XML tools that analyze the XML instance document
along with the schema to provide validation and error checking (Figure 6-7). These third-party tools
are quite beneficial to the toolkit.

Figure 6-7: Validation process.

The Actin™ Toolkit is unique in that it contains the definition of the XML instance files in its code
and it auto-generates the files as requested by the user. A writeToFile method defined in Section 6.3
is available to the user for writing the contents of an object to an XML file. In order to auto-generate
the XML file, the code base needs to contain the same information that a schema contains. The
toolkit also auto-generates the schema while it writes the XML file. As the code base is reconfigured
or upgraded with new classes, the schema will automatically be maintained within the code base.
Through this process, the XML files and schemas can be auto-generated and then validated by a third
party validator.

A schema file contains the definition for one XML namespace. Using the simulation as an example,
see Figure 6-6, the schema auto-generation creates a schema file for each of the four namespaces.

The table below shows the methods available for auto-generating a schema.

Method Description

writeStartTag Register start tag and open an element. Optionally, a sequence,
choice, or unbounded mode can be defined through the startTag
method. Sequence is generally the default. Elements in a sequence
must follow a certain order. The schema by default orders
elements alphabetically. Choice is generally used by the variable
types like expression trees. For example, each branch uses one
choice from available options. Unbounded is used by vectors such
as EcXmlVectorType. The vector length is not known a priori.

writeStartTagUsingParentName
space

Register start tag. Place element in parent’s namespace.

 114

setAttributeName Register attribute name.

setType This method is context based. If an attribute value is expected due
to previous use of attributeName, then this registers the type of the
attribute value. If attributeName was not previously called (i.e.,
startTag was called), the content type is registered. For content,
two calls to type signify that the content is a list. For example, if
the content is a list of doubles, one call to type registers the double
type, the next call upgrades the type to double-list.

writeEndTag Close the element

openGroup Open a group. Many compound elements only have one group
associated with the children elements. Branch elements for an
expression tree, for example, need two groups for their children.
Each branch can open a new group through this method.

closeGroup Close the group

write Write out the schema files using everything registered under the
previous method calls.

isRegistered Register an element so that it is not recursively called. This is
needed for the branch example. For example, a branch can
recursively contain another branch. The branch only needs to be
registered once.

Table 6-28: List of methods in EcXmlSchema.

Text Box 6-37 illustrates a simple schema generator which is largely extracted from
EcXmlVectorVector. The following methods are contained in this example: EcXmlSchema, startTag,
attributeName, type, endTag, and write.

 115

Text Box 6-37: Example of creating an XML schema. This example was largely extracted from
EcXmlVectorVector for the schema creation of one EcXmlVector.

Text Box 6-38 illustrates a more complex example for creating a schema. The
EcBaseExpressionTreeContainer class provides branching capabilities where each branch can
contain an element from the container (see Text Box 6-22). Each branch in the schema contains a
choice group, which in turn contain all of the registered components of the container. This schema
auto-generation example also has the challenge of recursion. Each branch can contain another
branch and so forth. The isRegistered method facilitates the registering of these recursive
components so that all elements are only traversed once.

 // create XML schema object
 EcXmlSchema stream;

 // register the start tag
 stream.startTag(EcElementToken);

 // register the attribute name and value for X.
 stream.attributeName(EcVectorXToken);
 stream.type(typeid(EcReal));

 // register the attribute name and value for Y.
 stream.attributeName(EcVectorYToken);
 stream.type(typeid(EcReal));

 // register the attribute name and value for Z.
 stream.attributeName(EcVectorZToken);
 stream.type(typeid(EcReal));

 // close the tag
 stream.endTag();

 // write the schema file
 stream.write(filename);

 116

Text Box 6-38: More complex example of creating an XML schema. This example is extracted
from EcBaseExpressionTreeContainer. It calls openGroup, closeGroup, writeStartTag,
isRegistered, writeSchema, and writeEndTag.

 // if container has any components, then create schema for container.
 if (m_CreatorMap.size() > 0)
 {
 // get an iterator for the map, starting at the first pair
 EcXmlCreatorMap::const_iterator iter=m_CreatorMap.begin();

 // open schema group for this object
 // this is needed to support multiple branching (See Text Box 5-24)
 stream.openGroup();

 // loop through all the entries in the map
 while(iter!=m_CreatorMap.end())
 {
 // get element
 ExpressionType* element =
 dynamic_cast<ExpressionType*>((iter->second)());

 element->setContainer(this);

 // write the start tag
 // CHOICE selected because each branch generally takes one option
 stream.startTag(iter->first, EcXmlSchemaElementType::CHOICE);

 // if already registered, bypass writing schema for element
 if(stream.isRegistered(iter->first, typeid(*element).name())
 == EcFalse)
 {
 // write schema for element
 element->writeSchema(stream);

 // write the end tag
 stream.endTag();
 }

 // clean element
 EcDELETE(element);

 // increment to next element
 ++iter;
 }

 // close schema group for this object
 stream.closeGroup();
 }

 117

7 The Link
The link is the fundamental object used to construct manipulators. A manipulator constructed from
links has the tree structure shown in the figure below.

Base Link
(fixed or mobile)

Link 0
(moves relative to base)

Link 1
(moves relative to Link 0)

Link 2
(moves relative to Link 1)

Link 3
(moves relative to Link 1)

Figure 7-1: A manipulator is composed of links in a tree structure, where each link moves relative to
its parent in the tree. Each link has access to all of its children and to its parent.

The link is defined in the EcManipulatorLink class. Each EcManipulatorLink corresponds to a
single joint on the manipulator, the joint’s actuation, and the physical portion of the manipulator
immediately outboard from the joint.

This approach to representing links is conceptually different from the traditional approach.
Traditionally, robotic links are connected with joints. The links lie between the joints. In this
formulation, the link conceptually contains the joint. The distal frame of one link is rigidly attached
to the proximal frame of a child. This provides a more flexible approach to representing kinematic
properties. It allows multiple formalisms (such as Paul or Craig’s Denavit-Hartenberg notation) to
be used internally to the link. It also supports the representation of new types of joints.

As a summary, each EcManipulatorLink holds the following categories of information, which will be
described in this section.

• Joint kinematic description
• Mass properties
• Actuation parameters
• Physical extent
• Surface properties
• Spring and damper properties
• Child Links
• Methods for calculating link data

 118

7.1 Coordinate Systems
The link model uses three reference frames. The proximal D-H frame is rigidly attached to the
parent. The distal D-H frame aligns with the proximal D-H frame of the children. It moves with
respect to the proximal D-H frame when the joint value of the link changes. The primary frame is
rigidly attached to the distal D-H frame, but with a fixed offset. It is used to define link properties,
such as mass and physical extent. It is also used as a reference when defining end effectors. These
frames are illustrated in the figure below.

The proximal and distal D-H frames are so named because they correspond to the Denavit-
Hartenberg (D-H) frames when this formalism is used when describing the joints. Denavit-
Hartenberg notation is supported in the toolkit, but not required.

Proximal
D-H Frame
(Joins with
Parent)

Distal
D-H Frame
(Joins with
Children)

Joint Kinematics Model, which
may be prismatic, rotational, or
other

Primary Frame
(Used to Specify
Physical Extent, Mass
Properties, and
End Effectors)

Link

Figure 7-2: The link reference frames. The proximal D-H frame is rigidly attached to the parent.
The distal D-H frame aligns with the proximal D-H frame of any child links. The primary frame is
rigidly attached to the distal D-H frame, but with a fixed offset.

7.2 Link Kinematics

7.2.1 General Kinematics
To describe link kinematics (position, velocity, and acceleration), the toolkit supports general joint
types with one degree of freedom. Thus, not only are rotational and prismatic joints supported, but
also screw-type joints, motion along a rail, and any other type of motion that can be parameterized
by a scalar.

To enable this generalization, a base link kinematics class, EcLinkKinematics, is used that allows
new joint kinematic types to be easily added to the code through subclassing. Each new joint type
need only specify the outer frame position/orientation, velocity, and acceleration relative to its inner
frame as the function of the joint position, joint rate, and joint acceleration. The EcLinkKinematics

 119

class also provides the description of the primary frame with respect to the distal frame (as shown in
Figure 7-2).

The description of velocity and acceleration in the subclass are optional, however, and for efficiency
only. For convenience, basic methods of velocity and acceleration calculations were implemented in
the EcLinkKinematics class in a general form so only the transformation introduced by the new joint
type is needed when adding a new joint type. The derivation of the methods for calculating the
velocity and acceleration is described in the following sections.

With these implementations, all a developer needs to do to kinematically and dynamically control
and simulate any one-DOF joint type is to add a function describing the location of the outer frame
with respect to the inner frame as a function of joint position. This is a unique strength of the
Actin™ Toolkit.

7.2.1.1 Approach
The general joint interface has three methods:

Text Box 7-1: The methods that define the interface to the EcLinkKinematics class.

As shown in Text Box 7-1, calculateTransform is a virtual function that has to be implemented for
each new joint type. This function returns the EcCoordinateSystemTransformation representing the
distal D-H frame in the proximal D-H frame (see Figure 7-1). The other two, calculateVelocity and
calculateAcceleration may be implemented for efficiency, but can work by default when
calculateTransform is implemented.

7.2.2 Denavit-Hartenberg
One option for describing the link kinematics is to use the Denavit-Hartenberg notation through the
EcDenavitHartenberg class. EcDenavitHartenberg is subclassed from EcLinkKinematics and the
methods shown in Text Box 7-1 are implemented for a broad class of robotic joints that includes
prismatic and rotational joints.

The toolkit supports the two most common D-H approaches, as found in robotics textbooks. The
first is Paul's Denavit-Hartenberg notation [1], which uses the kinematic sequence {z-rotation, z-

 virtual const EcCoordinateSystemTransformation& calculateTransform
 (
 EcReal jointValue
) const;

 virtual const EcGeneralMotion& calculateVelocity
 (
 EcReal jointValue,
 EcReal jointVelocity
) const;

 virtual const EcGeneralAcceleration& calculateAcceleration
 (
 EcReal jointValue,
 EcReal jointVelocity,
 EcReal jointAcceleration
) const;

 120

translation, x-rotation, x-translation}. The second is Craig’s notation [2], using the kinematic
sequence {x-rotation, x-translation, z-rotation, z-translation}. The Denavit-Hartenberg class
supports general axes of rotation and translation, as well. These options, which are specified through
XML, allow utmost flexibility in describing links with rotational or prismatic joints.

7.2.3 General Joint Velocity and Acceleration
Other types of link kinematics can be defined by specifying the methods in Text Box 7-1. To
describe new link kinematics, the developer must calculateTransform as shown in Text Box 7-1.
The other methods are optional. The developer will typically be able to calculate velocity and
acceleration in closed form for faster processing, but a default approximation method is implemented
that always works, albeit with more CPU time. As a reference, this section describes how the default
method works when there is not specific method defined in the subclass.

7.2.3.1 Mathematical Derivation

Let three frames, base, parent, and current, be labeled A, B, and C, respectively. Let quantities
represented in a frame have that frame as a leading superscript, i.e., AC

A p is the vector from the
origin of A to the origin of C represented in frame A. Orientations such as C

AR represent frame C in
frame A (i.e., a value represented in frame C can be represented in frame A by vv C

C
AA R=).

Relative position and orientation are illustrated in the figure below.

Base
“A”

Parent
“B”

Current
“C”

Joint

ARB

p
AB

A

B RC
p
BC

B

ARC
p
AC

A

Figure 7-3: Illustration of the relevant frames and their representations to general velocity and
acceleration calculation. A is the reference frame, B is the joint’s proximal frame, and C is the
joint’s distal frame.

The position and orientation of frame C with respect to frame A is straightforward.

BC
B

B
A

AB
A

AC
A pRpp += . (7-1)

 121

C
B

B
A

C
A RRR = . (7-2)

Using these, the linear and angular velocity can be derived. The time derivative of (7-1) and (7-2)
above give (using the fact that RR W=& , where W is the cross-product matrix for ω, the angular
velocity):

BC
B

B
A

BC
B

B
A

AB
A

AB
A

AC
A pRpRpp &&& +×+= ω (7-3)

and

BC
B

B
A

AB
A

AC
A R ωωω += . (7-4)

Using these, the linear and angular acceleration can be derived. Taking the time derivative of
equations (7-3) and (7-4) gives

BC
B

B
A

BC
B

B
A

AB
A

BC
B

B
A

AB
A

AB
A

BC
B

B
A

AB
A

AB
A

AC
A pRpRpRpRpp &&&&&&&& +×+××+×+= ωωωω 2)(. (7-5)

and

BC
B

B
A

BC
B

B
A

AB
A

AB
A

AC
A RR ωωωωω &&& +×+= . (7-6)

Expressing all the vector quantities in a single frame gives

BCBCABBCABABBCABABAC pppppp &&&&&&&& +×+××+×+= ωωωω 2)((7-7)

and

BCBCABABAC ωωωωω &&& +×+= . (7-8)

7.2.3.2 Default Velocity Calculation

The function calculateVelocity returns BC
C p& and BC

Cω , the linear and angular velocity of the

current frame with respect to the parent frame, represented in the current frame. To calculate BC
C p& ,

it uses finite differencing on (7-2). That is, it takes the difference of two positions at different times
and divides by the time difference. The same approach can be used with angular velocity, but a
small modification is needed. Because orientation is specified using quaternions, a conversion is
needed to calculate the angular velocity BC

Cω from the time derivative of the quaternion.

Quaternions offer numerical stability while requiring only four numerical values for description.
This contrasts with numerical instability for Euler angles (a small rotational rate can give unbounded
Euler-angle derivatives) and the need for nine numerical values for a rotation matrix, also known as a
direction cosine matrix (DCM).

 122

There are multiple formalisms for quaternions. The Actin™ toolkit uses the one described by
Shoemake [3], which is more common for robotic—but less common for aeronautical—applications.
In this formalism, a quaternion representing frame j in frame i is given by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

Q
Q
Q
Q

Q j
i

(7-9)

The quaternion values are such that the quaternion can be converted to a rotation matrix through the
following formula:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−−−+
+−−−

=
2

2
2

110322031

1032
2

3
2

13021

20313021
2

3
2

2

2212222
2222122
2222221

QQQQQQQQQQ
QQQQQQQQQQ
QQQQQQQQQQ

Rj
i

(7-10)

With this formalism, q={1,0,0,0} corresponds to the identity matrix. (This formalism can be easily
converted to the most common aeronautical form simply by moving the first entry to the last
position.)

The quaternion rate can be converted to angular velocity in the moving frame through the following
formula:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

0

0123

1032

2301

2

1

0

2

Q
Q
Q
Q

QQQQ
QQQQ
QQQQ

&

&

&

&

ω
ω
ω

(7-11)

This equation allows finite differencing to be used on the quaternion values to estimate the
quaternion time derivative and convert this estimate into an estimate of angular velocity.

7.2.3.3 Default Acceleration Calculation
To define the frame acceleration for a new type of joint, the last terms in equations (7-7) and (7-8)
can be used, since the other terms in (7-7) and (7-8) are known. BCp&& and BCω& can be readily
calculated from the time derivative of transformation from frame B to frame C. The function
calculateAcceleration returns BC

C p&& and BC
Cω& represented in the current frame, which can be

obtained from time derivative of the function calculateVelocity. Note that calculateVelocity has two
independent input variables jointValue and jointVelocity. Let this function be denoted as),(xxf & .
Also note that the frame velocity returned from calculateVelocity is represented in the current frame.
Let),()(),(xxfxRxxq && = be the velocity represented in the parent frame. The acceleration can then
be approximated by the following:

 123

xxxfxRxxfxRxxxfxRxxfxR

xxxqxxqxxxqxxqx
x

xxqx
x

xxq
dt

xxdq

&&
&&

&
&&

&&
&&

&
&&

&&
&

&
&

&&

Δ
−Δ+

+
Δ

−Δ+Δ+
=

Δ
−Δ+

+
Δ
−Δ+

≈
∂

∂
+

∂
∂

=

),()(),()(),()(),()(

),(),(),(),(),(),(),(

(7-12)

for small Δ . The result of (7-12) must be represented in the current frame through effectively pre-
multiplying by)(1 xR− .

7.3 Mass Properties
The link’s mass properties are described within the link. This data includes the 10 parameters
needed for dynamics calculation: the scalar mass, the vector first moment of inertia, and the 3×3
symmetric second moment of inertia. The values are represented in the primary frame, not at the
center of mass. Mass properties are represented efficiently in the code in a special class for rigid-
body mass properties. This class includes methods for adding mass properties and transforming
mass properties to a different reference frame.

7.4 Physical Extent
The physical extent of the link is represented as a combination of geometric primitives through a
tree-based approach. Geometric primitives will be stored in the tree structure as shown in Figure
 7-4.

Sphere

+

+

Polyhedron Capsule

Figure 7-4: A tree structure representing a manipulator link’s physical extent. Point-polygon,
sphere, and tetrahedron are geometric primitive shapes.

7.4.1 Composable Tree Structure
The tree structure for representing geometric extents is composable as runtime. A physical
description of each link can be read or written as XML. A shape container class has been developed
to support this, which can be easily modified (either directly or through a dll) to support additional
geometric shape primitives or processing nodes. The shape container class (EcShapeContainer)
inherits from EcBaseExpressionTreeContainer<EcShape>.

 124

The tree structure can hold operations (both binary and unary) as intermediate nodes and shape
primitives as leaf nodes. Currently there are two binary operations that are supported, union and
intersection. The framework can also support unary operations.

7.4.2 Shape Primitives
Shape primitives are used to represent physical extents in the toolkit. Primitives can be used to
represent bounding volumes or used to construct the representation of the physical extent itself.

7.4.3 Fundamental Geometrical Shapes
To build the primitives, a few fundamental geometric components other than lines and points have
been implemented within the framework. These are described below.

7.4.3.1 Triangle
Triangles are frequently used for shape representation since fast implementations of distance and
intersection tests exist for them. All polyhedrons can be reduced to a collection of triangles. Through
tessellation, other shape primitives can always be reduced to a polyhedron composed of a collection
of triangles. The code uses a fast formulation, as developed in [4].

A triangle is represented using a vector origin and two vector edges as follows:

Member Data Class/Type Description Restrictions

m_Origin EcXmlVector The origin of the triangle:
(B)

None.

m_Edge0 EcXmlVector The first edge vector
describing the triangle:
(E0)

None.

m_Edge1 EcXmlVector The second edge vector
describing the triangle:
(E1)

None.

Table 7-1: EcTriangle data structure.

7.4.3.2 Rectangle
A rectangle is another fundamental shape used to construct the geometrical primitives. It is also
available for general use in the toolkit. Figure 7-5 shows a rectangle with the space partitions that
need to be considered for distance calculations.

The representation of a rectangle in the framework is similar to that for a triangle, as shown in the
table that follows

 125

Member Data Class/Type Description Restrictions

m_Origin EcXmlVector The origin of the
rectangle

None.

m_Edge0 EcXmlVector The first edge vector
describing the rectangle.

None.

m_Edge1 EcXmlVector The second edge vector
describing the rectangle.

None.

Table 7-2: EcRectangle data structure.

The representation of a triangle and a rectangle are described graphically below.

B E0

E1

E0

E1

B

Figure 7-5: Representation of a Triangle (EcTriangle) and a Rectangle (EcRectangle).

7.4.3.3 Plane
A plane is a construct used extensively in the framework. A plane is defined by a normal vector N
and a base point Pc. By convention, planes return a signed distance with the normal vector pointing
out of the front of the plane.

N
Pc

Figure 7-6: A plane defined by a base point Pc and a normal vector N.

The data structure for describing a plane is as follows:

 126

Member Data Class/Type Description Restrictions

m_BasePoint EcXmlVector The base point of the
plane.

None.

m_NormalVector EcXmlVector The normal vector of the
plane.

None.

Table 7-3: EcPlane data structure.

7.4.4 Primary Shapes
All shape primitives are derived from the EcShape virtual base class. Objects derived from EcShape
can compute distances and intersections to other objects derived from EcShape. The architecture
accommodates both intersection and distance methods. Distance can be used to calculate
intersection, but intersection is generally less costly to calculate directly.

Member Data Class/Type Description Restrictions

m_pPhysicalExtent EcBasePhysicalExtent Holds a pointer to a physical
extent representation of the
shape. All shapes can be
represented as a physical
extent (i.e. a polyhedron that
is formed from a collection of
polygons)

None.

m_pShapeContainer EcXmlVariableCompou
ndType

A pointer to a shape
container. A shape container
knows how to read and write
an extent expression tree.

None.

Table 7-4: EcShape data structure.

Shapes in the toolkit are described in the following subsections.

 127

7.4.4.1 Polyhedron

Figure 7-7: A polyhedron.

Polyhedrons are represented as a collection of polygons. Methods are available to compute the
distance between polyhedrons and other shapes (including other polyhedrons). A polyhedron is
represented in code using an EcBasePhysicalExtent class. All other shapes can always be turned into
an EcBasePhysicalExtent by calling the physicalExtent method in the EcShape base class. The table
below describes the most frequently used methods.

Method Description

points

setPoints

Get/set the collection of points for this polyhedron.

polygons

setPolygons

Get/set the polygons for this polyhedron. The polygon arrays are
lists of indices into the point array. This is done for space savings so
that each point (an EcVector) needs only to be stored once.

normals

setNormals

Get/set a collection of normal vectors, one for each polygon that
describes the surface of the polygon.

convexHull Creates the polyhedron as a convex hull of the physical extent passed
in. This is useful for converting a non-convex polyhedron into a
convex polyhedron.

Table 7-5: Polyhedron data structure.

 128

Text Box 7-2: Defining a physical extent.

7.4.4.2 Sphere

r

c

Figure 7-8: A sphere.

A sphere is represented as a center and a radius. Distance and intersection calculations for spheres
are straightforward. Distance can be calculated by computing the distance from a point to an object

 //--
 // Make a very simple one polygon physical extent
 //--
 EcPhysicalExtent polyExt ;
 // make a point set
 EcPointCollection polyPoints;
 polyPoints.pushBack(EcVector(3.0,0.0,0.0));
 polyPoints.pushBack(EcVector(5.0,0.0,0.0));
 polyPoints.pushBack(EcVector(0.0,3.0,0.0));

 // add the point collection to the physical extent
 polyExt.setPoints(polyPoints);

 // create a polygon collection (just one for this example)
 EcPolygonCollection polygons;
 EcPolygon polygon;
 polygon.addPointIndex(0);
 polygon.addPointIndex(1);
 polygon.addPointIndex(2);

 // set a surface key. This is used to find the surface
 // properties of the material
 polygon.setSurfaceKey("metal");

 // add the polygon to the polygon collection
 polygons.pushBack(polygon);
 // add the polygon collection to the physical extent
 polyExt.setPolygons(polygons);

 129

and subtracting the radius. This is very efficient for calculating distances, and it can also be used
with some shapes to rapidly compute a penetration distance needed for force feedback.

Method Description

center

setCenter

Gets/sets the center of the sphere. .

radius

setRadius

Gets/sets the radius of the sphere

Table 7-6: EcSphere data structure.

Text Box 7-3: Defining a sphere.

7.4.4.3 Ellipsoid

a

bc

x

y

z

Figure 7-9: An ellipsoid.

 // ---------------------------
 // Create a sphere shape
 // ---------------------------

 EcSphere sphere;

 // set the center point in the primary frame of the link
 sphere.setCenter(EcVector(0,0,0));

 // set the radius
 sphere.setRadius(2.0);

 130

Text Box 7-4: Defining an ellipsoid.

To improve processing time, the data structure describing the ellipsoid contains two representations.
The computation of the distance between an ellipsoid and another shape is, however, difficult in
general. The implementation of the ellipsoid is given in the table below.

Member Data Class/Type Description Restrictions

m_A EcReal
A of: 1

2

2

2

22

2
=++

c
z

b
y

a
x

None.

m_B EcReal
B of 1

2

2

2

22

2
=++

c
z

b
y

a
x

None.

m_C EcReal
C of 1

2

2

2

22

2
=++

c
z

b
y

a
x

None.

m_CoordXform EcCoordinate
SystemTransformation

The orientation of the
ellipsoid.

None.

m_AMatrix EcSpatialMatrix A of () 1)(=−− CXACX T None.

m_InvAMatrix EcSpatialMatrix Inv(A) of:
() 1)(=−− CXACX T

None.

Table 7-7: EcEllipsoid data structure.

 // ---------------------------
 // Create an ellipsoid shape
 // ---------------------------
 EcEllipsoid ellipsoid;

 // set the <A,B,C> values. This example creates
 // a sphere represented as an ellipsoid
 ellipsoid.setA(1.0);
 ellipsoid.setB(1.0);
 ellipsoid.setC(1.0);

 // set the ellipsoid at the origin of the primary frame
 EcCoordinateSystemTransformation xf =
 EcCoordinateSystemTransformation::nullObject();
 ellipsoid.setXform(xf);

 131

7.4.4.4 Tetrahedron

V0

V1
V2 V3

Figure 7-10: A tetrahedron.

A tetrahedron is a three-dimensional simplex. In most instances, distances between tetrahedrons and
other shapes can be computed by separating the tetrahedron into its four constituent triangles
(EcTriangle). The tetrahedron implementation is shown through the following table.

Member Data Class/Type Description Restrictions

m_V0 EcXmlVector Base vertex of the
tetrahedron.

None.

m_Edge1 EcXmlVector Edge 1 of the tetrahedron. None.

m_Edge2 EcXmlVector Edge 2 of the tetrahedron. None.

m_Edge3 EcXmlVector Edge 3 of the tetrahedron. None.

Table 7-8: EcTetrahedron data structure.

Text Box 7-5: Defining a tetrahedron.

 // ---------------------------
 // Create a tetrahedron shape
 // ---------------------------

 // ---
 // A tetrahedron can be constructed from four points in
 // space, as described in the figure above. These are defined in the
 // primary frame.
 // ---

 EcVector v0 = EcVector(3,3,0);
 EcVector v1 = EcVector(1,0,0);
 EcVector v2 = EcVector(5,0,0);
 EcVector v3 = EcVector(2,0,-2);
 EcTetrahedron tet(v0,v1,v2,v3);

 132

7.4.4.5 Oriented Box

C E0

E2
E1

C+s0E0

C+s2E2

C+s0E0+s1E1+s2E2

Figure 7-11: An oriented bounding box.

Implementation of the oriented bounding box is described through the following table.

Member Data Class/Type Description Restrictions

m_Extents EcXmlVector The extents of the bounding
box (s0,s1,s2). The length of a
side is 2si where i = 0,1,2.

None.

m_Axes EcXmlVectorVector The axes of the bounding box None.

m_Center EcXmlVector The center of the box. None.

Table 7-9: EcBox data structure.

 //---------------------------
 // create a unit cube box
 // ---------------------------
 EcBoundingBox bbox;

 // set the center at the origin
 EcVector center = EcVector(0,0,0);
 bbox.setCenter(center);

 // set the axes (these should be orthogonal unit vectors)
 EcXmlVectorVector axes;
 EcVector axis1 = EcVector(1,0,0);
 EcVector axis2 = EcVector(0,1,0);
 EcVector axis3 = EcVector(0,0,1);
 bbox.setAxes(axes);

 // set the extents
 EcVector extents = EcVector(1,1,1);
 bbox.setExtents(extents);

 133

Text Box 7-6: Defining a bounding box.

7.4.4.6 Lozenge

EcRectangle

r

r

Figure 7-12: A lozenge.

A lozenge can be thought of as the square analog to a capsule, where instead of defining the surface
as a fixed radial distance from a line segment, a lozenge is described by a fixed radial distance from
the surface of a square. This construct allows for efficient distance and collision checks. It can be
used in lieu of the more computationally expensive ellipsoid primitive. Its implementation is
described through the table below.

Member Data Class/Type Description Restrictions

m_Rectangle EcRectangle The rectangular center of
the lozenge.

None.

m_Radius EcXmlReal The radial distance from
the rectangle to a point on
the surface of the
lozenge.

None.

Table 7-10: EcLozenge data structure.

 134

Text Box 7-7: Defining a lozenge.

7.4.4.7 Half Space

EcPlane

N

Figure 7-13: An illustration of a half space.

A halfspace bisects all of space into two halves. A halfspace is represented by a bisecting plane.
The normal vector of the plane points out of the halfspace.

Member Data Class/Type Description Restrictions

m_Plane EcPlane The separating plane of
the halfspace. The
normal of the plane
points out of the
halfspace.

None.

Table 7-11: EcHalfspace data structure.

 //--------------------
 // create a lozenge
 //--------------------
 EcLozenge lozenge;

 // set the rectangle
 EcRectangle rect;
 // a square in the xy plane
 rect.setEdge0(EcVector(1,0,0));
 rect.setEdge1(EcVector(0,1,0));

 lozenge.setRectangle(rect);

 // set the the corner at the origin
 rect.setOrigin(EcVector::zeroVector());

 // set the radius
 lozenge.setRadius(2.5);

 135

Text Box 7-8: Defining a halfspace.

7.4.4.8 Cylinder

A cylinder can be described by a line segment k and a radius r . Let =w k k and {u, v,w} be a
coordinate frame at the cylinder center c (refer to the figure below).

Figure 7-14: Coordinate frame {u, v,w} attached at center of the cylinder.

The points on the cylinder surface can be conveniently parameterized as [3b]:

(,) cos sint r r tθ θ θ= + + +x c u v w (35)

 //---------------------------
 // Create a Halfspace
 //---------------------------

 EcHalfSpace halfSpace;

 // set the normal to point in the positive x direction
 halfSpace.setNormal(EcVector::xVector());

 // set the base point at the origin. All points left of the
 // y-z plane are in the halfspace
 halfSpace.setBasePoint(EcVector::zeroVector());

 136

Where [0, 2), 2tθ π∈ ≤ k . A support point is the point with maximum distance in a given

direction, as required by the GJK algorithm. For a cylinder, the support point is the point on this
cylinder that yields the maximum dot product with a given vector d . It can be shown that this point
is

2 2

()() ()
2()

r sign− ⋅
= + + ⋅

− ⋅

kd d ws d c w d w w
d d w

(36)

The triangle-meshed physical extent is shown in the figure below. The normal for each vertex is also
plotted. The ability to perform this triangularization was added to the code base.

Figure 7-15: Triangle meshed physical extent for the cylinder. Normal vectors are also shown.

7.4.4.9 Cone

A conical frustum shape can be described by a line segment k and two radii, 0r and 1r . When

0 1r r= , this is reduced to the cylindrical case. The support point can only appear on the edge of the
two end discs. By checking the maximum projection values of the two end discs to the given vector
d :

2 2
0 0 () ()

2
val r= ⋅ + − ⋅ − ⋅

k
d c d d w d w

(37)

and

2 2
1 1 () ()

2
val r= ⋅ + − ⋅ + ⋅

k
d c d d w d w

(38)

 137

One can conclude that, if 0val > 1val ,

0 2 2

()()
2()

r − ⋅
= + −

− ⋅

kd d ws d c w w
d d w

.
(39)

Otherwise,

1 2 2

()()
2()

r − ⋅
= + +

− ⋅

kd d ws d c w w
d d w

.
(40)

The triangle-meshed physical extent is shown in the figure below. The normal for each vertex is also
plotted. The ability to perform this triangularization was added to the code base.

Figure 7-16: Triangle meshed physical extent for the cone shape. Normal vectors (as are needed
for rendering and spatial reasoning) are also shown.

7.5 Surface Properties
The toolkit allows the specification of detailed surface properties. The specification of surface
properties allows improved rendering, simulation, and intelligent reasoning. To represent surface
properties, the toolkit uses an approach influenced by the Synthetic Environment Data
Representation and Interchange Specification (SEDRIS) [5] for specifying environmental properties.

The surface-property specification works as follows: Every link maintains a map of surface
properties referenced by a string token. Each surface property in turn holds one string-string map,
one string-floating-point map, and one string-integer map. These allow the user to specify arbitrary

 138

strings, floating-point values, and integers in an intuitive general way. This is illustrated in the figure
below.

“Metal-1”
string-string map
string-float map
string-integer map
string-vector map
string-map map

“red”
“green”
“blue”
“frictionK”
“spring”

0.5
0.5
0.75
0.2
10.0

“Metal-1” Polygons in Mesh

Map of Surface Properties
String-Float Map

Shapes

Figure 7-17: Surface property description. Each link holds a string-to-surface-property map.
Polygons specify their surface property using a string reference into the map. Each surface property
maintains three separate maps: string-string, string-float, string-integer, string-float-vector, string-
integer-vector, and string-map maps. These maps are configurable by the user through XML. They
can represent virtually any properties, including hardness, flexibility, fragility, and so forth. The
example shown here is color.

7.6 Bounding Volumes
A link can have several bounding volumes for fast collision detection and distance queries. These
will be discussed in detail in section 12- Collision Avoidance. By default, every link maintains a
capsule bounding volume, defined as all points within a specified radius of a three-dimensional line
segment. This is illustrated in the figure below. A capsule bounding volume is defined for every
link on every manipulator. It can be specified by the user through the XML language. The capsule
is resized when the points describing the polygon mesh are loaded. This way the bounding volume
is always valid. Capsule bounding volumes offer easy transformation and easy intersection testing,
and can also be used to bound environmental obstacles for obstacle-avoidance control.

 139

Central Line Segment

Radius

Figure 7-18: Bounding volumes are described using capsules, which are defined as all points within
some radius of a three-dimensional line segment. The line segment can be positioned and oriented in
any way. Every link on every arm has a capsule bounding volume. Capsules are also used to bound
obstacles in the environment.

7.7 Actuators
The actuator parameters that are described as part of the link include the motor friction, motor
inertia, gear ratio, and joint limits. In addition, stopper dynamics are represented using a repulsive
force or torque that is proportional to the incursion within a specified zone of the hard stop.

Member Data Class/Type Description Restrictions

m_Inertia EcXmlReal Actuator inertia None.

m_FrictionCoefficient EcXmlReal Actuator viscous friction
coefficient

None.

m_GearRatio EcXmlReal Actuator gear ratio None.

m_LowerLimit EcXmlReal Lower joint limit None.

m_UpperLimit EcXmlReal Upper joint limit None.

m_StopperZone EcXmlReal The range within which a
force from the joint limit
has a physical effect

None.

m_MinTorque EcXmlReal The minimum torque that
can be applied to the joint
by the actuator.

None.

m_MaxTorque EcXmlReal The maximum torque that
can be applied to the joint
by the actuator.

None.

m_StopperSpring

Coefficient

EcXmlReal The coefficient of the best
spring approximation to the
joint limit.

None.

m_StopperDamping EcXmlReal The coefficient of the best
damper approximation to

None.

 140

Coefficient the joint limit.

Table 7-12 Actuator Description.

7.8 Actuator Database Interface
For use in robot design, Actin includes an actuator-related plugin to assist robot designers when
trying to size motors and gearheads for a given manipulator. For each joint actuator, the user can
select a motor and chain gearheads in series to be used in the actuator from a database through GUI.
This allows the designer to quickly and easily change the actuator components of any actuator and
rerun the simulation to see if the new components meet the requirements.

In the backend of the plugin is a relational database that contains the data of actuator components.
For each component, the data include the manufacturer, the part number (or order number), the
model, and a set of specifications. The presence of the database is transparent to the user since he
never has to interact with it directly, only through GUI. Let’s look at how to use the actuator plugin.
First, the actuator plugin must be loaded. The plugin file is ‘ecActuatorPlugin.dll.’ Once the plugin is
loaded, the Design menu will be added. Figure 7-19 shows ActinViewer with the actuator plugin
loaded and with a hexapod model.

 141

Figure 7-19: Actuator plugin allows the designer to quickly change components of joint actuators
from by selecting them from database.

7.8.1 Selecting Actuator Components
To select components of a joint actuators, the user can right-
click on the desired link to bring up the context menu shown
on the right. The user then selects “Select Actuator
Components,” which will bring up the following dialog.

 142

Figure 7-20: Dialog for selecting actuator components. Note that the desired link (link_4_0_0 in this
case) is selected by default.

The “Select Actuator Components” in Figure 7-20 lets the user choose the motor and a series of
gearheads as components of a joint actuator. To choose a motor, click on the “Choose Motor” button
and the “Choose Motor” dialog in Figure 7-21 will be brought up. With this dialog, the user can
choose a motor by searching the database. Motors can be searched either by identification or by
specifications. If the motor that the user is looking for does not exist in the database, he can have an
option to add it to the database. Adding items to the database along with editing and deleting items
will be discussed later in Section 7.8.2 Managing Database.

Still in the “Choose Motor” dialog, assume that the desired motor is in the database. If the search for
the desired motor yields one result, the OK button will be enabled (see Figure 7-21), allowing the
user to select that motor. If two or more motors are found by the search, the OK button will be not be
enabled until the use clicks on motor to signify that it is the one he is looking for. Clicking the OK
button will select the desired motor and indicate that it will be added to the joint actuator.

For gearheads, the user has an option to chain gearheads in series. To add a gearhead, click the Add
Gearhead button in Figure 7-20. This will bring up a dialog almost identical to the “Choose Motor”
dialog. But instead of choosing a motor, the user will choose a gearhead by searching in the same
manner as choosing a motor.

 143

(a)

(b)

Figure 7-21: Dialog to choose a motor from database. The user can search by (a) identifier or (b)
specifications. If the desired motor does not exist in the database, the user can add it to the database.

 144

Figure 7-22: After choosing a motor and gearheads, the user can view the details of each
component. For gearheads, they can be moved up/down the chain or be removed. The user can also
apply these components to actuators of multiple links.

Figure 7-22 depicts the “Select Actuator Components” dialog after the desired motor and gearheads
have been chosen. The details of each component can be inspected by clicking the View Details
button. The ‘Details’ dialogs in Figure 7-23 and Figure 7-24 show the details of a motor and a
gearhead, respectively. The user can view the specifications in SI units by checking the ‘SI Units’
checkbox.

The right pane of the dialog in Figure 7-22 shows a drop-down list of manipulators and a list of all
links for the current manipulator. First the user select which manipulator these components will be
appied to by choosing from the drop-down list. For the selected manipulator, the user can apply the
selected components to the joint actuators of multiple links simultaneously by checking the
checkboxes before the desired link labels. This is very convenient especially for robots with
symmetry such as the hexapod robot in this example where in all likelihood one type of actuator is
likely to apply to the same joint of all six legs.

Once all the desired links have been chosen and the OK button is clicked, the properties of the motor
and gearheads will be used to construct a joint actuator and the joint actuator will be added to the
desired links. The user can repeat the ‘select actuator components’ process until all the actuators
have been completed.

 145

Note that for selecting a motor is necessary but adding gearheads is optional. This allows direct-drive
actuators to be composed.

Figure 7-23: Dialog showing the details of a motor. The user can switch to SI units by checking the
checkbox.

 146

Figure 7-24: Dialog showing the details of a gearhead. The user can switch to SI units by checking
the checkbox.

7.8.2 Managing Database
In addtion to allowing the user to select components for actuators, the actuator plugin provides the
means for the user to manage the entries in the database. This is essential since it is highly unlikely
that the database will contain every component desired by the designer. Figure 7-25 shows the
Design menu items that can be used to manage the database.

Figure 7-25: Design menu items to edit database. The user can edit motor, gearhead, or
manufacturer database.

To edit the motor database, select Design->Edit Component Database->Motors from the menubar.
This will bring up the “Edit Motor Database” dialog shown in Figure 7-26.

 147

Figure 7-26: The “Edit Motor Database” dialog allows the user to add, delete, or edit motors
to/from/in the database. This dialog is similar to “Choose Motor” dialog in Figure 7-21.

Using the “Edit Motor Database” dialog, the user can add a motor to the database by clicking the
“Add...” button, which will bring up the dialog shown in Figure 7-27. There, after the user enters the
required motor details and clicks the Submit button, the motor will be added to the database. If the
Cancel button is clicked, the motor will not be added and the entered data will be lost.

To delete or edit a motor in the database, first the user needs to search for the desired motor. Once
the desired motor shows up in the search results, the user can right-click on that motor and select
either to delete or edit the motor. Note that the user can follow the same procedures just described to
add/edit/delete a motor but in the “Choose Motor” dialog show in Figure 7-21.

 148

Figure 7-27: Add a motor to database. The user enters the details of the motor to be added. *
appended to the field description indicates that the field is required.

To edit the gearhead database, Design->Edit Component Database->Motors from the menubar. The
procedures of adding/editing/deleting a gearhead are identical to those of a motor previously
described. Figure 7-28 shows the dialog for entering the details of a gearhead and adding it to the
database.

 149

Figure 7-28: Add a gearhead to database. The user enters the details of the gearhead to be added. *
appended to the field description indicates that the field is required.

Figure 7-29: Edit manufacturer database.

 150

Finally, the user can manage the database for manufacturers by selecting Design->Edit Manufacturer
Database, which will bring up the dialog shown in Figure 7-29. A new manufacturer can be added by
clicking the Add button. A new row will be added to the end of the table that allows the user to enter
the information. The user can press the Tab key to go to the next column. Once all information has
been entered, press the Enter key to submit the new manufacturer into the database. To delete a
manufacturer, select the desired manufacturer and clike the Delete button. However, if there are still
some components associated with this manufacturer, it will not be removed and the warning message
in Figure 7-30 will be displayed. Those components must be removed from the database before the
manufacturer can be deleted.

Figure 7-30: A warning message is issued if the user is attempting to delete a manufacture whose
components still exist in the database.

7.9 Spring and Damper Properties
In this section, the mechanism is described for specifying springs between (and among) joints.
These springs and dampers are modeled during dynamic simulation and can be used by the control
system as well.

7.9.1 Approach
The spring and damper are defined in a general sense. The spring torque applied to joint i is a
function of any number of associated joint angles, as follows:

()∑
−

=

−=
1

0

in

j
ijijijii dqakτ ,

(7-13)

where ik is a spring constant for joint i, ija is weighting factor j, ijd is offset j, ijq is associated joint

angle j, in is the number of associated joints.

In the simplest nontrivial case, the torque at joint i is just a function of joint i itself. That is,

()iiii dqk −=τ . (7-14)

The damper torque applied on each joint is similarly defined as

∑
−

=

=
1

0

in

j
ijijii qak &τ ,

(7-15)

 151

where ik is the damper constant, ija is the weighting factor, ijq& is the joint rate of the thj

associated joint and in is the number of associated joints for joint i .

7.9.2 Implementation
For implementation, a class named EcSpringProperties contains the following information:

Member Data Class/Type Description Restrictions

m_SpringConstant EcXmlReal The spring constant ik None.

m_WeightingFactors EcXmlRealVector A vector of spring weights,
)1(21 ,...,, −iniii aaa

None.

m_SpringOffsets EcXmlRealVector A vector of offsets,
)1(21 ,...,, −iniii ddd

None.

m_AssociatedJoints EcXmlStringVector List of joint labels None.

Table 7-13: EcSpring Properties.

A method for evaluating (6-13) is implemented in this class as well. An instance of
EcSpringProperties resides in EcManipulatorLink as a member variable.

The class for the damper is named EcDamperProperties. It contains all the variables introduced in
(6-15), as shown in the table below and a method for evaluating (6-15). An instance of this class
also resides in EcManipulatorLink as a member variable.

Member Data Class/Type Description Restrictions

m_DamperConstant EcXmlReal The damper constant ik None.

m_WeightingFactors EcXmlRealVector A vector of damper
weights,)1(21 ,...,, −iniii aaa

None.

m_AssociatedJoints EcXmlStringVector List of joint labels None.

Table 7-14: EcDamperProperties.

7.9.3 Example
Figure 7-31 shows an example used for this task. A spring in the form of (6-14) is assigned to each
of the joints with a small spring constant and a zero spring offset. Each joint actuator has friction
associated with it. The simulation started with the pendulum in its initial configuration as shown in
the left sub-figure of Figure 7-31. It moved into the steady-state configuration shown in the right

 152

sub-figure of Figure 7-31, where all the joint angles are zero. Gravity in this simulation is set to
zero. This is the file “springPendulum.xml” in the examples directory.

Figure 7-31: An example used to demonstrate springs and dampers. The sub-figure on the left
shows the initial condition of the pendulum and the one on the right shows the resting configuration.
This simulation is contained in the file “springPendulum.xml” in the examples directory.

7.10 Child Links
Any link can have any number of child links. The child links’ placements are defined such that the
inboard frame of the child aligns with the kinematic (Denavit-Hartenberg) frame of the parent. This
is illustrated in the figure below. Every child has a pointer to its parent.

Parent Link

Child

Parent’s
Kinematic
(DH) Frame

Child’s
Kinematic
(DH) Frame

Child’s
Inboard
Frame

Figure 7-32: Each link can have any number of child links. The child links are placed such that
their inboard frames align with the parent’s kinematic (DH) frame. Each child’s degree of freedom
then places its kinematic frame with respect to the parent’s kinematic frame.

 153

7.11 Methods for Calculating Link Data
The links provide methods for calculating its position, velocity, and other properties. These methods
are summarized in the table below:

Method Description

subtreeLinkCount

Returns the number of links in the subtree with this link as the
root (includes this link in the count).

mapLinks Maps all links in the subtree with this as the root (includes this
link in the map). Pointers to links are placed in a vector and a
label-to-link-pointer map is created.

dhFrameInSystem Calculates and returns a reference to a coordinate system
transformation describing the kinematic (DH) frame for this link
in system coordinates. Takes an active state as its input and
modifies it. The active state can be reused to quickly calculate
other components.

primaryFrameInSystem Calculates and returns a reference to a coordinate system
transformation describing the primary frame for this link in
system coordinates. Takes an active state as its input and
modifies it. The active state can be reused to quickly calculate
other components.

dhFrameVelocityInSystem Calculates and returns a reference to a general velocity object
describing the kinematic (DH) frame motion in system
coordinates (with point of application at the DH-frame origin).
Takes an active state as its input and modifies it. The active
state can be reused to quickly calculate other components.

dhFrameVelocityInLocal Calculates and returns a reference to a general velocity object
describing the kinematic (DH) frame motion in DH-frame
coordinates (with point of application at the DH-frame origin).
Takes an active state as its input and modifies it. The active
state can be reused to quickly calculate other components.

primaryFrameVelocityInSystem Calculates and returns a reference to a general velocity object
describing the primary frame motion in system coordinates (with
point of application at the primary-frame origin). Takes an
active state as its input and modifies it. The active state can be
reused to quickly calculate other components.

dhFrameAccelerationInLocal Calculates and returns a reference to a general acceleration
object describing the kinematic (DH) frame acceleration in DH-
frame coordinates (with point of application at the DH-frame
origin). Takes an active state as its input and modifies it. The
active state can be reused to quickly calculate other components.

 154

dhFrameForceInLocal Calculates and returns a reference to a general force object
describing the linear and angular force that must be applied to
the kinematic (DH) frame in DH-frame coordinates (with point
of application at the DH-frame origin) to achieve the motion
described in the active state that is input. The active state can be
reused to quickly calculate other components.

crbi Calculates the composite rigid-body inertia of the subtree with
this link at its root (i.e., this and all outboard links) represented
in the link's D-H frame. Takes an active state as its input and
modifies it. The active state can be reused to quickly calculate
other components.

arbd Calculates the articulated-body dynamics (articulated-body
inertia and bias force) for the subtree with this link at its root.
The articulated-body dynamics are represented in the link's D-H
frame. Takes external forces and joint torques as input. Also
takes an active state as its input and modifies it. The active state
can be reused to quickly calculate other components.

collectLeafLinks Collects all leaf links (links with no children) in the subtree with
this link as its root.

Table 7-15: List of prominent data-calculation methods in EcManipulatorLink.

7.12 Example Code

7.12.1 Creating a Sphere-Shaped Link
Code for creating a simple sphere-shaped link is shown in Text Box 7-9. This code creates the link
from scratch and saves it as “sphereLink.xml.” This file can be loaded with the ActinViewer.

The code in Text Box 7-9 does the following: It instantiates the link object. It then adds Denavit-
Hartenberg kinematics and a joint actuator. The label for the link is set to “exampleLink,” and the
mass is set to that of a sphere with mass 10.0 kg and radius 1.0 m.

 155

Text Box 7-9: Example code for creating a sphere-shaped link. This is Example Section #1 in the
link example code.

The code in Text Box 7-10 creates four different geometric shapes and saves them as links. These
links can be loaded and rendered using the ActinViewer.

 // declare an error return code
 EcBoolean success;

 // declare a link object
 EcManipulatorLink link;

 // set the kinematics
 EcDenavitHartenberg dh;
 link.setLinkKinematics(dh);

 // set the joint actuator
 EcJointActuator act=
 EcJointActuator(0.004,0.001,30.0,-1000,1000,-10.0,10.0,0.08,1.0,2.0);
 link.setJointActuator(act);

 // set the link label
 link.setLabel("exampleLink");

 // set the mass properties to that of a sphere
 EcRigidBodyMassProperties massProperties=
 EcRigidBodyMassProperties::uniformSolidSphere(10.0,1.0);
 link.setMassProperties(massProperties);

 // set the shape as a sphere
 EcSphere sphere;
 sphere.setRadius(1.0);
 link.setShape(sphere);

 // save the link as a plain XML file
 success=link.writeToFile("sphereLink.xml",EcManip::EcManipulatorLinkToken);

 // make sure it saved properly
 if(!success)
 {
 EcWARN("Could not save link.\n");
 return;
 }

 156

Text Box 7-10: Example code for creating links with tetrahedral, capsule, lozenge, and ellipsoidal
shapes. This is Example Section #2 in the link example code.

The code in Text Box 7-11 creates four different geometric shapes and saves them as links. These
links can be loaded and rendered using the ActinViewer.

 // give the link a tetrahedron shape and save it
 EcVector v1(0.0,0.0,0.0);
 EcVector v2(1.0,0.0,0.0);
 EcVector v3(0.5,1.0/sqrt(12.0),sqrt(2.0/3.0));
 EcVector v4(0.5,sqrt(3.0)/2.0,0.0);
 EcTetrahedron tetrahedron(v1,v2,v3,v4);
 link.setShape(tetrahedron);
 success=link.writeToFile("tetrahedronLink.xml",
 EcManip::EcManipulatorLinkToken);

 // give the link a capsule shape and save it
 EcLineSegment segment(EcVector::zeroVector(),
 EcVector::xVector(1.0));
 EcCapsule capsule(segment,0.5);
 link.setShape(capsule);
 success=link.writeToFile("capsuleLink.xml",
 EcManip::EcManipulatorLinkToken);

 // give the link a lozenge shape and save it
 EcRectangle rectangle(
 EcVector::zeroVector(),
 EcVector::xVector(1.0),
 EcVector::yVector(2.0));
 EcLozenge lozenge(rectangle,0.5);
 link.setShape(lozenge);
 success=link.writeToFile("lozengeLink.xml",
 EcManip::EcManipulatorLinkToken);

 // give the link an ellipsoid shape and save it
 EcEllipsoid ellipsoid(1.0,2.0,3.0);
 link.setShape(ellipsoid);
 success=link.writeToFile("ellipsoidLink.xml",
 EcManip::EcManipulatorLinkToken);

 157

Text Box 7-11: Example code for creating a link with a polyhedral shape. This is Example Section
#3 in the link example code.

 // an extent to hold the polyhedron
 EcPolyPhysicalExtent extent;

 // a variable to hold the points
 EcXmlVectorVector points;

 EcVector lengthVector=EcVector::xVector(0.5);
 EcVector widthVector =EcVector::yVector(1.0);
 EcVector heightVector=EcVector::zVector(2.0);

 // points, front then back
 points.pushBack(lengthVector+widthVector-heightVector);
 points.pushBack(lengthVector+widthVector+heightVector);
 points.pushBack(lengthVector-widthVector+heightVector);
 points.pushBack(lengthVector-widthVector-heightVector);
 points.pushBack(-lengthVector+widthVector-heightVector);
 points.pushBack(-lengthVector+widthVector+heightVector);
 points.pushBack(-lengthVector-widthVector+heightVector);
 points.pushBack(-lengthVector-widthVector-heightVector);

 // set the points
 extent.setPoints(points);

 // polygons
 EcPolygonWithKeyVector polygons;

 // front (+x)
 EcPolygonWithKey polygon;
 polygon.setSurfaceKey("surface");
 polygon.setPointIndices(4, 0,1,2,3);
 polygons.pushBack(polygon);

 // right (+y)
 polygon.setPointIndices(4, 4,5,1,0);
 polygons.pushBack(polygon);

 // bottom (+z)
 polygon.setPointIndices(4, 6,2,1,5);
 polygons.pushBack(polygon);

 // left
 polygon.setPointIndices(4, 3,2,6,7);
 polygons.pushBack(polygon);

 // top
 polygon.setPointIndices(4, 3,7,4,0);
 polygons.pushBack(polygon);

 // back
 polygon.setPointIndices(4, 4,7,6,5);
 polygons.pushBack(polygon);

 extent.setPolygons(polygons);
 link.setShape(extent);
 success=link.writeToFile("polyhedralLink.xml",
 EcManip::EcManipulatorLinkToken);

 158

The code in Text Box 7-12 builds on the code in Text Box 7-11 to change the color of the link. The
appearance properties are set in the surface using a string-number map. The file that is saved can be
loaded and rendered using the ActinViewer for comparison with the link created through the code in
Text Box 7-11.

Text Box 7-12: Example code for creating a link with a polyhedral shape. This is Example Section
#4 in the link example code. It builds on the code shown in Text Box 7-11.

 // create a surface and set the spectral properties
 EcSurfaceProperty surface;

 // ambient color parameters
 surface.add(EcManip::EcAmbientRedToken,0.4);
 surface.add(EcManip::EcAmbientGreenToken,0.4);
 surface.add(EcManip::EcAmbientBlueToken,0.8);
 surface.add(EcManip::EcAmbientAlphaToken,0.0);

 // diffuse color parameters
 surface.add(EcManip::EcDiffuseRedToken,0.3);
 surface.add(EcManip::EcDiffuseGreenToken,0.3);
 surface.add(EcManip::EcDiffuseBlueToken,0.3);
 surface.add(EcManip::EcDiffuseAlphaToken,0.3);

 // specular color parameters
 surface.add(EcManip::EcSpecularRedToken,0.0);
 surface.add(EcManip::EcSpecularGreenToken,0.0);
 surface.add(EcManip::EcSpecularBlueToken,0.0);
 surface.add(EcManip::EcSpecularAlphaToken,0.0);

 // emmissive color parameters
 surface.add(EcManip::EcEmissionRedToken,0.05);
 surface.add(EcManip::EcEmissionGreenToken,0.05);
 surface.add(EcManip::EcEmissionBlueToken,0.5);
 surface.add(EcManip::EcEmissionAlphaToken,0.0);

 // shininess parameter
 surface.add(EcManip::EcShininessToken,5.0);

 // add the surface to map of surfaces
 EcStringSurfacePropertyMap surfaces;
 surfaces.add(EcXmlString("surface"),surface);

 // set the surface properties in the extent
 extent.setSurfaces(surfaces);

 link.setShape(extent);
 success=link.writeToFile("bluePolyhedralLink.xml",
 EcManip::EcManipulatorLinkToken);

 159

8 The Manipulator
The robotic mechanism is defined by connecting links as described in the previous section. In the
construction of a manipulator, every link has a parent except for one, the base link. The base link
can either be fixed with respect to the environment or free moving. In addition to serving a special
role as the root of the link tree defining the manipulator and defining its location, the C++ class
describing the base link also provides a programming interface to the manipulator. The organization
of the manipulator is illustrated in the figure below.

Dynamic Base
Frame

Base Link

Figure 8-1: A manipulator is organized as a tree of links. One link on the manipulator serves a
special role as the base link. It does not have a joint associated with it. Instead, the location of the
base frame determines its location. In code, the class describing the base link is a subclass of the
normal link type and stores extra information on the entire manipulator.

The organization is illustrated for a physical manipulator through Figure 8-2, which shows a PUMA
manipulator. The EcIndividualManipulator object in this case represents the base of the
manipulator, which does not move as the joint values change. This same object also provides the
programming interface to the entire robot.

 160

Manipulator

Link 3 Link 1

Link 2

Link 4

Link 5

Link 0

Figure 8-2: The PUMA has six degrees of freedom and is represented using seven rigid bodies.
The manipulator object contains a description of the base. The first moving link (link 0) is a child of
the manipulator link. The rest of the arm is defined using a serial kinematic chain, with each link
containing one child link except for the last link (link 5), which has no children.

This chapter describes the organization of the link tree and the details on the interface that the base
link provides.

8.1 Reference Frames
The location of every link in the manipulator is defined through the following process: First, the
location of the base link is defined with respect to a reference frame, then the location of each child
link is defined with respect to its parent. Every link in the manipulator has the base link as an
ancestor in the tree, so this uniquely specifies the location of every link.

The location of the base of each manipulator is specified through a sequence of transformations, as
shown in Figure 8-3. The entire manipulator system is represented in the system frame, which is
defined with respect to a universal reference frame as part of the environmental specification. Then,
each manipulator has a static base frame whose location with respect to the system frame is specified
as part of the manipulator (system) description. The location of the base link is then specified
through a coordinate system describing the location of the dynamic base frame with respect to the
static frame. This coordinate system changes with each time step for mobile manipulators and
remains constant for fixed-based manipulators.

 161

Universal

System

Static Base

Dynamic Base

Environment System

State

Figure 8-3: Location of a manipulator’s base frame (as shown in Figure 8-1). The dynamic base
frame location is identified through a sequence of transformations. The location of the static base
frame is part of the system description, and the relative location of the dynamic base frame is part of
the state. For mobile manipulators, the motion of the dynamic base frame is integrated with the
motion of the joints.

8.2 Methods for Calculating Manipulator Data
The base link is an object of the class EcIndividualManipulator, which is subclassed from
EcManipulatorLink. The base link provides all the information available from a regular link, plus
information on the complete manipulator. It includes all the methods shown in Table 7-15 plus those
shown in the table below.

Method Description

absoluteBoundingSphere

Gets a reference to a sphere that bounds the manipulator
independent of its state.

manipulatorIndex Gets the index for the manipulator.

jointDof Gets the number of degrees of freedom in the manipulator
excluding base motion.

jointAndBaseDof

Gets the number of degrees of freedom in the manipulator
including base motion.

distanceTo Computes the distance from this to another manipulator.

checkIntersect Determines if this and another manipulator intersect.

checkSelfCollision Determines if any pair of links that form this manipulator
intersect.

 162

crbiSpatialCholeskyDecomposition Gets the Cholesky Decomposition (L such that L*L^T=M)
of the 6x6 spatial representation of the composite rigid-
body inertia (as represented in the DH frame).

linkByIdentifier Returns a pointer to the link with the specified string
identifier. Returns NULL if no link exists with that
identifier.

linkByIndex Returns a pointer to the link with the specified integer
index. Returns NULL if no link exists with that index (as
would happen if the index were larger than the
manipulator DOF).

propagateState Propagates a manipulator’s state forward in time. Stops
joints at joint limits and at collisions.

mapManipulator Builds maps for quick access to links based on indices and
labels.

surfaces Gets the surface property collection for the manipulator.

selfCollisionLinkMap Gets self-collision information for the manipulator.

lookup Looks up a surface property.

addCapsuleBoundingVolumeToLinks Adds a capsule bounding volume to the bounding volume
hierarch for each link, if it does not already exist

canCollide Determines whether two links can collide.

lookup Looks up a surface property.

Table 8-1: List of prominent data-calculation methods in EcIndividualManipulator that complement
those in the parent class, EcManipulatorLink.

8.3 Link and Manipulator References
To reduce XML file size, TCP/IP bandwidth, and rendering time, Actin includes link and
manipulator references. When components of a robotic mechanism are repeated there is redundancy
if all components are explicitly represented. In addition, if a simulation uses multiple mechanisms of
the same type, then explicit representation of each mechanism produces redundancy.

All components of the simulation are represented using the dichotomy of system and state in a single
stated-system class (EcStatedSystem). This class is illustrated in the figure below. The system
remains constant, timestep to timestep, while the state changes. The bulk of the footprint of the
simulation, both in file and memory size, lies in the system. In particular, it is the physical extent of
the manipulators and their environment which takes the most resources. These are typically
represented through polygon meshes, with many thousands of polygons.

 163

State System

Position State

Velocity State

Base Joints Manip
0

Manip
N Base Joints

Base Joints Manip
0

Manip
N Base Joints

Morphing State
Substitute Link Map Manip

0

Manip
N Substitute Link Map

Reference Information Applicable
to all Environmental Components

Manip
0

Manip
N

Link
Indexing

Link Tree Link Data:
Kinematics
Mass Properties
Physical Extent
Surface Properties
Volume Properties

Link
Indexing

Link Tree Link Data:
Kinematics
Mass Properties
Physical Extent
Surface Properties
Volume Properties

Physical Components

Stated System

Reference
Data

Reference
Data

Figure 8-4: Organization of the physical system in a simulation. All data is contained in one of two groups,
the system or the state. The system remains constant during a simulation, while the state changes timestep to
timestep.

The organization shown in the figure above allows referencing on the redundant parts of the system,
both links and entire manipulators. The new organization of the manipulator system, which includes
these references, is shown in the figure below.

 164

Manipulator Reference

Base Link
(fixed or mobile) Link 0 Link 1

Link 2

Link 3

Link Reference

Link Reference
Manipulator 0

Manipulator N

Figure 8-5: Organization of the system (shown on the right-hand side of Figure 8-4) using references. Any
link in any manipulator can reference another link in the same manipulator, and any manipulator can reference
another manipulator.

The organization shown in the figure above is implemented by having each link hold a link-reference
description, and each manipulator hold a manipulator-reference description. These two data sets are
implemented through classes with the profile shown in the table below.

Class Flag Reference String

EcManipulatorReferenceDescription m_IsManipulatorReferenced m_ReferencedManipulatorLabel

EcLinkReferenceDescription m_IsShapeReferenced m_ReferencedLinkLabel

Table 8-2: Manipulator and link reference information is established through the two classes shown.
Each contains a flag and the string label for the referenced entity.

Each link holds a pointer to a link reference. If the link is not referenced, this pointer is set to point
to the parent link itself. The reference pointer is always used to access the shape container. With
this implementation, the physical extent of the link is seamlessly represented in the same way,
whether or not the link is referenced. Beyond the shape container, no other aspect of the link is
referenced. That is, it uses its own link kinematics and actuator properties. Thus, the entire
kinematic structure of the robot must still be explicitly represented, even when using link references.

If a manipulator is referenced, the manipulator uses the shape for the base link of the referenced
manipulator and also references the children of the referenced manipulator. This allows an
arbitrarily complex mechanism to be represented using a single EcIndividualManipulator object with
no children.

The figure below shows a specific example of the improvement produced by referencing. The file
size for this simulation, which includes 35 identical 12-dof mechanisms, is 1 MB without
referenceing and 53 KB with referencing.

 165

Figure 8-6: With the new link and manipulator referencing, this simulation (using 35 independently
controlled 12-dof mechanisms) has a file size of only 53 KB and loads almost instantaneously. This
simulation uses both link and manipulator referencing.

8.4 Example Code

8.4.1 Creating a Bitmapped Base Link
Code for creating a simple box-shaped link is shown in Text Box 8-1 and Text Box 8-2. This code
creates an EcIndividualManipulator object with six sides and bitmaps an image to it. The image is
“robotImage.jpg,” which is delivered with the toolkit. The manipulator is saved as
“bitmapBox.xml.” This file can be loaded with the ActinViewer.

The code in Text Box 8-1 does the following: It instantiates the manipulator object and gives it a
string label. It then adds a single surface property. This surface property includes the name of the
texture that will be used as an image for mapping. It builds a set of three-dimensional vertices to
define the physical extent, and it builds a set of two-dimensional map points into the texture image.

 166

Text Box 8-1: Start of example code for creating a bit-mapped box manipulator. This is the start of
Example Section #1 in the manipulator example code.

The code in Text Box 8-2 does the following: It constructs the polygons defining the manipulator by
referencing the three-dimensional vertices and the two-dimensional raster-map points. It sets the
manipulator’s shape, then saves the manipulator as an XML file.

 // create a manipulator object
 EcIndividualManipulator manipulator;

 // set the label
 manipulator.setLabel("box");

 // surface properties with a texture
 EcStringSurfacePropertyMap surfaces;
 EcSurfaceProperty surface;
 surface.add(EcManip::EcAmbientRedToken,0.99);
 surface.add(EcManip::EcAmbientGreenToken,0.99);
 surface.add(EcManip::EcAmbientBlueToken,0.99);
 surface.add(EcManip::EcSpecularRedToken,0.9);
 surface.add(EcManip::EcSpecularGreenToken,0.9);
 surface.add(EcManip::EcSpecularBlueToken,1.0);
 surface.add(EcManip::EcTextureFilenameToken,"robotImage.jpg");
 surfaces.add(EcXmlString("box"),surface);

 // set the extent
 EcPolyPhysicalExtent baseExtent;
 baseExtent.setSurfaces(surfaces);

 // make a point set
 EcXmlVectorVector points;

 // build the box
 EcVector top=EcVector(0.0, 1, 0.0);
 EcVector bottom=EcVector(0.0, -1, 0.);
 EcReal er=0.5;
 points.pushBack(top+er*EcVector::xVector()+er*EcVector::zVector());
 points.pushBack(top+er*EcVector::xVector()-er*EcVector::zVector());
 points.pushBack(top-er*EcVector::xVector()-er*EcVector::zVector());
 points.pushBack(top-er*EcVector::xVector()+er*EcVector::zVector());

 points.pushBack(bottom+er*EcVector::xVector()+er*EcVector::zVector());
 points.pushBack(bottom+er*EcVector::xVector()-er*EcVector::zVector());
 points.pushBack(bottom-er*EcVector::xVector()-er*EcVector::zVector());
 points.pushBack(bottom-er*EcVector::xVector()+er*EcVector::zVector());

 baseExtent.setPoints(points);

 // set the raster map points
 // map the entire texture to all sides of the box
 EcPlanarVectorVector rasterMapPoints;
 rasterMapPoints.pushBack(EcPlanarVector(0.0,0.0));
 rasterMapPoints.pushBack(EcPlanarVector(0.0,1.0));
 rasterMapPoints.pushBack(EcPlanarVector(1.0,1.0));
 rasterMapPoints.pushBack(EcPlanarVector(1.0,0.0));
 baseExtent.setRasterMapPoints(rasterMapPoints);

 167

Text Box 8-2: Continuation of example code for creating a bit-mapped box manipulator. This is
part of Example Section #1 in the manipulator example code.

8.4.2 Creating a Mechanism with One Joint
Code for adding a single joint to the manipulator created in Text Box 8-1 and Text Box 8-2 is shown
in Text Box 8-3 and Text Box 8-4. The manipulator is saved as “oneJointManipulator.xml.” This
file can be loaded with the ActinViewer.

The code in Text Box 8-3 creates and sets the polygons in the physical extent. The code in Text Box
 8-4 sets the surface properties for the physical extent and uses the physical extent to model the link.
It then, creates the link kinematics and mass properties and connects the new link to the base created
through Text Box 8-1 and Text Box 8-2.

 // ...continued

 // set the base polygons

 EcPolygonWithKey polygon;
 EcPolygonWithKeyVector polygons;

 polygon.setSurfaceKey("box");

 // map the entire texture to all sides of the box
 polygon.setRasterMapIndices(4,0,1,2,3);

 // build the box
 EcU32 ba=0;

 polygon.setPointIndices(4,0+ba,1+ba,2+ba,3+ba);
 polygons.pushBack(polygon);

 polygon.setPointIndices(4,4+ba,7+ba,6+ba,5+ba);
 polygons.pushBack(polygon);

 polygon.setPointIndices(4,7+ba,3+ba,2+ba,6+ba);
 polygons.pushBack(polygon);

 polygon.setPointIndices(4,3+ba,7+ba,4+ba,0+ba);
 polygons.pushBack(polygon);

 polygon.setPointIndices(4,0+ba,4+ba,5+ba,1+ba);
 polygons.pushBack(polygon);

 polygon.setPointIndices(4,1+ba,5+ba,6+ba,2+ba);
 polygons.pushBack(polygon);

 baseExtent.setPolygons(polygons);

 manipulator.setShape(baseExtent);
 manipulator.setIsFixedBase(EcTrue);

 // write the manipulator to a file
 EcBoolean success=manipulator.writeToFile("bitmapBox.xml",
 EcManip::EcIndividualManipulatorToken);

 168

Text Box 8-3: Start of example code for adding a child link to the manipulator created in the last
section. This is the start of Example Section #2 in the manipulator example code.

 // an extent to hold the polyhedron
 EcPolyPhysicalExtent extent;

 // a variable to hold the linkPoints
 EcXmlVectorVector linkPoints;

 EcVector lengthVector=EcVector::xVector(0.2);
 EcVector widthVector =EcVector::yVector(0.2);
 EcVector heightVector=EcVector::zVector(0.2);

 // linkPoints, front then back
 linkPoints.pushBack(lengthVector+widthVector-heightVector);
 linkPoints.pushBack(lengthVector+widthVector+heightVector);
 linkPoints.pushBack(lengthVector-widthVector+heightVector);
 linkPoints.pushBack(lengthVector-widthVector-heightVector);
 linkPoints.pushBack(-lengthVector+widthVector-heightVector);
 linkPoints.pushBack(-lengthVector+widthVector+heightVector);
 linkPoints.pushBack(-lengthVector-widthVector+heightVector);
 linkPoints.pushBack(-lengthVector-widthVector-heightVector);

 // set the linkPoints
 extent.setPoints(linkPoints);

 // linkPolygons
 EcPolygonWithKeyVector linkPolygons;

 // front (+x)
 EcPolygonWithKey linkPolygon;
 linkPolygon.setSurfaceKey("surface");
 linkPolygon.setPointIndices(4, 0,1,2,3);
 linkPolygons.pushBack(linkPolygon);

 // right (+y)
 linkPolygon.setPointIndices(4, 4,5,1,0);
 linkPolygons.pushBack(linkPolygon);

 // bottom (+z)
 linkPolygon.setPointIndices(4, 6,2,1,5);
 linkPolygons.pushBack(linkPolygon);

 // left
 linkPolygon.setPointIndices(4, 3,2,6,7);
 linkPolygons.pushBack(linkPolygon);

 // top
 linkPolygon.setPointIndices(4, 3,7,4,0);
 linkPolygons.pushBack(linkPolygon);

 // back
 linkPolygon.setPointIndices(4, 4,7,6,5);
 linkPolygons.pushBack(linkPolygon);

 extent.setPolygons(linkPolygons);

 // continued...

 169

Text Box 8-4: Continuation of example code for creating a one-joint manipulator. This is part of
Example Section #2 in the manipulator example code.

 // ...continued

 // clear the old surface properties
 surface.clear();

 // ambient color parameters
 surface.add(EcManip::EcAmbientRedToken,0.4);
 surface.add(EcManip::EcAmbientGreenToken,0.4);
 surface.add(EcManip::EcAmbientBlueToken,0.8);

 // specular color parameters
 surface.add(EcManip::EcSpecularRedToken,0.7);
 surface.add(EcManip::EcSpecularGreenToken,0.5);
 surface.add(EcManip::EcSpecularBlueToken,0.5);

 // shininess parameter
 surface.add(EcManip::EcShininessToken,50.0);

 // add the surface to map of surfaces
 surfaces.clear();
 surfaces.add(EcXmlString("surface"),surface);

 // set the surface properties in the extent
 extent.setSurfaces(surfaces);

 EcManipulatorLink link;
 link.setShape(extent);

 // set the Denavit-Hartenberg link kinematics data
 EcDenavitHartenberg dh;
 dh.setJointType(0);
 dh.setDhAlpha(EcHalfPi);
 dh.setDhD(0.6);
 dh.setDhA(0.0);
 link.setLinkKinematics(dh);

 // set the actuator
 link.setJointActuator(EcJointActuator::testObject());

 // set the label
 link.setLabel("link1");

 // set center-of-mass mass properties (using a rectangular-prism model)
 EcRigidBodyMassProperties massProp;
 massProp.set(1.0,EcVector(0,0,0),EcSecondMoment(1,1,1));

 // set the mass properties
 link.setMassProperties(massProp);

 // write out the result
 manipulator.addChild(link);
 success=manipulator.writeToFile("oneJointManipulator.xml",
 EcManip::EcIndividualManipulatorToken);

 170

9 The Stated System
The complete manipulator structure is described through a dichotomy: system and state. The system
remains the same, time step to time step, while the state changes. The system may change upon
unique events, but does not change with each time step. The system is decomposed into any number
of manipulators, each of which is represented through any number of links. Manipulators have both a
unique integer and string identifier, and each link has a unique integer and string identifier within the
manipulator. Link integer identifiers use depth-first ordering in the tree. The state is decomposed into
a velocity and a position state, each of which is organized by manipulator and link ID. Figure 9-1
below illustrates this organization. Separating system and state allows easy logging, check pointing,
and storage of the information that changes with time.

State System

Position State

Velocity State Environment
Base Joints Manip

0

Manip
N Base Joints

Base Joints Manip
0

Manip
N Base Joints

Manip
0

Manip
N

Time

Base Ref

Link
Indexing

Link Tree

Base Ref

Link
Indexing

Link Tree

Manipulator Information

Figure 9-1: The representation of the manipulators and the environment are organized into a system
and state. The state changes from time step to time step, while the system remains static outside of
exceptional events.

9.1 Description of EcStatedSystem
The stated system is made up of a system and state. Table 9-1 shows the registered member
variables and Table 9-2 shows the primary methods of the class.

 171

Member Data Class/Type Description Restrictions

m_pSystem EcManipulator
System

Pointer to static system data. None

m_State EcManipulator
SystemState

State data that changes frequently. None

m_Processing

Parameters

EcSystem
Processing
Parameters

Parameters used for processing the
system during simulation and control
(maximum number of GJK iterations).

None

Table 9-1: Stated system registered member variable description. This is class EcStatedSystem. See
the code documentation for a complete list of member variables and descriptions.

Method Description

propagateSelfTo Propagate the internal state in time. This keeps the same
velocity state and integrates the position state using forward
Euler. Diagnostic data is optionally returned which indicates
whether a collision occurred or a joint limit was hit.

propagateTo Propagate the input state in time. This keeps the same velocity
state and integrates the position state using forward Euler.
Diagnostic data is optionally returned which indicates whether a
collision occurred or a joint limit was hit.

propagateSingleStateBy Propagate a single manipulator state by delta-time. This keeps
the same velocity state and integrates the position state using
forward Euler. The manipulator number is given by index.
Diagnostic data is optionally returned which indicates whether a
collision occurred or a joint limit was hit.

addCompatibleState Creates a state that is a compatible size with the system.

setToMidpointState Creates a state that is a compatible size with the system and it
initializes each joint position to be half way between the limits.

validateTopLevelDimensions Ensures a match in the numbers of manipulators in the system
and state.

validateLowLevelDimensions Ensures that the sizes of manipulators match by verifying that
the number of joint positions and velocities in the state match
the number of degrees of freedom in the system.

aboutToModifySystem Since the system is generally large, it is not copied when passed
around. Instead, a pointer to the system is copied from object to
object. A counter is kept to determine how many objects are in

 172

use of the system so that it can be deleted properly. New
pointers to new or modified systems are created when a system
is about to be modified or created. The counter is set to zero at
that time.

absoluteBoundingSphere Calculates a bounding sphere. This bounding sphere is a
function of the base positions and orientations, but not the joint
positions.

checkForCollisions Checks for manipulator collisions given the current state. It
checks for self collisions first, then manipulator to manipulator
collisions.

gjkDistanceQuery Get the shortest distance between two EcShape objects. This is
called from checkForCollisions for each manipulator.

Table 9-2: List of prominent methods in EcStatedSystem.

The propagation methods are used by the simulation and the position control system to propagate the
simulation state and the control system state. As the state is propagated, a check for collisions is
performed.

The system is stored in EcStatedSystem as a pointer. To save on memory, this pointer is shared by
other objects that have the exact same system. If a system in a particular object is about to change,
the aboutToModifySystem method needs to be called to give the object a unique state object for
changing. Otherwise, the system would be changed in every object connected to the system pointer.
EcStatedSystem contains a reference counter pointer which provides information about the system
pointer. If the reference counter pointer is null, then a call to aboutToModifySystem creates a new
system and reference counter pointer, and it initializes the counter to zero. A zero count means that
only one object has access to the system. If the reference pointer has been created and is set to zero,
a call to aboutToModifySystem does nothing; the object contains the only reference to the system and
can freely modify the system without affecting any other objects. If the counter is greater than zero,
a call to aboutToModifySystem disconnects the object from that system and creates a cloned copy of
the system that it can modify. The object also disconnects from the counter and obtains a new one
which is initialized to zero.

9.1.1 Description of EcManipulatorSystem
The manipulator system is made up of a vector of manipulators, an environment, and a vector of link
interaction processors. Table 9-3 shows the member variables and Table 9-4 shows the primary
methods of the class.

Member Data Class/Type Description Restrictions

m_Manipulators EcIndividualManipulator
Vector

Vector of manipulators None

m_Environment EcSystemEnvironment Environment for the system.
This includes the gravity
vector, and a transformation
from a universal frame to the

None

 173

system frame.

m_LinkInteraction

Vector

EcLinkInteractionsVector Vector of interaction models
between links. The vector
options are currently a spring
and damper force model and
a collision force container
which can be upgraded with
new force models.

None

Table 9-3: Description of registered manipulator system member variables. This is class
EcManipulatorSystem. See the code documentation for a complete list of member variables and
descriptions.

Method Description

jointDof Gets the number of joint degrees of freedom in the system
excluding the position and orientation of the base.

jointAndBaseDof Gets the number of joint degrees of freedom in the system
including the position and orientation of the base.

isCompatible Check system size compatibility with state.

absoluteBoundingSphere Calculates a bounding sphere. This bounding sphere is a
function of the base positions and orientations, but not the joint
positions.

numberOfManipulators Get the number of manipulators in the system.

setManipulatorBackPointers Sets the back pointer to the stated system in the manipulators so
that the system knows which stated system it is a part of.

Table 9-4: List of prominent methods in EcManipulatorSystem.

Most of the information stored in the system is contained in the manipulator vector which is
described in the previous section on manipulators. The environment contains general information
such as the coordinate system transformation from the universal frame to the system frame, and a
gravity vector. Table 9-5 provides a description of these variables.

While the propagation methods of the stated system call a method for detecting collisions, the link
interaction vector provides a mechanism for creating forces between links and objects that can be
dynamically simulated. Currently, the link interaction vector can contain a spring and damper model
(i.e., EcSpringAndDamperBetweenLinks) or a generic force container (i.e., EcLinkCollisionForce).
The generic force container holds two additional options: EcMassSpringCollisionForceProcessor
and EcRestitutionModelCollisionForceProcessor. New models can be added to the link interaction
vector and the generic force container through a dynamic library (e.g., DLL under Windows)—
please see Section 18. The link interaction vector elements describe the types of interactions that
will be dynamically simulated. For example, if a manipulator is required to bounce a ball, two link
interactions need to be described: the interaction between the manipulator and the ball, and the

 174

interaction between the ball and the floor. The link interaction vector assumes that all interactions
are between links of manipulators. In this example, the ball and floor are described as trivial
manipulators for the purpose of enabling the link interaction processors to calculate the force
between objects.

Member Data Class/Type Description Restrictions

m_CoordSysXForm EcCoordinateSystem

Transformation

The transformation from the
universal frame to the system
frame

None

m_UpGravityVector EcXmlVector The acceleration due to
gravity in the up direction in
the system frame

None

Table 9-5: Complete list of environment system member variables. This is class
EcSystemEnvironment.

9.1.2 Description of EcManipulatorSystemState
The manipulator state is made up of a vector of joint positions and velocities, and a time tag. Table
 9-6 shows the member variables and Table 9-7 shows the primary methods of the class. The state
data is primarily manipulated by the propagation methods of the stated system class.

Member Data Class/Type Description Restrictions

m_PositionStates EcPositionStateVector Vector of manipulator
position states. This is a
vector of joint position
vectors. The top level vector
is for separating the joint
positions for each
manipulator.

None

m_VelocityStates EcVelocityStateVector Vector of manipulator
velocity states. This is also a
vector of joint velocity
vectors.

None

m_Time EcXmlTime

Same as EcXmlReal

Time associated with the
state

None

Table 9-6: Complete list of manipulator system member variables.

 175

Method Description

linearInterpolation Sets this to be a linear interpolation between two other state
values. Returns true for success and false if the state times are
equivalent.

validateTopLevelDimensions Ensures that the sizes of position states match the sizes of
velocity states. The position states take precedence. (i.e.,
when there is a discrepancy, the velocity state is modified.)

validateLowLevelDimensions Ensures that the size of the joint position vector matches the size
of joint velocity vector. The position vector takes precedence.
(i.e., when there is a discrepancy, the velocity vector is
modified.)

Table 9-7: List of prominent methods in EcManipulatorSystemState.

9.2 Description of EcVisualizableStatedSystem
The visualizable stated system is made up of a stated system, and visualization parameters. The
visualization parameters enable the rendering of the stated system. Table 9-8 shows the list of
member variables.

Member Data Class/Type Description Restrictions

m_PovParameters EcPovParameters Parameters describing the
kinematics of the view such
as eye point, center of
interest, and field of view.

None

m_LightParameters EcLightParameters Parameters describing the
scene lighting. EcLight
contains a description of
numerous lighting
parameters.

None

m_RenderParameters EcRenderParameters Parameters describing the
rendering process such as
near and far clipping distance
and anti-aliasing parameters

None

m_DisplayOptions EcDisplayOptions Display options such as
collision, joint limit, and end
effector options.

None

m_GUIObject

Parameters

EcGUIObjectParameters GUI parameters such as size
of the guide frame and center

None

 176

of interest

Table 9-8: Complete list of visualization parameters member variables. This is for class
EcVisualizationParameters.

9.3 Example
Code for creating a visualizable stated system for a two manipulator system is described in this
section. The example starts by creating the system for the stated system. The system needs a
definition for the manipulators, the environment, and the link interaction vector. Text Box 9-1
illustrates the creation of the manipulators. Since an illustration for creating a manipulator is
described in detail in the manipulator section of this user’s guide, the details for creating a
manipulator in this example are hidden in the manipulator testObject method.

Text Box 9-1: Start of example code for creating a stated system. In this section, the system
manipulators are created. This is Example Section #1 in the stated system example code.

Text Box 9-2 illustrates how the environment for the system is created. The environment contains a
coordinate transformation and a gravity vector.

Text Box 9-2: Example creation of the system environment. This is Example Section #2 in the
stated system example code.

 xform.setTranslation(EcVector(1.0,1.0,0.0));
 xform.setOrientation(EcOrientation(1.0,0.0,0.0,0.0));

 EcSystemEnvironment env;

 env.setCoordSysXForm(xform);
 env.setUpGravityVector(EcVector(0.0,9.8,0.0));

 // create a first manipulator

 // see the manipulator example for more details on creating a manipulator
 EcIndividualManipulator manip1=EcIndividualManipulator::testObject();

 EcCoordinateSystemTransformation xform;
 xform.setTranslation(EcVector(1.0,1.0,0.0));
 xform.setOrientation(EcOrientation(1.0,0.0,0.0,0.0));

 manip1.setCoordSysXForm(xform);

 // create a second manipulator

 EcIndividualManipulator manip2=EcIndividualManipulator::testObject();

 xform.setTranslation(EcVector(-1.0,1.0,0.0));
 xform.setOrientation(EcOrientation(1.0,0.0,0.0,0.0));

 manip2.setCoordSysXForm(xform);

 // add the two test manipulators to the system

 EcIndividualManipulatorVector manipulators;
 manipulators.pushBack(manip1);
 manipulators.pushBack(manip2);

 177

Text Box 9-3 illustrates how the link interaction vector is created. This example creates one link
interaction element between two links.

Text Box 9-3: Example creation of the system link interaction vector. This is Example Section #3
in the stated system example code.

Text Box 9-4 illustrates how the manipulator vector, environment, and link interaction vector are
placed into the system.

Text Box 9-4: Now that the manipulators, environment, and link interaction vector are in place, the
system can be created. This is Example Section #4 in the stated system example code.

Text Box 9-5 illustrates how the joint position and velocity states are created and how they are
placed into the state.

 EcManipulatorSystem system;

 system.setManipulators(manipulators);
 system.setEnvironment(env);
 system.setLinkInteractionsVector(forceBetweenLinkVector);

 EcSpringAndDamperBetweenLinks forceBetweenLink;
 forceBetweenLink.setManipulatorOneIndex(0);
 forceBetweenLink.setManipulatorOneIndex(1);
 forceBetweenLink.setLinkOneIndex(1);
 forceBetweenLink.setLinkTwoIndex(1);
 xform.setToIdentity();
 forceBetweenLink.setFrameOffsetOne(xform);
 forceBetweenLink.setFrameOffsetTwo(xform);
 forceBetweenLink.setAngularDamperConstant(0.1);
 forceBetweenLink.setAngularSpringConstant(1.2);
 forceBetweenLink.setAngularSpringOffset(1.0);
 forceBetweenLink.setLinearDamperConstant(0.1);
 forceBetweenLink.setLinearSpringConstant(2.0);
 forceBetweenLink.setLinearSpringOffset(12.0);

 EcLinkInteractionsVector forceBetweenLinkVector;
 forceBetweenLinkVector.pushBack(forceBetweenLink);

 178

Text Box 9-5: Create and initialize the state. This is Example Section #5 in the stated system
example code.

Given a system and state, Text Box 9-6 shows how a stated system is created.

 EcPositionStateVector positionStates;
 EcVelocityStateVector velocityStates;

 EcU32 numManip=system.manipulators().size();
 for(EcU32 ii=0;ii<numManip;++ii)
 {
 // create position state holder
 EcPositionState posState;

 // get the number of degrees of freedom in the manipulator
 EcU32 dof=system.manipulators()[ii].jointDof();

 // set the position state
 posState.setCoordSysXForm
 (EcCoordinateSystemTransformation::nullObject());
 EcXmlRealVector values(12);
 values[0]=0.503881;
 values[1]=-0.46942;
 values[2]=-1.77795;
 values[3]=0.994958;
 values[4]=0.425054;
 values[5]=2.13634;
 values[6]=-0.011515;
 values[7]=0.0592323;
 values[8]=0.579904;
 values[9]=0.826406;
 values[10]=-0.334235;
 values[11]=0.299118;

 posState.setJointPositions(values);

 // create velocity state holder
 EcVelocityState velState;

 // set the velocity states
 velState.setGeneralVelocity(EcGeneralVelocity::nullObject());

 // assign zero to each velocity
 values.assign(dof,EcXmlReal(0.0));
 velState.setJointVelocities(values);

 // push the states onto the list
 positionStates.pushBack(posState);
 velocityStates.pushBack(velState);
 }

 // set the state

 EcManipulatorSystemState state;

 state.setPositionStates(positionStates);
 state.setVelocityStates(velocityStates);

 179

Text Box 9-6: Example for creating a stated system. This is Example Section #6 in the stated
system example code.

A visualizable stated system needs a stated system and visualization parameters for rendering. The
visualization parameters include point-of-view, light, and rendering parameters. Text Box 9-8
illustrates how the point-of-view visualization parameters are created.

Text Box 9-7: Example creation of the point-of-view parameters of the visualizable stated system.
This is Example Section #7 in the stated system example code.

Text Box 9-8 illustrates how the light visualization parameters are created.

Text Box 9-8: Example creation of the light parameters of the visualizable stated system. This is
Example Section #8 in the stated system example code.

Text Box 9-9 illustrates how the render visualization parameters are created.

Text Box 9-9: Example creation of the render parameters of the visualizable stated system. This is
Example Section #9 in the stated system example code.

 EcStatedSystem statedSystem;

 statedSystem.setSystem(system);
 statedSystem.setState(state);

 EcRenderParameters render;
 render.setUseDefaults(EcTrue);
 render.setNearClippingDistance(0.1);
 render.setFarClippingDistance(20.0);
 render.setNumJitterPoints(1);
 render.setAccuPixelRange(1);

 EcLight light;
 light.setIsOn(EcTrue);
 light.setAmbient(EcColor(0.1,0.1,0.1,1.0));
 light.setDiffuse(EcColor(0.75,0.75,0.75,1.0));
 light.setSpecular(EcColor(0.75,0.75,0.75,1.0));
 light.setPosition(EcVector(0.0,0.0,1.0));
 light.setIsPositional(EcTrue);
 light.setSpotDirection(EcVector(0.0,0.0,-1.0));
 light.setSpotExponent(0.0);
 light.setSpotCutoff(EcPi);
 light.setConstantAttenuation(1.0);
 light.setLinearAttenuation(0.0);
 light.setQuadraticAttenuation(0.0);

 EcLightParameters lights;
 EcLightVector lightVector;
 lightVector.pushBack(light);
 lights.setLights(lightVector);

 EcPovParameters pov;
 pov.setEyepoint(EcVector(0.0, -6.0, 15.0));
 pov.setCenterOfInterest(EcVector(0.0,1.0,0.0));
 pov.setFieldOfView(0.15);

 180

Text Box 9-10 illustrates how the point-of-view, light, and render parameters come together to form
the visualization parameters.

Text Box 9-10: Now that the point-of-view, light, and render parameters are in place, the
visualization parameters object can be created. This is Example Section #10 in the stated system
example code.

Text Box 9-11 illustrates how the stated system and visualization parameters come together to form
the visualizable stated system.

Text Box 9-11: Example creation of the visualizable stated system. This is Example Section #11 in
the stated system example code.

The example code for the stated system concludes by rendering the visualizable stated system, as
shown in the following text box:

Text Box 9-12: Rendering the visualizable stated system. This is Example Section #12 in the stated
system example code.

 // instantiate a renderer
 EcRenderWindow renderer;

 // set the size of the window
 const EcU32 size = 320;
 renderer.setWindowSize(2*size, size);

 // view the system
 renderer.setVisualizableStatedSystem(vizStatedSystem);
 renderer.renderScene();

 // pause for 1 second
 EcSLEEPMS(3000);
 renderer.closeScene();

 EcVisualizableStatedSystem vizStatedSystem;

 vizStatedSystem.setVisualizationParameters(vizParameters);
 vizStatedSystem.setStatedSystem(statedSystem);

 EcVisualizationParameters vizParameters;

 vizParameters.setPovParameters(pov);
 vizParameters.setLightParameters(lights);
 vizParameters.setRenderParameters(render);

 181

10 Velocity Control
Velocity control is the study of how to move the joints to properly move the hand. It includes a
variety of techniques, such as pseudoinverse control [6], weighted pseudoinverse control [7],
augmented Jacobian techniques [8], [9], extended Jacobian techniques [10], [11], and projection
methods [12], [13]. Velocity control contrasts with position control, which is the study of how to
position the joints to properly place the hand. Both types of control are needed for dexterous
manipulator operation. Velocity and position control are also often called, respectively, inverse
velocity kinematics and inverse position kinematics.

Velocity control is the central strength of the Actin™ toolkit. It uses a patented approach that
combines powerful XML-based configuration methods with the generic velocity-control algorithms
described in [14]. It applies to virtually all types of kinematically redundant and bifurcating
manipulators. Kinematically redundant arms are those with more degrees of freedom in arm motion
than degrees of freedom in hand motion. Bifurcating manipulators are those that branch by having at
least one link connect to more than one extension (or child link).

10.1 Algorithmic Description
Energid Technologies’ Actin™ approach is multifaceted, with algorithmic, language, and software-
implementation components. This section describes the algorithms.

10.1.1 Core Algorithmic Framework
The core velocity framework is based on the manipulator Jacobian equation:

qqJV &)(= . (10-1)

Here V is an m-length vector representation of the motion of the hand or hands (usually some
combination of linear and angular velocity referenced to points rigidly attached to parts of the
manipulator); q is the n-length vector of joint positions (with q& being its time derivative); and J is
the m×n manipulator Jacobian, a function of q . (For spatial arms with a single end effector, V is
often the frame velocity with three linear and three angular components. In this document, it takes
on a larger meaning that includes the concatenation of point, frame, or other motion of multiple end-
effectors.) This is illustrated in the figure below.

 182

Figure 10-1: An illustration, based on the RRC K-1207i manipulator, of the parameters for velocity
control. The column vector V represents hand motion (for positioning and orienting, it would be
6×1), and q represents the concatenated joint values (for the RRC K-1207i shown, it would be 7×1).
The Jacobian)(qJ is the matrix that makes (10-1) true for all possible values of q& . Note V can
represent a concatenation of values for multiple end effectors.

For any physical manipulator that is not self-connecting, a manipulator Jacobian can be defined to
make equation (10-1) true. When the manipulator is kinematically redundant, the dimension of V is
less than the dimension of q (m<n), and (10-1) is underconstrained when V is specified. By using
V to represent relative motion, (10-1) can support self-connecting mechanisms by setting the relative
motion to zero.

The velocity control question is the following: given a desired hand motion V, what are the joint
rates q& that best achieve this motion? To answer this, the framework is built on the method
described in [14], which uses a scalar α, a matrix function)(qW , and a scalar function)(qf to
solve for q& given V through the following formula:

⎥
⎦

⎤
⎢
⎣

⎡
∇−⎥

⎦

⎤
⎢
⎣

⎡
=

−

fTT
JJ N

V
WN

Jq
α

1

& ,

(10-2)

where f∇ is the gradient of f and JN is an n × (n−m) set of vectors that spans the null space of J .
That is, 0=JJN , and JN has rank (n−m). Both f∇ and JN are generally functions of q . By
changing the values of α, W, and f, many new and most established velocity-control techniques can
be implemented.

The Actin™ Toolkit, however, goes beyond the formulation in (10-2) to create a more general
framework. Instead of insisting on the use of the gradient of a function, a general column vector

 183

)(qF is used. Not all vector functions are gradients. This minor, but important, modification yields
the following formula:

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

−

FN
V

WN
Jq

JJ
TT α

1

& .

(10-3)

Equation (10-3) is the core velocity-control algorithm used in the Actin™ Toolkit. Mathematically,

it achieves the desired V while minimizing qFqWq &&& TT α+
2
1 . The parameters α , W and F can be

defined using XML to give many different types of velocity control.

10.1.2 Robust Extension
The framework provided by (10-3) is generally not robust in the presence of kinematic singularities.
This is not a problem with (10-3) in particular, but with velocity-control techniques in general. The
problem arises because of the limited information on the manipulator provided by the Jacobian.
(Given robot parameters, one can calculate the Jacobian, but given a Jacobian, one cannot calculate
robot parameters.)

To resolve the robustness problem with velocity control, one must return to the manipulator. This is
done indirectly in our technique by recalculating predicted values for V as q changes. To do this,
let the function V be defined as),(qqV & . This function is defined independently of equation (10-1),
because it is possible to calculate V directly as a function of q and q& faster than by calculating J
and evaluating (10-1).),(qqV & is used to refine the value found through (10-3) by scaling it.

At any point in time, real or simulated, let 0q be the joint values, 0V be the desired hand motion,
and 0q& be the result of applying (10-3). Then, at time tΔ later, the motion of the hand, 1V ,
produced by 0q& can be found as follows:

),(0001 qqqVV &&tΔ+= . (10-4)

Potential problems caused by the occurrence of a kinematic singularity can be determined by
comparing 1V to 0V . The assumption in velocity control is that 1V and 0V will be similar, and
their divergence proves this assumption invalid. An effective way to address this problem when it
occurs is to scale 0q& to be small enough that the assumption becomes true again. Let the function

),(10 VVβ ′ be this scaling term, so that the final joint-rate value is 010),(qVVq && β ′= . Because—
through (10-4)— 1V is a function of 0q and 0q& , and therefore—through (10-3)—is a function of

0q and 0V , the final joint-rate value can be written as

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

−

FN
V

WN
JVqq

JJ
TT α

β
1

),(& ,

(10-5)

where),(Vqβ is calculated using the intermediate quantities in the equation described above.
Equation (10-5) is the algorithmic framework for the robust extension.

 184

In the Actin™ Toolkit,),(Vqβ can be defined using two metrics. The first metric is a measure of
joint rate motion, and the second metric is a measure of end-effector motion error due to the
linearization performed in using the Jacobian.

10.1.3 Reduced Control Calculation
The general core velocity-control algorithm shown in (10-3) can be enhanced for some types of
control by taking advantage of the fact that the matrix W occurs only in the term WNJ

T , and the

vector F occurs only in the term FNJ
T . It is sometimes possible to avoid calculating W and F

explicitly and speed up the calculation, and this is the idea behind the reduced control calculation.
For reduced control calculation, there is an alternative core algorithm.

In the normal core algorithm, α , W and F are explicitly defined as part of the control expression
using XML. In the reduced calculation, α , A and B are used instead, where α has the same
meaning and A and B are defined as follows:

WNA J
T= . (10-6)

FNB J
T= . (10-7)

These are used to calculate q& through the following:

⎥
⎦

⎤
⎢
⎣

⎡
−⎥⎦

⎤
⎢⎣
⎡=

−

B
V

A
Jq

α

1

& .

(10-8)

This provides a more efficient implementation when A and B can be calculated more efficiently
than W and F . This is often true when the degree of redundancy (n-m) is small.

An example of the control expression in the form of A is implemented where W is taken as the
manipulator inertia matrix (M) to produce minimum-kinetic-energy control. Consider the
manipulator dynamic model in the absence of external forces, given by the following [15]:

)(),()(qGqqqCqqMτ ++= &&&& . (10-9)

To find MNJ
T for use in (10-6) with MW = , it follows from (10-9) that each column in null-space

JN can be treated as a set of joint accelerations (q&&). The corresponding row in A , then, is the joint
torque (τ) needed to achieve these joint accelerations (q&&), with joint velocity (q&) and gravity
()(qG) set to zero. This problem can be solved using the Newton-Euler dynamics algorithm, which
goes through an outward recursion calculating the vector force and moment acting on each link,
followed by an inward recursion to calculate the scalar force and torque needed for each joint. This
is usually more efficient than calculating the inertia matrix (M), as Newton-Euler inverse dynamics
is a linear-time operation (in the number of joints), while calculating the mass matrix is a quadratic-
time operation. This algorithm needs to be performed n-m times, and therefore this new approach is
especially efficient when the degree of redundancy (n-m) is small. (Note this implementation of
minimum-kinetic-energy control is included as part of the Actin™ Toolkit, discussed more below.)

 185

The implicit use of F in calculating B is also an important improvement for many problems. An
example is its use in finding directional derivatives. If F is the gradient of a function (f∇), then B
is just the directional derivatives of the function along the columns of JN . For the gradient case,
F can be evaluated as follows:

f∇
T

nx
f

x
f

x
f

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

= ,...,,
21

(10-10)

When using finite differencing, (10-10) involves evaluating the function f 1+n times. If reduced
control calculation is used instead, the terms of fT∇JN can be evaluated by directional derivative of

the function f along the direction of the columns of JN . That is:

fT
i ∇n =

h
fhf i

h

)()(lim
0

xnx −+
→

,
(10-11)

where in is the thi column of JN . Approximating (10-11) with a small fixed value of h only takes
(n-m+1) evaluations of the function f , saving m evaluations. In the case of a low degree of

redundancy, the computation of fT
i ∇n with this new approach is very efficient.

10.1.4 End-Effector Error Filter
The organization of the kinematic control system is as shown in the figure below. It is organized as
a tree that is configured at runtime, with joint rates and other parameters passed from children to
parents in the tree as matrices. The control system algorithm itself, the control system parameters,
and all filters are nodes in this tree.

 186

Control
Container

Core
Velocity-Control

Algorithm

W F α

q.

End-Effector Motion Joint Rates

Figure 10-2: The kinematic control system is organized as a tree that is composed at runtime,
configured using XML.

One component for this tree that is used for virtually all manipulators is an end-effector error filter,
which prevents excessive end-effector error. If a measure of the difference between the desired and
the actual end-effector velocities exceeds a threshold, then the manipulator is slowed or stopped.
This measure, μ , is calculated by taking the weighted inner product of the difference between
desired and actual velocities, through

),()(ad
T

ad VVWVV −−=μ (10-12)

where dV is the concatenation of desired end-effector velocities and aV is the concatenation of
actual end-effector velocities.

The weighting matrix W is established as a node in the control-tree description. This is illustrated in
Figure 10-12.

 187

Control
Container

End-Effector
Error Filter

q.

q. W

End-Effector Motion Joint Rates

Figure 10-3: The end-effector error filter is one component that can be placed in the control tree.
It reduces the speed of the manipulator as a function of the metric on end-effector error given by
(10-12), which is a function of weighting matrix W.

This weighting matrix is implemented as a function of parameters set within each end-effector,
including the following six end-effector types:

1. Frame (EcFrameEndEffector)

2. Point (EcPointEndEffector)

3. XY (EcXyEndEffector)

4. Orientation (EcOrientationEndEffector)

5. Center of Mass (EcCenterOfMassEndEffector)

6. Spatial Momentum (EcSpatialMomentumEndEffector)

7. Sliding (EcSlidingEndEffector)

8. Planar (EcPlanarEndEffector)

9. Look At (EcLookAtEndEffector)

10. Linear Constraint (EcLinearConstraintEndEffector)

Each of these now has configurable weights associated with it. These weights are in matrix form and
are appended to build a general block-diagonal weighting matrix or, in special cases, a column of
weights, as shown in the figure below.

 188

EE

EE

EE

EE

0

1

2

3

EE0

EE1

EE2

EE3

Matrix Form Column Form
Figure 10-4 The weighting matrix W can be calculated from the end effectors in one of two forms.
It can either be an explicit matrix or a column that is treated as if it were a diagonal matrix. The
column form is more efficient when strict-diagonal weighting is used.

Neither of these forms provides a way to weight cross terms formed by multiplying a component of
error for one end effector with a component for another. For this, W can be explicitly set as a matrix
through the XML description. (The downside of setting W explicitly being that end effectors cannot
be added and removed individually at runtime.)

10.2 Implementation
In the Actin™ Toolkit, equations (10-3), (10-5), and (10-8) are implemented using a tree structure.
This tree structure exists in the C++ code and is defined using XML. It is described in detail in this
section.

10.2.1 Velocity Control System
Large, fielded control systems are typically complex, with many patches and logical paths added by
the development team. Though based on logically encapsulated equations from textbooks and
academic papers, fielded control systems transcend them. The Actin™ Toolkit embraces this
phenomenon by organizing the control system, the robust extension, and all supporting mathematics
into a flexible logical tree that can be represented in XML.

This logical tree can better represent the additions and modifications that otherwise might be
informally added to the control system. It also provides a method of organization that supports
dynamic programming—the storage of subproblem solutions to prevent duplicate calculation. This
dynamic-programming/logical-tree approach to velocity control is among the most important
components of the Actin™ Toolkit. Though the algorithmic framework in (10-3) is central to its
success, through the chosen software architecture, the control system is bigger than equation (10-3).
It is a combination of flexible software with a powerful algorithm.

The logical tree is built from two types of entities: containers and expression elements. These two
families of objects are described through XML and are connected dynamically in code to produce
unique functions that give joint rates for any manipulator state and desired hand motion. Containers
and elements are described below.

 189

10.2.1.1 Containers
A control expression container performs three tasks. It 1) holds a single expression element, which
is the root of a tree, 2) knows how to create any type of expression element that may lie in the tree
beneath it, and 3) provides access to system information. This is illustrated in the figure below.

Container

Expression
Element

System
Information

Expression
Creation

Figure 10-5: The three roles of the container. Each container holds a single expression element, a
pointer to system information, and the ability to create any type of expression element in the tree
below it from a string token.

10.2.1.2 Expression Elements
Expression elements are the building blocks of the control system tree. All expression elements have
the following in common:

• Every expression element returns a two-dimensional array of values when queried.
• Every expression element holds a pointer to the top-most container in the tree.
• Using the container pointer, every expression element can read and write its description

(including the tree below it) from and to an XML stream.

There are two categories of expression elements: branch and leaf elements. Branch elements have
children that are expression elements. Unary branch elements have a single child, binary branch
elements have two children, and multiary branch elements have more than two children. Leaf
elements have no children. The control expression tree is formed using branch elements terminated
by leaf elements. In the C++ code, each type of expression element is represented using a different
class. In the XML description, each expression element uses a unique string identifier of its type.

The most basic expression elements are simple mathematical operations, such as multiplication and
addition. All operations are supported on two-dimensional arrays in an intuitive manner. Addition is
performed element-by-element and multiplication is performed as matrix multiplication. When the
dimensions of quantities do not agree, the operation is performed on the maximum compatible
subset. The figure below illustrates a simple expression tree that returns an array that is a function of
a manipulator joint value.

The memory management in the tree is self organizing. Standard Template Library (STL) data
structures are allocated from the heap based on the size of values returned from child expression
elements. In so doing, as long as the children return the same size data (the typical case), no memory
is allocated on subsequent use of the tree. This allows fast operation of the control system. Despite
very high flexibility, there is no dynamic memory allocation at run time.

 190

Container

Transpose

Negation

Plus

Times
Diagonal
Matrix

Joint Value

Single-Element
Matrix

Manipulator
System

Figure 10-6: An example expression tree. A container holds the top element, which is the root of a
tree that is the root of a tree composed of branch (white) and leaf (gray) elements. All elements hold
a pointer to the container (only two are illustrated). For programming, the container object holds a
map of functions to create any type of expression element from a string token.

10.2.1.2.1 Basic Mathematical and Logical Control Tree Elements
There are two types of expressions used in the expression tree (as shown in Figure 10-6), those that
return values that are pure functions of the returned values from the tree below and those that analyze
the robotic system to calculate their return values. The former, which can be leaf or branch nodes,
are described in the two tables below.

Type Class Meaning

And EcExpressionAnd Logical and (element by
element)

Cosine EcExpressionCosine cos(x) (element by element)

Element Inverse EcExpressionElementInverse 1/x (element by element)

Greater Than EcExpressionGreaterThan > (element by element)

Greater Than Or Equal
To

EcExpressionGreaterThanOrEqualTo ≥ (element by element)

Less Than EcExpressionLessThan < (element by element)

Less Than Or Equal To EcExpressionLessThanOrEqualTo ≤ (element by element)

 191

Log EcExpressionElementLog Natural log (element by
element)

LogN EcExpressionElementLogN Arbitrary log (Element by
Element)

Minus EcExpressionMinus Subtraction

Negative EcExpressionNegative -x

Or EcExpressionOr Logical or (element by
element)

Plus EcExpressionPlus Addition

Pow EcExpressionElementPow xa (for each element)

Root EcExpressionElementRoot x a (for each element)

Sine EcExpressionSine sin(x) (element by element)

Times EcExpressionTimes Matrix multiplication

Transpose EcExpressionTranspose (·)T – Matrix transpose

Table 10-1: Basic branch elements, their C++ class, and their meaning.

Type Class Meaning

Constant EcExpressionScalarConstant Constant floating-point

Single Element Column EcExpressionSingleElementColumn Column with one nonzero value

General Column EcExpressionGeneralColumn Column with arbitrary values

Single Element Matrix EcExpressionSingleElementMatrix Matrix with one nonzero value

Identity Matrix EcExpressionIdentityMatrix The identity matrix

Diagonal Matrix EcExpressionDiagonalMatrix Matrix with arbitrary diagonal

Table 10-2: Basic leaf elements, their C++ class, and their meaning.

These basic mathematical operations enable the user to specify many different matrix, vector, and
scalar functions within the control tree.

 192

Note these expression elements are not limited to data from the expression tree. Some elements use
data that is contained within its own XML description. That is, the value returned by any expression
element is a function both of the expression tree below it and of its own parameters. For example, a
diagonal-matrix expression loads its diagonal entries directly from the XML description, not from
the expression tree.

10.2.1.2.2 System-Aware Control Tree Leaf Elements
There are also a large number of predefined matrix, vector, and scalar functions of the state of the
robotic system. These leaf elements are shown in the table below.

Type Class Meaning

Accuracy Measure Gradient EcControlExpression…

ErrorSensitivity

The gradient of the error sensitivity
for a single joint.

Collision Avoidance EcControlExpression…

CollisionAvoidanceAB

A set of joint rates that can be used
to drive the manipulator away from
self collision and collision with
other manipulators.

Error Reduction EcControlExpression…

ErrorReduction

The gradient of an error of
sensitivity to a statistical
distribution of joint errors.

Joint Limit Avoidance EcControlExpression…

JointLimitAvoidance

A column of joint rates that can be
used to drive a manipulator away
from joint limits

JointTorqueSquared Gradient EcControlExpression…

GravitationalTorqueGradient

The gradient of the gravitational
torque squared on a single joint.

Mass Matrix EcControlExpression…

MassMatrix

The manipulator inertia matrix.

Mass Matrix AB EcControlExpression…

MassMatrixAB

The manipulator null space basis
multiplied by the inertia matrix.

Obstacle Avoidance EcControlExpression…

ObstacleAvoidance

A column of joint rates that can be
used to drive the arm away from
environmental obstacles.

Obstacle Avoidance AB EcControlExpression…

ObstacleAvoidanceAB

The manipulator null space basis
times a column of joint rates that
can be used to drive the arm away
from environmental obstacles.

 193

Potential Energy Gradient EcControlExpression…

PotentialEnergyGradient

The gradient of the potential
energy.

Singularity Avoidance EcControlExpression…

SingularityAvoidance

The gradient of a measure of
singularity proximity.

Strength Optimization EcControlExpression…

StrengthOptimization

The gradient of a measure of
strength along a specified direction.

Joint Value EcControlExpression…

JointValue

The value for any joint on any
manipulator.

Table Function EcControlExpression…

ColumnTableFunction

An arbitrary, data-specified table
function, with any number of
domain dimensions and any
number of range dimensions.

Table 10-3: Leaf Elements that are system aware, their C++ class, and their meaning.

10.2.1.2.3 Core Velocity-Control Elements and Converters

The expressions in Table 10-3 are used to build the parameter inputs to the velocity control
algorithms. The velocity control algorithms themselves are implemented as elements in the control
tree as well. There are two velocity-control elements: 1) a core expression, which implements
equation (10-3) and 2) an AB core expression, which implements (10-8). There are also elements for
converting W and F parameters to A and B parameters, as defined through equations (10-6) and
(10-7). These expressions are summarized in the table below.

Type Class Meaning

Core EcControlExpressionCore The core algorithm defined through
(10-3).

AB Core EcControlExpressionABCore Implementation of the reduced core
algorithm defined through (10-8).

AB Matrix Converter EcControlExpression…

MatrixToAB

Converts a weighting matrix to an
A parameter through (10-6).

AB Vector Converter EcControlExpression…

VectorToAB

Converts a weighting vector to a B
parameter through (10-7).

Table 10-4: Core elements and converters, their C++ class, and their meaning.

 194

The core control systems benefit from the flexibility of the expression tree in several ways. The
matrix, vector, and scalar functions that are used in equations (10-3) and (10-8) are described using
the expression tree. Also, the output joint rates can be modified in implementing),(Vqβ , the
robustness function, just as any other expression in the tree.

All the expressions in Table 10-4 require information on the manipulator system, end effectors, and
desired end-effector motion that it accesses through the top-level container. This is illustrated, along
with the operation of the expressions in the figures below.

Control

Container

Core
Velocity
Control

W F α

Individual Manipulator
Position State
End Effector
Desired End-Effector Velocity
Time Step
Control System
Index

q

.

Figure 10-7: The core velocity control system (EcControlExpressionCore). It has three children in
the control tree—one each for the matrix, vector, and scalar used in equation (10-3). This is used
with system information provided through the top-level container to calculate joint rates.

 195

Control
Container

AB Core
Velocity
Control

A B α

Individual Manipulator
Position State
End Effector
Desired End-Effector Velocity
Time Step
Control System
Index

q

.

Figure 10-8: The AB core velocity control system (EcControlExpressionABCore). It also has three
children in the control tree—one each for the A parameter, the B parameter, and scalar used in
equation (10-8). A typical control tree will contain one of either the core shown in Figure 10-7 or
the AB core shown here.

Expressions that provide the W and F inputs to an EcControlExpressionCore object can be converted
into the A and B inputs to the EcControlExpressionABCore object using the converters shown in the
figure below. With these, it is always possible to use the AB core. However, when both W and F
are explicitly calculated, it is generally more efficient to use the regular core. The AB core can be
very efficient when A or B are calculated directly.

W to AB
Converter

A

W

F to AB
Converter

B

F

Container
Access

Container
Access

Figure 10-9: EcControlExpressionMatrixToAB (left) and EcControlExpressionVectorToAB (right)
can convert matrix weights to A and B parameters, using the formulas in equations (10-6) and
(10-7).

10.2.1.2.4 Filters

The robust extension to the core velocity-control algorithm is implemented using several types of
expression elements. One type restricts the weighted infinity norm of joint rates. (The infinity norm

 196

returns the absolute value of the largest-magnitude element in the vector.) Let JW be a weighting
matrix on the joint rates and Jt be a threshold, then the following defines),,(Vqq&Jβ :

otherwise,

,1),,(

∞

∞

=

<=

qW

qWVqq

&

&&

J

J

JJJ

t
tβ

(10-13)

Another is an end-effector error metric, a weighted two-norm on the difference between the expected
and the actual end-effector motion. Let EW be a weighting matrix on the end-effector error, and Et
be a threshold. Then let

)()(),(010110 VVWVVVV −−= E
T

Eμ (10-14)

measure the error between the expected and the actual end-effector velocity. With this,),,(Vqq&Eβ
is defined as follows:

otherwise,
),(

),(,1),,(

10

10

VV

VVVqq

E

E

EEE
t

t

μ

μβ

=

<=&

(10-15)

In addition, to support absolute stopping where appropriate (such as at workspace boundaries), a
check is made for each manipulator to see if its direction of motion is correct. If a hand is actually
moving away from the desired direction (where away is defined using EW), the arm is stopped.

Another filter simulates one step ahead and stops the arm if a joint limit or other restriction is
encountered. And yet another measures the ratio of end-effector motion to joint-rate motion and
slows the manipulator accordingly. Multiple filters can be daisy-chained to give flexible filtering.
The form of the filters is shown in the figure below.

Control

Container

β-Based
Extension

Filter

Individual Manipulator
Position State
End Effector
Desired End-Effector Velocity
Time Step
Control System
Index

q

.

q

. W

 197

Figure 10-10: The form of the robust extension elements. A joint-rate filter is shown here, which
implements equation (10-13). The weighting matrix W is used to measure the incoming joint rates
and produce a robust output (which can be the input to another filter).

The filters that are available in the Actin™ Toolkit are shown in the table below.

Type Class Meaning

Joint Rate Filter EcControlExpression…

JointRateFilter

Limits joint rates. Implements
equation (10-13).

End-Effector Error Filter EcControlExpression…

EndEffectorErrorFilter

Limits end-effector error using
equation (10-15).

End-Effector Motion Filter EcControlExpression…

EndEffectorMotionFilter

Limits the ratio of a measure of
joint rates to hand motion.

Simulation Filter EcControlExpression…

SimulationFilter

Simulates one step ahead and
recovers from problems.

Table 10-5 Filter expression elements, their C++ class, and their meaning.

10.2.1.3 Example
To create a velocity control tree, the following steps should be taken:

1) Either a basic core or an AB core should be chosen to implement the velocity control system.

2) A matrix W, vector F, and scalar α should be chosen to represent the desired control

method, which will minimize qFqWq &&& TT α+
2
1 .

3) An algorithm should be chosen to implement a),(Vqβ that gives robust behavior.

4) If the basic core is used, expressions must be constructed to give the desired W, F, and α. If
the AB core is used, expressions must be constructed giving WNA J

T= , FNB J
T= , and α.

5) A filter must be constructed to give the desired value of),(Vqβ .

If as an answer to step 1), the standard core is used; as an answer to step 2), F is chosen to move
away from joint limits and W is chosen to minimize kinetic energy, and α is chosen to make a simple
tradeoff; and as an answer to 3) a union of joint-rate filtering and end-effector-error filtering is
chosen, then the resulting control tree is shown below. This control system will robustly avoid joint
limits and when distant from limits will minimize kinetic energy.

 198

W F α

Container

End-Effector-Error
Filter

Core
Velocity
Control

Mass Matrix Joint Limit
Avoidance

Scalar Constant

W

Diagonal Matrix
Joint-Rate Filter

W

Diagonal Matrix

Figure 10-11: An example control tree that would avoid joint limits and minimize kinetic energy
when not operating near limits. There are eight control expressions and one container. The column
vector of joint rates returned by the joint-rate filter at the top of the tree would drive the manipulator.

An example XML description of the control tree shown in Figure 10-11 is shown in the figure
below. This system is created in code as part of the quick-start description, in Text Box 2-3.

 199

Figure 10-12: An XML description of a control tree that would avoid joint limits and minimize
kinetic energy when not operating near limits, as illustrated in Figure 10-11 above. There are eight
control expressions and one container.

10.3 Velocity Control Types
The control system is flexible and able to implement a wide variety of algorithms. Included with the
toolkit are all the parameters defined through Table 10-3. This section describes the details behind
these. Control types include singularity avoidance, torque minimization, obstacle avoidance, fault

 200

tolerance, minimum-kinetic-energy control, minimum-potential-energy control, accuracy
optimization, and joint-limit avoidance.

10.3.1 Singularity Avoidance
A finite-differencing tool was developed for singularity avoidance. This takes a pointer to function
object, and uses this function to numerically calculate its gradient with respect to joint variables
using the finite difference method. This is a very flexible and powerful, though somewhat costly
approach. Generally, it is better to explicitly calculate the gradient whenever possible. Since the
explicit calculation is not always possible, finite differencing is used for singularity avoidance.

A manipulator experiences a kinematic singularity whenever the Jacobian loses rank. To frame the
desire to avoid singularities into a solution method, a function is needed that is large at singularities
and small away from singularities. For this, the damped inverse of the product of the singular values
of a weighted Jacobian is used. That is, the optimization function is the following:

εσσσ +
=

n

f
L21

1)(q .

(10-16)

where ε is a damping factor and iσ is singular value i of the weighted Jacobian JW:

,JTW JDDJ = (10-17)

where TD and JD are diagonal matrices. The weighting matrices are necessary to meaningfully
define the singular values of the Jacobian.

The singular values are not explicitly calculated, as this is too costly. Instead the Cholesky
decomposition of T

WW JJ is taken, and the product of the diagonal terms is used. The product of
these diagonal terms equals the product of the singular values.

The gradient of the function given in (10-16) is numerically calculated for use with the basic core
through the class EcControlExpressionSingularityAvoidance. For use with the AB core, it can be
combined with EcControlExpressionVectorToAB. These can be used with a positive definite
weighting matrix and a positive scalar to drive the manipulator to minimize the function and
therefore move away from kinematic singularities.

10.3.2 Torque Minimization
For torque minimization, the function to be optimized is defined as the following

)()(2 qq igf = , (10-18)

the square of the gravitational torque or force on joint i. To calculate the gradient, an explicit
gradient calculation method (i.e., finite differencing is not used for this) for gravitational joint
torque/force based on composite rigid body inertia is used. Using this calculation method, the
gradient of the torque squared is given by

).()(2)(qqq ii ggf ∇=∇ (10-19)

This is implemented in class EcControlExpressionGravitationalTorqueGradient for use with the
basic core. For use with the AB core, it can be combined with EcControlExpressionVectorToAB.

 201

Using this value as the vector input to the core control system with a positive definite weighting
matrix and a positive scalar produces control that minimized the magnitude of the gravitational
torque on joint i. This can be used to prevent stress on a particular joint, or it could be used for
failure recovery after a free-swinging failure [16]

10.3.3 Collision Avoidance
High fidelity collision avoidance is a key component of the Actin™ Toolkit. It is important enough
to merit its own chapter later in this document.

10.3.4 Minimum Kinetic Energy Control
To minimize kinetic energy, the matrix parameter to the control system is set to be the manipulator
mass matrix, and the scalar parameter is set to zero. That is,

)(qMW = , (10-20)

0=α . (10-21)

In this case, when 0=α , the vector parameter is not relevant. There are two classes for
implementing this. For use with the basic core, EcControlExpressionMassMatrix returns the
manipulator mass matrix—M(q) in equation (10-9)—directly for use as weighting parameter W.
The manipulator mass matrix is calculated using the method of Composite Rigid-Body Inertia
(developed in [15] and named in [17]), which is extended to apply to bifurcating arms. The same
algorithm is used to calculate the mass matrix for minimum-kinetic-energy control as is used to
calculate the composite-rigid-body dynamics. For use with the AB core, an A parameter
corresponding to the manipulator mass matrix as W is calculated by treating the Jacobian-null-space
basis vectors as accelerations and calculating the corresponding joint torques. For this the iterative
Newton Euler algorithm is used [18].

10.3.5 Minimum Potential Energy Control
To minimize the potential energy of the arm, the gradient of the potential energy is used. The
gradient of potential energy is in fact equal to the vector of gravitational joint torques—G(q) in
equation (10-9). To calculate the gravitational joint torques (forces for prismatic joints) the
composite rigid-body inertia of the links is used. This method is implemented for the basic core in
the class EcControlExpressionPotentialEnergyGradient.

10.3.6 Accuracy Optimization
For accuracy optimization in the presence of position errors in a single joint, an F value is provided
for the basic core through the class EcControlExpressionErrorSensitivity. For this calculation, a
weight wi is assigned to each of E end-effectors on the manipulator, and a focus joint, j, is identified.
Then an error sensitivity function is defined as follows:

2

1
)(∑

=

=
E

i
iji vwf q ,

(10-22)

where jvi is the velocity of end-effector i due to unit motion of joint j.

 202

The gradient of this function is then found using finite differencing, and this is used as the vector
parameter for the core velocity control system. With the matrix parameter being a diagonal matrix
and the scalar parameter a positive value, this serves to minimize the sensitivity to errors.

10.3.7 Joint-Limit Avoidance
For joint-limit avoidance, for each joint, a rate term is independently calculated that is a polynomial
function of the proximity to a limit. This is illustrated in Figure 10-12. Class
EcControlExpressionJointLimitAvoidance implements this weighting function. This is used with a
negative scalar value to drive the manipulator away from joint limits.

Lower
Limit

Upper
Limit

Dead
Zone

-XP

Joint Limit Avoidance Function

Figure 10-13: The vector elements for joint-limit avoidance are set using polynomials with a user-
configurable exponent and dead-zone.

10.3.8 Strength Optimization
Strength optimization is achieved by employing a technique based on the strength formulation in
[19]. In this discussion, torque is used in the general sense, meaning force for a sliding joint. For an
arbitrary set of end-effector forces, a vector of joint torques can be found. The goal of strength
optimization is to adjust the manipulator joint positions in such a way as to minimize the normalized
joint torques resulting from the imposed forces while simultaneously placing the hand(s). This is
accomplished by directing the joints toward the direction that yields the maximum reactive strength
in the direction opposing the applied forces. Strength here is defined as the maximum force or
moment that the manipulator can exert on its environment at the point of resolution of an end
effector.

The basic formulation of velocity control used to relate joint rates to hand velocity is given by
equation (10-1). Again, V is a concatenation of hand velocities, q& is the vector of joint rates and
J(q) is the manipulator Jacobian.

If friction and gravitational loads are neglected, the power flow at the joints must equal power flow
at the end effector. By relating hand velocities V and corresponding wrench loads F with joint
rates q& and joint torques T , this property is expressed as follows:

TqFV TT &−= (10-23)

 203

Using (10-1) with the fact that (10-23) must be true for all values of q& yields

FJ(q)T T−= (10-24)

Equation (10-24) relates wrench loads exerted on the system with joint torques required to prevent
manipulator motion due to those loads.

When assessing the total strength of a manipulator, torque capacities for each joint must be known.
The torque capacity is typically limited by the motor’s ability to supply torque or the gearhead’s
ability to transmit torque to the joint. The torque capacity T̂ for a given joint can be expressed as

)(taG,ttT minˆ = (10-25)

Where at is the actuator (corresponding to motor) torque, G is the gear ratio (the ratio of actuator
velocity to joint velocity—typically G is greater than unity) and tt is the transmission torque. The
torque capacity for a joint may differ depending on direction.

To optimize manipulator configuration for strength, let x be a desired end-effector force, as would be
used with F=x in (10-24). Let

j
Tmax

)
 be the maximum torque capacity, and

j
Tmin

)
 be the minimum

torque capacity (the largest magnitude in the negative direction) for joint j. For an n-joint system, a
measure of strength)(qf is given by

r

n

j
j

jj

T

μT
f ∑ −

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
=

1

0
)()q ,

(10-26)

where jT is the actual torque required to achieve F=x using (10-24), jμ is the mean of the torque
capacity of joint j, given by:

2
minmax jj

TT
j

))
+

=μ ,
(10-27)

and jT
)

 is the range of torque capacity for joint j, given by:

jj
TTTj minmax

)))
−= . (10-28)

The user-defined parameter r specifies the order of the function to optimize. Note that r=2
corresponds to a sum of squares approach and ∞→r approaches an infinity-norm approach, where
the strength is defined only by the weakest joint.

The gradient of)(qf is found using finite differencing, forcing the joints in the direction of
minimum normalized torque and, hence, maximum strength. This gradient is calculated in the
expression tree using the class EcControlExpressionStrengthOptimization. Because it is a gradient,
it is for direct use with the basic core velocity control system. It can be converted to a B parameter
for use with an AB core by combining it with an EcControlExpressionVectorToAB expression.

 204

10.3.9 Statistical Error Reduction
For accuracy optimization in the presence of high frequency noise on multiple joints, an approach is
used that exploits the statistical properties of the joint noise as well as the Euclidean Space nature of
the tools the manipulator is using.

10.3.9.1 The Function for Optimization
Let the velocity error in the manipulator’s joints, eq& , be a random variable having covariance eC .
That is, the expected value of the quadratic form is given by

e
T
eeE Cqq =⋅][&& (10-29)

It is assumed that the controller prevents low-frequency drift to enforce 0q =)(eE & . It is desired to
minimize the expected value of a quadratic measure of the hand velocities due to this error. Let the
error in the hand velocities be eV , now also a random variable. From (10-1), the relationship
between eq& and eV is

ee qqJV &)(= . (10-30)

Let a measure of the hand error be defined as

e
T
ee AVV=μ , (10-31)

for some prescribed constant matrix A. Note eμ is a random variable. The goal, then, is to
minimize the expected value of eμ . That is, the function to be minimized is given by

][)(eEf μ=q (10-32)

Combining the three above equations gives

].[)(e
TT

eEf qAJJqq &&= . (10-33)

To put this in a form that can be used for optimization, the following formula is used, which applies
for any column vector x and any matrix M,

)(tr TT xxMMxx = . (10-34)

This gives

)].(tr[)(T
ee

TEf qqAJJq &&= (10-35)

Here, tr(·) is the sum of the diagonal entries (the trace operator). Using 0q =)(eE & , this gives

)()(e
Ttrf AJCJq = , (10-36)

a straightforward function of configuration.

 205

10.3.9.2 Evaluating the A Matrix
The matrix A as used above can be set in a number of ways. One particularly powerfully approach is
to use Euclidean-Space regions of interest rigidly attached to the hands. Such a region might be the
physical extent of a tool, for example.

Let the Euclidean-space region be labeled Ω . Then eμ can be cast to minimize an integral of the
velocity error squared over Ω . Let rr be a point in Ω , and let)(rrρ be a nonnegative interest
density function defined over Ω (specifying, for example, that the tip of a screwdriver is more
important than the shaft). Let)(rve

rr be defined as the error velocity at point rr , a random variable.
These are illustrated in the figure below.

Figure 10-14: Illustration of the terms used to measure the statistical error of a Euclidean Space
region. The region is rigidly attached to one end-effector frame.

With this, what is desired is to minimize

[]ωρ drvrEf e
2)()()(rrr

∫Ω=q . (10-37)

That is, the expected value of a weighted integral of the velocity error squared of all the points in the
region of interest. This is a comprehensive and intuitive measure.

It is not practical to calculate the integral shown in (10-37) in real time. However, there is a way to
cast it into the form of (10-31), which will allow (10-36) to be used with no on-line integration. To
do this, an analogy is used between (10-37) and kinetic energy of a rigid body. If)(rve

rr
 were the

velocity over the region Ω and)(rrρ were the mass, then the integral in (10-37) would give twice
the kinetic energy of the body.

End Effector
Frame

Ω
r
z Region of

Interest

Instantaneous
Point of Interest

v
z
e

Error Velocity

 206

Let the following be defined in analogy to mass, first moment of inertia, and second moment of
inertia:

ωρ drm ∫ΩΩ =)(r , (10-38)

ωρ drrh rr
∫ΩΩ =)(, (10-39)

ωρ drI T RR∫ΩΩ =)(r , (10-40)

where R is the cross product matrix for rr (i.e., xRx ×= rr for any column vector x).

With these values, let the following matrix be defined:

⎥
⎦

⎤
⎢
⎣

⎡
=

ΩΩ

ΩΩ
Ω IH

HI
J T

m
,

(10-41)

where I is the 3×3 identity matrix and ΩH is the cross-product matrix for Ωh . This produces, for a
single frame end effector,

e
T
ee drvr VJV ΩΩ

=∫ ωρ 2)()(rrr . (10-42)

This is the same form as (10-31), allowing the optimization of (10-37) to be performed using (10-36)
with Ω= JA .

In general, there will be N end effectors, and the matrix A will be block diagonal:

[]
[]

[]⎥⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

Ω

Ω

Ω

N

A

,

2,

1,

J0

J
0J

O
.

(10-43)

10.3.9.3 Implementation
Statistical error reduction is implemented through the EcControlExpressionErrorReduction class.
This gives a vector weight for use with the basic core velocity control system. It can be converted to
a B parameter for use with an AB core by combining it with an EcControlExpressionVectorToAB
expression.

10.3.10 Table Function
An arbitrary linearly interpolated table function can be inserted into the control tree. This table
function can map any n-dimensional domain to an m-dimensional range. It is implemented through

 207

the class EcControlExpressionColumnTableFunction. The implementation details for the table
function are defined below.

10.3.10.1 Regular and Irregular Table Functions
The XML input structure for the table function is useful in describing the inner workings of the base
class algorithms for the table function. The figure below shows an example XML input structure.

Text Box 10-1: Example of a table function XML structure

Under the root element (e.g., tableFunctionInterpolator line 1), there are two children. The first
child, “independentData” (line 2), describes the independent data and the second child,
“dependentData” (line 11), describes the dependent data.

The independent data describes the domain of the function. It can have any number of values each
for any number of dimensions. As a simple example, the function z=x2 defined over x=[0, 2] would
have a single dimension and might have independent data points of (0.0, 1.0, 2.0). It could also have
data points of (0.0, 0.5, 1,0, 1.5, 2.0) for finer resolution. The function z=x2 y, on the other hand,
would need two dimensions of data points, such as (0.0, 1.0, 2.0) for x and (0.0, 0.25, 0.5, 0.75, 1.0)
for y.

The dependent data describes the range of the function. It provides a function value for each
combination of independent data points. To define the function z=x2 y over the independent data
points (0.0, 1.0, 2.0) for x and (0.0, 0.25, 0.5, 0.75, 1.0) would require 3×5=15 dependent data
values.

The z=x2 example above, defined over x=[1, 4], contains only one dimension as specified on line 2.
This could serve as a template—if more dimensions were necessary, lines 3–9 could be copied and
inserted after line 9 to add another dimension. Several parameters further specify an independent
variable: searchOption, lowerBoundaryOption, upperBoundaryOption, independentVector.

The search option (line 3) has 3 alternatives that define how the independent vector is searched.
Note that the independent data must be strictly increasing or decreasing for these options to work.
The first option is “linear”, which can be very efficient if the independent variable state does not
change much between interpolator evaluations. With each evaluation, the search begins from the

1 <tableFunctionInterpolator>
2 <independentData size="1">
3 <element searchOption = "bisection"
4 lowerBoundaryOption = "extrapolate"
5 upperBoundaryOption = "extrapolate">
6 <independentVector size="4">
7 1.0 2.0 3.0 4.0
8 </independentVector>
9 </element>
10 </independentData>
11 <dependentData size="1">
12 <element size="4">
13 1.0 4.0 9.0 16.0
14 </element>
15 </dependentData>
16 </tableFunctionInterpolator>

 208

previous search result. Although a linear search algorithm generically accesses data in order(N) time
(where N is the number of gridded data points), the search is complete in constant time if the state is
not changing. This works well in specific applications. If the state is quite dynamic, however, the
method of bisection is more appropriate. This second option accesses data in log(N) time. Option
“linear” or “bisection” is required for data with irregular grid spacing. The third option,
“equal_spaced”, is suited for data with regular grid spacing. It always accesses data in constant time,
but puts constraints on how the data can be represented.

On occasion, the independent variable state can lie outside of the independent vector bounds. The
user can specify how the interpolator evaluates this condition using the upper and lower boundary
options (lines 4–5). The options are “limit” and “extrapolate” as illustrated in the figure below.

Independent Vector

D
ep

en
de

nt
 V

ec
to

r

Green is limited
Red is extrapolated

1 2 3 4

0

5

10

15

Independent Vector

D
ep

en
de

nt
 V

ec
to

r

Green is limited
Red is extrapolated

1 2 3 4

0

5

10

15

Figure 10-15: Example of the “limit” and “extrapolate” options. The green line (light gray in a
printed document) shows the limited behavior and the red line (dark gray in a printed document) is
the extrapolated behavior.

The independent data in Figure 10-15 is captured in lines 6–8 of Text Box 10-1, and the dependent
data is contained in lines 12–14. When the dependent data has more than one dimension, it is
important to sort the independent variables such that they map properly to the dependent data. For
example, the first independent vector maps to the first dimension (sometimes viewed as column
data), the second independent vector maps to the second dimension (sometimes viewed a row data),
and so forth.

The best way to represent this is as follows: every dimension (n) is built by repeated sampling of the
previous dimension (n-1). Starting with one dimension: a = x. If x = (0, 1, 2), then the independent
data would be a=(0, 1, 2). For two dimensions, the data builds upon the 1-D data set. So, given a =
x + y, if x = (0, 1, 2) and y = (0, 2, 4), then a is given by the following:

0 1 2 (same as 1-D)

2 3 4

 209

4 5 6

The data can be represented as a single vector, (0, 1, 2, 2, 3, 4, 4, 5, 6), which is analogous to how
the 2-D data is stored in memory. Notice that the first independent variable (in this case x) is aligned
with the fastest moving index.

For three dimensions, the data builds upon the 2-D data set. So, given a = x+y+z with x=(0, 1, 2),
y=(0, 2, 4), and z=(0, 3, 6), a is given by the following:

0 1 2 (same as 2-D)
2 3 4
4 5 6

3 4 5
5 6 7
7 8 9

6 7 8
8 9 10
10 11 12

or

(0, 1, 2, 2, 3, 4, 4, 5, 6, 3, 4, 5, 5, 6, 7, 7, 8, 9, 6, 7, 8, 8, 9, 10, 10, 11, 12).

In many applications, several dependent data sets can be defined with a single definition for the
independent data. This is illustrated in Figure 10-16. For example, in a six degree-of-freedom
floating-base manipulator, an experiment might produce three scalar force components and three
scalar moment components at each grid point. If all the parameters are saved in the same structure,
then looking up each one independently can be inefficient. Although the example in Text Box 10-1
contains one dependent data set (lines 11–15), many more (with no limit other than that imposed by
computer resources) can be added similarly to how the independent data can be expanded. The table
function can perform the interpolation for the “2 through N” data sets more quickly because many
intermediate calculations from the first set are saved and reused.

 210

Independent Vector

D
ep

en
de

nt
 V

ec
to

r

1 2 3 4

0

5

10

15

Independent Vector

D
ep

en
de

nt
 V

ec
to

r

1 2 3 4

0

5

10

15

Figure 10-16: Data set example with one independent variable and three dependent variables

Although this table function capability is generic and powerful, it has a few limitations. For
example, the basic table function must have blocked data. Specifically, it cannot have variable
length boundaries, and it cannot have holes in the data. Also, if patches of the data are irregular
spaced, the whole data set must be searched using an irregular-spaced search option (i.e., linear or
bisection). It is for these reasons that the composable table functions were created, as described in
the next section. For many applications, however, these limitations are not present, and the basic
table function capability is useful without composition.

10.3.11 Composable Table Functions
The ultimate purpose of the table function is to give the user a generic capability for adding complex
or data-driven functions to the expression tree. To make this capability general, a composite table
function capability was created, where the function domain is broken into subsets with each subset
having its own table function definition. Figure 10-17 illustrates this approach.

 211

Figure 10-17: Composite table function examples. The example to the left illustrates overlapping
subsets where the center has special features. The example to the right illustrates an alternative way
of dissecting the example on the left with no overlapping subsets. In each of the examples, the final
subsets have their own table function definitions. The composite table function can handle both
examples.

The composite table function contains regular or irregular table functions at the leaf nodes (i.e.,
bottom nodes in tree). Note that although the root nodes (i.e., top node of the tree) in Figure 10-17
contain blocked data, the data does not have to be blocked and it can have holes in it. Only the
components on a leaf node, if defined using a regular or irregular table function, need to be blocked.
And the toolkit supports extension to nonblocked leaves. Through this approach, the limitations of
the regular and irregular table functions are overcome.

 A composite table function defined through XML has a structure as shown in Text Box 10-2. This
example has a nested branch on the left (or upper) branch and a table function on the right (or
bottom) branch. The data between the “tableFunctionInterpolator” tags would be that required for
table functions as described previously (e.g., Text Box 10-1).

 212

Text Box 10-2: Example of a composable table function XML structure.

The binary search tree enables the data to be nested to any depth. This is done through the
EcBaseExpressionTreeContainer class, which contains a composable table function data type. This
class can contain two objects that are in turn composable table functions. This approach provides a
powerful framework for generic table functions.

The examples in Figure 10-17 illustrate a few considerations that are addressed through the
composable table function. The left composite contains two overlapping table functions. The binary
search tree first determines which table function contains the independent variable state with the left
branch taking precedence over the right branch. Since the state can lie in multiple table functions
when overlapping exists, it is particularly important to note that the left (top in the XML) branch
takes precedence. If the state lies in neither table function, the binary search tree looks for the first
table function (again searching from left to right [or top to bottom in XML]) that can extrapolate to
the state. In this example, the left table function would be defined with the “limit” option, and the
right table function would be defined with the “extrapolate” option. This would enable the right
table function to be used for extrapolation. Through this approach, all possible locations of the state
can be evaluated.

In the right example in Figure 10-17, the search is performed similarly to the left example. A more
sophisticated definition of the boundary options is needed though to properly enable the
extrapolation algorithm. To perform an interpolation evaluation equivalently to the left example, all
table function boundaries that are not touching a neighboring table function would need a boundary
option set to “extrapolate”, while the other joint boundary options are set to “limit”. Through this
approach, the left and right example can produce the same numerical results.

1 <tableFunctionContainer>
2 <tableFunctionBranch>

 <!-- left branch -->
3 <tableFunctionBranch>
4 <tableFunctionInterpolator>
5 ...
6 </tableFunctionInterpolator>
7 <tableFunctionInterpolator>
8 ...
9 </tableFunctionInterpolator>
10 </tableFunctionBranch>

 <!-- right branch -->
11 <tableFunctionInterpolator>
12 ...
13 </tableFunctionInterpolator>

14 </tableFunctionBranch>
15 </tableFunctionContainer>

 213

10.4 End-Effector Descriptions
The array V, as used above, represents the motion of all the manipulator’s end effectors. In the
Actin™ design, a special class holds the description of an end-effector set, which contains any
number of end effectors. The end effectors can represent any type of constraint. Implemented end-
effector types include frame, 3D point, 3D orientation, 2D point, center of mass, and spatial
momentup. More types can be added using the toolkit or the plugin interface.

To allow this general approach, many of calculations needed for velocity control are performed in
the end-effector class. The public methods that must be implemented to define a new end effector
are given in the table below.

Member Function Meaning

doc Returns the end effector’s degrees of constraint. For a point end
effector, it returns 3. For a frame end effector, 6.

insertJacobianComponent Builds a strip of the Jacobian. The height of the strip equals the
value returned by doc.

insertSparsityComponent Builds a strip of the sparsity description of the Jacobian. A value of
true in this strip means the corresponding position in the Jacobian is
always zero. The height of the strip equals the value returned by
doc.

calculatePlacement Calculates a placement value for the end effector. The placement is
described through an EcCoordinateSystemTransformation, which
may have different meanings for different end-effector types.

calculateVelocity Calculates end-effector velocity. The result is a real vector of
length equal to the value returned by doc. The velocity will have
different meanings for different end-effector types.

calculateAcceleration Calculates end-effector acceleration. The result is a real vector of
length equal to the value returned by doc. The acceleration will
have different meanings for different end-effector types.

filterEndEffectorVelocity Calculates an end-effector velocity that drives the end effector
toward a guide placement. The guide frame is always represented
in system coordinates.

minimumTime Calculates the minimum time that will be used to move from one
frame to another.

difference Calculates a measure of the difference between two placement
frames that uses Euclidean distance as its baseline. That is, the
difference between two frames is the Euclidean distance between
them plus optional additional factors related to orientation change.

Table 10-6: Member functions that are implemented to define a new type of end effector.

 214

Through this approach, any new end effector can be added as a subclass of EcEndEffector, provided
these member functions are implemented in the new class. These member functions allow the end-
effectors to create their own Jacobians and position controllers. Subclasses of EcEndEffector that are
provided with the Actin™ toolkit include EcFrameEndEffector, EcPointEndEffector, and
EcXyEndEffector.

10.5 External-Force Optimization through Momentum Constraint
A robotic mechanism moving without external forces must conserve linear and angular momentum
[31]. A control law that is consistent with this requirement will move the robot in a manner
consistent with dynamic movement in free space without external force.

10.5.1 Organization
The spatial momentum constraint was added to the control-software framework as a new end
effector. As background, in the software framework, the end effectors for any given manipulator are
represented as an end-effector set, which contains any number of any types of end effectors.
Implemented end-effector types include 3D frame, 3D point, 2D point, center of mass, and linear
constraint. Any new end-effector type, such as momentum constraint, can be added just by adding a
new class, subclassed from EcEndEffector, to define it.

To allow this general approach, many of calculations needed for velocity control are performed in
the end-effector class. The public methods that must be implemented are given in the table below.

Member Function Meaning

doc() Returns the end effector’s degrees of constraint. For a point end
effector, this would return three. For spatial momentum constraint,
it would return six.

insertJacobianComponent() Builds a strip of the Jacobian. The height of the strip equals the
value returned by doc().

insertSparsityComponent() Builds a strip of the sparsity description of the Jacobian. A value of
true in this strip means the corresponding position in the Jacobian is
always zero.

calculatePlacement() Calculates a placement value for the end effector. The placement is
described through an EcCoordinateSystemTransformation, which
may have different meanings for different end-effector types.

calculateVelocity() Calculates end-effector velocity. The result is a real vector of
length equal to the value returned by doc(). The velocity has
different meanings for different end-effector types.

filterEndEffectorVelocity() Calculates an end-effector velocity that drives the end effector
toward a guide placement. The guide frame is always represented
in system coordinates.

minimumTime() Calculates the minimum time that will be used to move from one

 215

frame to another.

difference() Calculates a measure of the difference between two placement
frames. It uses Euclidean distance as its baseline. That is, the
difference between two frames is the Euclidean distance between
them plus optional additional factors related to orientation change.

Table 10-7: Member functions that must be implemented to define a new type of end effector.

Of these, the method implementation that takes the most effort is insertJacobianComponent(), which
adds a strip of numbers to the Jacobian, as illustrated in the figure below.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××
××××××××××××

=J

Figure 10-18: Each end effector class must be able to write an appropriate strip of numbers into the
Jacobian. This is done in the method insertJacobianComponent() in Table 10-7. The biggest
challenge in adding spatial-momentum constraint as an end effector lies in calculating this data.

10.5.2 Derivation
To determine the set of numbers that must be inserted into the Jacobian as shown in Figure 10-18, let
M be the spatial momentum of the robotic mechanism, a 6x1 column vector formed by augmenting
linear momentum, μr , with angular momentum λ

r
:

⎥
⎦

⎤
⎢
⎣

⎡
=

λ
μ
r
r

M .
(10-44)

Let the matrix MJ be defined through the following equation:

*qJM &M= , (10-45)

MJ is the inserted strip of the Jacobian as shown in Figure 10-18, and *q& gives the joint rates
augmented by the base spatial velocity, i.e.,

 216

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

bV

q
q L

&

& * ,

(10-46)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−1

0

Nq

q

&

M

&

&q ,

(10-47)

and

⎥
⎦

⎤
⎢
⎣

⎡
=

b

b
b

v
ω
r

r

V .
(10-48)

Here, bvr is the linear velocity of the robot base and bω
r

 is its angular velocity.

10.5.2.1 Transformations

To calculate MJ , let the following be defined: For any reference frames i and j that are rigidly
connected, Let ij

j
→P be the cross-product matrix for ji

j p → , the vector from the origin of frame i to

the origin of frame j, expressed in frame j. And let i
j R be the rotation matrix expressing frame i in

frame j. Using this, let the matrices jiF →T and jiA →T be defined as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

→
→

i
j

i
j

ij
j

i
j

jiF RRP
R

T
0

,
(10-49)

and

⎥
⎦

⎤
⎢
⎣

⎡
= →

→
i

j
i

j
ij

j
i

j

jiA R
RPR

T
0

.
(10-50)

Let jM be the spatial momentum of a body defined in a reference frame j. Similarly, let jF , jV ,

and jA be the spatial force, velocity, and acceleration of a body in reference frame j.

Transformation jiF →T produces the following equalities for force and momentum transformation:

ijiFj MTM →= , (10-51)

 217

ijiFj FTF →= , (10-52)

And jiA →T produces the following for velocity and acceleration transformation:

ijiAj VTV →= . (10-53)

ijiAj ATA →= . (10-54)

An important identity is the following:

jiijF
T

jiA ,,∀= →→ TT . (10-55)

10.5.2.2 Rigid-Body Momentum
For any rigid body, let ω

r
 be the angular velocity, vr be the linear velocity, m be the mass, H be the

cross-product matrix for the first moment of inertia, and J be the second moment of inertia (a
separate entity from the manipulator Jacobian J). Then, the linear and angular momentum equations
are given by the following:

vmT rrr
+= ωμ H . (10-56)

vr
rr

HJ += ωλ . (10-57)

Let the 6×6 rigid-body inertia be defined as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=

JH
HII

T
C m ,

(10-58)

where I is the 3×3 identity matrix. With this, the spatial momentum equation for any link can be
represented as

 VIM C= . (10-59)

10.5.2.3 Summing the Effect of Each Joint
The effect of all joint rates must be combined to calculate the momentum of the entire manipulator.
This can be done by calculating the composite rigid-body inertia of all links outboard from each joint
in turn. The momentum produced by the motion of a single joint in isolation is the momentum
produced by the action of the joint on this composite body. For combination with the momentum
produced by the action of other joints, the momentum so calculated must be transformed to a
common reference frame. The figure below illustrates this calculation.

 218

Base Link

R p
i

b
b i

Composite Body i

Joint φ i

Figure 10-19: The momentum produced by the rate of joint i can be calculated by collecting all
outboard bodies into a composite rigid body. The momentum so calculated is an additive term, and
must be transformed to a common frame. Illustrated here is transformation to the base frame.

To express the combination mathematically, et a matrix D be defined as follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−→−−

→

→

)(

)(
)(

111

111

000

nbA
C
n

T
n

bA
CT

bA
CT

TI

TI
TI

D

φ

φ
φ

M
,

(10-60)

where C
iI is the rigid-body inertia of the composite body formed by joining all links outboard and

including link i. The index b represents the base frame.

With this, the total momentum due to the manipulator’s joint rates, bM
)

, can be found as follows:

 qDM &
) T

b = . (10-61)

Remaining is the momentum contribution due to the linear and angular velocity of the base. Using
(10-59), this component is calculated as follows:

 b
C
bb VIM =

(
, (10-62)

where C
bI is the 6×6 rigid-body inertia of the entire composite manipulator, including the base link

and bV is the frame velocity of the base link.

The total manipulator momentum is the sum of these two components, the spatial momentum due to
the action of the joints and the spatial momentum due to base motion:

 219

 bbb MMM
()(

+= , (10-63)

This gives

 b
C
b

T
b VIqDM += & , (10-64)

or

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

b

C
b

T
b

V

q
IDM L

&

M ,

(10-65)

which is exactly the form of equation (10-45). Thus

 []C
b

T
M IDJ M= . (10-66)

With this component inserted into Jacobian, as shown in Figure 10-18, spatial momentum can be
constrained, and control is implemented that requires no external force on the manipulator.

10.5.3 Example
Shown in the figure below is a simple 21-joint (27 dof) mechanism moving under spatial-momentum
constraint. Notice that movement of the end effector from one side to the other shifts the other parts
of the mechanism in an equal and opposite manner. Behavior is similar in kinematic and dynamic
modes.

Figure 10-20: An illustration of a 21-joint test mechanism being controlled with spatial momentum
constraint. A point end effector is moved from the right-hand side to the left-hand side.

10.6 Control System Parameter Provision
The robot control system comprises end effectors as constraints and a parameterized optimization
algorithm. It is possible to exchange end effectors and optimization parameters while controlling a
robotic manipulator. However, exchanging these quantities requires reconfiguring the control
system, which usually includes dynamic memory allocation. It is not feasible to do this every time
step.

The timestep-by-timestep transmission of data related to the end effector constraints is performed
through a desired coordinate system. This information can be passed without reconfiguration. Prior

 220

to the last quarterly period, though, there was no corresponding method of data transmission for the
optimization process. To change optimization parameters, the entire control system had to be
exchanged.

The use of a data map is available for passing information to the optimization portion of the control
system. This data map organizes information in six maps:

• String-String
• String-Real
• String-Integer
• String-Real Vector
• String-Integer Vector
• String-Data Map

Through these components, most types of data can easily be passed to the optimization system. The
use of a string-data-map component allows data to be organized hierarchically.

10.6.1 Soft-Constraint End Effectors
The core velocity framework Energid uses in the rapid-prototyping system it is developing for
NASA is based on the manipulator Jacobian equation:

qqJV &)(= , (10-67)

where V is an m-length vector representation of the motion of the end effectors (usually some
combination of linear and angular velocity referenced to points rigidly attached to parts of the
manipulator); q is the n-length vector of joint positions (with q& being its time derivative); and J is
the m×n manipulator Jacobian, a function of q .

To solve for q& given V , the framework is built on that described in [32], which uses a scalar α, a
matrix function)(qW , and a vector function)(qF to solve for q& given V through the following
formula:

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

−

FN
V

WN
Jq

JJ
TT α

1

& .

(10-68)

where JN is an n × (n−m) set of vectors that spans the null space of J . That is, 0=JJN , and JN
has rank (n−m). By changing the values of α, W, and F—which can be configured using XML—
many new and most established velocity-control techniques can be implemented. Mathematically, it

achieves the desired V while minimizing qFqWq &&& TT α+
2
1 .

In the last quarter, Energid implemented an easy way to move end-effectors from the constraint
portion of this formulation (i.e., J and V) to the optimization portion (i.e., α, W, and F). Every
end-effector now has a flag indicating whether it is a hard or a soft constraint. When an end effector
is flagged as a soft constraint, it is not included in the Jacobian equation. Instead, it is incorporated
into α, W, and F through a soft-constraint handler.

 221

The soft-constraint handler is an object that resides in a container that is a member variable of the
class implementing the core velocity algorithm. This is illustrated in the figure below.

Control

Container

Core
Velocity
Control

W F α

End Effectors
Desired End-Effector Velocity

q

. Soft-Constraint

HandlerContainer

Soft-Constraint
Handler

Figure 10-21: An illustration of the control system with the soft-constraint handler. The core
velocity control algorithm resides within the XML-configurable control system. The class that
defines that algorithm now holds a container for a soft-constraint handler. The soft constraint
handler changes α, W, and F to trade-off end-effector movement with other optimization criteria.

There are many possible ways to implement soft constraints. As desired, new objects for the
container shown in the figure above can be added by users of the toolkit by creating an appropriate
dynamic library (e.g., DLL under Windows). This method adds minimization of a sum-of-squares
error metric to the optimization criteria.

Let)(qJ s be the Jacobian formed from all the soft-constrain end effectors in use. And let sV be the
concatenated desired velocity of those end effectors. Then an approach to handling the soft
constraints is to minimize a measure of the soft end-effector error sE , defined as follows:

sss VqqJE −= &)((10-69)

Let the measure of this error be defined through a weighted quadratic form. That is, for some
positive definite weighting matrix sW , define the measure to be minimized as

ss
T
sse EWE= (10-70)

The method of (10-68) minimizes

qFqWq &&& TT
oe α+=

2
1

(10-71)

based on values of α , F , and W that have already been defined through the control-system
database. To integrate the soft constraints, the default handler makes a trade-off based on a scalar
parameter, σ . It simply changes α , F , and W to minimize the following:

 222

so eee σ+= (10-72)

The method by which α , F , and W change can be established through the following derivation:
Combining the three above equations gives

ss
T
s

TTe EWEqFqWq σα ++= &&&
2
1

.
(10-73)

Using (27) gives

))(())((
2
1

sss
T

ss
TTe VqqJWVqqJqFqWq −−++= &&&&& σα .

(10-74)

This gives

s
T

sss
T
s

T
ss

T
s

Te VVqVWJFqJWJWq σσασ +−++= &&&)2()2(
2
1

.
(10-75)

The final term is constant, and not relevant to the optimization process. The first two terms take the
same form as those in (10-69). Thus, the handler can minimize e by changing α , F , and W as
follows:

1
2
2

←
−←
+←

α
σα
σ

ss
T
s

ss
T
s

VWJFF
JWJWW

.

(10-76)

This is how the new soft-constraint handler includes the soft-constraints in the optimization process.

10.7 Example Code

10.7.1 Minimum Potential Energy Control for the PUMA
In this section, a velocity control system is constructed for a PUMA 560 manipulator and used to
drive a point end effector. A velocity control system was constructed as part of the quick-start
description in Chapter 2, which is useful for comparison. The quick-start example used the RRC K-
1207i arm with a position controller constructed around a velocity controller using the standard core.
This example uses the PUMA, controls the arm motion directly through the velocity control system,
and uses an AB core.

10.7.1.1 Loading and Displaying the PUMA
An example manipulator system for the PUMA 560 is defined in an example file that is distributed
with the Actin™ software. This file, “puma_system.xml,” contains the description of an object of
the class EcStatedSystem. C++ code for loading and displaying this model using the class
EcRenderWindow is given in Text Box 10-3 below.

 223

Text Box 10-3: Example code for loading and rendering the PUMA model. This is Example Section
#1 in the velocity-control example code.

10.7.1.2 Defining a Velocity-Control System
A velocity control system is defined for the PUMA through the code in Text Box 10-4. In this set of
code, first a convenient reference is set for the manipulator. Then the link at the end of the kinematic
chain starting with the manipulator is looked up. This is used to construct a point end effector that is
rigidly attached to this last link.

A velocity-control expression is constructed. An EcControlExpressionCoreAB object is chosen to
perform the inverse kinematics calculation. This object requires three child members: an A
parameter, a B parameter, and a scalar. In this case, A is chosen by projecting the manipulator mass
matrix onto the Jacobian null space, and B is chose by projecting the gradient of potential energy
onto the Jacobian null space.

 // declare an error return code
 EcBoolean success;

 // declare a filename
 EcString filename="../../../data/actinExamples/puma_system.xml";

 // declare a visualizable stated system object
 EcVisualizableStatedSystem visStatedSystem;

 // load the stated system from an XML file
 success = visStatedSystem.readFromFile(filename);

 // make sure it loaded properly
 if(!success)
 {
 EcWARN("Could not load stated system.\n");
 return;
 }

 // instantiate a renderer
 EcRenderWindow renderer;

 // set the size of the window
 renderer.setWindowSize(256,256);

 // set the system
 if(!renderer.setVisualizableStatedSystem(visStatedSystem))
 {
 return;
 }

 // view the system
 renderer.renderScene();

 // after a pause, close the window
 EcSLEEPMS(1000);
 renderer.closeScene();

 224

To this core velocity control algorithm, a joint-rate filter and an end-effector error filter are added.
These prevent the joint rates and hand-motion error from exceeding specified bounds. The control
expression and the end-effector definition are then added to the individual velocity control
description. Since in this case there is only one manipulator being controlled, the velocity control
system only has one description.

 225

Text Box 10-4: Example code for building a velocity control system. This continues from the code
shown in Text Box 10-3 and is Example Section #2 in the velocity-control example code.

 // make a convenient reference to the manipulator
 const EcIndividualManipulator& manipulator =
 visStatedSystem.statedSystem().system().manipulators()[0];

 // look up the last link
 EcManipulatorLinkConstPointerVector linkPointerVector;
 manipulator.collectLeafLinks(linkPointerVector);

 // make a point end effector
 EcPointEndEffector pointEnd;

 // put the end effector into an end-effector set
 pointEnd.setLinkIdentifier(EcXmlString(linkPointerVector[0]->label()));
 EcEndEffectorSet eeSet;
 eeSet.addEndEffector(pointEnd);

 // create a velocity-control core
 EcControlExpressionABCore abCore;

 // create a vector-to-AB converter with a potential-energy gradient child
 EcControlExpressionVectorToAB vectorToAB;
 vectorToAB.setChild(EcControlExpressionPotentialEnergyGradient());

 // set the matrix, vector, and scalar for the core
 abCore.setMatrixElement(EcControlExpressionMassMatrixAB());
 abCore.setVectorElement(vectorToAB);
 abCore.setScalarElement(EcExpressionScalarConstant::objectWithValue(0.05));

 // add a joint-rate filter
 EcControlExpressionJointRateFilter rateFilter;
 EcExpressionGeneralColumn jointWeights;
 jointWeights.assign(manipulator.jointDof(),0.1);
 rateFilter.setWeightsElement(jointWeights);
 rateFilter.setUnfilteredRatesElement(abCore);

 // add an end-effector error filter
 EcControlExpressionEndEffectorErrorFilter eFilter;
 EcExpressionGeneralColumn handWeights;
 handWeights.assign(6,0.1);
 eFilter.setWeightsElement(handWeights);
 eFilter.setUnfilteredRatesElement(rateFilter);
 eFilter.setStopsAtLimits(EcTrue);

 // add the system to the velocity control description
 EcControlExpressionContainer container;
 container.setTopElement(eFilter);

 // add the expression and end effector to a velocity control description
 EcIndividualVelocityControlDescription indVelContDesc;
 indVelContDesc.setControlExpression(container);
 indVelContDesc.setEndEffectorSet(eeSet);

 // add the velocity control description to a velocity control system
 EcVelocityControlSystem velContSys;
 velContSys.addControlDescription(indVelContDesc);

 // set the stated system
 EcStatedSystem statedSystem=visStatedSystem.statedSystem();
 velContSys.setStatedSystem(&statedSystem);

 226

10.7.1.3 Using the Velocity-Control System
The velocity control system defined through Text Box 10-4 is used to calculate joint velocities from
end-effector velocities in Text Box 10-5. First the renderer is initialized, then parameters are
established for a simulation. A desired end-effector velocity is constructed—in this case, there is one
manipulator with one end effector. Then a simulation is run, with joint rates corresponding to the
desired end-effector velocity calculated and integrated each time step.

Text Box 10-5: Example code for building a velocity control system. This continues from the code
shown in Text Box 10-4 and is Example Section #3 in the velocity-control example code.

 // set the system
 if(!renderer.setVisualizableStatedSystem(visStatedSystem))
 {
 return;
 }

 // execution parameters
 EcU32 steps=100;
 EcReal simRunTime = 4.0;
 EcReal simTimeStep = simRunTime/steps;

 // set the desired velocity of the end effector
 EcXmlRealVector values;
 values.pushBack(-0.1);
 values.pushBack(0.0);
 values.pushBack(0.0);

 // add it to a collection
 EcXmlRealVectorVector collection;
 collection.pushBack(values);

 // create a desired end-effector velocity object
 EcManipulatorEndEffectorVelocity endEffectorVelocity(collection);
 EcManipulatorEndEffectorVelocityVector endEffectorVelocityVector;
 endEffectorVelocityVector.pushBack(endEffectorVelocity);

 // move to the desired pose, and render every time step
 for(ii=0;ii<steps;++ii)
 {
 // get the current time
 EcReal currentTime=simTimeStep*ii;

 // set the desired end-effector velocity
 velContSys.setEndEffectorVelocities(endEffectorVelocityVector);

 // calculate joint rates and update the manipulator state
 velContSys.calculate();
 statedSystem.setVelocityStates(velContSys.calculatedVelocityStates());

 // propagate the state
 statedSystem.propagateSelfTo(currentTime);

 // show the manipulator in this position
 renderer.setState(statedSystem.state());
 renderer.renderScene();
 EcSLEEPMS(1000*simTimeStep);
 }

 227

11 Position Control
The position control system builds upon the velocity control system to give robust position control to
the end effectors. A position control container is supplied as an interface to the position control
system to enable the addition of new position control algorithms. Currently, the position control
container includes two position control classes: EcPositionControlSystem and
EcPositionControlSystemWithSimulation. The second class builds upon the first to give look-
forward capability. Other position control classes can be created and added to the container through
the plugin interface (see Section 18).

11.1 Position Control System Container
The position control container is subclassed from EcXmlVariableElementType which is a template
defined as a position control system type (i.e., EcPositionControlSystem). This container holds a
compound XML object and enables the user to add new position control systems as desired.

Most of the methods available to the container enable data to be passed back and forth to the position
control system defined in the container. Table 11-1 defines some of these methods.

Method Description

calculateState Given a time, this method propagates the control system and state,
and updates the end effector placements. This method returns an
updated state through the argument list for rendering.

actualPlacementVector Gets the achieved end effector placements

setActualPlacementVector Sets the actual end effector placements

desiredPlacementVector Gets the commanded end effector placements

setDesiredPlacementVector Sets the commanded end effector placements

velocityControlSystem Gets the velocity control system

setVelocityControlSystem Sets the velocity control system

statedSystem Gets the stated system

setStatedSystem Sets the stated system

Table 11-1 Listing of primary methods available to the developer. The position control container
has many methods for passing data to the position and velocity control system. Check the code
documentation for a complete list and description.

11.2 Position Control System
The position control system provides basic position control for the end effectors by building upon the
velocity control system. Given the joint velocities from the velocity control system, the position
control system uses Euler integration to calculate the joint positions. Once the joint positions are

 228

calculated, the end effector positions are known. The control system checks for joint limit
exceedance and collisions as it is iterated forward in time. It also zeros the joint rate commands if a
singularity is detected.

Table 11-2 shows the member variables that are registered for XML access and Table 11-3 shows
the primary methods available to the developer.

Member Data Class/Type Definition Restrictions

m_IsOn EcXml…

Boolean

Flag indicating if the position control system
is turn on

None

m_maxFinal…

PropagationSize

EcXmlU32 Maximum propagation size in time steps for
propagating the state for rendering. This is
only used if maxIterations is reached.

None

m_MaxIterations EcXmlU32 Maximum number of time step iterations per
cycle. This is only used if the CPU is not
able to run in real-time.

None

m_TimeStep EcXmlReal Time step for control system None

m_UseTwoPasses EcXml…

Boolean

This protects against control problems at
singularities. If there is no singularity
detected, the results of the two passes are
averaged to improve accuracy.

None

m_VelocityControl…
System

EcVelocity…
Control…

System

Velocity control system None

m_Collision…

AvoidanceMode

EcXml…

EnumU32

Collision avoidance mode 3 Options

See class
description

m_Collision…

BreakdownThreshold

EcXmlReal Threshold specifying when a material will
break down and allow an object to pass
through. Typically this value is set to 1,
meaning the system will stop at all link
collisions.

[0,1]

m_BVHPrecision EcXmlU32 Level in the bounding volume hierarchy to
use for collision detection.

[0,#BV
Levels]

Table 11-2 XML inputs to the position control system. This is class EcPositionControlSystem. A
definition of the other member variables is available in the code documentation.

 229

Method Description

calculateState Given a time, this method propagates the control system and state,
and updates the end effector placements. This method returns an
updated state through the argument list for rendering.

actualPlacementVector Gets the achieved end effector placements

setActualPlacementVector Sets the actual end effector placements

desiredPlacementVector Gets the commanded end effector placements

setDesiredPlacementVector Sets the commanded end effector placements

velocityControlSystem Gets the velocity control system

setVelocityControlSystem Sets the velocity control system

statedSystem Gets the stated system

setStatedSystem Sets the stated system

timeStep Gets the time step

setTimeStep Sets the time step

time Gets the control system time

setTime Sets the control system time

maxIterations Gets the maximum iterations value

setMaxIterations Sets the maximum iterations value

maxFinalPropagationSize Gets the maximum propagation size

setMaxFinalPropagationSize Sets the maximum propagation size

useTwoPasses Gets the two pass flag

setUseTwoPasses Sets the two pass flag

isOn Gets the position control activation flag

setIsOn Sets the position control activation flag

Table 11-3: Listing of primary methods available to the developer. Check the code documentation
for a complete list and description.

 230

Text Box 2-4 and Text Box 2-5 give a useful example for defining the commanded and actual end
effector positions and then propagating the position control system for driving the end effectors to
the commanded positions.

11.3 Position Control System With Look-Forward Simulation
The position control system with a look-forward simulation class is subclassed from
EcPositionControlSystem (see Figure 11-1). The setDesiredPlacementVector method is overridden
to look-forward before setting the internal command placements. If the simulation is not able to
produce the commanded placements, the internal command placement is set to the current
placement. This produces a halt.

EcPositionControlSystemWithSimulation

EcPositionControlSystem

EcXmlCompoundType

EcXmlBaseCompoundType

EcXmlObject

EcPositionControlSystemWithSimulation

EcPositionControlSystem

EcXmlCompoundType

EcXmlBaseCompoundType

EcXmlObject

Figure 11-1: Class inheritance diagram for EcPositionControlSystemWithSimulation.

Table 11-4 shows the XML configuration parameters and Table 11-5 shows the primary methods
available to the developer.

Member Data Class/Type Definition Restrictions

m_Simulation EcSystem…

Simulation

Simulation definition for position control
system.

None

m_SimRunTime EcXmlReal Maximum simulation run-time for looking
forward. If zero, the run-time is estimated.

None

m_SimRunTime…

ScaleFactor

EcXmlReal Scale factor for increasing the simulation
run time beyond the estimate. Only used if
simRunTime is zero.

None

m_Steps EcXmlU32 Number of steps to iterate through
simRunTime.

None

m_Tol EcXmlReal Tolerance for testing the convergence of the
actual end effector positions with the
commanded positions.

None

Table 11-4: XML inputs to the look-forward position control system. See Text Box 11-1 for a list of
defaults. A definition of the other member variables is available in the code documentation.

 231

Text Box 11-1: Configuration file snippet for position control system with simulation. This includes
the base class inputs from EcPositionControlSystem. The inputs with a “+” have a more complex
definition that is expandable into a hierarchy of XML tags.

There are five user inputs added to the position control system configuration through this class as
defined in Table 11-4. simulationControl is the most complicated input. It contains a complete
definition of the simulation. In general, it is defined similarly to the top level simulation that
includes position control, except that this simulation under position control does not include another
simulation within its position control. In other words, the simulation is not included recursively.
simulationRunTime defines how far to look ahead. If the position successfully converges on the
commanded position prior to simulationRunTime, the simulation will exit early which reduces the
processing time needed for looking ahead. There is an alternative method for determining the run
time which is established through simulationRunTimeScaleFactor. If simulationRunTime is zero,
this method becomes active. Internal to the code, there is a method called minimumTime which
estimates the minimum time necessary to achieve the commanded position. Since the simulation
needs to run for an undetermined time longer than the minimum time, there is a scale factor available
for increasing the calculated time. The simulationRunTime approach is the default, since its use is
more intuitive when used interactively such as with the ActinViewer. The value simulationSteps
defines the number of time steps to use when marching forward through the simulation. The value
simulationTolerance defines the difference required between the commanded and achieved position.
If this tolerance is achieved, the position controller proceeds to execute the command. If the
tolerance is not achieved, the position controller commands a halt.

Method Description

setDesiredPlacementVector This method checks to set that the desired placement vector is
achievable and then sets it. If it is not achievable, the internal desired
placement vector is set to the current position which stops any
motion.

setSafePlacementVector This method sets the internal desired placement vector to the current
end effector positions.

<ct:positionControlSystemWithSimulation>

<ct:isOn>1</ct:isOn>
<ct:maxFinalPropagationSize>2</ct:maxFinalPropagationSize>
<ct:maxIterations>16</ct:maxIterations>
+<ct:simulationControl>
<ct: simulationRunTime>0</ct: simulationRunTime>
<ct: simulationRunTimeScaleFactor>10
 </ct: simulationRunTimeScaleFactor>

t <ct: simulationSteps>30</ct: simulationSteps>
 <ct: simulationTolerance>0.0001</ct: simulationTolerance>
 <ct:timeStep>0.012</ct:timeStep>
 <ct:useTwoPasses>1</ct:useTwoPasses>
 +<ct:velocityControlSystem>
</ct:positionControlSystemWithSimulation>

 232

setSimulation Sets the simulation description.

setSimRunTime Sets the maximum simulation run time for looking ahead.

setSimRunTimeScaleFactor Sets the scale factor parameter.

setSteps Sets the number of steps to iterate through the simulation time.

setTol Sets the tolerance parameter.

Table 11-5: Listing of primary methods available to the developer for the look-forward position
control system. Check the code documentation for a complete list and description.

The method, setDesiredPlacementVector, takes a desired placement vector, tests it with the
simulation, and optionally sets the desired placement vector or calls the setSafePlacementVector
method. The setSafePlacementVector is called if the simulation predicts that the desired placement
vector is not achievable. The setSafePlacementVector sets the desired placement vector to the
current placement vector (which produces a halt). Both the setDesiredPlacementVector and
setSafePlacementVector methods are virtual and can be overridden through inheritance. The
setSafePlacementVector method can be overridden to produce different commands, as needed for the
user’s specific task, when a failure to converge occurs.

Other than the “set” methods for setting the internal parameters, the interface to the position control
system with simulation class is the same as the basic position control system class. For that reason,
Text Box 2-4 Text Box 2-5 also provide an instructive example for this class. Figure 10-2 shows an
illustration of how the two position control algorithms react to position commands.

 233

Figure 11-2: Illustration of position control with look-forward simulation. The top row of pictures
shows three end effector placements under the control of the basic position control system. The first
picture shows the starting location with a guide frame at a desired end effector position. The second
picture shows that the achieved position converges on the desired position. The third picture shows a
desired end effector position that is out of reach. The manipulator reaches as far as it can and stops
at its joint and link limits. The bottom row shows a similar command sequence using the position
control system with a look-forward simulation. The third picture shows that the manipulator was
halted because the simulation determined that the commanded position was out of reach. This same
concept is used to aid in avoiding collisions.

 234

12 Dynamic Simulation

12.1 Force Response
Accurate force response for the dynamic simulation is a key requirement for testing collision
avoidance as well as force control and grasping. Since the application requires modeling of force as
a function of material type for grasping, manipulating and other dexterous operations, a physics-
based force response model that returns a force as a function of the force applied is needed. This
requires the application to forgo the myriad fast methods available for handing collision response
that have been developed using a coefficient of restitution model. Coefficient of restitution models
are common in the video game industry where fast execution times are of more concern than
accurate physical representation.

12.1.1 Architecture
Since several models may be employed for force response, and developers of the toolkit may want to
add their own, the architecture was constructed to be easily extendable.

All force processors inherit from EcBaseLinkInteractions. A vector of link interactions
(EcLinkInteractionsVector) is traversed in EcDynamicSimulatorSystem at the time step specified for
the dynamic simulator system. Note that this time step is independent of the simulation time step for
the individual manipulators. If a new force processor is developed, it needs only to subclass
EcBaseLinkInteractions, and be registered with the EcLinkInteractionsVector. This can be done by
outside developers of the toolkit using the plugin interface.

The force processing is done in EcLinkCollisionForce, which subclasses EcBaseLinkInteractions as
discussed. The description of the class is below.

Member Data Class/Type Description Restrictions

CollisionForceProc…

Container

EcCollisionForce…
ProcessorContainer

Holds a container for the
collision force processor

None

Table 12-1: EcLinkCollisionForce class description.

By employing a container class for the collision force processor, EcLinkCollsionForce has the
greatest flexibility. EcCollisionForceProcessorContainer is a standard container that subclasses
EcBaseExpressionTreeContainer<EcBaseCollisionForceProcessor>. The base collision force
processor has the following members.

Member Data Class/Type Description Restrictions

pContainer EcCollisionForce…
ProcessorContainer

A pointer to the
collision force processor
container

None

DissipativeForce… EcDissipativeForce A container holding the None

 235

Container ProcessorContainer class for computing
dissipative (non-
conservative) forces

Table 12-2: EcBaseCollisionForceProcessor class description.

An EcDissipativeForceProcessorContainer is a standard container that subclasses
EcBaseExpressionTreeContainer<EcBaseDissipativeForceProcessor>.

By architecting the system in this way, developers have complete control over the force feedback
algorithms used. It accommodates, for example, changing the way that frictional forces are calculate
without having to change other aspects of the force calculation.

12.1.2 Spring Displacement Model
A simple spring displacement model for the collision response was implemented that relies on
knowledge of the penetration distance between two intersecting physical extents. This model has the
advantage of returning force as a function of force applied and is well suited for the robotics
application domain.

Figure 12-1 shows a graphical representation of the displacement model. The line of action l is the
line normal to both colliding surfaces and points in the direction of the resulting force for Surface 1,
and in the direction opposite the force for Surface 2. The line of action is obtained as a byproduct of
the GJK penetration depth calculation.

Penetration Distance

Support Points Returned
from GJK Algorithm

Uncompressed Length

Penetration Distance (X)

Fc = -kX

Figure 12-1: Spring Displacement Model for Force Computation.

The force is computed in system coordinates as.

lkXFc −= (12-1)

Where X is the penetration depth, l is the line of action, and k is the resultant spring constant for
the two surfaces. The spring constant for each physical extent is described in XML as

 236

ec_surface_tension_spring_constant and is part of the surface properties description. The resultant
spring constant k is obtained by:

21

21

kk
kk

k
+

= (12-2)

Where 1k is the spring constant for shape 1 and 2k is the spring constant for shape 2.

12.1.3 Non-Conservative Forces

12.1.3.1 Design
Modeling static friction is difficult [20]. A number of approaches are available for approximation,
but these usually require optimization (such as in [21]) or the addition of new states (such as in [22]).
This document describes a design for implementing a static and kinetic Coulomb friction model
tailored for use with a robotic manipulator. The technique is based on the concept of a breaking
spring.

12.1.3.2 One-Dimensional Model
To illustrate the breaking-spring approach to friction modeling, this section shows first how the
technique would be applied to a one-dimensional problem. The next section will extend the
technique to three dimensions.

Let two interacting surfaces be labeled A and B, as shown in the figure below. The normal force
applied by surface B on surface A is if . The horizontal location of the block is represented through
x; the external horizontal force applied to the block is ef , and the friction force applied to the block
is ff . The coefficients of static and kinetic friction are sμ and kμ , respectively. The mass of the
block is m.

A

B

fi

m
ff

x

μs μk

fe

Figure 12-2: A one-dimensional example. Object A can move horizontally relative to object B.

The Coulomb friction model gives the following constraints:

 237

isf ff μ< when 0=x& , (12-3)

ikf fxf μ)sign(&−= when 0≠x& , (12-4)

along with the constraint that friction can do no work:

0≤xf f & . (12-5)

The constraint from equations (12-3) and (12-4) gives force as a function of velocity as follows:

Velocity x
.

fForce f

μs

μk

fi

fi

Figure 12-3: The relationship between force and velocity for the one-dimensional Coulomb friction
model.

To form an analogy between this one-dimensional example and the dynamic manipulator model used
in the toolkit, the friction force will be estimated as a function of the position x and velocity x& . For
this, the friction model will be assigned a state that takes two values, kinetic and static. The kinetic
mode will represent object A moving relative to object B, and static mode will represent object A
stationary relative to object B.

12.1.3.2.1 In the Kinetic Friction State
In kinetic mode, the friction will be calculated as

ikf fxf μ)sign(&−= . (12-6)

This is exactly consistent with the constraints of equations (12-3) to (12-5).

12.1.3.2.2 In the Static Friction State

 238

The static friction state, the friction force will be represented using a spring-damper response. The
spring and damper parameters will be sk and sλ . Both of these will be strictly nonnegative. The
force will then be calculated as follows in static mode:

xxkf ssf &λ−−= . (12-7)

The transfer function for this system is

s
se ks

m
s

m
F
X

++
=

λ2

1

.

(12-8)

Let sλ be calculated as

,ˆ2 ss km=λ (12-9)

Where m̂ is the estimate of m. With this value, (12-72) is critically damped when mm ˆ= . The
damping factor, ζ , is given by

m
m̂

=ζ (12-10)

The settling time for an underdamped system is inversely proportional to the damping factor.

12.1.3.2.3 Choosing the Friction State
Initially, the friction state is static. If the force calculated through (12-71) ever exceeds is fμ , then
the mode changes to kinetic. If the sign of x& changes, the mode changes to static.

12.1.3.3 Three-Dimensional Model
For the three-dimensional model, the situation is illustrated in the figure below. The contact point is
the spatial point midway between the deepest intersections of the two objects. The location of this
point as represented in the two object primary frames is given by Apr and Bpr . The normal ABn →ˆ is
a unit vector along the axis defined by the two intersection points.

 239

A

B
ω

vB

B

pA

ω
vA

A
Primary Frame A

Primary Frame B

nB A
^

pB

Figure 12-4: For two intersecting 3D objects, the midpoint between the deepest intersection points is
represented in both primary frames as Apr and Bpr .

For calculating the friction between the two objects, the locations of the contact point in the two
reference frames (Apr and Bpr) are saved as Apr0 and Bpr0 . This is illustrated in the figure below.
As the two objects move, this point moves distinctly for the two objects, staying constant in each
object’s primary frame. The location of the point is stored for the first time step that is part of a
static-friction mode.

 240

pB

A

B

pA

B A

Primary Frame A

Primary Frame B

δ

nB A
^

0

pB0

0

pA

Figure 12-5: For two intersecting 3D objects, the midpoint between the deepest intersection points is
represented in both primary frames and this representation moves as the objects move.

The following quantities are saved each from the first occurrence of a static mode:

• The locations of the contact points in primary frame coordinates, Apr and Bpr , as Apr0 and

Bpr0 .

• Frame A represented in frame B, A
B T .

• The general velocity of frame A with respect to frame B, A
B V .

12.1.3.3.1 In the Kinetic Friction State
Let the linear kinetic friction coefficient be kμ and the angular kinetic friction coefficient be ka,μ .
In the kinetic friction state, the force will be calculated as described below.

Let the general force applied by object B to object A as a nonfrictional response to the collision of
objects A and B be defined as A

B F . If this general force is expressed at the collision point, the value
is c

A
B F , which has two vector components, linear force c

A
B f
r

 and angular moment of force c
A

Bnr . With
these values, let the normal force magnitude be defined as follows:

AB
c
A

B
i nff →⋅= ˆ

r
, (12-11)

where ABn →ˆ is the normal defined by the intersection points (see Figure 12-5).

The general velocity of frame A with respect to frame B expressed at the contact point is given by
c
A

B V . This has two vector components, linear velocity c
A

Bvr and angular velocity c
A

Bω
r

. The linear

 241

component of the velocity of B relative to A at the contact point perpendicular to the normal is given
by

ABAB
c
A

Bc
A

B
A

B nnvvv →→
⊥ ⋅−= ˆ)ˆ(rrr . (12-12)

And the angular component of the velocity of B relative to A at the contact point along the normal is
given by

ABAB
c
A

Bn
A

B nn →→⋅= ˆ)ˆ(ωω
rr

. (12-13)

With this, the force applied to object B by object A at the contact point is

⊥
⊥→ −= A

B

A
B

ki
AB v

v
ff r
r

r μ . (12-14)

And the angular moment applied to object B by object A is

ABaiAB
c
A

B
AB nfnn →→→ ⋅−= ˆ)ˆsign(μω

rr . (12-15)

12.1.3.3.2 In the Static Friction State
For the static case, let the following parameters be defined:

• ABn →ˆ is a unit vector along the axis defined by the two current intersection points;

• Apr0 and Bpr0 are the locations of the start of the most recent static-friction state;

• AB→δ
r

0 is the different between Apr0 and Bpr0 when they are represented in common
coordinates using the current locations of objects A and B;

• A
Bvr′ and A

Bω′
r

 are the linear and angular velocity of object A with respect to object B
expressed at the point intermediate between Apr0 and Bpr0 when they are represented in
common coordinates;

• ABa →ˆ and θ are the angle and axis between the orientation of object A with respect to B at
the start of the current static mode and the current orientation of object A with respect to
object B; and

• ts,μ and ns,μ are the coefficients of static friction tangential and normal, respectively, to the
contact between objects A and B.

• tsk , and nsk , are the spring coefficients used to model tangential and normal static friction,
respectively, between objects A and B.

• ts,λ and ns,λ are the damper coefficients used to model tangential and normal static friction,
respectively, between objects A and B.

• ask , and as,λ are the spring and damper coefficients for the angular component of static
friction.

 242

These quantities are illustrated in the figure below.

Figure 12-6: For two intersecting 3D objects, the midpoint between the deepest intersection points is
represented in both primary frames. The mean is Mpr0 .

Let n
AB→δ

r
0 be defined as the normal component of AB→δ

r
0 , i.e.,

ABABAB
n

AB nn →→→→ ⋅= ˆ)ˆ(00 δδ
rr

. (12-16)

And let ⊥
→ABδ

r
0 be the perpendicular component, calculated as

n
ABABAB →→

⊥
→ −= δδδ

rrr
000 . (12-17)

Similarly, let the normal and perpendicular components of the rotational axis ABa →ˆ be defined as
follows:

ABAB
n

AB
n

AB nnaa →→→→ ⋅= ˆ)ˆˆ(ˆ (12-18)

and

n
AB

n
ABAB aaa →→

⊥
→ −= ˆˆˆ . (12-19)

The normal and perpendicular component of linear velocity are defined as follows

ABABA
Bn

A
B nnvv →→⋅′=′ ˆ)ˆ(rr (12-20)

and

n
A

B
A

B
A

B vvv rrr ′−′=′⊥ . (12-21)

And the normal component of angular velocity is defined as follows

ABABA
Bn

A
B nn →→⋅′=′ ˆ)ˆ(ωω

rr
. (12-22)

B Az

z

B Az

0

0

p
z

B

0 p
z

A

z
v
z

AA
B B

B Az

0p
z

M

 243

With these, the force applied on object B by object A at the contact point is

() ())()()()(,0,,0,
n

A
B

ns
n

ABnsA
B

tsABtsAB vkvkf rrrrr
′+−′+−= →

⊥⊥
→→ λδλδ . (12-23)

And the applied moment is

)()ˆ(,,
n

A
B

as
n

ABasAB akn ωλθ
rr ′−−= →→ . (12-24)

12.1.3.3.3 Choosing the Friction State
Initially, the friction state is static. If the magnitude of the normal force calculated through (12-23)
ever exceeds its f,μ , then the mode changes to kinetic. Similarly, if the magnitude of the angular

moment in (12-24) ever exceeds ins f,μ , then the mode changes to kinetic. If ABf →

r
 changes by more

than 90 degrees while the direction of ABn →
r changes in the same time step, the mode changes to

static.

12.1.3.3.4 Collision Reaction

A B

nB A
^

d

Primary Frame BPrimary Frame A

f B A

pBpA

A,B
Figure 12-7: Each of two colliding objects applies a repelling force to the other. That force is
calculated as a function of the penetration distance and the estimated normal between the two
surfaces.

 244

At any instant in time, let the penetration distance between bodies A and B be BAd , , and let the
normal between the surfaces, from B to A, be ABn →ˆ , and the collision points in frames A and B be

Apr and Bpr . With this, a linear spring/damper repelling force applied by B to A at a given instance
would be calculated as follows:

ABBArBArAB nddkf →→ += ˆ)(,,
&

r
λ . (12-25)

This linear force expressed in frame as a general force becomes

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×
=

→

→
→

ABA

AB
AB

A

fp
f
rr

r

F .
(12-26)

Before application to body A in the simulation, this value is smoothed to integrate the effect of
multiple or poorly defined collision points, as might occur when a flat face intersects another flat
face. The smoothed value of AB

A
→F is AB

A
→F

(
. This smoothing process is implemented using a

smoothing parameter,]1,0[∈kχ , as follows:

k
AB

A
k

k
AB

A
k

k
AB

A
AB

A
→

−
→→

−
→ +−== FFF0F χχ 11)1(;

(((
. (12-27)

The collision point and normal are smoothed similarly.

Time step 0 corresponds to time ct , the first instance of an ongoing collision between A and B. If
the objects separate and recollide, the time step is again 0, and the smoothing process starts over.
The smoothing value transitions from a high value to a low value as the time progresses, as shown
below.

χ

Time
Transition Time

Upper Value

Lower Value

Figure 12-8: The smoothing parameter transitions from the high to the low value over a specified
period of time during a continuous collision event.

 245

12.2 Articulated Dynamics
ActinTM includes two dynamic simulation methods: the Articulated Body Inertia Algorithm and the
Composite Rigid-Body Inertia Algorithm. The Order(N) Articulated Body Inertia algorithm is best
for very large manipulators, while the Order(N 3) Composite Rigid-Body Inertia algorithm is best for
smaller manipulators. These techniques are implemented for both fixed-base and free-base
manipulators. This section describes these techniques for general free-base manipulators.

12.2.1 Composite Rigid-Body Inertia Simulation Algorithm
For fixed-base manipulators, dynamic simulation is implemented using an adaptation of the
composite rigid-body algorithm [23], [24] for bifurcating manipulators. This algorithm runs in
Order(N 3) time, for N links.

The fixed-base composite rigid-body inertia algorithm uses the following dynamics equation:

BqGqqCqqMτ +++=)()()(&&& , (12-28)

where τ is the column vector of joint torques/forces,)(qM is the manipulator inertia matrix, q is
the vector of joint position,)(qC represents the Coriolis forces,)(qG represents gravitational
forces, and B represents the effect of external forces applied to the arm’s links. This equation, as
shown, is only valid for a manipulator with a fixed base. When the base is free, it must be modified.

12.2.1.1 Background

 For any frames i and j that are rigidly connected, Let ij
j

→P be the cross-product matrix for ji
j p → ,

the vector from the origin of frame i to the origin of frame j, expressed in frame j. And let i
j R be

the rotation matrix expressing frame i in frame j. Using this, let the matrices jiF →T and jiA →T be
defined as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

→
→

i
j

i
j

ij
j

i
j

jiF RRP
R

T
0

,
(12-29)

and

⎥
⎦

⎤
⎢
⎣

⎡
= →

→
i

j
i

j
ij

j
i

j

jiA R
RPR

T
0

.
(12-30)

These transformations produce the following equalities:

ijiFj FTF →= , (12-31)

and

ijiAj ATA →= . (12-32)

 246

For any rigid body, let f
r

 be the vector force applied to the link, nr be the moment, ω
r

 be the angular
velocity, vr be the linear velocity, af

r
 be an a priori external force applied to the body, anr be an a

priori moment applied to the body, m be the mass, H be the cross-product matrix for the first
moment of inertia, and J be the second moment of inertia. Then, the force/moment equations are
given by the following:

e
TT fvmf

r
&rrr&r

r
−+×+= ωωω HH . (12-33)

envn r&rrr&rr
−+×+= HJJ ωωω . (12-34)

Let the 6×6 rigid-body inertia be defined as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=

JH
HII

T
C m .

(12-35)

And let a bias frame force be defined as

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

+⎥
⎦

⎤
⎢
⎣

⎡

×
×

=
a

a
T

n
f
r

r

rr

rr

ωω
ωω

J
HB .

(12-36)

With this, the rigid-body dynamics can be represented as

 BAIF += C . (12-37)

12.2.1.2 Effect of Base Acceleration on Joint Torque
When the base link is free to move, the force on an acceleration of the base affects the manipulator
dynamics. The affect of the base acceleration on any joint can be found by fixing all other joints and
finding the torque required by the joint to sustain the acceleration on the composite rigid body
outboard from the joint. This is illustrated in Figure 12-9.

 247

Base Link

R p
i

b
b i

Composite Body i

Joint φ i

Figure 12-9: The torque produced on joint i due to the acceleration of the base is the torque required
to accelerate all the outboard links from the joint. This is an additive term, found by assuming all
other joints are stationary.

For the base joint, let the a priori external force and moment be divided into two components. Let

ef
r

 be an external force applied to the base, enr be an external moment applied to the body, mf
r

 be
the force applied by child links to the base, and mnr be the moment applied by child links. With this,

mea fff
rrr

+= and .mea nnn rrr
+= Then the bias force is given by

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−

+⎥
⎦

⎤
⎢
⎣

⎡

×
×

=
me

me
T

nn
ff
rr

rr

rr

rr

ωω
ωω

J
HB .

(12-38)

The torque on joint i due to acceleration bA can be found by assuming an otherwise stationary
manipulator, with all other rates and accelerations zero. With this assumption, the base frame
acceleration can be expressed in frame i using (12-32), the frame force required to move the
outboard composite rigid body calculated using (12-37), and the joint torque calculated by taking the
inner product of this force with .iφ This gives the torque on joint i due to base acceleration as the
following:

bibA
C
i

T
i

A
i ATI)(→=φτ . (12-39)

Let the matrix D be defined as follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−→−−

→

→

)(

)(
)(

111

111

000

nbA
C
n

T
n

bA
CT

bA
CT

TI

TI
TI

D

φ

φ
φ

M
.

(12-40)

 248

This is evaluated in code by calculating i
C
i φI as the frame force produced by unit acceleration of

joint i with all other joints stationary (C
iI is symmetric), then transforming this force to the base

frame using the identity jiijF
T

jiA ,,∀= →→ TT .

With this definition, the manipulator dynamics equation becomes

BADqGqqCqqMτ ++++= b)()()(&&& . (12-41)

Note that, because gravitational)(qG is explicit, bA is the seen (rather than felt) value.

12.2.1.3 Changing Reference Frames for Matrix D
Because D applies to the base acceleration, it has a frame of representation, just as the base
acceleration does. The formula to change the frame of expression for D from j to i is given by the
following (with jiA →T defined through (71)):

)(jiA
ji

→= TDD . (12-42)

12.2.1.4 Effect Joint Accelerations on the Base Acceleration on Joint Torque
When the base link is free to move, assuming an otherwise stationary manipulator, the force that
must be exerted on composite rigid body i for acceleration only by joint i is given by

ii
C
ii qF &&φI= . (12-43)

Expressing this in the base frame, and changing the sign to represent the effective force applied to
the base gives

ii
C
ibiFi

b qF &&φIT→=− . (12-44)

Summing the contributions of all links and using the identity jiijA
T

jiF ,,∀= →→ TT gives the following

remarkable reuse of the matrix D to calculate the force maF applied to the base as a result of
manipulator joint accelerations.

qDF &&T
ma −= . (12-45)

Let the total force applied by the manipulator to the base be

memgmcmam FFFFF +++= , (12-46)

where mcF , mgF , and meF represent the force due to Coriolis and centripetal terms, gravity, and
external forces, respectively.

If eF represents the external forces applied to the base link directly, then (78) gives

 249

 memgmcb
C
bema FFFAIFF −−−=+ , (12-47)

where C
bI is the composite rigid-body inertia of the entire manipulator, including the base.

Substituting in (86) gives

 memgmceb
C
b

T FFFFAIqD +++=+&& . (12-48)

Combining this with (82) gives a new manipulator dynamics equation

⎥
⎦

⎤
⎢
⎣

⎡
+−−

+++
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
BqGqqCτ

FFFF
q

A
qMqD

qDI
)()()()(

)(
&&&

memgmceb
TC

b .
(12-49)

For N joint degrees of freedom, C
bI is 6×6,)(qD is N ×6, and)(qM is N ×N. Solving this for bA

and q&& and time integrating these gives the free-base composite rigid-body algorithm. In
concatenating bA and q&& , bA is placed on top of q&& to simplify the calculation of the Cholesky
Decomposition of the left-hand matrix in (90). Note that this matrix, which must be inverted, is
guaranteed not to be singular for a real system (otherwise acceleration could be achieved with no
force).

12.2.1.5 Solving for the Accelerations
Let

⎥
⎦

⎤
⎢
⎣

⎡
=

)()(
)()(
qMqD

qDIqM
TC

b ,
(12-50)

⎥
⎦

⎤
⎢
⎣

⎡
=

q
A

q
&&
b ,

(12-51)

and

⎥
⎦

⎤
⎢
⎣

⎡
+−−

+++
=

BqGqqCτ
FFFF

τ
)()(&

memgmce .
(12-52)

With these definitions, (90) becomes

τqqM =)((12-53)

an (N+6)-dimensional fully constrained linear equation. Cholesky Decomposition (decomposition
into a lower-triangular square root) is ideal for solving this for q because)(qM , like)(qM , is
positive definite. In this approach,)(qM is decomposed as follows:

 250

TLLM = , (12-54)

with L lower triangular.

The constness of C
bI can be exploited in the calculation of L . Let C

bI be decomposed as

,T
bb

C
b LLI = (12-55)

with bL lower triangular. bL is constant and only needs to be calculated once.

Let E be the N ×6 matrix satisfying the following:

,TT
b DEL = (12-56)

which can be solved using back substitution with bL , and let ML be defined such that

T
MM

Tq LLEEM =−)(. (12-57)

This can be solved using Cholesky decomposition on an N ×N matrix.

With these values, L is evaluated as

⎥
⎦

⎤
⎢
⎣

⎡
=

M

b

LE
0L

L .
(12-58)

Using (76) and (96),

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

Jm
b

m
LH
0I

L
1

,
(12-59)

Where JL is lower triangular, and

TT
JJ m

HHJLL 1
−= . (12-60)

12.2.2 Articulated-Body Simulation Algorithm
The articulated-body algorithm [25], [26] is used for simulation in the software toolkit, running in
Order(N) time. This algorithm allows fast simulation of very complex mechanisms.

12.2.2.1 Articulated Body Inertia
An articulated body is a collection of connected articulating links, as illustrated in the figure below.
Any single rigid body within the articulated body can be used as a handle for defining the
relationship between force and acceleration.

 251

Link i

Link l

Link j

Link k

Articulated Body

(Handle)

Figure 12-10: The torque produced on joint i due to the acceleration of the base is the torque
required to accelerate all the outboard links from the joint. This is an additive term, found by
assuming all other joints are stationary.

Associated with any handle is a 6×6 articulated-body inertia AI that satisfies the following equation
for any physically realizable frame acceleration (6×1) A:

BAIF += A . (12-61)

Here, F is the 6×1 frame force that must be applied to the articulated body to achieve 6×1 frame
acceleration A . (For vector force f

r
, moment nr , linear acceleration ar , and angular acceleration α

r
,

represented as 3×1 column vectors, TTT nf][rr
=F and TTTa][α

rr
=A .) The 6×1 frame force B is a

bias force that is a function of external forces on the links, internal forces on the links, gravity, and
link velocities. B represents all contributors to the force on the link except acceleration A . It is the
force required to produce no acceleration of the handle.

The iterative formulas to calculate AI and B are given by the following:

)1(A
j

T
jj

A
j

j
A
j

T
j

A
i

A
j

A
k II

I
III φφ

φφ
−+= , (12-62)

ijj
A
jj

T
jj

j
A
j

T
j

k BBIB
I

B ++−= φφτ
φφ

)(1 . (12-63)

When the base is free, these equations can be continued to the base link. Then, at the base link, the
frame acceleration will be given by

)()(1
bb

A
bb BFIA −= − . (12-64)

Here, bA is the acceleration that is felt, rather than seen. If the frame is stationary with respect to a
gravitational field, then bA will show acceleration upward.

 252

12.2.3 Dynamics Example
An example manipulator system is provided with the toolkit showing the use of dynamic simulation.
The XML configuration of this system is shown in Text Box 12-1, and

Figure 12-11 shows side-by-side comparisons of the two algorithms simulating a free-base three-link
mechanism.

Text Box 12-1: Dynamic simulation configuration.

 <dynamicSimulatorSystem>
 <dynamicSimSystemTimestep>0.001</dynamicSimSystemTimestep>
 <dynamicSimulators size="2">
 <element>
 <integrationMethod>adamsBashforth</integrationMethod>
 <integrationOrder>2</integrationOrder>
 <isOn>1</isOn>
 <simulationType>arbi</simulationType>
 <stateVariableBound>1000000000000000</stateVariableBound>
 <timeBetweenMassMatrixEvaluations>0</timeBetweenMassMatrixEvaluations>
 <timeStep>0.002</timeStep>
 </element>
 <element>
 <integrationMethod>adamsBashforth</integrationMethod>
 <integrationOrder>2</integrationOrder>
 <isOn>1</isOn>
 <simulationType>crbi</simulationType>
 <stateVariableBound>1000000000000000</stateVariableBound>
 <timeBetweenMassMatrixEvaluations>0</timeBetweenMassMatrixEvaluations>
 <timeStep>0.002</timeStep>
 </element>
 </dynamicSimulators>
 </dynamicSimulatorSystem>

 253

Figure 12-11: A side-by-side comparison of the dynamically simulated free-base mechanism using
the Articulated Rigid-Body Algorithm and the Composite Rigid-Body Algorithm. The two
algorithms give the same results.

12.3 Actuator Modeling

12.3.1 Dry (Stick-Slip) Friction for Actuators
Dry friction is difficult to model. Without great care, the discretization errors in numerical
integration can lead to friction forces that actually produce work or motion when none would
actually occur. To avoid these difficulties, we have developed a novel dry friction model that
combines the concepts developed by other researchers ([27],[28]) with a breaking spring-damper
representation.

12.3.1.1 Approach
Let two interacting surfaces be labeled A and B, as shown in the figure below. The normal force
applied by surface B on surface A is if . The horizontal location of the block is represented through
x; the external horizontal force applied to the block is ef , and the friction force applied to the block
is ff . The coefficients of static and kinetic friction are sμ and kμ , respectively. The mass of the
block is m.

A

B

fi

m
ff

x

μs μk

fe

Figure 12-12: A one-dimensional example. Object A can move horizontally relative to object B.

The Coulomb friction model gives the following constraints:

isf ff μ< when 0=x& , (12-65)

 254

ikf fxf μ)sign(&−= when 0≠x& , (12-66)

along with the constraint that friction can do no work:

0≤xf f & . (12-67)

The constraint from equations (12-65) and (12-66) gives force as a function of velocity as follows:

Velocity x
.

fForce f

μs

μk

fi

fi

Figure 12-13: The relationship between force and velocity for the one-dimensional Coulomb friction
model.

In case of an actuator, let mθ& be the motor angular velocity; T be the total torque applied by or to
motor; Tf, Tslip, and Tstick denote the total, slip, and stick friction torques, respectively; Ts be the
saturation torque of stick friction; Tk be the kinetic slip friction torque, and θ&D be the limiting
angular velocity in the stick and slip regions. Then, the friction torque can be described as a
combination of two components, both of which cannot occur simultaneously, as

stickslipf TTT += (12-68)

where

⎩
⎨
⎧

−
<<−

=
Otherwise,)sign(

,0

km

m
slip T

DD
T

θ
θ θθ

&

&
&& (12-69)

and

⎪
⎩

⎪
⎨

⎧

<
<<−

−<−
=

'

''

'

,
,

,

stickss

ssticksstick

ssticks

stick

TTT
TTTT

TTT
T (12-70)

 255

with

⎩
⎨
⎧ <<−−

=
Otherwise,0

,' θθ θ &&
& DDT

T m
stick (12-71)

Essentially, if the motor velocity is within the limiting velocity θ&D , the motor is considered to be in
the stick region. According to Karnopp and Choek, the motor angular velocity would have to be
forced to zero if the momentum falls within a stick region. If, however, this was to be implemented,
a sudden change of velocity could cause discontinuity in dynamic simulation. On the other hand, if
the velocity was not forced to zero, the motor would continue to move even within stick region in
which the total torque should be entirely countered by the stick friction. To circumvent this problem,
we added a breaking spring-damper to help stop the motion. The breaking-spring damper torque is
described by

mdmcmssd kkT θθθ &−−−=)((12-72)

where ks is the spring constant; kd the damper constant; and mcθ the motor angular displacement at
the stick region. The purpose of this breaking spring-damper torque is to help bring the motor back
to mcθ . With this, the stick friction is modified to be

⎪
⎩

⎪
⎨

⎧

<
<<−+

−<−
=

'

''

'

,
,
,

stickss

sstickssdstick

ssticks

stick

TTT
TTTTT

TTT
T (12-73)

12.3.1.2 Implementation
The dry friction model described in equations (12-68) to (12-73) is implemented in the
EcJointActuator class. The methods listed in Table 12-3 are related for the implementation. One
notable is that the saturation torque of the slip friction is not defined as absolute but rather as a
percentage of that of the stick friction.

Methods Description

staticCoulombFriction /
setStaticCoulombFriction

Gets/sets the saturation torque of stick friction Ts

kineticCoulombFrictionPercentage /
setKineticCoulombFrictionPercentage

Gets/sets the saturation torque of slip friction Tk as a
percentage of Ts

staticCoulombSpringCoefficient /
setStaticCoulombSpringCoefficient

Gets/sets the spring constant used in the breaking
spring/damper ks

staticCoulombDamperCoefficient /
setStaticCoulombDamperCoefficient

Gets/sets the damper constant used in the breaking
spring/damper kd

limitingVelocityStickRegion / Gets/sets the limiting velocity indicating whether the

 256

setLimitingVelocityStickRegion actuator is in the stick or slip region θ&D

Table 12-3: Methods of EcJointActuator relevant to computing dry friction.

The implementation is mostly straightforward except for a few details. First, the center for the
breaking spring-damper model must be updated as needed during run time. This required a state for
actuators separate from manipulators. As such, a new class EcActuatorState was created to contain
all necessary state information for actuators. In this case, EcActuatorState contains the center of the
breaking spring-damper and a flag indicating whether dry friction is in the stick or slip region. The
center position gets updated whenever the motor enters the stick region.

Secondly, obtaining the correct value of the motor torque T used in equation (12-71) is not trivial.
This is the total torque (excluding the dry friction itself) applied to or by the motor, which include
the input torque from the motor, the actuator viscous friction torque, the torque from stopper
dynamics, and the torque from manipulator dynamics (e.g. from Colioris and gravitational forces). It
is the torque from manipulator dynamics that adds a level of complexity to the calculation of dry
friction.

Two methods for manipulator dynamics calculation exist in our software toolkits. One is composite-
rigid body inertia (CRBI) and the other articulated-body inertia (ARBI). Therefore, the support for
both of these two methods must be provided. For the CRBI dynamics algorithm implemented in the
EcCrbiAccelerationTool class, the torque from manipulator dynamics was already explicitly
computed in EcTotalTorqueTool. Thus, including the dry friction model is simple and does not
increase any computation burden. For ARBI, this torque was not computed explicitly and therefore
its calculation had to be added. An instance of EcTotalTorqueTool was added to
EcArbiAccelerationTool to compute the torque from manipulator dynamics. This addition will
undoubtedly decrease the speed of ARBI algorithm. However, since the torque calculation runs in
O(N) time, the drop-off in performance is not expected to be significant.

Adding the dry friction model to joint actuators did require some changes in the way the total torques
were calculated. Originally, the EcTotalTorqueTool::torques() method was intended to compute the
total torques that would be required to achieve the specified motion (acceleration). This took into
account the Coriolis/centripetal and gravity effects and actuator dynamics including viscous friction,
stopper dynamics, and motor inertia as well. This method was primarily used in dynamic simulation
and feed-forward joint control of the manipulator. However, the types of torques required for
dynamic simulation and feed-forward joint control are not identical. A new method called
setTotalTorqueType() was added to EcTotalTorqueTool for setting the desired torque type. The
argument to the setTotalTorqueType() method is an enumeration type with the three options shown
in Table 12-4. This method should be called prior to a call to the torques() method.

Total Torque Type Description

TOTAL_TORQUE Computes the torques due to manipulator dynamics and all of
actuator dynamics. General purpose for computing torques
required to achieve the desired acceleration.

TOTAL_LINEAR_TORQUE Computes the torques due to manipulator dynamics and linear
parts of actuator dynamics. Used in feed-forward joint control.

MANIPULATOR_TORQUE Computes the torques due to manipulator dynamics only. Used
in dynamic simulation. The torques from actuator dynamics are
explicitly added later.

 257

Table 12-4: The three options for computing torques in EcTotalTorqueTool.

12.3.1.3 Example
Figure 12-14 and Figure 12-15 demonstrate the effect of dry friction. A dry friction torque in the
form of equation (12-68) is assigned to each of the joint actuators. Each joint actuator also has a
viscous friction associated with it. In Figure 12-14, the simulation starts with the initial configuration
shown in the left subfigure. Due to gravity, the pendulum swings downwards and finally rests at the
configuration shown in the right subfigure. Without dry friction, the pendulum would only
asymptotically approach the vertical configuration.

Figure 12-14: An example used to demonstrate dry friction. The subfigure on the left shows the
initial condition of the pendulum and the one on the right shows the resting configuration.

Figure 12-15 shows the same pendulum but with a different initial configuration. At this
configuration, gravity is not sufficient to overcome the dry friction to cause the pendulum to move.
Thus, the pendulum simply stays at the initial configuration.

 258

Figure 12-15: Initial condition with less amount of gravitation torques. In this case, gravity cannot
overcome the dry friction so the pendulum does not move.

12.3.2 Gear Backlash and Joint Elasticity
As mentioned earlier, the complexity that gear back and joint elasticity imposes on manipulator
dynamics lies in the fact that they increase the number of states that need to be integrated. In
addition, the full impact of gear backlash and joint elasticity on manipulator dynamics can be overly
complex unless right assumptions are made to simplify it.

12.3.2.1 Approach
In the Phase I software, the following Lagrange-Euler equation of motion of a fixed-base robotic
manipulator with rigid joints, including joint inertias and friction, was utilized:

[] B)qF(q,qGqqCqJRqMτ m
2 +++++= &&&&)()()((12-74)

where τ is the column vector of joint torques/forces;)(qM is the manipulator inertia matrix; q is
the vector of joint position;)(qC represents the Coriolis forces;)(qG represents gravitational
forces; Jm and R are diagonal matrices of motor inertias and gear ratios, respectively;)qF(q, & is the
friction forces propagated from joint actutors; and B represents the effect of external forces applied
to the arm’s links. The fact that the joint actuators are assumed rigid allows the actuator motion to be
a simple function of the joint motion, which helps simplify the equations of motion.

qRq
qRq

m

m

&&&&

&&

=
=

 (12-75)

where mq is the vector of motor position.

When joints are allowed to be non-rigid, the relationships in equation (12-75) no longer hold true.
Consequently, the equation of motion (12-74) is no longer valid. In this work, the following

 259

assumptions used by Spong [29] in his development of a dynamic model for manipulator with elastic
joints will be used.

1. The kinetic energy of the rotor is due mainly to its own rotation.
2. The rotor/gear inertia is symmetric about the rotor axis of rotation.

With these assumptions, the equations of motion for a manipulator with non-rigid joints can be
written as

mfmmmm τττqCqJ
RτBqGqqCqqM

=+++
=+++

&&&

&&&)()()(

(12-76)

where mτ is the column vector of input torques from motors; mC is a diagonal matrix whose
elements are viscous coefficients, respectively, of motor, shaft, and gear assemblies; fτ is the
actuator dry friction torques; and τ is a column vector of output torques from actuators due to non-
rigidity of the joints. In general, τ can be any function of the joint position and velocity and motor
position and velocity.

()mm q,q,qq,fτ &&&= . (12-77)

For simple joint flexibility, the output torque can be computed from

() ()qqRCqqRKτ m
1

fm
1

f && −+−= −− (12-78)

where Kf and Cf are diagonal matrices of joint flexibility stiffness constants and joint flexibility
damper constants, respectively.

The gear backlash model can be added by constructing τ that reflects the lost-motion effect of gear
backlash. In essence, neither torque nor motion is transmitted from motor to link in the “backlash
mode.” The approach taken here is borrowed from a study by Yang and Fu [30]. Let’s consider only
one joint actuator and one link. The joint position of the link is denoted by q and the motor position
by qm. The gear ratio of the joint is denoted by r. Without loss of generality, let’s consider a planar
mating set of gears and assume that initially the two gears are in contact with each other. The driving
gear is attached to the motor and the driven gear to the link. If either gear moves such that two
contacting gear teeth start to break away, then the two gears become out of contact. In the case, the
motion is said to be in the “backlash mode.” The condition under which the motion is in the backlash
mode is identified by

rqqbrq m <<− (12-79)

where b is the backlash amount, which is defined in terms of the motor displacement. If the moving
gear continues to its course, it will eventually reach the other gear and the contact is reestablished.
The motion and torque is then transmitted between the motor and the link. There are two conditions
under which the contact between the two gears is established. The condition in equation (12-80) is
referred to as the “positive contact mode.”

rqqm ≥ (12-80)

The “negative contact mode” is defined by the following condition.

 260

brqqm −≤ (12-81)

Combining the conditions in equations (12-79) – (12-81) with the torque resulted from joint
flexibility in equation (12-78), the total output torque between the motor and the link can be written
as

() ()

() ()⎪
⎩

⎪
⎨

⎧

−+−+

−+−
=

−−

−−

contact negaitve ,)(
modebacklash ,0

contact positive ,

11

11

qqrcqbqrk

qqrcqqrk
τ

mfmf

mfmf

&&

&&

 (12-82)

12.3.2.2 Implementation
Like the dry friction model, the output torque from equation (12-82) is implemented in the
EcJointActuator class. Important methods related to joint flexibility and gear backlash are listed in
Table 12-5. The presence of the isRigid flag is critical to correct and efficient implementation and
dynamic simulation. If this flag is set to true, then the effect of gear backlash and joint elasticity will
essentially be ignored.

Method Description

isRigid /
setIsRigid

Gets/sets the flag indicating whether or not this joint is rigid. If
the effect of gear backlash and/or joint elasticity is to be included,
this flag must be false.

jointFlexibilityStiffness /
setJointFlexibilityStiffness

Gets/sets the joint flexibility spring constant kf

jointFlexibilityDamping /
setJointFlexibilityDamping

Gets/sets the joint flexibility damping constant cf

backlash /
setBacklash

Gets/sets the backlash amount b

Table 12-5: Methods in EcJointActuator for implementation of dynamics of gear backlash and joint
elasticity.

The implementation of dynamics from gear backlash and joint elasticity is significantly more
complicated than that of dry friction because the increase in the number of states. The integration of
motor motion is taken care of by a general-purpose integrator presented earlier. Three general-
purpose integrators were added to EcIndividualDynamicSimulator to process integration of joint
motion, base motion, and motor motion.

For motor motion integration, care must be taken to achieve computational efficiency for joints
whose gear backlash and joint elasticity are not present. Dynamic simulation should not
unnecessarily incur extra computation associated with integrating those extra states. The m_IsRigid
flag in EcJointActuator helps avoid the extra computation. If m_IsRigid is set to true, the integration
of the motor state of that particular joint can simply be skipped. With the fine control at the joint
level instead of the manipulator level, this enables manipulators to have both rigid and non-rigid
joints.

 261

12.3.3 Power Conversion
Essentially, a joint actuator is broken into two parts – the power converter and the mechanical
component. The mechanical component is responsible for the motion of the actuator and includes all
mechanical properties including inertia, friction (Coulomb and viscous), stiffness, flexibility due to
compliance, lost motion (backlash), etc. These properties had already been defined and successfully
simulated. The power converter represents conversion from hydraulic or electric power to
mechanical power in terms of force (torque) and motion.

EcJointActuator

EcPowerConv erterContainer

EcBasePowerConverter

+ «pure» outputTorque() : EcReal
+ «pure» computeStateDerivatives() : void

EcDcElectricMotor

+ outputTorque() : EcReal
+ computeStateDerivatives() : void

EcMechanicalActuatorComponent

EcMechanicalActuatorComponentContainer

EcHydraulicCylinder

+ outputTorque() : EcReal
+ computeStateDerivatives() : void

Figure 12-16: Class diagram of joint actuator.

The class diagram for joint actuators is shown in Figure 12-16. In order to be able to easily swap
components, we adopt the notion of container, which is used throughout the Actin toolkit, when
designing the actuator classes. A joint actuator is represented by EcJointActuator class.
EcJointActuator consists of EcPowerConverterContainer and EcMechanicalActuatorComponent-
Container. EcPowerConverterContainer contains an instance of a class that is derived from
EcBasePowerConverter, which is a base class for all power converters. Currently, two power
converter classes have been implemented. The first is EcDcElectricMotor, for permanent-magnet DC
motors, which are widely used as prime movers for actuators in the field of robotics. The second is
EcHydraulicCylinder that represents the linear hydraulic cylinder commonly used in many powerful
industrial robots. The use of container allows us the flexibility to use any type of power converter in
the simulation. Other types of power converters can also be modeled and implemented by deriving
from EcBasePowerConverter when the need arises.

 262

The two methods of EcBasePowerConverter that need to be implemented in all of its derived classes
along with their descriptions are listed in Table 12-6.

Method Description

outputTorque Computes and returns the converted torque from the control
input and state.

computeStateDerivatives Computes the derivatives of the state variables of the power
converter.

Table 12-6: Critical methods of EcBasePowerConverter.

With the inclusion of power converters, we must add support for simulating their dynamic behaviors
in our original dynamic simulation and control framework. Figure 12-17 shows the rudimentary
control of manipulators without power conversion. First, a kinematic controller computes the desired
joint positions and velocities from the desired end-effector poses. Joint controllers then take the
desired joint positions and velocities as inputs and compute the control torques. These torques are
used in the dynamic simulation to calculate the joint accelerations, which are in turn integrated to
obtain the actual joint positions and velocities.

Figure 12-17: Rudimentary dynamic simulation and control.

With the addition of the power converter part to the actuator model, the dynamic simulation and
control framework needs to be modified. The joint controllers need to output the control inputs to the
actuators instead of the control torques. The power converters then compute the output torques and
feed them to the mechanical components and manipulator dynamics. In addition, the power
converters need to compute the derivatives of their state variables. These derivatives will then be
integrated as part of dynamic simulation. The schematic of this advanced dynamic simulation and
control is given in Figure 12-18.

 263

Figure 12-18: Advanced dynamic simulation and control to support power conversion.

Note that in Figure 12-18, the derivatives of the power converter state variables need to be integrated
to complete the dynamic simulation. Currently, the Actin toolkit supports Adams-Bashforth-Moulton
integration, which is well-suited for solving differential equations with second derivatives (e.g.
accelerations). The Adams-Bashforth-Moulton method uses Adams-Bashforth predictor to integrate
the second derivatives (accelerations) to obtain the first derivatives (velocities) and Adams-Moulton
corrector to obtain the variables (positions). For integrating the derivatives of the power converter
state variables, we will use the Adams-Bashforth predictor due to its simplicity and effectiveness in
real-time simulation applications. The formulae for first-order to forth-order Adams-Bashforth
predictors are listed in Table 12-7. Here qk and kq& are a vector of state variables and a vector of the
derivatives of the state variables at the time step k, respectively.

Order Update Formula

1 kkk tqqq &Δ+=+1

2)3(
2 11 −+ −
Δ

+= kkkk
t qqqq &&

3)51623(
12 211 −−+ +−
Δ

+= kkkkk
t qqqqq &&&

4)9375955(
24 3211 −−−+ −+−
Δ

+= kkkkkk
t qqqqqq &&&&

Table 12-7: Adams-Bashforth Predictors.

 264

12.4 Feedforward-Feedback Joint Controller
Actin provides a feedforward-feedback controller for use in dynamic simulation or application to
hardware. This controller is described below.

12.4.1 Feedback Proportional-Plus-Derivative Feedback Controller
The first step in building the Feedforward-Feedback controller was to establish the desired
accelerations of the joints. This was done using proportional-plus-derivative (PD) control, which
takes the following form for each joint:

)()(qqKqqKq dpdvd −+−= &&&& , (12-83)

where q is the actual joint value and qd is the desired joint value. In the Laplace domain, this gives
the familiar second-order system dynamics:

pv KsKs
T

++
= 2

1
,

(12-84)

The second order dynamic system is well understood. A desired damping ratio ξ (typically a value
near 1.0) and an undamped natural frequency nω (typically a value higher than the natural
frequencies of the uncontrolled system) can be established by setting

2
npK ω= (12-85)

and

nvK ξω2= . (12-86)

The parameters ξ and nω were made configurable components in the XML description of the joint
controller. Their use in (12-83) gives for each joint the desired acceleration at runtime.

12.4.2 Feedforward Dynamics
Given a set of desired joint accelerations calculated using the equations above, the next question is
how to produce those accelerations by applying motor torque at the joints. This requires an analysis
of the robot dynamics. This analysis and the resulting formula for calculating joint torques are
described below.

12.4.2.1 Rigid-Body Dynamics

For any rigid body, let f
r

 be the vector force applied to the link, nr be the moment, ω
r

 be the angular

velocity, vr be the linear velocity, ef
r

 be an a priori external force applied to the body, enr be an a
priori moment applied to the body, m be the mass, H be the cross-product matrix for the first
moment of inertia, and J be the second moment of inertia. Then, the force/moment equations are
given by the following:

 265

e
TT fvmf

r
&rrr&r

r
−+×+= ωωω HH (12-87)

and

envn r&rrr&rr
−+×+= HJJ ωωω . (12-88)

Let the 6×6 rigid-body inertia be defined as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=

JH
HII

T
C m .

(12-89)

And let a bias frame force be defined as

⎥
⎦

⎤
⎢
⎣

⎡

−
−

+⎥
⎦

⎤
⎢
⎣

⎡

×
×

=
e

e
T

n
f
r

r

rr

rr

ωω
ωω

J
H

B .
(12-90)

With this, the rigid-body dynamics in (5) and (6) can be represented as

 BAIF += C , (12-91)

Where TTT nf][rr
=F and TTTv][ω&

r&r=A are 6×1 representations of spatial force and acceleration,
respectively.

12.4.2.2 Articulated Dynamics
The above discussion addressed a rigid body. For an articulated mechanism, the composite-rigid-
body dynamics are represented using the following equation:

BAqDqGqqCqqMτ ++++= b)()()()(&&& , (12-92)

where τ is the column vector of joint torques/forces,)(qM is the manipulator inertia matrix, q is
the vector of joint positions,)(qC represents the Coriolis forces,)(qG represents gravitational
forces,)(qD is a function of configuration that linearly transforms base acceleration into joint
torques, and B represents the effect of external forces applied to the manipulator’s links. Because
gravitational)(qG is explicit, bA is the seen (rather than felt) value.

The matrix D(q) has an additional quality in that it can be used to calculate the force maF applied to
the base as a result of manipulator joint accelerations through

qDF &&T
ma −= . (12-93)

Let the total force applied by the manipulator to the base be

memgmcmam FFFFF +++= , (12-94)

 266

where mcF , mgF , and meF represent the force due to Coriolis and centripetal terms, gravity, and
preexisting external forces, respectively.

If eF represents the external forces applied to the base link directly for control, then (9) gives

 memgmcb
C
bema FFFAIFF −−−=+ , (12-95)

where C
bI is the composite rigid-body inertia of the entire manipulator, including the base, treated as

a rigid body.

Substituting in (12-93) gives

 memgmceb
C
b

T FFFFAIqD +++=+&& . (12-9
6)

Combining this with (10) gives the following as the manipulator dynamics equation

⎥
⎦

⎤
⎢
⎣

⎡
−−−

+++
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
BqGqqCτ

FFFF
q

A
qMqD

qDI
)()()()(

)(
&&&

memgmceb
TC

b .
(12-97)

For N joint degrees of freedom, C
bI is 6×6,)(qD is N ×6, and)(qM is N ×N. This equation could

be used to calculated forward dynamics by solving for bA and q&& and integrating them.

12.4.2.3 The Mathematics of Calculating Feedforward Joint Torque
But the problem at hand is not forward dynamics. Rather, for calculating control torques on a mobile
robot, based on (15), what is desired is to find a value for τ that gives a prescribed q&& while forcing

0=eF and letting bA be arbitrary. That is, we have control over the joint torques τ , but no ability
to apply force directly to any link. To make a joint controller, we want to specify q&& , but don’t care
(at least directly) about bA .

To find these joint torques, eF can be set to 0 and bA can be solved from the top six rows of
(12-97) as follows:

))((][1
d

T
memgmc

C
bb qqDFFFIA &&−++= − , (12-98)

where dq&& is the desired set of joint accelerations. C
bI is guaranteed to be positive definite, and

therefore invertible, for any physically realizable system. Otherwise, as a direct consequence of
(12-97), it would be possible to have acceleration of the robot without force, in violation of
Newton’s Second Law.

With bA established, the joint torques can then be solved from the bottom N rows of (12-97) as
follows:

BqGqqCqqMAqDτ ++++=)()()()(&&& db . (12-99)

 267

With this, the feedforward control torques are established.

12.4.2.4 Feedforward Implementation
Energid implemented a method, though the class EcTotalTorqueTool, for calculating the inverse
dynamics. That is, given a set of desired motion },,,{ bAqqq &&& and pre-existing external forces

}{ meF , it calculates a set of control torques/forces },{ τFe to achieve the desired motion.

The torques as given in (12-99) are calculated through two calls to this method. The first call
calculates the forces },{ 00, τFe that achieve the motion }0,,,{ == bd Aqqqq &&&&& . This is used to
establish the true base acceleration through the following equation:

0,
1][e

C
bb FIA −−= , (12-100)

where the matrix inverse is calculated using a special form of Cholesky Decomposition tailored to
the special structure of the 6×6 rigid-body inertia matrix. With this, the desired torques, τ , can be
calculated using (12-92).

12.4.3 The Complete Implementation
Putting together the calculations of the previous section gives the feedforward-feedback controller
design shown in the figure below.

Robotic
Mechanism

PD
Control

Inverse
Dynamics

Desired Joint
Positions and

Rates

Desired Joint
Accelerations

Motor Torques

Actual Joint
Positions and

Rates

Feedforward-Feedback Joint Controller
Figure 12-19: The organization of the feedforward-feedback joint controller. PD control is used to
calculate desired joint accelerations. These are provided to an inverse dynamics algorithm
(implemented to support for both free- and fixed-base mechanisms), which calculates motor torques.
These motor torques are applied to the robotic mechanism to produce the actual joint positions and
rates.

12.4.4 Integration of Dynamic Simulation with the Kinematic
Control System
Previously, Energid’s simulation software had not used feedback from the dynamic simulation to the
kinematic controller. The assumption had been that the joint controllers would always successfully
effect the desired state produced by the kinematic controller. This is a very good assumption for
fixed-base mechanisms, but it is not always true for mobile mechanisms, where a discrepancy can
easily form between the dynamic simulation and the idealized controller (due to a grasp or foot
position slipping, for example).

 268

To address this, in the last quarter Energid implemented a feedback process between the dynamic
simulation and the kinematic controller. This is illustrated in the figure below, which shows (in red)
the newly implemented connection between the dynamic simulation and the kinematic controller.
This connection models a sensed value of the state that includes the position and orientation of the
base link. This sensed value is used by the kinematic controller to change its own internal state to
reflect the reality provided by the sensors. The implementation of the sensor is just a state capture
currently—more detailed models can be added by toolkit users.

Desired End-
Effector Placement

Kinematic
Control

Dynamic Simulation

Joint Control

Output for
Visualization

Sensor
Model

Dynamic Simulation

Joint Torques

State

State

Sensed State

Desired
State

Figure 12-20: The new connection between the dynamic simulation and the kinematic controller is
shown (in red). The dynamic simulation state is used to model a sensed state, which is input to the
kinematic control module for use in correcting its own internal model.

The feedback from the sensor model is incorporated into the kinematic controller through an
exponentially convergent process. This non-instantaneous assimilation reduces dynamic coupling
between the kinematic controller and the dynamic simulation. To implement it, an assimilation
factor was added to the position controller’s XML description. This assimilation factor, f, is the
proportion of feedback that is assimilated per second, as illustrated in the figure below.

Time=t Time=t+1

Prior Value

Sensed Value

Assimilated
Portion

Figure 12-21: To reduce dynamic coupling between the dynamic simulation and the kinematic
controller, feedback information from the dynamic simulation is assimilated over time. The rate of
assimilation is prescribed using a parameter that specifies the proportion of the difference between
the prior known value and the sensed value that is assimilated in one second. The process is shown
here for a scalar value, as would be used for base position. Base orientation is assimilated in a
similar manner, but by interpolating two quaternions over the surface of a unit hypersphere.

 269

The assimilation process is implemented as follows. Given a time difference of 0≠Δt from the last
assimilation step, an assimilation proportion α for that specific time difference is calculated from
the one-second assimilation proportion f as

tf Δ−−=)1(1α , (12-101)

where 10 ≤≤ f .

This is used to calculate a new value for state variable x as follows:

osn xxx)1(αα −+= , (12-102)

where nx is the new value, ox is the old value, and sx is the sensed value. For orientation, which
cannot be decomposed into a set of independent scalars, the same process is used, but the
interpolation is performed with quaternions over the surface of a unit hypersphere.

12.5 Numerical Integration

12.5.1 Implementation
The embedded numerical integration resides inside the EcIntegratorContainer class, which contains
an instance of a class derived from EcBaseIntegrator. Some of the methods of EcBaseIntegrator are
listed in the table below. The integrateOneStep() method is pure virtual and must be implemented by
the derived class. The implementation of Adams-Bashforth/Adams-Moulton integration now resides
inside EcAdamsBashforthMoulton class. Other numerical integration techniques such as Runge-
Kutta can be implemented by subclassing EcBaseIntegrator.

Method Description

integrateOneStep() Performs the integration one time step forward

integrationOrder() Returns the integration order

setIntegrationOrder() Sets the integration order

timeStep() Returns the integration time step

setTimeStep() Sets the integration time step

Table 12-8: Methods for EcBaseIntegrator.

As mentioned earlier, the EcAdamsBashforthMoulton implements the Adams-Bashforth predictor
and the Adams-Moulton corrector inside its integrateOneStep() method. The Adams-Bashforth
predictor is used to integrate the second derivatives (accelerations) to get the first derivatives
(velocities). The Adams-Bashforth algorithms rely on current and past state and derivative values to
calculate the future state. For example, first-order Adams-Bashforth is just basic forward Euler. The
table below gives the Adams-Bashforth update formulas.

Because past derivatives are needed, an Adams-Bashforth integrator using an order higher than one
must begin with a different method. Lower orders are used to build up to higher orders. That is, the

 270

integrator starts with the first-order method, then on the next step uses the second-order method, and
so on, until the desired order is reached.

Order Update Formula

1
kkk tqqq &&&& Δ+=+1

2
)3(

2 11 −+ −
Δ

+= kkkk
t qqqq &&&&&&

3
)51623(

12 211 −−+ +−
Δ

+= kkkkk
t qqqqq &&&&&&&&

4
)9375955(

24 3211 −−−+ −+−
Δ

+= kkkkkk
t qqqqqq &&&&&&&&&&

Table 12-9: Adams-Bashforth Predictors. These are used to integrate the joint accelerations to find
the joint rates. The joint rates at the next time point (time point k+1) are functions of current and
past values of joint rates and accelerations. The integrator using these formulas was separated into
independent code.

Adams-Moulton correctors are used to integrate the first derivatives (velocities) to get the positions.
Correctors require future (as well as both past and current) derivatives, which is why they can be
applied to integrate the first derivatives but not the second derivatives. The Adams-Moulton
correctors are shown in the table below. In all cases the same order is used for the predictor as for
the corrector.

Order Update Formula

1
11 ++ Δ+= kkk tqqq &

2
)(

2 11 kkkk
t qqqq && +

Δ
+= ++

3
)85(

12 111 −++ −+
Δ

+= kkkkk
t qqqqq &&&

4
)5199(

24 2111 −−++ +−+
Δ

+= kkkkkk
t qqqqqq &&&&

Table 12-10: Adams-Moulton Correctors. These are used to integrate the joint rates to get the joint
positions. Note the Adams-Moulton correctors require the derivative value at the new time step,
where the Adams-Bashforth predictors only require them at previous time steps.

 271

The general-purpose integrator is then used in the dynamic simulation of manipulators’ joint states
and actuators’ motor states. Its use on the general motion (base motion) is more complicated and is
presented in the next section.

12.5.2 Integration of Base Motion
Separating numerical integration of joint motion is straightforward. Separation for base motion
integration, on the other hand, was more difficult because it involves integrating angular acceleration
and velocity to obtain orientation, which is normally represented by a quaternion. Typically, the
orientation of the base motion is integrated using the following steps.

1. The angular acceleration (a 3×1 vector) is integrated to obtain the angular velocity (also a
3×1 vector) using the Adams-Bashforth predictor.

2. An “applicable” angular velocity s then calculated from the angular velocity from Step (1)
using a modified version of the Adams-Moulton corrector.

3. The applicable angular velocity is then used to compute the orientation (a 4×1 quaternion)
using the EcOrientation::integrateReferenceFrameAngularVelocity() method.

This integration approach, however, does not lend itself to direct use the new
EcBaseIntegrator::integrateOneStep() method described in previous section. The reason is that the
integrateOneStep() method expects the accelerations, velocities, and positions to be of the same size.
However, the orientation (represented by a quaternion) is not of the same size as the angular velocity
and acceleration.

12.5.2.1 Approach
There are multiple formalisms for quaternions, and we use the one described by Shoemake [4c],
which is more common for robotic applications. In this formalism, a quaternion representing frame j
in frame i is given by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

Q
Q
Q
Q

Q j
i

(12-103)

The quaternion values are such that the quaternion can be converted to a rotation matrix through the
following formula:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−−−+
+−−−

=
2

2
2

110322031

1032
2

3
2

13021

20313021
2

3
2

2

2212222
2222122
2222221

QQQQQQQQQQ
QQQQQQQQQQ
QQQQQQQQQQ

Rj
i

(12-104)

Note that, with this formalism, q={1,0,0,0} corresponds to the identity matrix. Angular velocity will
be represented using the traditional three-element vector that is aligned with the instantaneous axis of
rotation with magnitude equal to the angular rate of change. Angular velocity is given by ω

r
. The

time derivative of a quaternion can be calculated from the angular velocity using the following
formula:

 272

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

0

012

103

230

321

3

2

1

0

2
1

ω
ω
ω

QQQ
QQQ

QQQ
QQQ

Q
Q
Q
Q

&

&

&

&

.

(12-105)

The angular-velocity vector used in (12-105) is represented in the local coordinates of the moving
frame.

Taking the derivative of (12-105) gives the following formula for quaternion acceleration:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

0

012

103

230

321

2

1

0

012

103

230

321

3

2

1

0

2
1

2
1

ω
ω
ω

ω
ω
ω

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

Q
Q
Q
Q

&&&

&&&

&&&

&&&

&

&

&

&&

&&

&&

&&

(12-106)

Substituting iQ& from (12-105) into (12-106) yields

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

2
2

2
1

2
0

2

1

0

012

103

230

321

3

2

1

0

4
1

2
1

Q
Q
Q
Q

QQQ
QQQ

QQQ
QQQ

Q
Q
Q
Q

ωωω
ω
ω
ω

&

&

&

&&

&&

&&

&&

(12-107)

The quaternion acceleration is contributed by two components—one from the angular acceleration
and another from the angular velocity. Thus, even if the angular acceleration is identically zero, the
quaternion rate will not be zero if the angular velocity is present. The quaternion acceleration due to
the angular velocity can be viewed as similar to the centripetal acceleration of a particle moving in a
circle with a constant angular velocity. In this case, a quaternion is a point on a four-dimensional unit
hypersphere.

If the angular velocity and acceleration are expressed in the stationary coordinate system, then the
time derivative of a quaternion can be calculated from the angular velocity using the following
formula:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

0

012

103

230

321

3

2

1

0

2
1

ω
ω
ω

QQQ
QQQ
QQQ
QQQ

Q
Q
Q
Q

&

&

&

&

(12-108)

Taking the derivative of (12-108) gives the following formula for quaternion acceleration:

 273

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

0

012

103

230

321

2

1

0

012

103

230

321

3

2

1

0

2
1

2
1

ω
ω
ω

ω
ω
ω

QQQ
QQQ
QQQ
QQQ

QQQ
QQQ
QQQ
QQQ

Q
Q
Q
Q

&&&

&&&

&&&

&&&

&

&

&

&&

&&

&&

&&

(12-109)

Substituting iQ& from (12-108) into (12-109) yields the following formula for stationary-coordinate-
system representation:

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

2
2

2
1

2
0

2

1

0

012

103

230

321

3

2

1

0

4
1

2
1

Q
Q
Q
Q

QQQ
QQQ
QQQ
QQQ

Q
Q
Q
Q

ωωω
ω
ω
ω

&

&

&

&&

&&

&&

&&

(12-110)

12.5.2.2 Implementation
The quaternion rate equations (12-105) and (12-108) are implemented in the EcOrientation. The
following two methods implement the quaternion acceleration equations (12-107) and (12-110).

Method Description

quaternionAccelerationFromLocalFrameMotion() Compute the quaternion acceleration using
equation (12-107).

quaternionAccelerationFromReferenceFrameMotion() Compute the quaternion acceleration using
equation (12-110).

Table 12-11: Two new methods in EcOrientation for computing quaternion acceleration.

Once quaternion rates and accelerations are available, they can be used in the general-purpose
integrator to dynamically simulate the base motion of manipulators.

 274

13 Collision Avoidance and Reasoning
The ActinTM toolkit provides fast, robust algorithms for collision avoidance and reasoning based on
material type. The toolkit supports avoidance of manipulator self-collisions, manipulator-
manipulator collisions, and manipulator environment collisions. This chapter begins by describing
the algorithms and data structures used for fast collision avoidance and reasoning. Code samples
describing how to setup a collision avoidance system can be found throughout this chapter.

13.1 Collision Avoidance Algorithm
The collision avoidance algorithm employs a gradient-based method which seeks to minimize the
function with the general form as follows:

∑∑
= =

=
N

i

B

j

p jiFf
1 1

),()(q ,
(13-1)

where N is the number of links in the manipulator, B is the number of obstacles in the environment, p
is a user-defined exponent, and F(i,j) is a measure of the proximity of the bounding volume of i to
the bounding volume of link j. F(i,j) is zero when the distance is larger than a user-specified
threshold, and within the threshold, it is just a scalar constant times the minimum distance needed to
move one bounding volume to take it outside the threshold distance from the other bounding volume.

This function is used with finite differencing to calculate its gradient, which is then used as the
vector parameter to the core control system to drive the manipulators in a direction that avoids
collisions. Additional factors are added to this function (for instance a weighting based on material
type) that will be discussed in the sections below.

13.2 Manipulator Self-Collision Avoidance
Manipulator self-collision occurs when one or more links of a manipulator collide during a
commanded operation. For manipulator control, avoiding such types of collisions is imperative for
fielded systems. Self-collisions can cause damage to the links or damage to the environment in the
event that the robot loses balance and falls out of its task space. The figure below describes a self-
collision avoidance example. Note how the left terminal link moves out of the way of the end
effector as it approaches.

 275

Figure 13-1: A sequence showing self-collision avoidance (left-to right starting in upper left).

The algorithm for manipulator self-collision is as follows:

∑∑
= =

=
N

i

N

ij

p jiFjijif
1

),(),(),()(ηδq ,
(13-2)

Where N is the number of links in the manipulator, p is a user-defined exponent and F(i,j) is a
measure of the proximity of link i to link j. There are two additional terms that were not in the
original obstacle avoidance equation. They are),(jiδ , which is a function describing the link
interaction between link i and link j and),(jiη which is a weighting function that is related to the
material types of the two links.

 276

In code,),(jiδ is described as the manipulator self-collision link map
(EcManipulatorSelfCollisionLinkMap) which is derived from an EcXmlStringStringBooleanMap
class, and is user-defined. It describes whether two links can interact. If there is no
possibility that the two links can collide, then the map will return an EcFalse for that link
pair, otherwise it returns EcTrue. Figure 13-2 shows an example self-collision link map for a
five link manipulator. In reality, the implementation does not include entries for the
symmetric query.

Not Used

Link Interaction

No Link Interaction

Base

Link-0

Link-1

Link-2

Link-3

B
ase

Link-0

Link-1

Link-2

Link-3

Link-4

Link-4

Figure 13-2: An example manipulator self-collision map for a 5 link manipulator.

13.2.1 Example: Creating a Self-Collision Link Map
The code snippet below describes how one would go about creating the manipulator self-
collision link map. This specific example shows part of the creation of the link map for the
12 link example manipulator. Note that when the map is created (with the call to
buildMapFromSystem), all values are set to EcFalse by default. Only those entries that need
to be set to true need to be set explicitly.

 277

Text Box 13-1: Creating a manipulator self-collision link map.

The weighting function),(jiη is described as:

),(),(jimji pμη = (13-3)

Where),(jim is a function that varies from [0..1] as a function of the material type and pμ is a
function of the certainty that the described material type is, in fact, the material type. For
manipulator self-collision pμ is 1 since it is assumed the manipulator has complete knowledge of the

 // create the link map
 EcManipulatorSelfCollisionLinkMap map;

 // size the map to the size of the manipulator
 map.buildMapFromSystem(m_TestManipulator);

 // have the collision avoidance system avoid the end-effectors
 map.setLinkCollisionCanditateByIdentifier("link-0","link-2",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-3",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-4",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-5",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-6",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-7",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-8",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-9",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-10",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-0","link-11",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-1","manipulator",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-1","link-3",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-1","link-4",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-1","link-5",EcTrue);

.

.

.

 map.setLinkCollisionCanditateByIdentifier("link-11","manipulator",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-4",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-5",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-6",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-7",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-8",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-9",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-2",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-1",EcTrue);
 map.setLinkCollisionCanditateByIdentifier("link-11","link-0",EcTrue);

 // set the link map for this manipulator
 m_TestManipulator.setSelfCollisionLinkMap(map);

 // map the collision candidates
 m_TestManipulator.mapLinkCollisionCandidates();

 278

material type of its links. This may not be the case for manipulator environment interactions
however.

The manipulator self-collision algorithm is described below.

checkSelfCollision(manip M)

1. for each link Mu∈

2. for each link Mv∈

2. if (),(vuM δ>−)

3.),(vudist=ρ

4. Bvuf
n

avoid

avoid
⎥
⎦

⎤
⎢
⎣

⎡ −
=+

ρ
ρρ

η),(

Listing 1 Manipulator Self-collision algorithm

13.3 Manipulator-Manipulator Collision Avoidance
Manipulator-manipulator collisions occur between robots sharing a task space or working
cooperatively to achieve some goal. The computational complexity of determining and preventing a
manipulator-manipulator collision between two or more complex arms can be significant. As such,
optimizations need to be made to insure that collisions can be avoided in a timely manner. For each
manipulator in the system, the function to minimize is the following:

∑∑∑
= = =

=
L

i

M

j

ML

k

p kiFkif
1 1

)(

1

),(),()(ηq ,
(13-4)

Where L is the number of links in the manipulator, M is the number of manipulators and N is the
number of links in manipulator j. Logic for the computation of)(qf is similar to listing one, with
the added layer of querying multiple manipulators, and additional proximity testing required for
efficiency.

13.4 Manipulator-Environment Collision Avoidance
Manipulator environment collisions are similar to manipulator-manipulator collisions with the
exception that environmental objects are guaranteed not to move. This allows us to use data
structures that can be preprocessed at load time. A bounding box tree (BB-Tree) data structure was
chosen to quickly determine which of the environment obstacles (models as fixed base manipulators
with no links) are close by to the manipulator querying them.

13.5 System Collision Exclusion
The concept of collision map is extended to the system level. Essentially, the system has a map that
describes whether a collision between two links from different manipulators or a collision between
two manipulators should be excluded from calculations. It does not interfere with the self-collision
map, which concerns collisions within one manipulator. If there is little or no possibility that the two
links or the two manipulators can collide or if a collision between the two links or the two

 279

manipulators is not of great importance and can be ignored, then the map can be set to exclude the
collision computation between that link or manipulator pair. A great example of its usage is a
collision between two static objects that are in contact in the scene. For example, we may model a
ceiling and a wall with boxes as two separate manipulators. The ceiling and the wall always touch
each another and thus a collision always occurs. However, this collision can and indeed should be
ignored; otherwise, a collision is always reported and the controller will prevent any robot in the
scene from moving.

For each manipulator in the system, the objective function to minimize is

∑∑∑
= = =

=
L

i

M

j

jL

k

p kiFkikif
1 1

)(

1

),(),(),()(ηδq

where L is the number of links in the manipulator; M is the number of manipulators in the system,
and L(j) is the number of links in manipulator j;

The exclusion of some collision pairs is accomplished using a system collision exclusion map. For
fast queries, which are critical to the implementation of the system collision exclusion map, the map
has three internal maps as depicted in Figure 13-3 for an example map. The manipulator-manipulator
map excludes the collision calculations of all links between two manipulators. The link-manipulator
map indicates no collision between a link of a manipulator and all links of another manipulator.
Lastly, the link-link map is at the highest granularity, allowing one to specify interaction at the link
level.

In this example, there is no link interaction between (these links cannot collide):

• All links of Manip1 and all links of Manip2
• All links of Manip1 and all links of Manip4
• “Base” of Manip2 and all links of Manip3
• “Base” of Manip2 and all links of Manip4
• “Link-3” of Manip2 and all links of Manip3
• “Link-1” of Manip3 and “Base” of Manip4
• “Link-1” of Manip3 and “Link-1” of Manip5
• “Link-3” of Manip3 and “Link-1” of Manip4
• “Link-3” of Manip3 and “Link-3” of Manip4
• “Link-3” of Manip3 and “Base” of Manip5

 280

Figure 13-3: An example of a system collision exclusion map.

Text Box 13-2 shows a code snippet describing how one would go about programmatically creating
the system collision exclusion map depicted in Figure 13-3. To set the map in the system, just call
EcStatedSystem::setCollisionExclusionMap or EcManipualtorSystem::setCollisionExclusionMap
method. Text Box 13-3 illustrates how to query whether the collision calculation between two links
of two different manipulators is excluded. Note that the method buildMapFromSystem must be
called to construct internal data structures, using the information from the system for which this map
is intended, before the map is ready for queries.

 // create a collision exclusion map
 EcSystemCollisionExclusionMap colMap;

 // exclude collision between manipulators
 colMap.excludeManipulatorCollisionCandidates(1,2);
 colMap.excludeManipulatorCollisionCandidates(1,4);

 // exclude collisions between links and manipulators
 colMap.excludeLinkCollisionCandidates(2, "Base", 3);
 colMap.excludeLinkCollisionCandidates(2, "Base", 4);
 colMap.excludeLinkCollisionCandidates(2, "Link-3", 3);

 // exclude collisions between links of different manipulators
 colMap.excludeLinkCollisionCandidate(3, "Link-1", 4, "Base");
 colMap.excludeLinkCollisionCandidate(3, "Link-1", 5, "Link-1");
 colMap.excludeLinkCollisionCandidate(3, "Link-3", 4, "Link-1");
 colMap.excludeLinkCollisionCandidate(3, "Link-3", 4, "Link-3");
 colMap.excludeLinkCollisionCandidate(3, "Link-3", 5, "Base");

 // create a simulation
 EcSystemSimulation simulation;

 281

 // set the map in the system
 simulation.statedSystem().setCollisionExclusionMap(colMap);

Text Box 13-2: Creating the system collision exclusion map shown in Figure 13-3.

 ///
 // example queries about collision exclusion
 ///
 // create a system (assuming the system have all the links and the manipulators
required in the map).
 EcManipulatorSystem system;

 // build the map from the system
 colMap.buildMapFromSystem(system);

 // this should return true
 colMap.isLinkCollisionCandidateExcluded(1, "Link-1", 2, "Link-2");

 // this should return true
 colMap.isLinkCollisionCandidateExcluded(2, "Base", 3, "Link-2");

 // this should return false
 colMap.isLinkCollisionCandidateExcluded(3, "Base", 4, "Link-2");

 // this should return false
 colMap.isLinkCollisionCandidateExcluded(3, "Link-1", 5, "Link-3");

Text Box 13-3: Querying collision exclusion from the map in Figure 13-3.

The system collision exclusion map has been added as part of the system (EcManipulatorSystem). A
method called canCollide has also been added to EcManipulatorSystem. canCollide returns true if
the collision between the two links is not excluded or false otherwise. It performs the same
functionality as the method of the same name in EcIndividualManipulator but at the system level,
instead of the manipulator level. canCollide is automatically called whenever a distance between two
links is queried. If it returns false, then the distance calculation between those two links is omitted.

13.6 Collision Avoidance as a Function of Material Type
A strength of the ActinTM toolkit is that it can take advantage of the material type at both the
collision avoidance and the collision response stages. This is done through the flexible surface
properties associated with each polygon (in polyhedron representations) or each shape (for
homogenous shape primitives). The material type can be assumed to be known with certainty (for
manipulator self-collision) or with some probability (based on visual feedback of the environment).

The collision avoidance algorithm accommodates a term which is proportional to the fragility of the
object. This term is a parameter in the surface properties called ec_collision_avoidance_metric.
This term can be a direct value specified through XML (i.e. a fragility constant) or a derived quantity
based on more fundamental properties of the object. Figure 13-4 shows a manipulator traversing a
path through several objects with different avoidance coefficients. An additional multiplicative term

pμ is related to the perception of the robot and is expressed as:

 282

)(Ap Ω=μ (13-5)

Where)(AΩ is a [0..1] function returned by the vision module indicating the certainty of the
perceived material type. This term is 1 for all controlled environments, but in cases where visual
feedback is used to explore new environments, the value could be set by the vision system.

Ca =0.1

Ca =.8

Ca =1

Figure 13-4: A commanded action will result in secondary control that minimizes impact with
fragile objects. The objects to avoid have high ca coefficients.

If not otherwise specified in the XML, surface properties default to a collision avoidance coefficient
of 1.

13.7 Collision Response
Once a collision occurs, the collision response algorithm determines if the collision should result in a
stop or a pass-through. For Version 1.0 of Actin™, this is determined by the surface properties of
the interacting links. The ec_collision_avoidance_metric parameter is currently used for this
determination. Note that this collision response is different from the collision response used by the
dynamic simulation. The determination of pass-through or stop is part of the control system and can
be used even if dynamic simulation is turned off.

13.8 Example: Creating a Collision Avoidance Control Node
The code below creates a collision avoidance control node and adds it to the control system as the
vector portion of the control algorithm. In this example, the manipulator will avoid other
manipulators and environment obstacles without avoiding collisions with itself. To turn on self-
collision avoidance, simply change the line

colAvoidance.setCheckSelfCollision(EcFalse);

to
colAvoidance.setCheckSelfCollision(EcTrue);

 283

Text Box 13-4: Creating a collision avoidance control node Listing 1 of 3.

 // ---------------------------
 // Set the Control Description
 // ---------------------------
 EcControlExpressionContainer container0;
 // the scalar constant - use for the scalar weight
 EcExpressionScalarConstant valueSC;

 // set the scalar constant
 valueSC.setScalar(0.005);

 // the vector
 EcControlExpressionCollisionAvoidanceAB colAvoidance;
 // set the avoidance distance, beyond which we don’t concern ourselves with
collisions
 colAvoidance.setAvoidanceDistance(0.05);

 // set the value of the function at the boundary
 colAvoidance.setBoundaryValue(30);

 // tell the system to avoid collisions with the environment,
 // which includes both manipulators and obstacles in the task space
 colAvoidance.setCheckEnvironmentCollisions(EcTrue);

 // tell the system to avoid self collisions.
 colAvoidance.setCheckSelfCollision(EcFalse);

 // set the exponent for the collision avoidance function
 colAvoidance.setExponent(2);

 // the matrix
 EcControlExpressionMatrixToAB contExpMatToAB;
 EcControlExpressionMassMatrix massMatrix;
 contExpMatToAB.setChild(massMatrix);

 // Diagonal Matrix - use for the matrix weight
 EcExpressionDiagonalMatrix valueDD;
 valueDD.setRowSize(manip.jointDof());
 valueDD.setColumnSize(manip.jointDof());

 284

Text Box 13-5: Creating a collision avoidance control node Listing 2 of 3.

 EcXmlRealVector diagonal;
 EcU32 ii;
 for(ii=0;ii<manip.jointDof();ii++)
 {
 diagonal.pushBack(0.1);
 }
 valueDD.setDiagonal(diagonal);
 // Core
 EcControlExpressionABCore expCore0;

 expCore0.setMatrixElement(contExpMatToAB);
 expCore0.setVectorElement(colAvoidance);
 expCore0.setScalarElement(valueSC);

 // Joint Rate Filter
 EcControlExpressionJointRateFilter rateFilter0;
 EcExpressionGeneralColumn valueDF;

 EcXmlRealVector diagonalF;
 for(ii=0;ii<manip.jointDof();ii++)
 {
 diagonalF.pushBack(0.10);
 }
 valueDF.setColumn(diagonalF);
 rateFilter0.setWeightsElement(valueDF);
 rateFilter0.setUnfilteredRatesElement(expCore0);

 // End-Effector Error Filter
 EcControlExpressionEndEffectorErrorFilter eFilter0;
 EcExpressionGeneralColumn valueDFE;
 EcXmlRealVector diagonalFE;
 for(ii=0;ii<6;ii++)
 {
 diagonalFE.pushBack(10.0);
 }
 for(ii=6;ii<eeSet.doc();ii++)
 {
 diagonalFE.pushBack(1.0);
 }
 valueDFE.setColumn(diagonalFE);
 eFilter0.setWeightsElement(valueDFE);
 eFilter0.setUnfilteredRatesElement(rateFilter0);
 eFilter0.setStopsAtLimits(EcTrue);

 285

Text Box 13-6: Creating a collision avoidance control node Listing 3 of 3.

13.9 Distance Queries
A key component of obstacle avoidance is the ability to measure the distance between manipulator
links and the environment. In the event of intersection, the penetration depth must also be
determined for accurate physical modeling. Distance queries are made through an
EcShapeQueryData object that contains an EcShapeQueryDescriptor and an EcShapeQueryResult.
Querying options are specified in the EcShapeQueryDescriptor object. If only query is needed for
the intersection (often a less costly operation that computing the distance), set m_QueryDistance to
EcFalse. The result of the query is returned in the EcShapeQueryResult object.

By setting distance queries up in this way, developers can subclass them to add new data without
having to change the interface. Table 13-1 shows the query data class key methods and Table 13-2
and Table 13-3 shows the descriptor class and the result class.

Method Description

queryDescriptor

setQueryDescriptor

Get/set a query descriptor. The query descriptor is the data structure
containing the query information.

 // put them in the container
 container0.setTopElement(eFilter0);
 indVcDescription.setControlExpression(container0);

 vcDescriptions.pushBack(indVcDescription);

 // add a velocity control system
 EcVelocityControlSystem velContSys;
 velContSys.setControlDescriptions(vcDescriptions);
 velContSys.initializeEndEffectorVelocities();

 //set the time step
 velContSys.setSystemTimeStep(0.008);

 posContSystem.setVelocityControlSystem(velContSys);

 // set the time step
 posContSystem.setTimeStep(0.008);

 // set the maximum number of iterations
 posContSystem.setMaxIterations(16);

 // set the use-two-passes flag
 posContSystem.setUseTwoPasses(EcTrue);

 posContSystem.setCollisionAvoidanceMode
 (EcStatedSystem::MANIPULATORCOLLISIONAVOIDANCE);

 posContSystem.setCollisionBreakdownThreshold(EcReal(0.4));

 286

queryReseult

setQueryResult

Get/set the query result. The data structure holds the result of a query
(i.e. distance)

Table 13-1: Shape query data class.

Method Description

computeDistance

setComputeDistance

Get/set the compute distance flag. If false, the query operation
will check intersection without necessarily computing the
distance.

xform

setXform

Get/set the coordinate system transformation that transforms shape
2 from the local primary frame of shape 2’s link to the local
primary frame of shape 1.

shape1Pointer

getShape1Pointer

Get/set the pointer to the first shape that is being queried.

shape2Pointer

getShape2Pointer

Get/set the pointer to the second shape that is being queried.

minimumDistanceThrehold

setMinimumDistanceThreshold

Get/set the minimum distance threshold. This is the distance that
the distance algorithm uses to decide whether or not to move
down in the bounding volume hierarchy. If the distance between
the two shapes is less than this value, and if the bounding volumes
being queried are not at the root level, then the algorithm moves
down in the hierarchy and recomputes the distance. The value is
typically set to 0.

precisionLevel

setPrecisionLevel

Get/set the precision level. This is the level in the bounding
volume hierarchy to use as the root level. The default is 0, but it
is often useful to use a value>0 for speed. If, for instance, the root
level is a complex polyhedron, and level one is a bounding
capsule, then setting the precision level to 1 will greatly reduce the
computational burden thus speeding up the simulation.

Table 13-2: Query descriptor.

Method Description

distance

setDistance

Get/set the distance between the two shapes pointed to by
shape1Pointer and shape2Pointer in the query descriptor.

collisionOccured

setCollisionOccured

Get/set a flag indicating if a collision occurred between the two
shapes pointed to by shape1Pointer and shape2Pointer in the
query descriptor.

 287

intersectingPoints Returns the points on the surface of the shapes that were
involved in the intersection, if one occurred.

intersectionVolume Returns a scalar describing the volume of intersection. This is
not currently implemented and is reserved for future releases.

Table 13-3: Query result.

The EcShape class contains a static function query that will return an EcShapeQueryResult object
given an EcShapeQueryData input.

Text Box 13-7: Performing a distance query Listing 1 of 2.

 // create a sphere as shape 1
 EcSphere sphere = EcSphere::testObject();

 // set the center
 sphere.setCenter(EcVector(0,10,0));
 // set the radius
 sphere.setRadius(2.0);

 // create a capsule as shape2
 EcCapsule capsule = EcCapsule::testObject();

 // set the line segment
 capsule.setLineSegment(EcLineSegment(EcVector(0,0,0),EcVector(5,0,0));
 // set the radius
 capsule.setRadius(1.0);

 // create a query data descriptor
 EcShapeQueryData queryData;

 // set values in the query descriptor

 // set the pointer to shape 1
 queryData.queryDescriptor().setShape1Pointer(&sphere);
 // set the pointer to shape 2
 queryData.queryDescriptor().setShape2Pointer(&capsule);
 // set the compute distance flag to true
 queryData.queryDescriptor().setComputeDistance(EcTrue);

 // the transformation for transform the primary frame of shape 2
 // to the primary frame of shape 1;
 EcCoordinateSystemTransformation xf
 =EcCoordinateSystemTransformation::nullObject();

 // set the transform, in this case, both shapes are assumed to be
 // in the same reference frame
 queryData.queryDescriptor().setXform(xf);

 // set the precision level for the bounding volume hierarchy.
 // here we use 0, meaning that we want the distance returned to be
 // the distance to the shapes at the base of the hierarchy. In this
 // example there are no bounding volumes. Level zero consists of the
 // sphere and the capsule.
 queryData.queryDescriptor().setDistanceQueryPrecision(0);

 288

Text Box 13-8: Performing a distance query Listing 2 of 2.

Besides the ability to query the distance between any two shape primitives or polyhedrons, it is also
possible to query distances between any two link, or manipulators. See the description of the EcLink
and the EcIndividualManipulator classes for a description of how to use these methods. In all cases,
distance queries come down to queries between shape primatives and/or polyhedrons.

13.9.1 Task Space Bounding Volumes
In order to reduce the computational burden associated with computing the proximity function for all
pairs of manipulators and links, the number of pairs queried is reduced by taking advantage of spatial
coherence. Spatial coherence makes use of the known locations of the manipulators in the system
(i.e. locality in space). This is opposed to temporal coherence where a slow moving link will move a
small distance over the resolution of a time step (i.e. locality in time). Temporal coherence is
exploited in the collision detection algorithm described in Section 12

Before computing the proximity function for a pair of manipulators, the absolute bounding sphere of
each is checked. If the distance between the bounding spheres exceeds the distance threshold D, the
pair is skipped. For this test to work, the algorithm must insure that the bounding sphere completely
encloses the task space of the manipulator. The following algorithm is used to compute a bounding
sphere that encloses the task space.

upperBoundSubmanipulatorExtentDistance()

1. subDist = 0

2. for each childLink Ml∈

3. subDist = MAX(subDist, l.upperBoundSubmanipulatorExtentDistance())

4. extDist = upperBoundExtentDistance()

5. physicalExtentDist = maxPhysicalExtentDistance()

6. return (extDist + MAX(physicalExtentDist,subDist))

Listing 2- Building the Absolute Bounding Sphere

Where upperBoundExtentDistance returns the maximum distance from the current DH frame to the
next DH. The joint limits and joint types are considered when determining this. And

 EcReal distance;
 // call the static function to compute the query
 if (EcShape::query(m_QueryData,activeState))
 {
 // if successful, get the distance
 distance = m_QueryData.queryResult().distance();
 }

 289

maxPhysicalExtentDistance returns the distance to the polygon in the current physical extent furthest
from the DH frame.

Joint
Limits

Physical Extent Distance

Base

Link-0

Link-1

Upper Bound Sub-manipulator Extent Distance

Joint
Limits

Physical Extent Distance

Base

Link-0

Link-1

Upper Bound Sub-manipulator Extent Distance

Figure 13-5: An illustration of the Bounding Sphere calculation for a two-link manipulator.

Figure 13-6: Absolute Bounding Spheres for the 12-link manipulators.

 290

13.9.2 Bounding Volume Hierarchy
Every object that inherits from the EcShape base class contains a member variable that points to a
low fidelity representation of itself. In the event that there is no low-fidelity representation, the
variable points to EcNULL. Including this reference in each EcShape object allows for the
construction of a hierarchical representation of a physical extent. Typically, the bottom of the
hierarchy will contain the actual physical extent (usually a polyhedron). Levels above this will
generally be less expensive to compute distance and intersection calculations with, but will be a less
accurate representation of the actual extent. An example hierarchy is shown in Table 13-4. Here
the lowest level is represented by a polyhedron. The low-fidelity approximation of this is an
ellipsoid, which, in turn, is approximated by an oriented bounding box, which is approximated by a
sphere at the top of the hierarchy.

Level 0: Polyhedron

At the lowest level, a physical extent is
typically represented as a polyhedron.
Nothing precludes the lowest level
physical extent from being represented
by a simpler shape primitive however.

Level 1: Ellipsoid

The low fidelity representation of the
polyhedron is represented by an
Ellipsoid. The ellipsoid provides a fairly
tight fit to the polyhedron and will return
a smoothly differentiable distance
function. This simplifies obstacle
avoidance. Computing distance to the
ellipsoid will typically be faster than
computing the distance to a complex
polyhedron, but it does involve solving a
6th order polynomial.

 291

Level 2: Oriented Bounding Box

The next lowest fidelity representation is
an oriented bounding box. The
bounding box provides fast distance and
intersection checks, but it usually does
not fit the data quite as nicely as an
ellipsoid. It also is not smoothly
differentiable.

Level 3: Sphere

The lowest fidelity representation is a
sphere. The sphere provides an
extremely fast and smoothly
differentiable approximation.

Table 13-4: An example bounding volume hierarchy.

The reason for creating a bounding volume hierarchy is to minimize the computational complexity of
distance and intersection operations. This allows the toolkit to defer more burdensome point-
polygon checks until the latest possible moment. There are two items that need consideration with
this approach: 1) traversing the hierarchy (i.e. deciding when to go from a lower fidelity model to a
higher fidelity model or vice-versa), and 2) offline creation of the BVH.

13.9.3 Traversing the hierarchy
Traversing the bounding volume hierarchy is performed by first imposing minimum and maximum
distances restriction on physical extent queries. Since our concern is local collision avoidance, no
check is necessary when the distance of objects are separated by a significant amount. For
manipulator-environment and manipulator-manipulator collision avoidance this is somewhat
mitigated by space partitioning techniques. But the framework should not rely solely on this, as
partitions can be very large and manipulator links for sophisticated systems could be separated by
large distances, requiring manipulator self-collision optimization as well.

The first time one shape queries another, the top of the bounding volume hierarchy is used. If the
distance between the two shapes exceeds a minimum distance threshold, then the query is not

 292

considered further. Otherwise, a maximum query distance threshold is checked (usually set to zero).
If the distance computed is below the maximum distance threshold, then the next level of fidelity is
used. As two objects approach, this continues until both objects are at the lowest level
representation. When two objects at the lowest level intersect, a collision occurs and a penetration
distance in calculated.

13.9.4 Example: Adding a Bounding Volume Hierarchy to a shape
There are two ways in which bounding volumes can be added to represent the physical extent of a
link at varying levels of fidelity. Shapes can be explicitly added using the pointers returned by the
EcShape method lowerFidelityRepresentation or implicitly for most shapes using the
addBoundingVolume method. The addBoundingVolume method will attempt to add a bounding
volume to the end of the hierarchy by using an estimation algorithm to determine the proper size.
The method will return EcFalse if unsuccessful. The code below shows how to add two bounding
volumes over a polyhedron.

 293

Text Box 13-9: Adding a bounding volume hierarchy.

13.10 Penetration Depth Calculation
Computation of penetration depth (PD) between two objects is critical to the performance of impact
dynamic simulation. With a simple spring-damper model being used to compute the impact force,
penetration depth computation dominates the overall computation time of the impact dynamic
simulation. In general, penetration depth for every type of convex object pair can be computed using
the expanding polytope (EP) algorithm, which is an iterative method based on the Gilbert-Johnson-
Keerthi (GJK) algorithm for distance calculation. Although the EP algorithm is generic and
applicable to any convex object, it is significantly slower for simple primitives than closed-form
solutions. This section describes in detail the closed-form penetration depth computations for

 // create a sphere as shape 1
 EcSphere sphere = EcSphere::testObject();

 // set the center
 sphere.setCenter(EcVector(0,10,0));
 // set the radius
 sphere.setRadius(2.0);

 // create a capsule as shape2
 EcCapsule capsule = EcCapsule::testObject();

 // set the line segment
 capsule.setLineSegment(EcLineSegment(EcVector(0,0,0),EcVector(5,0,0));
 // set the radius
 capsule.setRadius(1.0);

 // create a query data descriptor
 EcShapeQueryData queryData;

 // set values in the query descriptor

 // set the pointer to shape 1
 queryData.queryDescriptor().setShape1Pointer(&sphere);
 // set the pointer to shape 2
 queryData.queryDescriptor().setShape2Pointer(&capsule);
 // set the compute distance flag to true
 queryData.queryDescriptor().setComputeDistance(EcTrue);

 // the transformation for transform the primary frame of shape 2
 // to the primary frame of shape 1;
 EcCoordinateSystemTransformation xf
 =EcCoordinateSystemTransformation::nullObject();

 // set the transform, in this case, both shapes are assumed to be
 // in the same reference frame
 queryData.queryDescriptor().setXform(xf);

 // set the precision level for the bounding volume hierarchy.
 // here we use 0, meaning that we want the distance returned to be
 // the distance to the shapes at the base of the hierarchy. In this
 // example there are no bounding volumes. Level zero consists of the
 // sphere and the capsule.
 queryData.queryDescriptor().setDistanceQueryPrecision(0);

 294

selected pairs of simple primitives. Beside the penetration depth, other pieces of information about
penetration must also be computed. These include the proximity vector and support (or witness)
points.

PD calculations of some shape pairs are complicated with many special cases, some of which are
unlikely to occur. Consider how PD is used in dynamic simulations. PD is typically used to compute
a repulsive force that pushes the two objects away from each other. This means that most of the time,
PD calculations will involve “shallow” penetration cases. Therefore, the focus of closed-form PD
solutions will be on shallow penetration cases, which tend to be simpler. The less likely and more
complicated deep penetrations will still be handled the EP algorithm.

13.10.1 Sphere-Sphere
Computing the penetration depth between two intersecting spheres is straightforward. The distance
between the two spheres A and B is simply the distance between their centers cA and cB minus their
radii ρA and ρB. If this distance is negative, then the two spheres intersect and the negative distance is
the penetration depth.

BABAdPD ρρ −−=),(cc (13-6)

Let the vector between the two centers v = cA-cB. The proximity vector is just the unit vector of v.
The witness points (or support points) for a nonzero distance are

v
vcp AAA ρ−= (13-7)

and

v
vcp BBB ρ+= . (13-8)

13.10.2 Capsule-Sphere
The distance between a capsule A and a sphere B is simply the distance between the line segment of
the capsule lA and the center of the sphere cB minus their radii ρA and ρB. If this distance is negative,
then the capsule and the sphere intersect and the negative distance is the penetration depth.

BABAdPD ρρ −−=),(cl (13-9)

Let the point cA be the point on lA closest to cB. Then, the proximity vector and the two witness points
are the same as the sphere-sphere case above.

13.10.3 Capsule-Capsule
The distance between the two capsules A and B is simply the distance between their line segments lA
and lB minus their radii ρA and ρB. If this distance is negative, then the two capsules intersect and the
negative distance is the penetration depth.

BABAdPD ρρ −−=),(ll (13-10)

 295

Let the point cA be the point on lA closest to lB and the point cB be the point on lB closest to lA. Then,
the proximity vector and the two support points are the same as the sphere-sphere case above.

13.10.4 Box-Sphere
The distance between a box A and a sphere B is simply the distance between the box and the center
of the sphere cB minus the sphere’s radius ρB if cB is outside of the box. If this distance is negative,
then the box and the sphere intersect and the negative distance is the penetration depth.

BBAboxdPD ρ−=),(c (13-11)

Let the point cA be the point on the box A closest to cB. Then, the proximity vector and the two
support points are the same as the sphere-sphere case above. If cB is inside the box, it is considered a
deep penetration and GJK will be used.

13.10.5 Box-Capsule
The distance between a box A and a capsule B is simply the distance between the box and the line
segment of the capsule lB minus the capsule’s radius ρB if lB does not intersect the box. If this
distance is negative, then the box and the sphere intersect and the negative distance is the penetration
depth.

BBAboxdPD ρ−=),(l (13-12)

Let the point cA be the point on the box A closest to lB and the point cB be the point on lB closest to the
box A. Then, the proximity vector and the two support points are the same as the sphere-sphere case
above. If lB intersects the box, it is considered a deep penetration and GJK will be used.

13.10.6 Lozenge-Sphere
The distance between a lozenge A and a sphere B is simply the distance between the rectangle of the
capsule rA and the center of the sphere cB minus their radii ρA and ρB. If this distance is negative, then
the lozenge and the sphere intersect and the negative distance is the penetration depth.

BABAdPD ρρ −−=),(cr (13-13)

Let the point cA be the point on rA closest to cB. Then, the proximity vector and the two support
points are the same as the sphere-sphere case above.

13.10.7 Lozenge-Capsule
The distance between a lozenge A and a capsule B is simply the distance between the rectangle of the
capsule rA and the line segment of the capsule lB minus their radii ρA and ρB if lB does not intersect rA.
If this distance is negative, then the box and the sphere intersect and the negative distance is the
penetration depth.

BABAdPD ρρ −−=),(lr (13-14)

Let the point cA be the point on rA closest to lB and the point cB be the point on lB closest to rA. Then,
the proximity vector and the two support points are the same as the sphere-sphere case above. If lB
intersects rA, it is considered a deep penetration and GJK will be used.

 296

13.10.8 Lozenge-Lozenge
The distance between two lozenges A and B is simply the distance between their rectangles rA and rB
minus their radii ρA and ρB if rA does not intersect rB. If this distance is negative, then the box and the
sphere intersect and the negative distance is the penetration depth.

BABAdPD ρρ −−=),(rr (13-15)

Let the point cA be the point on rA closest to rB and the point cB be the point on rB closest to rA. Then,
the proximity vector and the two support points are the same as the sphere-sphere case above. If rA
intersects rB, it is considered a deep penetration and GJK will be used.

13.10.9 Cylinder-Sphere
The distance between a cylinder A and a sphere B is simply the distance between the cylinder and the
center of the sphere cB minus the radius of the sphere ρB if cB is not inside the cylinder.

BBAcylinderdPD ρ−=),(c (13-16)

Let the point cA be the point on the cylinder A closest to cB. Then, the proximity vector and the two
support points are the same as the sphere-sphere case above. If cB is inside the cylinder, it is
considered a deep penetration and GJK will be used.

The main effort here, thus involves determining the distance between a cylinder and a point. There
are basically two cases: (1) the point is close to the side of the cylinder and (2) the point is close to
one of the cylinder’s circular end caps. To determine which case, we simply determine where on the
cylinder’s line segment is closest to the point.

Figure 13-7: Two cases of distance calculations between a point and a cylinder. p1 is close to the
side of the cylinder while p2 is close to an end cap.

In the first case, the distance is simply the distance from the point to the cylinder’s line segment
minus the cylinder’s radius ρA.

AAA dcylinderd ρ−=),(),(plp (13-17)

Let the point on the line segment closest to p be cA. Let the vector pointing from p to cA be v = cA-p.
The witness point on the cylinder is

v
vcp AAA ρ−= (13-18)

 297

In the second case, it is the distance from the point to the circle that represents the end cap. Let cC,
nC, and rC be the center, the normal vector, and the radius of the circle. Note that the radius of the
circle rC is identical to the radius of the cylinder ρA. Let the projection of point p onto the plane of the
circle be pP, which can be expressed as:

CCCP ncpnpp))((−⋅−= (13-19)

(a) (b)

Figure 13-8: Distance between a point and a circle: (a) the point is projected onto inside the circle
and (b) the point is projected outside the circle.

There are two cases as shown in Figure 13-8.

(1) The projection point pP is inside the circle. This is true if CCP rd ≤),(cp . In this case, the point
on the circle closest to p (the witness point) is simply the projection point pP and the distance
between the point and the circle is the distance between p and the plane that supports the circle,
which can be expressed as

)(),(CCcircled cpnp −⋅= . (13-20)

(2) The projection point pP is outside the circle, i.e. CCP rd >),(cp . In this case, the witness point is
located at the intersection of the line pP - cC and the edge of the circle (shown as the point pC in
Figure 13-8(b)).

)(CP
CP

C
CC

r
cp

cp
cp −

−
+= (13-21)

The distance between the point and the circle is now merely the distance between the two points p
and pC.

 298

13.10.10 Cylinder-Capsule
The distance between a cylinder A and a capsule B is simply the distance between the cylinder and
the line segment of the capsule lB minus the radius of the capsule ρB if lB does not interect the
cylinder.

BBAcylinderdPD ρ−=),(l (13-22)

Let the point cA be the point on the cylinder A closest to lB and the point cB be the point on lB closest
to the cylinder A. Then, the proximity vector and the two support points are the same as the sphere-
sphere case above. If lB intersects the cylinder, it is considered a deep penetration and GJK will be
used.

The difficulty is in determining the distance and the witness points between a cylinder A and a line
segment lB. There are three cases as shown and described in Figure 13-9.

Figure 13-9: Three cases of distance calculations between a line segment and a cylinder. (1) An
endpoint of the line segment is closest to the cylinder. (2) The mid-section of the line segment (not
endpoint) is closest to an end cap. (3) The mid-section of the line segment is closest to the side of the
cylinder.

Now let’s examine these cases in details.

(1) An endpoint of the line segment is closest to the cylinder

In this case, the problem degenerates to the distance between a point and a cylinder. First,
find out which of the two endpoints is closest to the cylinder and then find the distance between
that endpoint and the cylinder using the procedure described earlier.

(2) The mid-section of the line segment is closest to an end cap of the cylinder

In this case, we first need to determine which end cap is closer to the line segment. Then, the
distance between the line segment and the cylinder is just the distance between the line segment
and a circle that represents that end cap. This is more complicated than the other two cases and
will be detailed later.

(3) The mid-section of the line segment is closest to the side of the cylinder

This case is straightforward since the distance between lB and the cylinder A is just the
distance between lB and the cylinder’s line segment lA minus the cylinder’s radius ρA. Denote the
closest points between these two line segments as cA and cB. Let the vector pointing from cB to cA
be v = cA- cB. The witness point on the cylinder A is

 299

v
vcp AAA ρ−= (13-23)

Now we detail the calculation of the distance between a line segment l and a circle C. Let cC, nC, and
rC be the center, the normal vector, and the radius of the circle. Note that the radius of the circle rC is
identical to the radius of the cylinder ρA. We need to consider whether the line segment is parallel to
the circle’s plane.

Scenario 1: Line segment is parallel to the circle’s plane

In this scenario, the line segment is projected onto the plane. The projected line segment will either
intersect or not intersect the circle. Lines (1)-(3) in Figure 13-10 show three possibilities of how the
projected line segment can intersect the circle. In these cases, the distance between the line segment
and the circle is just the distance between the line segment and the circle’s plane, which in turn is the
distance between one of the line segment’s endpoint and the plane since the line segment is parallel
to the plane. Let p0 be the first endpoint of the line segment l, then the distance between l and the
circle is

),(),(0pl planedcircled = . (13-24)

Because of the parallel, the witness points on both the line segment and the circle are arbitrary. One
sensible choice for the witness point on the line segment is the middle of its section that lies inside
the circle. We need to find where the line segment intersects the circle by solving a quadratic
equation.

Figure 13-10: Top view of four different cases when the line segment is parallel to the circle. (1) –
(3) The projection of the line segment intersets the circle. (4) The projection lies completely outside
the circle.

Let ep0 and ep1 be the endpoints of the projected line segment and b=ep1-ep0. Let q=ep0 + tb be a
point on the projected line segment, where t is line parameter between 0 and 1. We need to solve the
following equation for t.

22
0

22

CC

CC

rt

r

=−+

=−

cbep

cq
 (13-25)

Let x=ep0-cC. The above equation becomes

 300

0

02
2

2222

=++

=−+⋅+

cbtat

rtt Cxbxb (13-26)

This is just a standard quadratic equation. The solutions to this equation are

a
acbbt

a
acbbt

2
4

2
4

2

1

2

0

−+−
=

−−−
=

 (13-27)

It has two solutions because a line can intersect a circle at two points. Note that t1 is always greater

then or equal to t0 since acb 42 − and a are always positive. Let tw be the t-value of the witness
point on the line segment.

Case (1): Both endpoints are outside the circle (t0>0 and t1<0). In this case, tw = (t0 + t1)/2.

Case (2): One endpoint is inside and the other is outside the circle (either t0<0 and t1<1 or t0>0 and
t1>1). In this case, tw = t1/2 or (t0 + 1)/2.

Case (3): Both endpoints are inside the circle (t0<0 and t1>1). In this case, tw = 0.5.

Let the endpoints of the line segment be p0 and p1, the witness point on the line segment can then be
expressed as

)(010 pppp −+= wl t (13-28)

In all three cases, the witness point on the circle is just the projection of the witness point on the line
segment onto the circle’s plane.

For case (4) where the projection of the line segment lies completely outside the circle, consider
Figure 13-11. Let l denote the line segment and lp the projection of the line segment. Note here that
they both are seen as points since we are looking the side view. Let the distance from the line
segment to the circle’s plane be dplane and the distance between lp and cC be dcp. Then the distance
between the line segment and the circle is

22)(),(Ccpplane rddcircled −+=l . (13-29)

 301

Figure 13-11: Side view of case (4) where the projection of the line segment lies completely outside
the circle. The dashed line is the circle’s plane and the think solid line represents the side of the
circle.

Let v be the vector from cC to lp. The witness point on the circle pC is

v
v

cp C
CC

r
+= (13-30)

Scenario 2: Line segment is not parallel to the circle’s plane

We first need to determine which of the four possibilities are shown in Figure 13-12 is the case. To
achieve this, we need to find where the line segment intersects the circle’s plane by solving a linear
equation. Let the endpoints of the line segment be p0 and p1 and b=p1-p0. Let q=p0 + tb be a point on
the line segment, where t is line parameter between 0 and 1. Solving the following equation for t

0)(
0)(

0 =⋅−+
=⋅−

CC

CC

t ncbp
ncq

 (13-31)

yields ti, which is the t value at the intersection point).

C

CC
it nb

npc
⋅

⋅−
=

)(0 . (13-32)

If 10 ≤≤ it , then the line segment intersects the plane (cases (1) and (2) in Figure 13-12).
Otherwise, the extension of the line segment intersects the plane (cases (3) and (4) in Figure 13-12).
The intersection point can be found as qi=p0 + ti b. If the magnitude of the vector qi-cC is less than rC,
then the intersection point lies inside the circle (cases (2) and (3)).

 302

Figure 13-12: Side view of four different cases when the line segment is not parallel to the circle.
The dashed line is the circle’s plane and the think solid line represents the side of the circle. (1) The
line segment intersects the plane outside the circle. (2) The line segment intersects the plane inside
the circle. (3) The extension of the line segment intersects the plane inside the circle. (4) The
extension of the line segment intersects the plane outside the circle.

Cases (1) and (4):

Let v be the vector from cC to qi. The witness point on the circle pC is

v
v

cp C
CC

r
+= (13-33)

The distance between the line segment and the circle is just the distance between the witness point pC
and the line segment.

Case (2):

Since the line segment intersects the plane inside the circle, the distance between the line segment
and the circle is zero and the witness points on both the circle and the line segment is the intersection
point qi.

Case (3):

In this case, one of the endpoints of the line segment is closest to the circle. If ti < 0, then the closest
endpoint is the first one. If ti > 1, then it is the second endpoint. Either way, this case degenerates to
finding the distance between a point and a circle, which has already been discussed above.

13.10.11 Cylinder-Half Space
A half space bisects the 3D space into two halves and is represented by a bisecting plane. The normal
vector of the plane points out of the half space. To find PD between a cylinder and a half space, we
need to first find a distance between a circle and a plane.

Let r, c, and u be the radius, the center, and the normal vector of the circle, respectively. Let b and v
be the base point and the normal vector of the plane. The distance between the circle and the plane is
given by

 303

vuvbc ×−⋅−= rplanecircled)(),(. (13-34)

Figure 13-13: Distance between a circle and a plane.

If the circle and the plane are not parallel (0>× vu), the witness point on the circle pC is given by

)(vu
vu

cp ×
×

+=
r

C (13-35)

If the circle and the plane are parallel, then the center of the circle is chosen as the witness point. In
either case, the witness point on the plane is just the projection of pC onto the plane.

Now consider the distance between cylinder and a half space. We start by computing the distance
from one end cap of the cylinder to the plan of the half space. Then, use equation (30) to determine
the witness point on the other end cap and compute the distance from that point to the plane. Then,
comparing the two distances will yield either case (1) or (2) in Figure 13-14. In case (1) in which one
end cap is closer to the half space, the minimum distance is chosen with the corresponding witness
points. In case (2), the two distances are equal. The witness point on the cylinder is then chosen to be
the mid-point on the side of the cylinder.

Figure 13-14: Two cases of a cylinder penetrating a half space. (1) One end cap is closer to the half
space. (2) The side of the cylinder is parallel to the half space.

13.10.12 Cone-Sphere
Before diving into details of the cone-sphere pair, let’s discuss similarities and differences between
the cone and the cylinder. The cone in Actin is actually a frustum and is similar to the cylinder. The

 304

only difference, which makes the cone more complicated, is that the side of the cone is not parallel to
its line segment. As far as the two circular end caps, the cone is identical to the cylinder except that
the two end caps do not have to have the same radius. However, the process of finding the PD
between the end caps of the cone to other shapes is exactly the same as that of the cylinder.
Therefore, for cone discussion, we will only focus on the PD calculation from the side (lateral
surface) of the cone to other shapes.

The distance between the lateral surface of a cone and a sphere is merely the distance between the
lateral surface and the center of the sphere minus the radius of the sphere if the center is not inside
the cone. If the center is inside the cone, then this will be considered a deep penetration and GJK will
be used.

Thus, let’s consider the distance between a point p and the lateral surface of a cone whose end caps
are circles with centers c0 and c1 and radii r0 and r1 (see Figure 13-15).

Figure 13-15: Distance between the lateral surface of a cone and a point.

First, find the vector v pointing to the cone’s line segment to point p. This is accomplished by a
method that computes the distance between a point and a line segment. This method also provides
the information about the point on the line segment closest to p, in terms of a t-value.

))((010 cccpv −+−= t (13-36)

If the magnitude of v is less than the radius of the circle at formed by the plane along v and
perpendicular to the cone’s line segment intersecting the cone, p is inside the cone. This radius is
given by r = r0 + t(r1 - r0). If p is inside the cone, then the distance between p and the cone is zero.

v now can be used to find a line segment on the lateral surface closest to p. This line segment will
have endpoints p0 and p1 as shown Figure 13-15, which are given by

v
v

cp i
ii

r
+= , i=0,1 (13-37)

If p is not inside the cone, given the line segment on the lateral surface closest to p, the distance
between the cone and p is simply the distance from that line segment to p. The point on the line
segment is also the witness point on the cone.

 305

13.10.13 Cone-Capsule
The distance between the lateral surface of a cone and a capsule is merely the distance between the
lateral surface and the line segment of the capsule minus the radius of the capsule if the line segment
does not intersect the cone. If the line segment intersects the cone, then this will be considered a deep
penetration and GJK will be used.

Figure 13-16: Distance between the lateral surface of a cone and a line segment.

To compute the distance between a line segment l and the lateral surface of a cone, we first need to
compute the witness points between l and the cone’s line segment (see Figure 13-16). Let wl denote
the witness point on l. Then, we compute the line segment on the lateral surface closest to wl, using
the procedure previously detailed in the cone-sphere pair. If wl is inside the cone, then l intersects the
cone and the distance between l and the cone is zero.

Let ll denote the line segment on the lateral surface. If l does not intersect the cone, the distance
between the cone and l is simply the distance from ll to l. The point on ll closest to l is also the
witness point on the cone.

13.10.14 Cone-Half Space
Consider Figure 13-17, due to the nature of the half space, the computation of PD between a cone
and a half space and that between a cylinder and a half space is almost identical. The only difference
is that for a cylinder, we can choose either end cap as the starting point since both have the same
radius. For a cone, one end cap could be a point (if the radius is zero). Thus, we should the end cap
with a larger radius as the starting point. Later steps are exactly the same as those for cylinder-half
space.

 306

Figure 13-17: Two cases of a cone penetrating a half space. (1) One end cap is closer to the half
space. (2) The side of the cone is parallel to the half space.

13.10.15 Implementations
Previously, the PD computation is handled inside EcShape::computePenetrationDistanceAnd-
SupportPoints method, which simply used the GJK algorithm to compute both PD and support
(witness) points. Subclasses of EcShape should override this method to implement closed-form
solutions for PD and support points.
 /// compute the penetration distance and support points
 virtual EcBoolean computePenetrationDistanceAndSupportPoints
 (
 const EcShape& otherShape,
 const EcCoordinateSystemTransformation& xform,
 EcVector& supportPointA,
 EcVector& supportPointB,
 EcReal& distance,
 EcVector& proxVec
) const;

Text Box 13-10: The method for computing PD and related information in EcShape.

Argument Description

otherShape The other shape with which this shape intersects.

xform Transforms the other shape to this shape’s frame.

supportPointA Upon return, the support point on this shape in local coordinates.

supportPointB Upon return, the support point on the other shape in local coordinates.

distance Upon return, the penetration distance (negative or zero).

proxVec Upon return, the proximity vector, which is a vector in the direction of
impact (from the other shape to this shape).

Text Box 13-11: Arguments to computePenetrationDistanceAndSupportPoints method.

To prevent the duplication of code for the same shape pair (e.g. capsule-cone and cone-capsule), we
follow the following established convention. Based on the enumerations defined in EcShape and
shown in Text Box 13-12, the computation of PD and support points between a shape pair is only

 307

implemented in the class with the larger enumeration value. For example, PD between the cone-
capsule pair is implemented in EcCone, not EcCapsule, since CONE comes after CAPSULE and
thus has a larger enumeration value. Before a call to compute PD, the two shapes will be checked for
their enumeration values and, if necessary, the order will be switched to ensure that compute-
PenetrationDistanceAndSupportPoints is never called from the shape with smaller enumeration
value.
/// enumerations for supported geometry
typedef enum
{
 POINT_POLYGON, /// A point polygon representation
 POLY_PHYSICAL, /// A point physical extent
 TRI_PHYSICAL, /// A triangular physical extent
 SPHERE, /// A sphere defined by a radius and center
 CAPSULE, /// A capsule defined by a line segment and a radius
 ELLIPSOID, /// An ellipsoid
 TETRAHEDRON, /// A tetrahedron defined by a point and three edges
 OBB, /// An oriented bounding box
 LOZENGE, /// A lozenge defined by a 3D rectangle and a radius
 HALFSPACE, /// Half-space defined by a plane and normal vector
 GRID, /// A grid shape made up of bricks
 CYLINDER, /// A Cylinder defined by a line segment and radius
 CONE, /// A Cone defined by a line segment and 2 radii
 UNION, /// composite shape that is a union of other shapes
 INTERSECTION, /// Intersection of twoother shapes

} EcShapeValues ;

Text Box 13-12: Enumerations for different shapes.

13.11 Line Segment Intersection
The sections below describe the line-segment shape intersection formulas. The sections are broken
down by shape.

13.11.1 Sphere
An example sphere is shown in the figure below. It has two parameters, a 3D center point and a
radius. The line-segment parameters are also shown, comprising two 3D endpoints.

 308

p

p

q

r

0

1

c

Figure 13-18: Sphere intersection. The sphere parameters of center and radius are shown, as well as
the line-segment parameters of two endpoints. The first intersection point is identified by qr .

Given the figure above, define

01 ppd rrr
−= . (13-38)

Then, to calculate the intersection of a line segment and a sphere, let the closest intersection point,
qr , be defined as

dtpq
rrr

+= 0 , (13-39)

The value for t can be found by solving the following:

 22

0 rcdtp =−+
rrr

, (13-40)

which gives a quadratic equation with an easy solution. If the resulting value is either not real or not
in the range of [0,1], then the line segment does not intersect the sphere. There are often two
solutions—the one with the smallest t-value is selected as the closest.

13.11.2 Cylinder
Parameters for a cylinder are shown below. These include a line segment and a radius.

 309

p

p

q

r

0

1

c0

c1

Figure 13-19: Cylinder intersection. The cylinder is defined by a line segment, having endpoints 0cr
and 1cr , and a radius.

As before, define

01 ppd rrr
−= . (13-41)

Also define

01 ccb rrr
−= . (13-42)

To calculate the intersection of a line segment and a sphere, let the closest intersection point, qr , be
defined as

dtpq
rrr

+= 0 , (13-43)

The distance, D, between qr and the line defined by the central axis of the cylinder satisfies

 2

2

02
)(

b

cqb
D r

rrr
−×

= .
(13-44)

Setting this distance to r gives the following:

2

00

22)(cdtpbbr rrrrr
−+×= , (13-45)

or

2

00

22)()(dtbcpbbr
rrrrrr

×+−×= , (13-46)

giving

 310

0))(()())((*2)(
222

0000
22

=−−×+×⋅−×+× brcpbtdbcpbtdb
rrrrrrrrrrr

. (13-47)

This forms a quadratic equation with an easy solution. The result must be validated against the
constraints that t must be real and it must be in the rage [0,1]. It must also be validated against the
limits of cylinder. When there are two results, the one with the smallest t-value is selected as the
clostest.

Then, a test must also be performed against the cylinder caps. This can be done by defining qr as
above and solving the following for the first cap using

0)(00 =⋅−+ bcdtp
rrrr

, (13-48)

and solving for the second cap using

0)(10 =⋅−+ bcdtp
rrrr

, (13-49)

The points so found must be tested against the constraint that t be contained in [0,1] and against the

radius of the cylinder through 22

00 rcdtp <−+
rrr

 and 22

10 rcdtp <−+
rrr

.

13.11.3 Capsule
To establish the intersection between a line segment and a capsule, the capsule is decomposed into a
cylinder and two spheres, as shown below. Intersection tests are then performed with these
decomposed parts, using the techniques discussed above.

Figure 13-20: Capsule intersection. The capsule is decomposed into a cylinder and two spheres,
with each tested using the techniques described above.

13.11.4 Ellipsoid

 311

p

p

q

a

0

1
b

c

Figure 13-21: Ellipsoid intersection.

An ellipsoid, as shown above, is represented through the following equation expressed in an explicit
offset frame:

12

2

2

2

2

2

=++
c
z

b
y

a
x

.
(13-50)

For this, the line segment used for intersection is first represented in the explicit offset frame. So, for
this discussion, the all vector quantities are represented in the central frame of the ellipsoid, rather
than world coordinates. With this, let

01 ppd rrr
−= . (13-51)

And, as before, let the closes intersection point, qr , be defined as

dtpq
rrr

+= 0 , (13-52)

The value for t can be found by solving the following:

1
)()()(

2

2
,0

2

2
,0

2

2
,0 =

+
+

+
+

+

c
dtp

b
dtp

a
dtp zzyyxx ,

(13-53)

which gives a quadratic equation with an easy solution. As before, t must be real, and it must be in
the range [0,1], and when there are two solutions, the one with the smallest t-value is selected as
closest.

13.11.5 Tetrahedron
Intersection with a tetrahedron is evaluated by decomposing the tetrahedron into four 3D triangles, as
illustrated below.

 312

p

p

q

0

1

v0 v1

v2

Figure 13-22: Tetrahedron intersection is performed using the four triangular faces.

As before, let

01 ppd rrr
−= . (13-54)

And let the point where the line through the line segment intersects the plane of the triangle be
defined through the following:

dtpq
rrr

+= 0 . (13-55)

Define

010 vve rrr
−= , (13-56)

021 vve rrr
−= , (13-57)

and

213 vve rrr
−= . (13-58)

Let the triangle normal be defined as

 313

10 een rrr
×= . (13-59)

Assuming the triangle is not collinear, t can be found using

0)(00 =⋅−+ nvdtp rrrr
. (13-60)

This gives a linear equation that can easily be solved for t to give qr . The value of t must be in the
rage [0,1].

To ascertain if qr is inside the triangle, the following three checks are made:

 0)(10 ≥⋅×− nevq rrrr
 (13-61)

0)(01 ≤⋅×− nevq rrrr
 (13-62)

0)(22 ≥⋅×− nevq rrrr
 (13-63)

These checks ensure sequentially that the point is on the correct side of each edge.

13.11.6 Half Space
A half space is defined as one side of a 3D plane. Its only surface is the plane defining it. The
intersection parameters are shown in the figure below.

q

p

p

0

1

n

b

Figure 13-23: Half space intersection.

As before, let

 314

01 ppd rrr
−= . (13-64)

And let the point where the line through the line segment intersects the plane be defined through

dtpq
rrr

+= 0 . (13-65)

Then at the intersection point, t satisfies

0)(0 =⋅−+ nbdtp rrrr
, (13-66)

giving a linear equation that is easily solved. The value of t must be in the range [0,1] for an
intersection to have occurred.

13.11.7 Oriented Box
An oriented box is illustrated in the figure below.

p

p

0

1

q

x

y

z

Figure 13-24: Oriented box intersection.

The oriented box, as shown is represented through the following bounds on the x-, y-, and z-
components of 3D points, as represented in an explicit offset frame:

.
,
,

czc
byb
axa

≤≤−
≤≤−
≤≤−

(13-67)

For this, the line segment used for intersection is first represented in the explicit offset frame. So, for
this discussion, the all vector quantities are represented in the central frame of the box, rather than
world coordinates. With this, let, as before,

 315

01 ppd rrr
−= . (13-68)

And, as with previous shapes, let the intersection point, qr , be defined as

dtpq
rrr

+= 0 , (13-69)

The intersection points for the face planes perpendicular to each dimension can be calculated from

xxx

xxx

dtpa
dtpa

10

00

+=−
+=

,
(13-70)

yyy

yyy

dtpb
dtpb

10

00

+=−
+=

,
(13-71)

and

zzz

zzz

dtpc
dtpc

10

00

+=−
+=

.
(13-72)

If any component of d is zero, a special case arises for that dimension. Otherwise, the t-values can
be solved through the linear equations given. The result for each t-value takes the form of the
following (shown only for the x-dimension):

otherwiseexclusive
0inclusive
0,/)(,/)(

0

0100

apad
ddpatdpat

xx

xxxxxxx

≤≤−∩=
≠−−=−=

(13-73)

Here, “inclusive” means all t-values are acceptable as it pertains to this dimension, and “exclusive”
means no t-value is acceptable as it pertains to this dimension. The y- and z-components are treated
similarly. Let

)),min(),,min(),,max(min(101010entry zzyyxx ttttttt = (13-74)

and

)),max(),,max(),,min(max(101010exit zzyyxx ttttttt = . (13-75)

With these values, if

exitentry tt < (13-76)

 316

and 10 entry ≤≤ t , then entryt gives the impact point. Otherwise, the line segment does not impact the
box.

13.11.8 Cone Frustum
A cone frustum is the volume between two circular caps inside a conical surface. This is shown in
the figure below.

p

p

0

1c1

c0

q

r0

r1

f

Figure 13-25: Cone frustum intersection. The frustum lies between the two circular regions.

Given the figure above, define

01 ppd rrr
−= (13-77)

and

01 ccb rrr
−= . (13-78)

As before, let the closest intersection point, qr , be defined as

dtpq
rrr

+= 0 , (13-79)

If 10 rr = , the cone frustum can be treated as a cylinder. And if 10 rr < , the cone frustum can be

flipped to give 10 rr > . With 10 rr > , the point f
r

, as shown in the figure, exists, and the point qr

lies on the surface of the cone with point at f
r

 if

2
10)(

)(

rrbb

b

bfq
bfq

−+⋅
=

−

⋅−−
rr

r

rrr

rrr

.
(13-80)

Squaring and substituting the value of qr gives the requirement in terms of t that the point lie on the

double cone centered at f
r

:

 317

2

0

42
10

2
0))(())((fdtpbrrbbbfdtp

rrrrrrrrrr
−+=−+⋅⋅−+ . (13-81)

This can be used to solve for qr , which can then be tested through an inner product with b
r

 to see if
it is inside the frustum. As always, the value of t must be in the range [0,1].

13.11.9 Lozenge
To establish the intersection between a line segment and a lozenge—which is defined as all points
within a specified distance from a 3D rectangle—the lozenge is decomposed into an oriented box,
four cylinders and four spheres, as shown below. Intersection tests are then performed with these
decomposed parts, using the techniques discussed above (tests against the cylindrical caps are
excluded).

Figure 13-26: Lozenge intersection. The lozenge is decomposed into 9 primitive shapes, each of
which is tested for intersection using the techniques described above.

13.11.10 Union
Energid’s shape descriptions include combination types. One of these is the Union type, which has
two child elements. To find the line-segment intersection of the Union, we just serially intersect
with the two child shapes and take the closest point. This is illustrated in the figure below.

 318

p

p

q

0

1

p

p

0

1

p

p

q

0

1

Union

First Child Second Child

+

Figure 13-27: Union-of-shapes intersection. The intersection point is the closest intersection point
for a child shape.

13.11.11 Intersection
Another combination shape is the Intersection. Finding the line-segment intersection with a shape
Intersection is more involved than for a Union. The implementation assumes the child shapes are
convex. With the convexity assumption, the intersection point, if it exists, must be the first
intersection point of one of the two child shapes. Which (if either) of the two shapes give the
intersection point is found by intersecting the line segment in both forward and reverse directions for
both child shapes and reasoning with these results. The process is illustrated in the figure below.

Intersection

p

p

q

0

1

p

p

0

1

p

p

q

0

1

Figure 13-28: Intersection-of-shapes intersection. The intersection point for the shape Intersection
is first intersection for a child shape that is contained within the other shape.

 319

14 Force Control and Grasping

14.1 Force Control
This section describes force control, which is essential for most manipulation tasks such as grasping.
Our approach leverages the surface-property descriptions and position control developed during the
prior effort to build network-exchangeable force-control methods that are configured using XML.

14.1.1 Design
Free-space operation will be used when the hand is away from the target object, using the local
position control system that already exists in the toolkit. When the manipulator is in contact with the
target object, compliance-based control is used. Compliance-based control is implemented using the
position controller. Proportional-integral control is applied to set desired forces, and feed-forward
compensation is added to the control law, with parameters based on the flexible surface properties of
both the sensor attached to the end effector and the contacted surface.

Figure 14-1 shows a flow chart of the force control system. The sensor processor is designed to
work with both real hardware sensors and simulated sensors. The sensor reading simulator is used to
estimate sensor readings during simulation based on proximity measures between the manipulator
and the environment. The sensor reading processor can take the hardware sensor readings or the
simulated sensor readings as inputs. The actual force that this sensor experienced is calculated from
the sensor reading and compared against the desired force for that sensor. The output of this module
is the difference between the desired force and the measured force and that is feed into the force
control module.

Figure 14-1: Flow chart of the force control system.

A compliance-based approach is used for the force control module, which provides an especially
robust and practical implementation. Force is controlled through the following proportional-plus-
integral control law:

∫ −+−=))()((dtkk ip mdmdF FFFFDV , (14-1)

 320

where D is a feed-forward compensator matrix, FV is the frame velocity formed by concatenating
linear with angular velocity, dF is the desired general force, mF is the measured general force, and

pk and ik are user-defined gains. For noisy force sensors, a greater weighting toward integral
control will give smoother solutions, with less steady-state error. For more accurate force sensors, a
heavier weighting toward position control will give a quicker response.

Note the velocity FV calculated in (14-1) is used to calculate a new desired position as the input to
the position control module. This method will allow one end effector to operate with force control
while another in free-space mode operates using local position control. With this approach,
reconfiguration of the arm to optimize secondary criteria is also possible and easily implemented
using our velocity-control algorithms. This will allow force to be controlled while reconfiguring the
arm for optimal strength, for example. By allowing force control in self-contact, this approach will
support force control in cooperating end effectors as well.

14.1.2 Implementation

14.1.2.1 Sensor Processor
The toolkit supports a variety of sensors for both simulation and hardware interface. A base class
EcBaseSensorProcessor can be subclassed to make new sensors. The main method supported in this
class is computeForceDelta. This takes the sensor reading from either the simulator or an actual
sensor, calculates the proper force and compares against the desired force. Two types of sensor
processors will be implemented and are discussed in detail as the following.

14.1.2.1.1 Touch Sensor
A touch sensor processor EcTouchSensorProcessor has been added to the code base. The most
rudimentary type of this kind of sensor is based on micro switches, which detect simple contact. For
more sophisticated force control, a touch sensor with continuous reading is also modeled. This
sensor is attached to a link, with a known location and direction specified with respect to the primary
frame of the link (refer to Figure 14-2). The sensor is represented by a union of convex shapes as
part of the link to which it is attached. Our proximity calculation routine is capable of reporting the
distance query to the individual shape level.

With this approach, the interaction with parts of the manipulator other than the sensor will not be
detected for force control purpose. Only when the sensor intersects the environment will there be a
reading. The sensor reading is a function of the surface properties of the sensor and that of the object
contacted. Assuming that the interaction between the sensor and the environment by a spring model
can be approximated, with ek and sk being the spring constants of the environment and the sensor
respectively, the penetration distance (minimum linear movement to separate two overlapping
objects) is d , then the deformation of the sensor, sd , is

 ()se

e
s kk

dkd
+

= ,
(14-2)

and the interactive force between the two is

 321

()se

se
e kk

dkk
+

== ffm ,
(14-3)

where mf is the force experienced by the sensor.

Figure 14-2: A touch sensor attached to one fingertip. The location and direction of the sensor is
specified with respect to the primary frame of the finger.

The direction of the force is calculated from the specified sensor direction with respect to the
primary frame of the attached link and the current system state information. The desired force is a
general force with both a linear force df and a moment dn , combined with a point of application.
This covers the most general case. For the implementation of the touch sensor, only the magnitude
of the force in the general force term is used. This is useful for the grasping task where the
magnitude of the contact force is of interest. In this case, the force difference md ff − is calculated
from md ff − and the sensor direction.

14.1.2.1.2 Wrist-Force Sensor
The second kind of force sensor processor is for a wrist-force sensor as illustrated in Figure 14-3.
This kind of sensor measures the force (three components) and moment (three components) exerted
by the end effector on the environment. For simulation, the sensor readings are calculated from
penetration distance calculated between the shapes used to construct the manipulator and the
environment. Note that, unlike with the touch sensor, all the forces acting on the end effector need to
be considered. Our system can calculate the penetration distance, direction of penetration, and
location of contact between the physical extents within the system. For each collision event, the
amount of force is calculated as in equation (14-3). The direction and the location of the force with
respect to the primary frame of the associated link are provided by the simulated system. If the
location of application and the direction of the force with respect to the sensor frame are given by
p and n , then the measured force is given by

 322

()nfm
se

se

kk
dkk

+
= ,

(14-4)

 and the moment is given by

pfn mm ×= . (14-5)

Figure 14-3: A wrist force/torque sensor measures the composite of all forces applied to the
outboard link.

If it is assumed that the contact surface of the collided shapes do not move relatively, then this would
be another source of torque. Let the end effector and the environment each have an angular spring
constant sc and ec , then the torque generated on the contact surface would be

()θse

se
e cc

cc
+

== nnm , (14-6)

 where θ is the angular displacement deviates from the beginning of the contact. The force mF
measured from this sensor is a combination of all the collision incidents using (14-4), (14-5), and
(14-6).

The desired force dF for this case is a general force specified by six components. The force
difference is given by md FF − directly.

 323

14.1.2.2 Force Control
EcForceControlSystem contains all the sensors in the system, as well as the desired force for each
sensor. It will take the force difference for each sensor and process it according to (14-1). Note that
the velocity (linear and angular) calculated from (14-1) is for the sensor. The corresponding velocity
for the end effector is also needed. The force control system builds on the position control system.
When there is no interaction between the manipulator and the environment, the system is driven
directly by the position control system. Once the manipulator is in contact with the target object, the
force control system becomes active. It will first calculate the end effector velocity by using
equation (14-1) and the transformation between the sensor and the end effector. Then it will
calculate the new desired position for the end effector and provide that to the position control system.

14.2 Grasping
The Actin™ toolkit provides tools for implementing the kinematic and force components of
grasping. It combines innovative algorithms linked by the central theme that a decision tree is used
to find the best combination of algorithms for each grasp. The decision tree is configurable through
XML and uses basic properties of the object to be grasped to quickly identify the best grasping
method. Within this tree, prototype algorithms use precalculated initial grasps that can be hand-
tuned for shape families. Within the framework, these initial grasps can be iteratively improved
using properties of the object.

14.2.1 Interface
Since a manipulator can have multiple hands, the manipulator grasping module, class
EcManipulatorGraspingModule, is organized into a collection of grasping modules, each for a single
hand. This collection is accessed using a string descriptor of the hand (such as “left” or “right”)
through a string-based map. The manipulator grasping module is illustrated in the figure below.

Hand Descriptor
“left”

Manipulator
Grasping Module

“left”

“right”

Left Hand
Grasping
Module

Right Hand
Grasping
Module

Grasping ModuleLeft Hand
Grasping
Module

Figure 14-4: Multiple hand grasping modules will be organized into a manipulator grasping
module. The input to the grasping module is a hand identifier (such as “left” or “right”). A separate
manipulator is used for each manipulator in the system.

The single-hand modules shown in Figure 14-4 are subclassed from EcBaseHandGraspingModule.
Each calculates 1) a spatial path for the grasping surfaces (such as fingertips) to position the hand for

 324

grasping and 2) a set of forces for the grasping surfaces to consummate the grasp. The input to the
module is an arbitrary object, described using the Energid CAD format. The object description may
include information on the environment of the object. The hand grasping module is illustrated in the
figure below.

Hand
Grasping
Module Link Force Values

Kinematic Path

Arbitrary Object

Grasp Descriptor“fingertip”, 5

Figure 14-5: The input to each grasping module (as shown in Figure 14-4) includes an object to be
grasped, a string describing the grasp family, and an index identifying a unique grasp. The output is
1) a kinematic end-effector path to place the hand in contact with the object without detrimentally
disturbing it and 2) a set of link forces to consummate the grasp. Note that, in this approach,
knowledge of the hand is part of the hand grasping module.

The hand-grasping module takes as input the object to be grasped and a grasp descriptor. The
descriptor has a string grasp-family identifier and an integer index. Each unique index returns a
different grasp. Each hand grasping module will first calculate the grasp, then provide information
on the grasp as a function of a parameter, γ, that varies from zero to one. When γ = 0, the hand is
placed at the start of the grasping trajectory. When γ = 1, it is placed at the end of the grasping
trajectory, just in contact with the object to be grasped.

In code, the interface to the hand grasping module will be through the following methods:

Methods Description
void calculateGrasp
(
 const EcGraspDescriptor& descriptor,
 const EcStatedSystem& objectStatedsystem,
 EcU32 objectIndex,
 const EcStatedSystem& manipStatedSystem,
 EcU32 manipIndex
);

This calculates the grasp and saves it
internally for access.

const EcEndEffectorSet& endEffectorSet
(
 EcReal gamma,
 EcBoolean& isNew
);

Returns the end effectors to be used for
the grasp motion, parameterized by γ.
Sets the isNew flag if the end-effector
set is new.

const EcCoordinateSystemTransformation...
Vector& endEffectorPositions
(
 EcReal gamma
);

Returns the end-effector positions to be
used for the grasp motion,
parameterized by γ.

const EcEndEffectorSet&
endEffectorSetForForceControl
(
);

Returns an end-effector set to be used
during force control. This allows
hybrid force and positioning control to
be used together for the grasp.

const EcManipulatorEndEffectorPlacement&
endEffectorPositionsForForceControl Returns the end-effector positions to be

 325

 (
);

used during force control.

void getGraspForces
(
 EcGraspForce& graspForce

);

Returns the links and desired forces
required for the grasp. These forces are
applied after the hand is in place (i.e.,
when γ = 1).

Table 14-1: The class interface for the hand grasping module.

14.2.2 Decision Tree
The Actin™ grasping approach embraces the variety of grasping algorithms through the use of a
configurable decision tree that can grow and change. Branching nodes in the tree will redirect
program control to the best algorithm for the shape of the object to be grasped. This tree, which is
configured using XML, will allow the addition of new algorithms. It can grow to have hundreds or
thousands of algorithms, each tailored to grasping one family of shapes. The decision tree is
illustrated in Figure 14-6.

The description of the object to be grasped includes the object geometry, location, and environment.
To represent this information, the same data structure is used as represents the robotic manipulators
and environment for the simulation and control capability. A pointer to an EcStatedSystem object is
passed down the tree.

Object
Grasp Descriptor
Hand Location

Success/Failure
Contact Path
Contact Forces

Best Grasping Module
Found Using Shape

Interface

Fingertip Paths and Forces

“whole-hand”, 1

Object and Descriptor

(1)

(4)

(2)

(3)

Active State

Figure 14-6: The best grasping algorithm to implement the grasping module in Figure 14-5 is found
using a decision tree that matches the shape and surface properties of the object to be grasped. Each
leaf node in the tree is an algorithm, whose implementation is flexible (limited only by the interface
structure and C++). As shown, algorithm (1) would apply for sphere-like objects, (2) would apply
for cylinder-like objects, and (3) and (4) would apply for different families of forking objects. The
object to be grasped is not generally a pure shape, but a best match is found in the tree. A decision
tree in this form provides potential for unlimited growth—new algorithms for new shapes can be

 326

added without disturbing existing algorithms. The active state will be used for dynamic
programming—object properties will only be calculated once.

14.2.3 Organization of Each Grasping Algorithm
Through the toolkit approach, virtually any algorithm can be used within the decision tree framework
shown in Figure 14-6. One specific type of algorithm exists in the toolkit. The approach is based on
refinement of a pre-established grasp. Each pre-established grasp is tailored to the matching shape
found in the decision tree, and objects resembling that shape will be graspable through the
refinement process. Our emphasis in this design is to establish a framework that can be used to
support a variety of methods that will be successful with a broad spectrum of grasping scenarios.
This framework, which uses three stages, is illustrated in the figure below. The input to Stage I is
the object to be grasped and a descriptor. The output of Stage I and both the input and output of
Stages II and III are grasps.

“whole-hand”, 1

Prototype GraspCreation
from Object Parameters

Iteration to Force Closure
Using Object Details

Grasp Iteration Using
Object and Hand Details

Stage I

Stage II

Stage III

Grasp

Grasping Module

Figure 14-7: Prototype algorithms for use within the tree shown in Figure 14-6 are implemented
using a three-stage process. First, a prototype grasp is created from object parameters. This grasp
may be precalculated, captured from real grasps, created offline through simulation, or created

 327

manually through human reasoning. This initial grasp can be refined to provide a force-closure
solution using the details of the object to be grasped, including shape and surface properties. Finally,
the model of the hand can be included to refine the solution through simulation.

14.2.4 Prototype Grasp Creation
Stage I in Figure 14-7 creates a prototype grasp that may be prerecorded, captured from a human
grasp, or calculated using an algorithm. This module solves the hardest grasping subproblem, which
is global in nature: how, roughly, should hand be moved and forces applied given the entire space of
all possible paths and forces. By tailoring this stage to each shape family, human intelligence can be
used to solve the most difficult aspects of grasping.

The grasping execution will have two stages, a kinematic positioning stage and a force application
stage. For kinematic positioning, end-effector paths will be parameterized by a value that varies
from zero to one. This will take the hand from a completely open position to a completely closed
position around the object to be grasped. This is illustrated in the figure below. It applies both to
whole-hand and fingertip grasps. Note the paths are defined using end effectors rather than joints.
This allows the end effectors to be placed using the position controller, exploiting all the tools (such
as collision avoidance) that it provides.

Reference
Frame

γ=0

γ=1

Figure 14-8: The prototype grasp will be defined through a set of end-effector paths parameterized
by]1,0[∈γ . When γ = 0, the locations of the end effectors are at the start of the grasp, giving an
open hand, and when γ = 1, they are at the end of the grasp, closed, ready to apply force. The end-
effector paths may be represented in any reference frame—in the system coordinate frame or in the
primary frame of another link on the manipulator (such as the palm).

After the fingers are placed, forces are applied using the force control module. The forces are
represented as point forces on the links contacting the grasped object.

 328

15 Data Capture

15.1 Path Saving and Following
The toolkit contains a simulation that enables a user to create arm trajectories that support complex
tasks. These trajectories can be saved and replayed in powerful ways to support tasks such as
controlling remote manipulators. There are two path saving and replaying techniques: 1) state path
and 2) guide frame path.

15.1.1 State Path
The state path saving and replaying approach is contained in the EcStatePath class. This approach
stores all of the manipulator joint angles and makes them available for playback. Table 15-1 shows
the methods available for this capability. EcStatePath subclasses from EcXmlCompoundType which
enables the user to read and write the recorded data to and from an XML file.

Method Description

add Records the state for the current time.

getState Retrieves state for the current time.

reset Clears the record.

getSize Returns the size of the record.

minTimeBetweenSample Get the minimum storage rate.

setMinTimeBetweenSample Set the minimum storage rate.

Table 15-1: Listing of primary methods available to the developer for the path recording and
playback using the state method. Check the code documentation for a complete list and description.

Text Box 15-1 shows code for setting up a trajectory, Text Box 15-2 shows an example for recording
a trajectory, and Text Box 15-3 shows an example for playback.

 329

Text Box 15-1: Example code for setting up a trajectory. This is example section #1 in the path
following example code.

 // Position control system needed for test
 EcPositionControlSystem positionControl =
 EcPositionControlSystem::testObject();

 // Position controller needs pointer to stated system
 EcStatedSystem sSystem=EcStatedSystem::testObject();
 positionControl.setStatedSystem(&sSystem);

 // create storage for dynamic state and path saving
 EcManipulatorSystemState dynamicState;
 EcStatePath statePath;
 EcGuideFramePath guideFramePath;

 // instantiate a renderer
 EcRenderWindow renderer;

 // set the size of the window
 const EcU32 size = 320;
 renderer.setWindowSize(2*size, size);

 // create a visualizable stated system object for rendering
 EcVisualizableStatedSystem visStatedSystem;
 visStatedSystem.setStatedSystem(sSystem);
 visStatedSystem.setVisualizationParameters
 (EcVisualizationParameters::testObject());
 renderer.setVisualizableStatedSystem(visStatedSystem);

 // get the current offset in system coordinates
 const EcU32 manipIndex = 0;
 const EcU32 endEffectorIndex = 0;

 EcCoordinateSystemTransformation initialPose =
 positionControl.actualPlacement(manipIndex,endEffectorIndex);

 // create circular path around the initial position
 EcCoordinateSystemTransformation finalPose=initialPose;

 // execution parameters
 EcU32 steps=500;
 EcReal simRunTime = 5.0;
 EcReal simTimeStep = simRunTime/steps;
 EcReal radius=0.3;
 EcU32 loops=3;
 EcOrientation orient(0,0,0,1);
 EcReal startingTime=positionControl.time();

 330

Text Box 15-2: Example code for creating and recording a trajectory. This is section #2 in the path
following example code.

The state path is recorded using the add method. The add method takes an
EcManipulatorSystemState reference and stores the state only if a minimum time since the last
sample has passed. Note that the time stamp for the state is contained within the state.

Text Box 15-3: Example code for replaying a trajectory using the state. This is section #3 in the
path following example code.

The state path is replayed using the getState method. The getState method takes three arguments:

 for(ii=0;ii<steps;++ii)
 {
 // get the current time
 EcReal currentTime=simTimeStep*ii;

 // get the stored state for the current time
 statePath.getState(currentTime+startingTime,dynamicState);

 // set state for rendering
 visStatedSystem.setState(dynamicState);
 renderer.setState(dynamicState);

 // view the system
 renderer.renderScene();
 }

 // move to the desired pose, and render the position every time step
 for(EcU32 ii=0;ii<steps;++ii)
 {
 // get the current time
 EcReal currentTime=simTimeStep*ii;

 // set the pose for manipulator 0 and end effector 0
 EcCoordinateSystemTransformation pose;
 pose.setOrientation(orient);
 EcReal angle=Ec2Pi*loops*currentTime/simRunTime;
 EcVector offset=radius*EcVector(cos(angle),sin(angle),0);
 pose.setTranslation(finalPose.translation()+offset);
 positionControl.setDesiredPlacement(manipIndex,endEffectorIndex,pose);

 // calculate the state at current time
 positionControl.calculateState(currentTime+startingTime,dynamicState);

 // store state and guide frame path
 statePath.add(dynamicState);
 guideFramePath.add
 (positionControl.desiredPlacementVector(), currentTime+startingTime);

 // set state for rendering
 visStatedSystem.setState(dynamicState);
 renderer.setState(dynamicState);

 // view the system
 renderer.renderScene();
 }

 331

1) Time – input

2) State – output

3) Interpolation method – input. Currently, linear interpolation is the only option, which is the
default.

To conserve the stored data size, the minimum time between samples is defaulted to 0.1 seconds, and
can be overridden with setMinTimeBetweenSample. Each record is stored with a time stamp. During
play back, the nearest two samples to the system clock are selected and the data are interpolated.
The data contains a translation and orientation component. For translation, linear interpolation is
applied, which yields a constant translation speed between the two samples. For orientation,
interpolation between two quaternions is applied such that a constant angular velocity is maintained
between the two samples. This approach will lead to continuity in position but not in velocity and
acceleration.

15.1.2 Guide Frame Path
The guide frame path saving and replaying approach is contained in the EcGuideFramePath class.
The approach stores all of the end effector placement data and makes them available for playback.
Table 15-2 shows the methods available for this capability. EcGuideFramePath subclasses from
EcXmlCompoundType which enables the user to read and write the recorded data to and from an
XML file.

Method Description

add Records the state for the current time.

getFrameVec Retrieves end effector placement for the current time.

reset Clears the record.

getSize Returns the size of the record.

minTimeBetweenSample Get the minimum storage rate.

setMinTimeBetweenSample Set the minimum storage rate.

Table 15-2: Listing of primary methods available to the developer for the path recording and
playback using the guide frame method. Check the code documentation for a complete list and
description.

Text Box 15-2 shows an example for recording a trajectory and Text Box 15-4 shows an example for
playback.

The guide frame path is recorded using the add method. The add method takes two parameters:
EcManipulatorEndEffectorPlacementVector and time, and stores the end effector data only if a
minimum time since the last sample has passed.

 332

Text Box 15-4: Example code for replaying a trajectory using the end effector placements. This
code is captured in the path following example code.

The guide frame path is replayed using the getFrameVec method. The getFrameVec method takes
three arguments:

1) Time – input

2) End effector placement – output

3) Interpolation method – input. Currently, linear interpolation and nearest neighbor are
available options. Linear interpolation is the default.

15.2 Storage and Display of Simulation Data
It is not unusual that the user of ActinViewer wants to be able to store the simulation data or display
it in a plot. ActinViewer provides support that allows the user to do both of those tasks easily and
efficiently. This section describes the back-end infrastructure required to support capturing of
simulation data and shows example of how to programmatically configure the data capture.

15.2.1 Design of Data Capture
In our design, there are three main components in capturing and saving simulation information
(excluding displaying it in a plot). The first is a collection of data capture classes systematically
organized to capture the every bit of information that the user desires for the whole system. The
information captured by these data capture classes can then be stored in a data storage class, ready to
be saved to files. Finally, the output writer classes save the information stored in the storage to files
in the formats chosen by the user. Figure 15-1 shows the schematic of the process of storing
simulation data.

 // reset the state for next test
 sSystem=EcStatedSystem::testObject();
 positionControl.setStatedSystem(&sSystem);

 // create a placment vector for retrieving from storage
 EcManipulatorEndEffectorPlacementVector placementVector;

 for(ii=0;ii<steps;++ii)
 {
 // get the current time
 EcReal currentTime=simTimeStep*ii;

 // get the stored placement vector for the current time
 guideFramePath.getFrameVec(currentTime+startingTime,placementVector);

 // set the placement command and calculate the state
 positionControl.setDesiredPlacementVector(placementVector);
 positionControl.calculateState(currentTime+startingTime,dynamicState);

 // set state for rendering
 visStatedSystem.setState(dynamicState);
 renderer.setState(dynamicState);

 // view the system
 renderer.renderScene();
 }

 333

Figure 15-1: Schematic of data capture, data storage, and output writers.

A new library called “SimulationAnalysis” was created to contain all the implementations related to
data capturing.

15.2.1.1 Data Component
EcBaseSystemDataComponent is an abstract base class for EcSystemDataCapture and EcSystem-
DataStorage. EcBaseSystemDataComponent itself is derived from EcXmlCompoundType so it can
be read from and written to XML format. EcSystemDataCapture provides the descriptions and
EcSystemDataStorage the numeric values of the captured data. These two classes will be discussed
in detail in the following sections. EcSystemDataVector is an XML vector container for instances of
classes that are derived from EcBaseSystemDataComponent. When instances of EcSystem-
DataCapture and EcSystemDataStorage are added to the same instance of EcSystemDataVector, the
descriptions and the numeric values of the captured data can be written to a file in the same manner.
All the classes derived from EcBaseSystemDataComponent must implement the methods listed in
the table below

Method Description

 334

type Returns either GENERAL_CAPTURE for descriptions or
GENERAL_STORAGE for numeric values.

getStringElements Returns a vector of strings that contains either the descriptions
or the numeric values of the captured data.

Table 15-3: Methods in EcBaseSystemDataComponent.

15.2.1.2 Data Capture
Two main classes for configuring what information to be captured are EcSystemDataCapture and
EcDataCaptureType. In a nutshell, EcSystemDataCapture is simply a collection of instances of
EcDataCaptureType (which performs the actual data capturing action) organized in such a way to
replicate how manipulators and links are constructed in a system. Through EcSystemDataCapture,
the user can add or remove a data capture type (an instance of EcDataCaptureType) to or from any
manipulator or link. A data capture type can be either manipulator-level, link-level, or end-effector
level. Examples of manipulator-level data types are the base position and base velocity of the
manipulator. Link-level data types include joint positions and link forces. End-effector placements
are examples end-effector level data types. Some of the important methods of EcSystemDataCapture
are listed in the table below.

Method Description

addEndEffectorDataCaptureType Adds an end-effector data capture type.

addLinkDataCaptureType Adds a link-level data capture type.

addManipulatorDataCaptureType Adds a manipulator-level data capture type.

captureData Captures all the data configured by the data capture
types that are included.

isDataCaptureTypeIncluded Returns true if the given data capture type is included or
false otherwise.

removeEndEffectorDataCaptureType Removes an end-effector level data capture type.

removeLinkDataCaptureType Removes a link-level data capture type.

removeManipulatorDataCaptureType Removes a manipulator-level data capture type.

label Returns the label primarily used for displaying
purposes.

setLabel Sets the label.

allocateStorage Allocates appropriate amount of memory for the data
storage.

 335

storeData Stores the captured data in the data storage.

getStringElements Returns a vector of strings that contain the descriptions
of captured data elements.

type Returns GENERAL_CAPTURE to indicate that this
component is a data capture.

Table 15-4: Methods in EcSystemDataCapture.

EcDataCaptureType itself is an abstract base class that provides a common interface for all data
capture types. Classes for capturing a specific piece of information, e.g. joint position or joint torque,
must be derived from EcDataCaptureType and implement the methods described in the table below.

Method Description

captureData Captures the specific simulation data.

Data Returns the data captured in captureData.

dataSize Returns size of the data, e.g. a joint position has a size of 1
while a force has a size of 6 (3 for linear force and 3 for
moment).

description Returns the description of the data capture type, e.g. “Joint
Position,” for displaying purposes.

disableFlags Returns the disable flags, primarily used for data capture types
with size greater than 1. The disable flags notify which data
elements should be ignored.

setDisableFlags Sets the disable flags. See disableFlags above.

type Returns an enumeration that indicates if the data capture type
is of manipulator-level, link-level, or end-effector level data
type. The enumerations are MANIPULATOR_DATA_TYPE,
LINK_DATA_TYPE, and END_EFFECTOR_DATA_TYPE.

label Returns the description of each element of the captured data.
For example, the first element of base position is “Translation
X.”

token Returns a unique token of this class. It is used in many
situations, e.g. to create a new instance of this class or to
identify an instance of this class.

Table 15-5: Methods in EcDataCaptureType.

 336

Currently, the concrete classes in Table 15-6 have been implemented to capture several types of
useful information. Other data capture types can be added by deriving from EcDataCaptureType.

Class Description

EcBaseAccelerationDataCaptureType Captures base acceleration of a manipulator. This is
a 6x1 vector.

EcBasePositionDataCaptureType Captures base position of a manipulator. This is a
7x1 vector.

EcBaseVelocityDataCaptureType Captures base velocity of a manipulator. This is a
6x1 vector.

EcControlTorqueDataCaptureType Captures control torque in each link of a
manipulator. This is a scalar.

EcEndEffectorAccelerationDataCaptureType Captures actual acceleration of an end-effector. Only
valid in dynamic simulation.

EcEndEffectorPlacementDataCaptureType Captures actual placement of an end-effector.

EcEndEffectorVelocityDataCaptureType Captures actual velocity of an end-effector.

EcExternalForceDataCaptureType Captures external force applied to each link
including the base of a manipulator. This is a 6x1
vector.

EcJointAccelerationDataCaptureType Captures joint acceleration in each link of a
manipulator. This is a scalar.

EcJointPositionDataCaptureType Captures joint position in each link of a manipulator.
This is a scalar.

EcJointTorqueDataCaptureType Captures joint torque in each link of a manipulator.
This is a scalar.

EcJointVelocityDataCaptureType Captures joint velocity in each link of a manipulator.
This is a scalar.

EcReachTargetDataCaptureType Captures whether or not an end-effector successfully
reaches the desired location.

EcStructuralForceDataCaptureType Captures external force applied to each link
including the base of a manipulator. This is a 6x1
vector.

Table 15-6: Currently implemented data capture types.

 337

EcDisplaySystemDataCapture is a convenient class that encapsulates a string and two instances of
EcSystemDataCapture and is used primarily for displaying (plotting) purposes. It is designed to
support two-Y-axes data plots. The string is used for the plot title and the two instances of
EcSystemDtaCapture are used for the left and right Y-axes of the plot.

Method Description

title Returns the title of the plot.

setTitle Sets the title of the plot.

leftSystemDataCapture Returns the system data capture for the left Y-axis.

setLeftSystemDataCapture Sets the system data capture for the left Y-axis.

leftSystemDataCapture Returns the system data capture for the left Y-axis.

setLeftSystemDataCapture Sets the system data capture for the left Y-axis.

Table 15-7: Methods in EcDisplaySystemDataCapture.

15.2.1.3 Data Storage
The data storage is where the captured data are stored before being written to files. The class
EcSystemDataStorage contains all the captured data in a collection of real numbers and the
simulation time stamp at the moment the data are captured. A vector of EcSystemDataStorage
instances then represents a time history of the captured data. Table 15-8 lists the methods of
EcSystemDataStorage. Note, however, that the user will generally not have to deal directly with
EcSystemDataStorage.

Method Description

manipualtorDataVector Returns the manipulator data vector

setManipulatorDataVector Sets the manipulator data vector

setSpecificManipulatorLevelData Sets specific manipulator-level dta

setSpecificLinkLevelData Sets specific link-level dta

setSpecificEndEffectorLevelData Sets specific end-effector dta

time Returns simulation time

setTime Sets simulation time

pathPointIndex Returns the index of the point in the path

setPathPointIndex Sets the index of the point in the path

 338

getStringElements Returns a vector of strings that contain the data (converted
from numbers) in this storage. Used for saving data to file.

type Returns GENERAL_STORAGE to indicate that this
component is a data storage.

Table 15-8: Methods in EcSystemDataStorage.

15.2.1.4 Output Writer
Once the data are stored in the data storage, it can later be written to files in different formats
through classes that are derived from EcBaseOutputWriter. EcBaseOutputWriter is an abstract base
class with the pure virtual methods listed in Table 15-9. Like the data capture type, the user can
easily add an output writer that writes to a new file format by just deriving a class from
EcBaseOutputWriter. Currently, four file formats – namely Mathematica, MATLAB, comma-
delimited text, and XML – are supported.

Method Description

fileExtension Returns the file extension of the file format, e.g. “.m” for
MATLAB.

formatDescription Returns a description of the format, e.g. “MATLAB”, for
displaying purposes.

initialize Performs any necessary action before writing data to file.

finalize Performs any necessary action after writing data to file.

token Returns a unique token of this class. It is used in many
situations, e.g. to create a new instance of this class or to
identify an instance of this class.

writeComponentOpening Writes any necessary element before writing a data component
to file.

writeDataComponent Writes a data component stored in an EcSystemDataStorage
object to file.

writeComponentClosing Writes any necessary element after writing a data component to
file.

Table 15-9: Methods in EcBaseOutputWriter.

Class Description

EcMathematicaOutputWriter Writes the simulation outputs in the Mathematica format

 339

(.nb).

EcMatlabOutputWriter Writes the simulation outputs in the MATLAB format
(.m).

EcTextOutputWriter Writes the simulation outputs in the comma-delimited
text format (.txt). This can be loaded into Excel.

EcXmlOutputWriter Writes the simulation outputs in the XML format (.xml).

Table 15-10: Currently implemented output writers.

There is a helper class EcSystemStoredData that provides a convenient way to write captured data to
files, especially if one wishes to save the capture data in multiple formats all at once. It encapsulates
a data storage, a vector of output writers, and file output streams so the user does not need to set
them up.

Method Description

setOutputWriterVector Sets the vector of output writers.

allocateStorage Allocates enough memory for the internal data storage.

beginSaveToFile Opens a file or files that will be used to write the captured data
and prepares the file(s) for saving.

finishSaveToFile Finalizes the saving process and close the file(s).

saveCapturedData Saves a set of captured data by appending it to the open file(s).

isSaving Returns true if the saving process is ongoing.

Table 15-11: Methods in EcSystemStoredData.

15.2.2 Configuration Example
This section will show an example of how to programmatically configure the data capturing
mechanism to store or plot the desired data from a simulation. Perhaps, an easier to perform the same
configuration is through GUI, which is covered in the ActinViewer chapter.

15.2.2.1 Data Capture
The text box below shows the code snippet for configuring the data capture to capture the following
information:

1. Base position of the first manipulator in the system (index 0).
2. Base velocity of the first manipulator.
3. Joint position of all the links in the first manipulator.
4. Joint velocity of the link labeled “link-3” in the first manipulator.
5. Placement of the first end-effector in the first manipulator.

 340

 // read the simulation from file
 EcSystemSimulation simulation;
 simulation.readFromFile("SimulationFile.xml");

 // get the reference to the first manipulator
 const EcIndividualManipulator&
 manip0=simulation.statedSystem().system().manipulators()[0];

 // configure the data capture
 EcSystemDataCapture sysDataCapture;
 sysDataCapture.addManipulatorDataCaptureType(0,
 EcSimAnalysis::EcBasePositionDataCaptureTypeToken);
 sysDataCapture.addManipulatorDataCaptureType(0,
 EcSimAnalysis::EcBaseVelocityDataCaptureTypeToken);
 sysDataCapture.addLinkDataCaptureType(0,
 EcSimAnalysis::EcJointPositionDataCaptureTypeToken, manip0);
 sysDataCapture.addLinkDataCaptureType(0, "link-3",
 EcSimAnalysis::EcJointVelocityDataCaptureTypeToken);
 sysDataCapture.addEndEffectorDataCaptureType(0, 0,
 EcSimAnalysis::EcEndEffectorPlacementDataCaptureTypeToken);

Text Box 15-5: Code snippet for configuring the desired data capture.

15.2.2.2 Writing Output to Files
Now, let’s say we want to save the captured data into a file in a comma-seperated text format. The
text box below shows how to do this programmatically.
 // create and then allocate the memory for a data storage
 EcSystemDataStorage dataStorage;
 simulation.storageSystemDataCapture().allocateStorage(dataStorage);

 // create a vector for system data
 EcSystemDataVector dataVector;
 // add the system data capture as the first element of the vector
 // this will provide the descriptions for the captured data
 dataVector.pushBack(simulation.storageSystemDataCapture());

 // simulation loop
 const EcU32 numSteps=100;
 const EcReal timeStep=0.01;
 for(EcU32 ii=0; ii<numSteps; ++ii)
 {
 EcReal time=ii*timeStep;

 // run the simulation
 // ...

 // afterwards, capture the data
 simulation.captureStorageData();
 dataStorage.setTime(time);
 // store the data in the storage
 simulation.storageSystemDataCapture().storeData(dataStorage);
 // add the data storage to the data vector
 dataVector.pushBack(dataStorage);
 }

 // output the data to a text file
 EcTextOutputWriter textWriter;
 const EcString txtFilename="output"+textWriter.fileExtension();
 std::ofstream fout(txtFilename.c_str());

 341

 // initialize the stream
 textWriter.initialize(dataVector,fout);
 // write the data to the stream
 for(EcU32 ii=0; ii<dataVector.size(); ++ii)
 {
 textWriter.writeComponentOpening(dataVector[ii], fout);
 textWriter.writeDataComponent(dataVector[ii], fout);
 textWriter.writeComponentClosing(dataVector[ii], fout);
 }
 // finalize the stream
 textWriter.finalize(dataVector, fout);

Text Box 15-6: Code snippet for writing captured data to file.

Alternatively, one can use the helper class EcSystemStoredData to write the captured data to files as
illustrated in the text box below. In this example, the captured data is written in two different
formats, namely Matlab and text formats.
 // output the data to files in Matlab and comma-separated text formats
 EcMatlabOutputWriter matlabWriter;
 EcTextOutputWriter textWriter;
 EcOutputWriterVector outputWriterVector;
 outputWriterVector.pushBack(matlabWriter);
 outputWriterVector.pushBack(textWriter);

 // use a convenient helper class EcSystemStoredData
 EcSystemStoredData storedData;
 // set the output writers and allocate memory for storage
 storedData.setOutputWriterVector(outputWriterVector);
 storedData.allocateStorage(sysDataCapture);

 // set the file name without extension. File extension (.m, .txt) will be
automatically added
 const EcString filename("output");
 // initialize
 storedData.beginSaveToFile(filename);
 // simulation loop
 const EcU32 numSteps=100;
 const EcReal timeStep=0.01;
 for(EcU32 ii=0; ii<numSteps; ++ii)
 {
 EcReal time=ii*timeStep;

 // run the simulation
 // ...

 // afterwards, capture the data
 simulation.captureStorageData();

 // save the data to file
 storedData.saveCapturedData(time, simulation.storageSystemDataCapture());
 }
 // finalize
 storedData.finishSaveToFile();

Text Box 15-7: An alternative method for writing captured data to file.

Note that the first example above stores all the history of captured data in a vector before writing it
all in a file while the second example writes the captured data for each simulation time instance to
files. The former will generally be faster since file I/O is slower then memory read/write. However, it
will use more memory since it needs to store the entire history of the captured data in the simulation.

 342

15.2.2.3 Output Examples
This section presents examples of outputs in different file formats. To simplify the outputs, let’s
configure the data capture to capture only the joint position and velocity of “link-0” of the first
manipulator (index 0). The text box below shows an example of XML describing an
EcSystemDataCapture object that has been configured as such.
<systemDataCapture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.energid.com/namespace/sm
 sysDataCapture.sm.xsd" xmlns="http://www.energid.com/namespace/sm"
version="1.0.0">
 <manipulatorDataCaptureVector size="1">
 <element>
 <dataCaptureTypeVector size="0"/>
 <endEffectorDataCaptureVector size="0"/>
 <linkDataCaptureVector size="1">
 <element>
 <dataCaptureTypeVector size="2">
 <jointPositionDataCaptureType>
 <dataLabels size="1">
 <element>Joint Position</element>
 </dataLabels>
 <disableFlags size="0"/>
 </jointPositionDataCaptureType>
 <jointVelocityDataCaptureType>
 <dataLabels size="1">
 <element>Joint Velocity</element>
 </dataLabels>
 <disableFlags size="0"/>
 </jointVelocityDataCaptureType>
 </dataCaptureTypeVector>
 <linkIdentification>link-0</linkIdentification>
 </element>
 </linkDataCaptureVector>
 <manipulatorIndex>0</manipulatorIndex>
 </element>
 </manipulatorDataCaptureVector>
 <systemDataCaptureLabel></systemDataCaptureLabel>
</systemDataCapture>

Text Box 15-8: Example of XML describing an EcSystemDataCapture instance.

The text boxes below show the same captured data but in different formats. Note that since XML is
very verbose, the captured information of only one time stamp at 0 is shown.
 (*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[2080, 67]*)
(*NotebookOutlinePosition[2744, 90]*)
(* CellTagsIndexPosition[2700, 86]*)
(*WindowFrame->Normal*)

Notebook[{
Cell[BoxData[
 \(\(Data = {
{"Time" ,"Manip[0]:link-0:Joint Positions" ,"Manip[0]:link-0:Joint Velocities"}
,{0 ,0.503881 ,1.8537e-022}
,{0.031 ,0.503672 ,-0.00579795}
,{0.046 ,0.503514 ,-0.0131736}
,{0.078 ,0.502705 ,-0.00963094}
,{0.109 ,0.501687 ,-0.0121206}
,{0.125 ,0.501287 ,-0.0333618}
,{0.156 ,0.499639 ,-0.0196119}

 343

,{0.187 ,0.498148 ,-0.0413905}
,{0.203 ,0.497398 ,-0.0625211}
,{0.234 ,0.494881 ,-0.0299539}
,{0.25 ,0.494109 ,-0.0643908}
,{0.281 ,0.491284 ,-0.0336166}
,{0.312 ,0.488996 ,-0.0635215}
,{0.328 ,0.48735 ,-0.0457239}
,{0.359 ,0.484769 ,-0.0716736}
,{0.39 ,0.481368 ,-0.0404647}
};\)\)], "Input",
CellOpen->False],

Cell[BoxData[
 \(Do[Data[\([1, ii]\)] =
 StringReplace[
 Data[\([1,
 ii]\)], {"\<:\>" -> "\<\>", "\< \>" \[Rule] "\<\>", "\<-\>" -> \
"\<\>", "\<[\>" -> "\<\>", "\<]\>" -> "\<\>"}]\ ;
 ToExpression[
 Data[\([1, ii]\)] <> "\<=\>" <> "\<Table[Data[[jj,\>" <>
 ToString[ii] <> "\<]],{jj,2,Length[Data]}]\>"], {ii, 1,
 Length[Data[\([1]\)]]}]\)], "Input",
 CellOpen->False],

Cell[BoxData[
 \(variables = Data[\([1]\)]\)], "Input"]
},
FrontEndVersion->"5.2 for Microsoft Windows",
ScreenRectangle->{{0, 1280}, {0, 911}},
WindowSize->{532, 740},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
ShowSelection->True
]

Text Box 15-9: Example of simulation outputs in Mathematica format.

Description=[
'Time' 'Manip[0]:link-0:Joint Positions' 'Manip[0]:link-0:Joint Velocities'
];
Data=[
0 0.503881 1.8537e-022;
0.031 0.503672 -0.00579795;
0.046 0.503514 -0.0131736;
0.078 0.502705 -0.00963094;
0.109 0.501687 -0.0121206;
0.125 0.501287 -0.0333618;
0.156 0.499639 -0.0196119;
0.187 0.498148 -0.0413905;
0.203 0.497398 -0.0625211;
0.234 0.494881 -0.0299539;
0.25 0.494109 -0.0643908;
0.281 0.491284 -0.0336166;
0.312 0.488996 -0.0635215;
0.328 0.48735 -0.0457239;
0.359 0.484769 -0.0716736;
0.39 0.481368 -0.0404647;
];

Text Box 15-10: Example of simulation outputs in MATLAB format.

 344

Time,Manip[0]:link-0:Joint Positions,Manip[0]:link-0:Joint Velocities
0,0.503881,1.8537e-022
0.031,0.503672,-0.00579795
0.046,0.503514,-0.0131736
0.078,0.502705,-0.00963094
0.109,0.501687,-0.0121206
0.125,0.501287,-0.0333618
0.156,0.499639,-0.0196119
0.187,0.498148,-0.0413905
0.203,0.497398,-0.0625211
0.234,0.494881,-0.0299539
0.25,0.494109,-0.0643908
0.281,0.491284,-0.0336166
0.312,0.488996,-0.0635215
0.328,0.48735,-0.0457239
0.359,0.484769,-0.0716736
0.39,0.481368,-0.0404647

Text Box 15-11: Example of simulation outputs in comma-delimited text format.

<?xml version="1.0" encoding="ISO-8859-1"?>
<default xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.energid.com/namespace/cr
 capturedDataStream.cr.xsd" xmlns="http://www.energid.com/namespace/cr" size="0">
 <sm:generalCapture xmlns:sm="http://www.energid.com/namespace/sm">
 <sm:manipulatorDataCaptureVector size="1">
 <sm:element>
 <sm:dataCaptureTypeVector size="0"/>
 <sm:linkDataCaptureVector size="1">
 <sm:element>
 <sm:dataCaptureTypeVector size="2">
 <sm:jointPositionDataCaptureType>
 <sm:disableFlags size="0"/>
 </sm:jointPositionDataCaptureType>
 <sm:jointVelocityDataCaptureType>
 <sm:disableFlags size="0"/>
 </sm:jointVelocityDataCaptureType>
 </sm:dataCaptureTypeVector>
 <sm:linkIdentification>link-0</sm:linkIdentification>
 </sm:element>
 </sm:linkDataCaptureVector>
 <sm:manipulatorIndex>0</sm:manipulatorIndex>
 </sm:element>
 </sm:manipulatorDataCaptureVector>
 <sm:systemDataCaptureLabel>Storage</sm:systemDataCaptureLabel>
 </sm:generalCapture>
 <sm:generalStorage xmlns:sm="http://www.energid.com/namespace/sm">
 <sm:manipulatorDataVector size="1">
 <sm:element>
 <sm:linkLevelData size="1">
 <sm:element size="2">
 <sm:element size="1">
 <group>0.50388100000000002</group>
 </sm:element>
 <sm:element size="1">
 <group>1.8537000038131529e-022</group>
 </sm:element>
 </sm:element>
 </sm:linkLevelData>
 <sm:manipulatorLevelData size="0"/>
 </sm:element>
 </sm:manipulatorDataVector>

 345

 <sm:time>0</sm:time>
 </sm:generalStorage>
</default>

Text Box 15-12: Example of simulation outputs in XML format.

15.2.2.4 Display in Plots
Shown below is a code snippet for configuring a display data capture to capture the following
information:

1. Set the title of the plot to “Plot 1.”
2. For the left Y-axis of the plot

a. Set the label to “Joint Positions.”
b. Joint position of the link labeled “link-0” in the first manipulator.
c. Joint position of the link labeled “link-1” in the first manipulator.

3. For the right Y-axis of the plot
a. Set the label to “Joint Velocities.”
b. Joint velocity of the link labeled “link-0” in the first manipulator.
c. Joint velocity of the link labeled “link-1” in the first manipulator.

 // set up the data capture for the left Y-axis
 EcSystemDataCapture leftDataCapture;
 leftDataCapture.setLabel("Joint Positions");
 leftDataCapture.addLinkDataCaptureType(0, "link-0",
 EcSimAnalysis::EcJointPositionDataCaptureTypeToken);
 leftDataCapture.addLinkDataCaptureType(0, "link-1",
 EcSimAnalysis::EcJointPositionDataCaptureTypeToken);

 // set up the data capture for the right Y-axis
 EcSystemDataCapture rightDataCapture;
 rightDataCapture.setLabel("Joint Velocities");
 rightDataCapture.addLinkDataCaptureType(0, "link-0",
 EcSimAnalysis::EcJointVelocityDataCaptureTypeToken);
 rightDataCapture.addLinkDataCaptureType(0, "link-1",
 EcSimAnalysis::EcJointVelocityDataCaptureTypeToken);

 // set up the display data capture
 EcDisplaySystemDataCapture dispDataCapture;
 dispDataCapture.setTitle("Plot 1");
 dispDataCapture.setLeftSystemDataCapture(leftDataCapture);
 dispDataCapture.setRightSystemDataCapture(rightDataCapture);

Text Box 15-13: Code snippet for configuring data capturing for plotting purposes.

Assuming that we have a class that can generate a graphical plot that takes an instance of
EcXmlRealVector as a data point, the following code snippet shows how to prepare the captured data
so that it is ready to be sent to the plotting class.
 // set up the data storages for left and right Y-axis data
 EcSystemDataStorage leftDataStorage;
 EcSystemDataStorage rightDataStorage;

 // allocate the memory
 dispDataCapture.leftSystemDataCapture().
 allocateStorage(leftDataStorage);
 dispDataCapture.rightSystemDataCapture().
 allocateStorage(rightDataStorage);

 346

 // vectors of numbers to cache the captured data for plotting
 EcXmlRealVector leftData, rightData;

 // simulation loop
 const EcU32 numSteps=100;
 const EcReal timeStep=0.01;
 for(EcU32 ii=0; ii<numSteps; ++ii)
 {
 EcReal time=ii*timeStep;

 // run the simulation
 // ...

 // afterwards, capture the data
 dispDataCapture.leftSystemDataCapture().captureData(simulation);
 dispDataCapture.rightSystemDataCapture().captureData(simulation);

 // store the data in the storage
 dispDataCapture.leftSystemDataCapture().storeData(leftDataStorage);
 dispDataCapture.rightSystemDataCapture().storeData(rightDataStorage);

 // obtain the captured data in the vector forms
 leftDataStorage.getRealElements(leftData);
 rightDataStorage.getRealElements(rightData);

 // then we can add leftData and rightData to the plot

 }

Text Box 15-14: Code snippet for preparing the data from the data capture for plotting.

16 Studies

16.1 Parametric and Monte Carlo Studies

16.1.1 Design
In our design, parametric and Monte Carlo studies are essentially the same thing except that, for
Monte Carlo, randomness is introduced by using random modification classes as will be discussed
later. There are three study classes – namely EcBasicStudy, EcSimpleStudy, and EcComprehensive-
Study – differing from one another in terms of complexity, with EcBasicStudy being the simplest and
EcComprehensiveStudy the most complex. Depending on the need of the desired study, one can
choose to use one type of study over the others.

Figure 16-1 shows the diagram of a basic study. A basic study represents a single simulation run. In
order to run a basic study, a simulation – which contains the state (positions and velocities), the
system (physical manipulators), and control system – is first passed through a sequence of ‘one-time’
modifications, each of which modifies a single entry of the simulation (either the system, the state, or
the control system). Each modification is a collection of data sets that include 1) the manipulator
index, 2) the minor index (link or end-effector index), and 3) a vector of new values for the
parameters to be modified. For example, one modification object may change the joint position of
“link-0” of manipulator 0. Another may change the mass property of “link-5” of manipulator 2.

‘Run-time’ modifications are similar to ‘one-time’ modifications in the sense that they too modify
some part of the simulation. However, instead of doing it only once, they continually make

 347

modifications throughout the simulation timespan at the specified time instances. The capture times
specify the time instances at which the simulation output should be captured (to later be written to
file or analyzed).

Figure 16-1: The diagram of a basic study.

Up another level is a simple study, diagramed in Figure 16-2, which is essentially a collection of
basic studies that are executed in series in a single thread. Before entering each of the basic studies, a
simulation can be modified through a set of one-time modifications. These modifications will affect
all the basic studies, as shown in Figure 16-2.

 348

Figure 16-2: The diagram of a simple study.

At the highest level is a comprehensive study, diagramed in Figure 16-3. A comprehensive is
basically a collection of simple studies that can be executed in different threads. Note that the
number of simple studies does not have to equal the number of threads. If the number of threads is
less than the number of simple studies, the remaining studies will wait in line and start their runs
only after the first batch of studies have finished. For example, if the number of threads is 2 and the
number of simple studies is 5. Then, only two simple studies will be run simultaneously. After, the
first two studies finish, the next two will then be run. Finally, the fifth study will be executed after
the third and the fourth study complete their runs.

 349

Figure 16-3: The diagram of a comprehensive study.

16.1.2 Implementation
The classes to support parametric and Monte Carlo studies can be broadly categorized into two
types: modification classes and study classes. As the name suggests, modification classes are
responsible for modifying properties or parameters of some part of a simulation. Modification
classes are divided into two categories: one-time modification and run-time modification. Study
classes in general use modification classes to modify the parameters as desired and then run studies
based on the modified simulation. The outputs of these studies can be written in several formats
including XML, MATLAB, Mathematica, and Excel. This section describes the details of
modification and study classes.

Figure 16-4 shows a class diagram for ‘one-time’ modification classes. These modifications are used
to make desired changes to the simulation prior to the study starts a new run. The top three classes in
the diagram – EcSimulationModification, EcSystemModification, and EcStateModification – are
abstract. EcSimulationModification is the base class of all ‘one-time’ modification classes. The main
method in EcSimulationModification is modifySimulation, which is a pure virtual function and takes
an EcSystemSimulation as an argument. As the names imply, EcSystemModification and
EcStateModification are used to modify the system parameters and the state, respectively. The
content of EcSimulationModification class is described in Table 16-1.

 350

EcSimulationModification

+ «pure» modifySimulation(EcSystemSimulation&) : EcBoolean
+ setManipulatorIndex(EcU32) : void
+ manipulatorIndex() : EcU32
+ modificationValueDescriptions() : const EcXmlStringVector&
+ setModificationValueDescriptions(const EcXmlStringVector&) : void
+ modificationValues() : const EcXmlRealVector&
+ setModificationValues(const EcXmlRealVector&) : void

EcSystemModification

+ modifySimulation(EcSystemSimulation&) : EcBoolean
+ «pure» modifyStatedSystem(EcStatedSystem&) : EcBoolean

EcMassPropertyModification

+ modifyStatedSystem(EcStatedSystem&) : EcBoolean

EcJointActuatorModification

+ modifyStatedSystem(EcStatedSystem&) : EcBoolean

EcStateModification

+ modifySimulation(EcSystemSimulation&) : EcBoolean
+ «pure» modifyState(EcManipulatorSystemState&) : EcBoolean

EcPositionStateModification

+ modifyState(EcManipulatorSystemState&) : EcBoolean

EcVelocityStateModification

+ modifyState(EcManipulatorSystemState&) : EcBoolean

Figure 16-4: Class diagram of 'one-time' modifications.

Method Description

manipulatorIndex /
setManipulatorIndex

Gets/sets a manipulator in the system through its index.

minorIndex /
setMinorIndex

For the chosen manipulator, gets/sets either a link or an end-
effector through its index.

modifySimulation Pure virtual method. Derived class must implement this to modify
the simulation according to its own rules.

Table 16-1: Methods in EcSimulationModification.

There are currently four concrete modification classes:

1. EcJointActuatorModification is derived from EcSystemModification and is responsible for
applying changes to a joint actuator, e.g. maximum joint torques, viscous friction, etc.

2. EcMassPropertyModification is derived from EcSystemModification and is responsible for
applying changes to the mass property of a link, i.e. mass, first moment of inertia, and
second moment of inertia.

 351

3. EcPositionStateModification is derived from EcStateModification and is responsible for
applying changes to a joint position. If the specified link is the base link, the modification
values are for the position and orientation (through a quaternion) of the base.

4. EcVelocityStateModification is derived from EcStateModification and is responsible for
applying changes to a joint velocity. If the specified link is the base link, the modification
values are for the linear and angular velocities of the base.

Other types of modifications can be added by deriving from either EcSystemModification,
EcStateModification, or even directly from EcSimulationModification.

Similar to ‘one-time’ modification, all ‘run-time’ modification classes are derived from
EcRunTimeSimulationModification. Run-time modifications serve the same purpose as the one-time
counterpart except that they can be applied multiple times during the run instead of once prior to the
run. Currently, only EcDesiredPlacementPathModification is derived from EcRunTimeSimulation-
Modification. It is used to modify the desired placements along the path of an end-effector.

Member Description

manipulatorIndex /
setManipulatorIndex

Gets/sets a manipulator in the system through its index.

minorIndex /
setMinorIndex

For the chosen manipulator, gets/sets either a link or an end-effector
through its index.

modifySimulation Pure virtual method. Derived class must implement this to modify
the simulation at specified times according to its own rules.

Table 16-2: Mehods in EcRunTimeSimulationModification.

If the vector of time instances and the vector of modification values are of size 1 and that time is 0,
then run-time modifications behave exactly like ‘one-time’ modifications. It may be tempting to
dismiss the use of one-time modifications in favor of the run-time counterpart. However, since there
are overheads, in terms of performance and resources, associated with run-time modifications, one-
time modifications are recommended for use with any system or state that is meant to be modified
only once.

EcSimulationModificationVector and EcRunTimeSimulationModificationVector are vector classes
that contain instances of classes derived from EcSimulationModification and EcRunTimeSimulation-
Modification, respectively. They are used in the study classes described below.

As far as study classes, EcBaseStudy is the abstract base class for all study classes. Three study
classes are implemented for the three studies diagramed in Figure 16-1 to Figure 16-3. They are
EcBasicStudy, EcSimpleStudy, and EcComprehensiveStudy. The main method which must be
implemented by all classes derived from EcBaseStudy is startSimulations, which takes an instance of
EcSystemSimulation as an argument. Important methods of EcBaseStudy as well as their descriptions
are listed in Table 16-3.

 352

Method Description

numThreadsForSimulations /
setNumThreadsForSimulations

Gets/sets the maximum number of threads to be created for
simulation runs.

simulationTimes /
setSimulationTimes

Gets/sets all the simulation time instances for the end-effector
paths.

endEffectorPaths /
setEndEffectorPaths

Gets/sets all the desired end-effector placements at the time
instances specified in simulationTimes.

randomNumberSeed /
setRandomNumberSeed

Gets/sets the seed for random number generation. Used for Monte
Carlo simulations.

startSimulations Pure virtual method. Must be implemented by all derived classes.
Start the simulations for the study.

Table 16-3: Methods in EcBaseStudy.

The methods specific to EcBasicStudy class are listed in Table 16-4. The simulation run is started by
calling startSimulations method which takes an EcSystemSimulation object as an argument. A series
of one-time modifications will then be applied prior to the run and a series of run-time modifications
during the run.

Method Description

modificationVector /
setModificationVector

Gets/sets the ‘one-time’ modifications that should be applied
before starting a new run.

runTimeModificationVector /
setRunTimeModificationVector

Gets/sets all the ‘run-time’ modifications that should be applied
during the run.

captureTimes /
setCaptureTimes

Gets/sets all the capture times for the run. Capture times are used
to signify that the data should be captured at those time
instances.

simulationTimeStep /
setSimulationTimeStep

Gets/sets the simulation time step.

dataStorage Gets the simulation output data captured at the times specified in
captureTimes.

startSimulations Start the simulation for the study.

Table 16-4: Methods in EcBasicStudy.

EcSimpleStudy is up one level from EcBasicStudy in the study hierarchy. It contains a vector of
EcBasicStudy instances as well as a vector of one-time modifications common to all basic studies.
The methods in EcSimpleStudy are listed in Table 16-5.

 353

Member Description

commonModificationVector /
setCommonModificationVector

Gets/sets the one-time modification vector that is common to all
basic studies.

basicStudies /
setBasicStudies

Gets/sets the series of basic studies.

runIndividualPaths /
setRunIndividualPaths

Gets/sets whether or not the individual basic studies should use
their own paths when running the simulations.

startSimulations Start the simulations for all the basic studies. These basic studies
are run in series in a single thread.

Table 16-5: Methods in EcSimpleStudy.

At the top of the study hierarchy is EcComprehensiveStudy, which contains a vector of EcSimpleStuy
instances. Table 16-6 lists the methods specific to EcComprehensiveStudy.

Member Description

simpleStudies /
setSimpleStudies

Gets/sets the vector of simple studies.

runIndividualPaths /
setRunIndividualPaths

Gets/sets whether or not the individual simple studies should use
their own paths when running the simulations.

startSimulations Start the simulations for all the simple studies. These studies are
run in parallel in multiple threads.

Table 16-6: Methods in EcComprehensiveStudy.

16.2 Simulation Visualization
While a Monte Carlo simulation or a parametric study is running, it would be insightful to be able to
visualize what is happening. Support for visualization must be embedded in the simulation loop. This
is accomplished through a callback mechanism through subscribe-publish model.

Due to the hierarchical structure presented in the previous section, actual simulation loops are only
implemented in EcBasicStudy, while instances of EcSimpleStudy and EcComprehensiveStudy
delegate the simulation work to the basic studies. Because of this, the visualization support needs
only be added to the simulation loop in EcBasicStudy.

 354

Figure 16-5: Simulation visualization with subscribe-publish model.

Figure 16-5 Illustrates how the callback mechanism works. The visualization tool subscribes to a
basic study that it wants to receive the simulation data. This model allows any number of subscribers
to the same study. During the simulation, in this case of Robonaut, the data is published and all the
subscribers then receive the simulation data every interval. The EcStateCallback class was created to
manage the callback mechanism. Its methods are listed in Table 16-7. Table 16-8 shows the
additional members related to the callback in EcBasicStudy. Note that, since publishing the data
incurs some overhead, EcBasicStudy has an option not to publish any data if there is no subscriber
wanting to receive the data.

Method Description

subscribe Subscribes to this callback.

unsubscribe Unsubscribe from this callback.

publish Publishes the new data to be consumed by the subscriber.

numSubscribers Returns the total number of subscribers for this callback.

Table 16-7: Methods of EcStateCallback.

 355

Method Description

callbackIndex /
setCallbackIndex

Gets/sets the callback index. Used for identification in case of
multiple callbacks.

callbackIntervalInMs /
setCallbackIntervalInMs

Gets/sets interval in millisecond (simulation time, not wall clock
time) for which the simulation data is published.

subscribe Subscribes to the callback in this study.

unsubscribe Unsubscribes from the callback in this study.

Table 16-8: Additional mehods in EcBasicStudy to handle callbacks.

Also available is a program called “studyTool” that executes a comprehensive study. It provides a
rendering window that subscribes to the callbacks in the sub-studies of the comprehensive study.
Running a study is then a two-step process. The first step is to programmatically create a study and
save it in a file. Coding examples of this process will be given later. Then, you can run “studyTool”
on the study file to execute the study.

16.3 Randomization and Monte Carlo Simulation
For Monte Carlo simulation, it is usually desirable and convenient to randomize properties of the
whole system. This is accomplished with two new modification classes. The first class,
EcSystemRandomModification, is intended to randomly modify the system properties while the
other, EcStateRandomModification, randomizes the initial state. These two classes can be used just
like any other modification class. However, instead of modifying the properties and/or the state of
just a single link of a single manipulator, they are designed to randomly modify the properties and/or
the state of all links of all manipulators.

16.3.1 Randomization of System Properties
Figure 16-6 shows a diagram of classes that are involved in randomizing system properties.
EcSystemRandomModification is derived from EcSystemModification, which was previously
detailed. Like all modification classes, the main function of EcSystemRandomModification is to
modify the simulation that is passed on to it according to its rule, which is to randomize all the
properties of all links of all manipulators in the system. EcSystemRandomModification relies on
another class – EcSystemRandomVariation – on how to randomize the system properties. Since
manipulators are identified by indices and links by string labels, EcSystemRandomVariation contains
a vector of maps of strings and instances of EcLinkPropertyRandomVariation. Each instance of
EcLinkPropertyRandomVariation corresponds to a link in a manipulator and contains a set of
instances of variation classes, each of which knows how to randomize a specific property of a link.
Currently, the following four variation classes have been implemented:

1. EcLinkKinematicsVariation: This randomizes the link kinematics by adjusting the precursor.
2. EcMassPropertyVariation: This randomizes the mass properties (mass and first and second

moments of inertia).
3. EcJointActuatorRandomVariation: This randomizes mechanical properties of actuators such

inertia, viscous friction, etc.

 356

4. EcSurfacePropertyVariation: This randomizes the damper and spring constants of the
surface.

EcSystemRandomVariation also contains an instance of EcLinkPropertyRandomVariation that is
used as the default variation for all the links not contained in the vector of maps. This is very
convenient because we need not specify the variations for all the links. For example, to have one
variation apply to all the links, we can just specify the default variation and leave the vector of maps
empty.

EcLinkPropertyRandomVariation

EcLinkKinematicsRandomVariation

EcMassPropertyRandomVariation EcJointActuatorRandomVariation

EcSurfacePropertyRandomVariation

EcSystemModification
EcSystemRandomModification

+ modifyStatedSystem(EcStatedSystem&) : EcBoolean

EcSystemRandomVariation

Figure 16-6: Class diagram for randomization of system properties.

16.3.2 Randomization of State Variables
Funcationlly, EcStateRandomModification is to the state what EcSystemRandomModification is to
the system. It is used to randomize all the state variables of all manipulators in the system. As with
EcSystemRandomModification, EcStateRandomModification also relies on another class –
EcStateRandomVariation – to provide the means to randomize the state variables. EcStateRandom-
Variation contains a vector of EcPositionStateRandomVariation instances and a vector of
EcVelocityStateRandomVariation instances. An instance of EcPositionStateRandomVariation
represents random variations of position state variables of a single manipulator. The same is also true
for EcVelocityStateRandomVariation but for the velocity state variables. The relationships of all
classes related to randomization of state are depicted in Figure 16-7.

 357

EcStateRandomVariation

EcPositionStateRandomVariationEcVelocityStateRandomVariation

EcStateModification
EcStateRandomModification

+ modifyState(EcManipulatorSystemState&) : EcBoolean

Figure 16-7: Class diagram for randomization of state.

16.4 Mass Properties Randomization
Randomization of most properties is straightforward assuming that the standard deviations (one-
sigma values) of those properties are given. However, these one-sigma values are not always readily
available for a robot under study. Mass property information is an example of this. Robot dynamic
behavior changes directly and significantly with the mass properties, yet it is difficult to estimate
how the mass properties change in the field. In fact, it is often challenging even to get nominal data
for the second moment of inertia—difficulty in obtaining data on variation from the nominal values
is much greater.

Mass properties consist of a mass (one scalar), a first moment of inertia (three scalars), and a second
moment of inertia (six scalars). These values are interrelated—increasing mass tends to increase the
elements of the first and second moments. This implies that the standard deviations of the elements
of the first and second moments of inertia are related to the standard deviation of the mass. What a
robot modeler would hope for in the best case would be a way to estimate the variation of the first
and second moments of inertia as a function of a known variation in mass, as variation in mass is
easy to estimate with a scale and a set of the objects to be modeled. A mathematical approach to
doing this is exactly what we worked out in the last quarter, which is presented below.

16.4.1 Background
In the general sense (not restricted to mass properties), let the integration of a zero-mean random
variable χ over a 3D volume V be established as follows:

∫=
V

dVX χ (16-1)

Here, rr is a 3D point within the volume V.

 358

This integral is not rigorously defined here—the constraint imposed on it is that it must be consistent
with discrete approximation. Let the standard deviation of X be labeled Xσ . These properties are
illustrated in the figure below.

Figure 16-8: An illustration of the properties used to define equation (16-1).

Then, let some function of 3D position rr over the volume V be)(rf r
, and let the random variable

F be defined as follows:

∫=
V

dVrrfF)()(rr χ (16-2)

It is proposed that, with reasonable constraints on f and χ as a function of rr , the standard deviation
of F is given by the following:

∫=
V

XF dVrf
V

)(1 2 rσσ
(16-3)

The rationale for this is the following:

Equation (16-1) can be approximated as a summation over N subvolumes forming V:

∑
=

Δ=≈
N

i
i VrXX

1
)(ˆ rχ

(16-4)

Assuming each sample of χ is independent with standard deviation χσ ,

N
V

VNV
N

i
X

22
22

1

222
ˆ

χ
χχ

σ
σσσ =Δ=Δ=∑

=

(16-5)

Similarly,

 359

∑
=

Δ=≈
N

i
ii VrrfFF

1
)()(ˆ rr χ

(16-6)

∫∑∑ ∑ ≈Δ=ΔΔ=Δ=
== = V

X
N

i
i

N

i

N

i
iiF dVrf

V
Vrf

N
V

VrfVVrf)()()()(ˆ
ˆ

rrrr 2
2

1

2
2

1 1

222222 σσ
σσσ χ

χχ

 (16-7)

This leads directly to the formula in (16-3).

16.4.2 Mass
The mass of rigid body defined over volume V is given by

∫=
V

dVm ρ , (16-8)

where ρ is the mass density for the differential volume dV. To describe the variability of the
density, let it be represented as

ρχρ)1(+= , (16-9)

where ρ is a nominal value and, again, χ has zero mean. Then the mass becomes

∫∫∫ +=+=
VVV

dVdVdVm ρχρρχ)1((16-10)

Let

∫=
V

dVm ρ (16-11)

be the nominal mass, and

∫=
V

dVm ,~ ρχ (16-12)

be the random variation, so that

mmm ~+= . (16-13)

Because m is constant, the formula in (16-3) gives

 360

∫=
V

Xm dVr
V

)(1 2 rρσσ
(16-14)

In general, we will assume that we know mσ for the rigid body being modeled (not χσ).

16.4.3 First Moment
The first moment is given by

∫=
V

dVrh ρr
r

 (16-15)

This gives

∫∫ +=
VV

dVrdVrh ρχρ rrr
 (16-16)

Let h be the nominal component,

∫=
V

dVrh ρr . (16-17)

And let h~ be the random variation,

∫=
V

dVrh ρχr~
. (16-18)

Representing rr as []Tzyxr =r , and substituting into (16-3) gives

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

∫

∫

∫

V

V

V

X

h

h

h

h

dVz
V

dVy
V

dVx
V

z

y

x

22

22

22

1

1

1

ρ

ρ

ρ

σ
σ
σ
σ

σ r
r

(16-19)

Substituting in (16-14) gives

 361

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∫∫

∫∫

∫∫

VV

VV

VV

mh

dVdVz

dVdVy

dVdVx

222

222

222

ρρ

ρρ

ρρ

σσ r
r

(16-20)

This gives a formula for the standard deviation of the first moment of inertia of a rigid body as a
function of the standard deviation of its mass. A useful approximation results if the nominal mass
density ρ is assumed constant over the volume. In this case, the standard deviation of first moment
takes on a special form:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∫∫

∫∫

∫∫

VV

VV

VV

mh

dVdVz

dVdVy

dVdVx

ρρρρ

ρρρρ

ρρρρ

σσ

2

2

2

r
r

.

(16-21)

This gives

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∫

∫

∫

V

V

V

m
h

dVz

dVy

dVx

m

ρ

ρ

ρ

σσ

2

2

2

r
r

,

(16-22)

which can be expressed as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

−+

−+

=

zzyyxx

yyzzxx

xxzzyy

m
h

III
III
III

m2
σσ r

r
,

(16-23)

where Ixx, Iyy, and Izz are the diagonal elements of the standard moment of inertia tensor, given by

 362

∫
∫
∫

+=

+=

+=

V
zz

V
yy

V
xx

dVyxI

dVzxI

dVzyI

ρ

ρ

ρ

)(

)(

)(

22

22

22

(16-24)

The formula in (16-23) gives the standard deviation of the first moment of a rigid body as a function
of the standard deviation of the mass and ordinary mass properties.

16.4.4 Second Moment
The diagonal elements of the inertia matrix are defined as above. In addition, the off-diagonal
elements are defined as follows:

∫
∫
∫

−=

−=

−=

V
yz

V
xz

V
xy

dVyzI

dVxzI

dVxyI

ρ

ρ

ρ

(16-25)

It follows from (16-3) and an argument similar to that used for the first moment of inertia that the
standard deviations for the six scalars defining the second moment of inertia are given by the
following:

∫∫ +=
VV

mIxx dVdVzy 22222)(ρρσσ (16-26)

∫∫ +=
VV

mIyy dVdVzx 22222)(ρρσσ (16-27)

∫∫ +=
VV

mIzz dVdVyx 22222)(ρρσσ (16-28)

∫∫=
VV

mIxy dVdVyx 2222 ρρσσ (16-29)

 363

∫∫=
VV

mIxz dVdVzx 2222 ρρσσ (16-30)

∫∫=
VV

mIyz dVdVzy 2222 ρρσσ (16-31)

If the nominal mass density ρ is constant over the volume, these take the following simplified form:

∫

∫

∫

++=

+=

+=

V

m

V

m

V

m
Ixx

dVzzyy
V

dVzy
V

dVzy
m

)(

)(

)(

4224

222

222

2σ

σ

ρσσ

(16-32)

∫

∫

++=

+=

V

m

V

m
Iyy

dVzzxx
V

dVzx
m

)(

)(

4224

222

2σ

ρσσ

(16-33)

∫

∫

++=

+=

V

m

V

m
Izz

dVyyxx
V

dVyx
m

)(

)(

4224

222

2σ

ρσσ

(16-34)

∫∫ ==
V

m

V

m
Ixy dVyx

V
dVyx

m
2222 σρσσ

(16-35)

 364

∫=
V

m
Ixz dVzx

V
22σσ

(16-36)

∫=
V

m
Iyz dVzy

V
22σσ

(16-37)

16.4.5 Validity of Randomized Mass Properties
After random perturbation, the mass properties must meet requirements for validity. Mass can take
on any positive value. The first moment of inertia can take on any real values. But the second
moment of inertia has complex constraints. The second moment of inertia must be positive semi-
definite, and no diagonal entry can exceed the sum of the other two. These constraints are
represented by the following equations:

0≥xxI (16-38)

2
xyyyxx III ≥ (16-39)

zzxyyyxzxxyzzzyyxxyzxzxy IIIIIIIIIIII 2222 ++≥+ (16-40)

zzyyxx III ≥+ (16-41)

yyzzxx III ≥+ (16-42)

xxzzyy III ≥+ (16-43)

16.4.6 Ellipsoid Volume
To be able to compute the standard deviations of the elements of the second moment of inertia, we
assume the volume of an ellipsoid. We then need solutions to volume integrals over a 3-dimensional
ellipsoid. According to Sykora [33], the volume integrals over n-dimensional ellipsoids have a
closed-form expression of

 365

()
)2/(

)2/1(
2

2),(1
1

12

np
p

np
aapW

n

k kn

k
p

kn
k

+Γ

+Γ

+
= ∏∏ =

=

+
(16-44)

where

∫=
)(

),(),(
aV

n dprEapW τ (16-45)

()∏ =
≡

n

k

p
k

kxprE
1

2),((16-46)

)(xΓ is the gamma function; ∑ =
=

n

k kpp
1

 where pk is non-negative real exponent of the k-

component; { }nxxxr ,,, 21 K≡ where r is the position vector in the n-dimensional Euclidean space,
x’s are its Cartesian coordinates; ak is the length of the semi-axis in the xk direction.

In our case, we are dealing with the 3-dimensional ellipsoid, so n=3. Also, for the 3-dimension case,
we represent x1, x2, and x3 with x, y, and z, respectively and a1, a2, and a3 with a, b, and c.

Since we need the gamma function, we will note here that π=Γ)2/1(. By using the property

)()1(xxx Γ=+Γ , we can then obtain π
2
1)2/3(=Γ , π

4
3)2/5(=Γ , and π

8
15)2/7(=Γ .

From (16-44), by setting p1=2, p2=0, and p3=0. we can solve for ∫
V

dVx 4 as

bca

bcadVx
V

5

2
54

105
12

)2/7(
)2/1()2/5(

7
2

π
=

Γ
ΓΓ

=∫

(16-47)

Similarly,

cab

cabdVy
V

5

2
54

105
12

)2/7(
)2/1()2/5(

7
2

π
=

Γ
ΓΓ

=∫

(16-48)

and

 366

5

2
54

105
12

)2/7(
)2/1()2/5(

7
2

abc

abcdVz
V

π
=

Γ
ΓΓ

=∫

(16-49)

From (16-44), by setting p1=1, p2=1, and p3=0. we can solve for ∫
V

dVyx 22 as

cba

cbadVyx
V

33

2
3322

105
4

)2/7(
)2/1()2/3(

7
2

π
=

Γ
ΓΓ

=∫

(16-50)

Similarly,

33

2
3322

105
4

)2/7(
)2/1()2/3(

7
2

cab

cabdVzy
V

π
=

Γ
ΓΓ

=∫

(16-51)

and

33

2
3322

105
4

)2/7(
)2/1()2/3(

7
2

bca

bcadVzx
V

π
=

Γ
ΓΓ

=∫

(16-52)

Substituting (16-48), (16-49), and (16-51) and abcV π
3
4

= into (16-32) gives

()4224

5335

5335

323
35
1

105
)323(2

105
12

105
8

105
12

ccbb

V
abccabcab

abccabcab
V

m

m

m
Ixx

++=

++
=

++=

σ

πσ

πππσ
σ

(16-53)

Similarly,

 367

()4224 323
35
1 ccaamIyy ++= σσ

(16-54)

()4224 323
35
1 bbaamIzz ++= σσ

(16-55)

35
abm

Ixy
σ

σ =
(16-56)

35
acm

Ixz
σ

σ =
(16-57)

35
bcm

Iyz
σ

σ =
(16-58)

16.4.7 Ellipsoids from Mass Properties
Given a set of mass properties (mass, first moment, and second moment), there is only one ellipsoid
that can give those properties. This is the ellipsoid centered at the center of mass and aligned with the
principal axes of inertia with ellipsoid semiaxes that give the principal moments of inertia for a
density that gives the mass.

Calculating this ellipsoid is a multistep process. First, the center of the ellipsoid is established as the
center of mass. That is,

h
m

c
rr 1

=
(16-59)

where cr is the center of the ellipsoid. The mass properties are then represented at the center of mass
using the methods built into the class EcRigidBodyMass. Next, the principal frame of the ellipsoid is
selected as the principal frame of the second moment of inertia using eigenvalue decomposition on
the 3×3 matrix representing the second moment of inertia. This frame is defined through the rotation
matrix established as follows:

[]210 eeeR = (16-60)

 368

where 0e , 1e , and 2e are the normalized orthogonal eigenvectors of the 3×3 symmetric matrix
representing the second moment of inertia. (Symmetric matrices always have eigenvectors that
satisfy these requirements.)

The mass properties are then represented in this frame, again using the methods built into the class
EcRigidBodyMass.

In this frame, the 3×3 second moment of inertia matrix has zero off-diagonal terms, Ixy, Ixz, and Iyz.
The diagonal terms, Ixx, Iyy, and Izz are used to calculate the semiaxes of the ellipsoid A, B, and C
using the following formula:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

zz

yy

xx

I
I
I

m
C
B
A

111
111
111

2
5

2

2

2

(16-61)

With these values, the surface of the ellipsoid is defined as all points {x,y,z} satisfying

12

2

2

2

2

2

=
−

+
−

+
−

C
cz

B
cy

A
cx zyx)()()(

(16-62)

in the frame centered at the center of mass and aligned with the principal axes of inertia.

16.5 Coding Examples
This section will show you how to programmatically create and save parametric and Monte Carlo
studies so that it can later be run by the studyTool executable.

16.5.1 Parametric Study
In this set of examples, we will create a parametric study in which we will apply the following
modifications to the first manipulator (index 0) of the system:

• Move the base position by 0.5 m in the Y direction.
• Change the joint position of link 2 to 0.25 rad.
• Add offset to the length of link 0 by 0.01 m in the X axis.
• Add 1.5 kg to the mass of link 1.

 // the simulation
 EcSystemSimulation simulation;
 simulation.readFromFile("simulation.xml");

 // get convenient references
 const EcStatedSystem& statedSystem=simulation.statedSystem();
 const EcPositionState& posState=statedSystem.state().positionStates()[0];
 const EcIndividualManipulator& manip=statedSystem.system().manipulators()[0];

 // move the base position of manip0 by 0.5 m in Y direction
 const EcCoordinateSystemTransformation& origBasePos=posState.coordSysXForm();
 EcPositionStateModification basePosMod;
 basePosMod.setManipulatorIndex(0);
 basePosMod.setLinkIndex(EcIndividualManipulator::BASEINDEX);
 EcCoordinateSystemTransformation newBasePos(origBasePos);

 369

 newBasePos.setTranslationY(origBasePos.translation().y()+0.5);
 basePosMod.setBasePosition(newBasePos);

 // change the joint position of link2 of manip0 to 0.25 rad
 EcPositionStateModification jointPosMod;
 jointPosMod.setManipulatorIndex(0);
 jointPosMod.setLinkIndex(2);
 jointPosMod.setJointPosition(0.25);

 // add offset of 0.01 m in X axis to length of link0 of manip0
 EcLinkKinematicsModification linkKinMod;
 linkKinMod.setManipulatorIndex(0);
 linkKinMod.setLinkIndex(0);
 EcCoordinateSystemTransformation offset;
 offset.setTranslationX(0.01);
 linkKinMod.setOffset(offset);

 // add 1.5 kg to mass of link1 of manip0
 const EcManipulatorLink* link1=manip.linkByIndex(1);
 const EcRigidBodyMassProperties& origMassProp=link1->massProperties();
 EcMassPropertyModification massPropMod;
 massPropMod.setManipulatorIndex(0);
 massPropMod.setLinkIndex(1);
 EcRigidBodyMassProperties newMassProp;
 newMassProp.set(
 origMassProp.mass()+EcNonNegReal(1.5),
 origMassProp.firstMoment(),
 origMassProp.secondMoment());
 massPropMod.setMassProperties(newMassProp);

 // add all the modifications to a vector
 EcSimulationModificationVector modVector;
 modVector.pushBack(basePosMod);
 modVector.pushBack(jointPosMod);
 modVector.pushBack(linkKinMod);
 modVector.pushBack(massPropMod);

 // create a basic study and set the modification vector in the study
 EcBasicStudy basicStudy1;
 basicStudy1.setModificationVector(modVector);

Text Box 16-1: Code snippet for creating a modification vector and a basic study.

Now, say, we want to add another study with almost the same modification vector, except that we do
not need the last modification (mass properties) and we want these two studies to be run in series
(one after another).
 // remove the last modification (mass properties)
 modVector.erase(3);
 // create another basic study and set the modification vector in the study
 EcBasicStudy basicStudy2;
 basicStudy2.setModificationVector(modVector);

 // create a vector of basic studies and add the two studies
 EcBasicStudyVector basicStudies;
 basicStudies.pushBack(basicStudy1);
 basicStudies.pushBack(basicStudy2);

 // create a simple study and set the vector of basic studies
 EcSimpleStudy simpleStudy1;
 simpleStudy1.setBasicStudies(basicStudies);

Text Box 16-2: Code snippet for adding basic studies to a simple study.

 370

Now we also want another study but without the last two modifications (link length and mass
properties). However, this time we want this study to be run in parallel with the first two studies.
 // remove the last modification (link length)
 modVector.erase(2);
 // create another basic study and set the modification vector in the study
 EcBasicStudy basicStudy3;
 basicStudy3.setModificationVector(modVector);

 // clear the study vector and add the last study
 basicStudies.clear();
 basicStudies.pushBack(basicStudy3);

 // create another simple study and set the vector of basic studies
 EcSimpleStudy simpleStudy2;
 simpleStudy2.setBasicStudies(basicStudies);

 // create a vector of simple study and add the two simple studies
 EcSimpleStudyVector simpleStudies;
 simpleStudies.pushBack(simpleStudy1);
 simpleStudies.pushBack(simpleStudy2);

 // create a comprehensive study and set the vector of simple studies
 EcComprehensiveStudy compStudy;
 compStudy.setSimpleStudies(simpleStudies);
 compStudy.setNumThreadsForSimulations(2);

 // save the study to file
 compStudy.writeToFile("comprehensiveStudy.xml",
EcSimStudy::EcComprehensiveStudyToken);

Text Box 16-3: Code snippet for creating a comprehensive study.

Although the above code snippet shows you how to save the comprehensive to a file, note that to be
of use for the studyTool program, we must not only save the study but also the simulation.
 // create the simulation times and EE paths
 EcXmlRealVector simTimes;
 EcManipulatorEndEffectorPlacementVectorVector eePaths;

 // ... populate the times and paths here

 // set the times and paths
 compStudy.setSimulationTimes(simTimes);
 compStudy.setEndEffectorPaths(eePaths);

 // set the simulation and study and write it to file
 EcSimulationAndStudy simAndStudy;
 simAndStudy.setSystemSimulation(simulation);
 simAndStudy.setComprehensiveStudy(compStudy);
 simAndStudy.writeToFile("simAndStudy.xml", EcSim::EcSimulationAndStudyToken);

Text Box 16-4: Code snippet for saving the study to be run by studyTool executable.

16.5.2 Monte Carlo Study
This set of examples will show how to create a Monte Carlo study. We would like to randomize the
mass properties and link kinematics of all links as follow:

• The default standard deviation for mass is 0.1 kg.
• The default standard deviation for link length is 0.02 m
• The default standard deviation for link orientation is 0.5 deg

 371

• The standard deviation for the mass of “link-1” of manipulator 0 is 0.0 (no randomness)

 // the default random variations
 // for mass, set the std deviation to 0.1 kg
 EcMassPropertyRandomVariation defMassRandVar;
 defMassRandVar.setMassOneSigma(0.1);
 // for link kinematics, set the std dev for translation to 0.02 m and for
 // orientation to 0.5 deg
 EcLinkKinematicsRandomVariation defLinkKinRandVar;
 defLinkKinRandVar.setTranslationOneSigma(0.02);
 defLinkKinRandVar.setAngleOneSigma(0.5*EcDEG2RAD);
 // set both to the default link random variations
 EcLinkPropertyRandomVariation defLinkRandVar;
 defLinkRandVar.setMassPropertyVariation(defMassRandVar);
 defLinkRandVar.setLinkKinematicsVariation(defLinkKinRandVar);

 // create a system random variation and set the default
 EcSystemRandomVariation sysRandVar;
 sysRandVar.setDefaultLinkPropertyRandomVariation(defLinkRandVar);

 // a new set of random variations
 EcMassPropertyRandomVariation massRandVar;
 massRandVar.setMassOneSigma(0.0);
 EcLinkPropertyRandomVariation linkRandVar;
 linkRandVar.setMassPropertyVariation(massPropMod);
 linkRandVar.setLinkKinematicsVariation(defLinkRandVar);
 // set this link random variation for link-1 of manipulator0
 sysRandVar.addLinkPropertyRandomVariation(0, "link-1", linkRandVar);

 // create a system random modification and set the system random variation to
 // modification
 EcSystemRandomModification sysRandMod;
 sysRandMod.setSystemRandomVariation(sysRandVar);

 // create a modification vector and add the random modification
 EcSimulationModificationVector modVector;
 modVector.pushBack(sysRandMod);

 // create a basic study and set the modification vector in the study
 EcBasicStudy basicStudy1;
 basicStudy1.setModificationVector(modVector);
 basicStudy1.setRandomNumberSeed(1157);

Text Box 16-5: Code snippet for creating a Monte Carlo study.

17 Rendering

17.1 Overview
To support simulation and control, Actin provides many robot rendering functions. OpenGL was
chosen as the low-level graphics library for this because of its capabilities and its being supported
across most computing platforms. This section covers window creation and usage as well as user
interaction within the window. The description of rendering within Actin has been separated into
three sections. The first section gives an overview of the abstract EcWindow class which provides
the foundation for all other windows. Platform-specific details are also located in this section.
Following that is a discussion of general 2D rendering windows, typically used for image processing

 372

tasks or displaying images to the user. The last section covers 3D rendering using OpenSceneGraph.
It also includes a subsection on user input handling.

17.2 EcWindow: Base Rendering Window Class
A consistent approach to working with rendering windows is needed to provide an easy to use
interface for development. The abstract class EcWindow provides the basic methods needed for
tasks common to all types of windows. Rendering windows rely on the underlying operating system
to create, initialize, display, update and clean up. This collection of OS-specific commands are
implemented within EcWindow in a general manner, with the actual low-level calls being issued
through an implementation class EcWindow::Impl, discussed in section 17.2.1.

Method Description
getWindowSize
setWindowSize

The interior, rendering portion of the window, not
including border.

getWindowPos
setWindowPos

The top-left corner of the rendering window.

getWindowSizeAndPos
setWindowSizeAndPos

Convenience method on both size and position
attributes.

getName
setName

The title bar located on top of the window.

getBackgroundColor
setBackgroundColor

Color for the rendering portion of the window,
given as an EcColor.

getTopMost
setTopMost

Attribute defining whether the window should
stay on top (un-obscured) of other windows.

getHideWindow
setHideWindow

Attribute defining whether the window should be
visible on the screen.

getShare
setShare

OpenGL allows for sharing of resources across
windows. Used to keep from duplicating identical
data, especially if the dataset is large.

[static] getImplType
[static] setImplType

Default implementation used for window creation.

getImpl
setImpl

OS-specific handle to low level details.

swapBuffers OpenGL drawing is typically performed on a back
buffer and the user visible (displayed) buffer is the
front. This method will swap the two buffers
making the current OpenGL drawing operations
visible.

makeCurrent Make the selected window be the target for any
subsequent OpenGL operations.

closeWindow Close and un-initialize an existing window.

[static] getWindow General accessor to locate the current window in
use.

 373

Table 17-1: EcWindow methods.

These methods provide the foundation for all of the other rendering classes that are built upon
EcWindow. In addition, all of the operating system-specific code is handled in an implementation
class, EcWindow::Impl.

17.2.1 EcWindow::Impl
Windowing code by its very nature is system-dependent. A good part of EcWindow is composed of
pass-through methods to the implementation layer, EcWindow::Impl. This abstract class provides a
common working set of methods for each implementation. There are currently three subclasses
defined: 1) EcWindow::Impl::Win for Microsoft Windows platforms (XP and Vista), 2)
EcWindow::Impl::X11 for Linux and Unix derivatives, and 3) EcWindow::Impl::Qt for interfacing
with Trolltech’s GUI libraries. The Qt class, while not defining a set of methods for an Operating
System, provides a translation of methods from the Actin toolkit to Trolltech’s API. Subsequent
windowing classes require the use of Qt for a consistent user interface design. By keeping the
platform-specific details out of the windowing code, the framework is set to enable the inclusion of
additional classes with minimal impact.

If new platform types are required (Apple OSX for example), they can be easily integrated by
providing the OS-specific commands derived from EcWindow::Impl. The implementation used by
default is set to native (Win or X11 currently). This can be changed globally the following
command:

 static void setImplType
 (
 const ImplType type
);

where ImplType is defined as

 enum ImplType
 {
 ImplWin32, //< Win32 standard window implementation.
 ImplX11, //< X11 window implementation.
 ImplQt, //< Trolltech Qt window implementation.
 ImplDefault //< Platform default.

 };

Text Box 17-1: Static method used to set the global default implementation for all windows.

init Initialize the window with the set attributes and
opens the window.

setImageBuffer Display a 2D image in the window. It will resize
the window based on the incoming image.

renderScene Perform drawing operations and refresh window.

renderSceneAndCaptureImage Similar to renderScene, but also capture the
contents of the drawing buffer into an EcImage.

 374

This will set the default for all subsequent window creation calls to the specified type.

Changing the implementation on a per-window basis is done using the setImpl method within
EcWindow and the newImpl creator method in EcWindow::Impl and sub-classes.

An example of how to create a Qt-based window is shown below:

Text Box 17-2: Example of how to set the implementation type on a per-window basis.

This will take any EcWindow-derived object and make it use the specified implementation. Note the
implementation type must be set before window initialization.

17.3 2D Rendering Windows
2D rendering windows are useful for image processing calculations or for displaying individual
images, such as an EcImage. They provide a 1:1 mapping between image and screen pixels. Two
subclasses of EcWindow are available, EcSimpleWindow and EcFBOWindow. Both use OpenGL as
the rendering library.

17.3.1 EcSimpleWindow
EcSimpleWindow provides two main methods, a static method for displaying a popup window for a
short time, and a persistent method.

// Create a 2D rendering window object.
EcSimpleWindow myQtWindow;
// Force it to use Qt under the covers.
myQtWindow.setImpl(EcWindow::Impl::Qt::newImpl());

// Now we can init and use.
myQtWindow.setImageBuffer(image);

 375

Text Box 17-3: New methods defined for EcSimpleWindow.

A common use for EcSimpleWindow is to display an EcImage, whether it is temporary or persistent.
Image sequences can also be displayed by repetitive calls to setImageBuffer.

17.3.2 EcFBOWindow
EcFBOWindow builds on top of EcSimpleWindow by providing FrameBufferObject (FBO) support.
FBO is an OpenGL concept that allows for off-screen rendering as well as being able to perform
floating-point calculations directly within the rendering pipeline. This is particularly useful when
using the Graphics Processing Unit (GPU) to accelerate image processing calculations. There are a
number of GPU-based algorithms located in the sensor-imageTransform project. Table 17-2 lists the
new methods specific to FBO rendering.

Method Description

getOffScreenRendering

setOffScreenRendering

When off-screen rendering is true, the window
will not be visible on the display, but is still
available for rendering.

getKeepBound

setKeepBound

When multiple rendering operations are to be
performed in succession, it is desirable to keep
the FBO bound to the rendering pipeline to

 /// Give the ability to create an image and relinquish control to user.
 /// \param[in] image EcImage to display.
 /// \param[in] duration Length of time to keep window up.
 /// \param[in] title EcString to put in titlebar.
 /// \param[in] posX Location to place window in X.
 /// \param[in] posY Location to place window in Y.
 /// \return EcBoolean Success or failure of command.
 static EcBoolean displayImage
 (
 const EcImage &image,
 const EcReal duration = 2.0,
 const EcString& title = "EcSimpleWindow",
 const EcU32 posX = 0,
 const EcU32 posY = 0
);

 /// Pass an image to the rendering window to display.
 /// \param[in] image EcImage to display.
 /// \param[in] swap Whether to refresh screen or not.
 /// \return EcBoolean Success or failure of command.
 virtual EcBoolean setImageBuffer
 (
 const EcImage &image,
 const EcBoolean swap = EcTrue
);

 376

improve efficiency.

setBufferParams Specific requirements on the FBO are set by
passing in the desired EcTextureParameters. A
typical case would be to create a floating-point
buffer for performing GPU calculations.

Table 17-2: EcFBOWindow methods.

EcFBOWindow is primarily used for image processing involving floating-point calculations. An
example of how to configure a floating-point buffer is shown below.

/// Create our processing window.
EcFBOWindow floatWindow;
EcTextureParameters floatParams;
/// Specify that we want to use a floating-point buffer.
floatParams.setPixelFormat(EcTextureParameters::Float32RGB);
floatWindow.setBufferParams(floatParams);
/// Float buffers are only available off-screen.
floatWindow.setOffScreenRendering(EcTrue);

… /// Render and process

Text Box 17-4: Example of how to configure a floating-point buffer for EcFBOWindow.

17.4 3D Rendering Windows
The classes of 3D rendering windows utilize a scene graph based data structure to efficiently process
and display the scene. The OpenSceneGraph toolkit is used to fulfill this need.

17.4.1 EcSGWindow
The EcSGWindow class provides the base class for all scene graph-based 3D rendering. It provides
the necessary infrastructure to allow user input. This class is typically used as a secondary window
into an existing scene since it doesn’t provide direct capability for loading in scene data.

Method Description

getNode

setNode

Works with the top-level scene graph node.

getViewer Retrieves a pointer to internal OSG class.

getInputHandler

setInputHandler

Mechanism for providing user input event
handling.

 377

getDrawCallback

setDrawCallback

Mechanism for providing custom drawing
routines.

Table 17-3: EcSGWindow methods.

17.4.1.1 EcSGWindow::DrawCallback
This class provides internal support for replacing the drawing routines. Three separate methods are
defined – preRender, render, and postRender. By default the preRender and
postRender do nothing. These two methods are typically the only ones overridden to define new
behavior. The render method is set to call preRender, then the default
osgViewer::Viewer::frame method and finally postRender.

17.4.1.2 EcSGWindow::ImageCaptureDrawCallback
This class is a specific implementation of the EcSGWindow::DrawCallback class designed to
perform window capturing. It overrides the preRender method to initialize and setup the capture
location as well as the postRender methods to collect the results. It is used internally for the
renderSceneAndCaptureImage method.

17.4.2 EcRenderWindow
EcRenderWindow is the first standalone implementation based off of EcSGWindow. It is a self
contained class used primarily for loading and rendering an EcVisualizableStatedSystem. It is used
to display discrete states of an EcStatedSystem. The methods used to set and retrieve system
information is given in Table 17-4.

Method Description

setVisualizableStatedSystem Loads an EcStatedSystem as well as the
EcVisualizationParameters. After a successful
call, the scene is ready to be rendered.

statedSystem

setStatedSystem

Operates only on the EcStatedSystem.

state

setState

Operates only on the EcState.

Table 17-4: EcRenderWindow methods.

 378

17.5 Qt-Based Classes

17.5.1 EcSGWidgetQt
EcSGWidgetQt is based off of QGLWidget. The main purpose of this class is to encapsulate the
combined use of a Qt Widget with the EcWindow class. It also provides the connection of mouse
and keyboard events from Qt to OpenSceneGraph. These user events are translated and passed
through to be handled using one of the input handlers, described in section 17.6 User Input. This
class is typically coupled inside of a different window class such as EcRenderWindow or subclassed
such as in EcBaseViewerMainWidget. One additional method that is located in EcSGWidgetQt is
renderUntilEscaped. What this method does is take the existing scene graph data and allow
the user to rotate the model until the Escape key is pressed. An example is shown in Figure 17-1.

Figure 17-1: Example of EcSGWidgetQt contained within an EcRenderWindow. A
EcVisualizableStatedSystem is loaded and then renderUntilEscaped is called to generate an
interactive window that the user can manipulate.

17.5.2 EcCamera
EcCamera is a specific class that combines the features of both an EcSGWindow as well as
EcSGWidgetQt. It provides a secondary view off another window that can be manipulated easity
with mouse and keyboard input. This class takes advantage of OpenGL context sharing. It has a
creator method, newCamera, for instantiating a new object.

 379

 /// Creator method for instantiating and setting up camera.
 /// \param[in] pWin Pointer to rending window to share scene with.
 /// \param[in] parent Pointer to parent QWidget.
 static Camera* newCamera
 (
 const EcSGWindow* pWin,
 QWidget* parent = EcNULL
);

 Text Box 17-5: Creator method for instantiating new EcCamera objects.

Three instances of the EcCamera class are shown below, each one representing a view along one of
the major axes. Each sub-window is contained within a Qt QDockWidget to attach the window
within the confines of the actinViewer window.

Figure 17-2: Use of EcCamera to create three different views (along X, Y, Z axis) of the main
scene.

 380

17.5.3 EcBaseViewerMainWidget
This is a consolidated class that combines the use of an EcRenderWindow with EcSGWidgetQt. It
provides capability for using an EcSystemSimulation and provides the main rendering widget for use
within an EcBaseViewerMainWindow. In addition to methods for loading and accessing simulation
classes, a number of Qt signals are defined. These signals are triggered during certain events, such
as file loading, simulation time step, or file closing. The EcPlugin-derived classes that contain GUI
objects use these signals to interact with the viewer application. Table 17-5 summarizes the signals
emitted within this class.

Signal Description

performanceDataReady Emitted after all rendering is complete. Can be
used to update any secondary windows every
frame.

signalStartSimulation Emitted when the user starts running a
simulation.

signalStopSimulation Emitted when the user stops running a
simulation.

signalLoadScene Emitted when the user loads in a new file.
Used to initialize variables and state.

signalDeleteContents Emitted when a file is replaced or when the
application is closing. Used to clean up any
memory used.

Table 17-5: Signals used within EcBaseViewerMainWidget.

17.5.4 EcBaseViewerMainWindow
Based off of the Qt widget class QMainWindow, EcBaseViewerMainWindow provides the primary
user interface window for application-level windows. It provides a consistent framework that is
configurable and used for all viewers. It includes a menubar at the top, status bar at the bottom and
an EcBaseViewerMainWidget used as the central rendering window. Different types of toolbars are
also available, each providing convenient access to common tasks. The actinViewer application is
one example of how this class is used.

 381

Figure 17-3: Example of makeup of EcBaseViewerMainWindow class. Shown here is the
actinViewer application.

17.6 User Input
OpenSceneGraph provides a general event queue that buffers up all input events that can be later
processed by an event handler. The EcSGWidgetQt class, described in Section 17.5.1 provides the
mechanism for taking user input and placing it within the OSG event queue.

17.6.1 EcSGBaseInputHandler
EcSGBaseInputHandler is the foundation class that provides the translation of coordinate systems
between Actin and OpenSceneGraph. Actin computes viewer information through the use of
EcPovParameters. This class takes those parameter values and provides the drawing routine with
the correct inverse matrix transformation to set the camera eyepoint. No direct user input is used
within this class; all processing is done through the use of EcPovParameters.

17.6.2 EcDefaultInputHandler
This class provides the interaction of mouse and keyboard input that is used with
EcBaseViewerMainWidget. This class uses the current viewing mode along with keyboard modifiers
to specify the type of operation desired. It then computes new information that gets fed back to the
rendering window. Currently there are three viewing modes handled: eyepoint, center of interest,
and guide frame mode.

 382

 383

18 Plugin Interfaces

18.1 Control Plugins
The Actin™ Toolkit provides three mechanisms for giving the user control:

1) The XML configuration file gives the user tremendous flexibility in controlling the toolkit.
Virtually all of the parameters of the toolkit are set through the configuration file. Also, the
configuration file provides the mechanism for polymorphically defining the containers such
as EcBaseExpressionTreeContainer.

2) Inheritance enables the user to use the full power of C++ to configure the toolkit. Almost all
of the classes in the toolkit were constructed to support inheritance. Most methods are
declared as virtual which enables the developer to override the methods.

3) The classes derived from EcXmlBaseVariableCompoundType (i.e.,
EcBaseExpressionTreeContainer, EcXmlVariableElementType, and
EcXmlVariableVectorType) enable the user to load a dynamic library (e.g., DLL) through
its XML description. New algorithms can be added to the expression tree containers
through the plugin interface.

Items 1 and 2 have been addressed throughout this guide. Item 3 will be explained in this section.

The expression tree for the control algorithms provides a useful example for illustrating the power of
the plugin interface. The control expression tree has many expression elements that a user can apply
to build a control system. For example, plus ‘+’, minus ‘-‘, assignment ‘=’, equality ‘= =’, and many
others are built into the toolkit. A user, however, may want other expression elements for a specific
design that are not supported directly in the software toolkit. No matter how many expressions are
added, more can be envisioned.

The plugin API enables the user to add new expression elements using C++ without having to
recompile the software toolkit or other code built from it. This saves the developer from having to
subclass a sequence of classes in the toolkit. With the plugin API, the user has a more flexible tool
for inventing control algorithms.

The Microsoft Windows environment provides two types of libraries for plugin support: load-time
and run-time dynamic link libraries (DLLs). Load-time DLLs are linked to the software toolkit when
the toolkit executable is loaded for execution. Run-time DLLs are linked when the executable
requests the linkage. The timing of library linkage is illustrated in Figure 18-1. Versions of UNIX
can be configured to operate similarly with “.so” files.

Compilation Link Load Executable Run-Time

Static
Libraries

(aka LIBs)

Load-Time
DLLs

Run-Time
DLLs

Compilation Link Load Executable Run-Time

Static
Libraries

(aka LIBs)

Load-Time
DLLs

Run-Time
DLLs

Figure 18-1: Timing of library linkage.

 384

The toolkit uses the run-time approach, because it provides more flexibility to the user. For example,
the run-time dynamic library can be selectable through the software toolkit XML user interface (see
Text Box 18-1). Also, if the user does not need any extra expression elements (i.e., no dynamic
library exists), the software toolkit can bypass the linkage altogether. Both of these features are easy
to support through a run-time dynamic library.

Text Box 18-1: XML configuration of dynamic libraries. Any EcXmlBaseVariableCompoundType
object can use this syntax to load dynamic libraries. This example loads three.

To link properly to the software toolkit, each dynamic library needs to provide accessor functions for
getting information about the user-defined expression elements. The software toolkit creates (i.e.,
instantiates) expression elements when directed by the user through the XML user interface. To
enable this capability, the XML infrastructure needs a token (string name) and a creator function (see
Text Box 6-16).

Each token and creator function is defined in each expression element class, and is registered by the
expression element container class for use by the XML user interface. To enable the run-time
dynamic library support, the library needs to provide access to a token and creator function for each
user-defined expression element. The software toolkit provides a dynamic-library framework for this
access. To add a new expression element, the user needs to perform three tasks:

1) Create the new expression element. The current dynamic library available with the software
toolkit provides a modulus ‘%’ expression example, which is contained in
“ecExpModulus.cpp” and “ecExpModulus.h.” The user can use these files as a starting point
for creating a new expression element. For example, the two primary changes needed to
convert the modulus expression to a new expression are 1) performing a search and replace
on “Modulus” throughout the file and 2) updating the “value” method to perform the
purpose of the new expression element.

2) Register the class token and creator functions in “ecExpAccessors.cpp.” The example logic
for the modulus expression is easy to duplicate. For example, the current code for the creator
registration is:

Text Box 18-2: Illustration of logic for selecting a creator method. New “case” branches can be
added for new expression elements.

A new expression element can be registered by adding another case (e.g., case 1) to the
switch.

 switch (index)
 {
 case 0:
 return EcExpressionModulus::creator;
 default:
 return 0;
 }

 <addLibraries>
 <group>DLL1 DLL2 DLL3</group>
 </addLibraries>

 385

3) Update the MS Visual Studio project with the new expression element implementation files
and recompile.

The class diagram for the modulus operator is shown in Figure 18-2. All of the code for this
dynamic library is available to the user. For completeness, Figure 18-3 shows the class diagram for
the expression tree container that enables the loading of the library.

EcExpressionElement

EcBaseExpressionTreeElement

EcXmlCompoundType

EcXmlObject

EcExpressionBaseBinary

EcExpressionModulus

EcExpressionElement

EcBaseExpressionTreeElement

EcXmlCompoundType

EcXmlObject

EcExpressionBaseBinary

EcExpressionModulus

Figure 18-2: Example expression element.

EcXmlVariableCompoundType

EcXmlObject

EcBaseExpressionTreeContainer

EcExpressionContainer

EcXmlVariableCompoundType

EcXmlObject

EcBaseExpressionTreeContainer

EcExpressionContainer

Figure 18-3: Expression tree container.

Although this section uses an example pertinent to the control expression tree, the ideas are
applicable to any container derived from EcXmlBaseVariableCompoundType. See Section 6.2.4.1
for more information on EcXmlBaseVariableCompoundType.

18.2 Interface Plugins

18.2.1 EcPlugin
Extensibility within Actin is typically desired without having to change the basic framework. The
EcPlugin class has been designed to provide hooks into the simulation and user interface framework
to customize and tailor behavior to suit different needs. External developers can write a Plugin based
off of this class without any inherent knowledge of the Actin toolkit.

 386

Method Description

pluginName Required: A unique name is required to be
defined for lookup and comparison.

setJointCommands This method gets called each time step with the
current time as well as joint information.

getJointState Called once to initialize simulation with data
from EcPlugin-derived class.

init Any Plugin that creates or modifies GUI
components should override this method to
initialize their Qt components.

reset Called when a new file is loaded. Any memory
cleanup or re-init should be done here.

Table 18-1: EcPlugin methods. Aside from pluginName, the default for each command is to
simply return EcTrue. pluginName returns a const char* to a unique name for the class.

18.2.2 EcPluginManager
Plugins are shared libraries loaded in at runtime to provide additional functionality on an as-needed
basis. EcPluginManager is a static class that handles the loading and unloading of EcPlugin-based
libraries. It keeps track of all currently loaded libraries so that duplicate entries are not created.

18.2.3 Viewer Plugins
Viewer plugins are available to provide capability to fill a wide variety of needs. They are self
contained modules that can be loaded in as needed. Only the components desired need to be loaded,
saving application memory and keeping the viewer from being unnecessarily cluttered with unused
functionality. All of them are based upon the EcPlugin class (see section 18.2.1 EcPlugin)

18.2.3.1 EcActuatorPlugin
For use in robot design, Actin includes an actuator-related plugin to assist robot designers when
trying to size motors and gearheads for a given manipulator. For each joint actuator, the user can
select a motor and chain gearheads in series to be used in the actuator from a database through GUI.
This allows the designer to quickly and easily change the actuator components of any actuator and
rerun the simulation to see if the new components meet the requirements.

18.2.3.2 EcCameraPlugin
Actin provides camera and other raster-data sensors through a plugin. This is implemented through
the class EcCameraPlugin

 387

18.2.3.3 EcCentroidPlugin
Plotting of the center of mass and the zero moment point (ZMP) in Actin Viewer is enabled through
the plugin interface.

18.2.3.4 EcDataPlotPlugin
Data plotting in the Actin Viewer is also provided through the plugin interface. In our design, there
are three main components in capturing and saving simulation information (excluding displaying it
in a plot). The first is a collection of data capture classes systematically organized to capture the
every bit of information that the user desires for the whole system. The information captured by
these data capture classes can then be stored in a data storage class, ready to be saved to files.
Finally, the output writer classes save the information stored in the storage to files in the formats
chosen by the user.

18.2.3.5 EcLogPlugin
This EcPlugin provides a way to view status messages and logging when running the viewer. Most
times it is not necessary, but it can be useful if a problem is encountered or when detailed
information is desired. By default it will attach itself to the bottom section of the viewer, but can be
detached as a floating window as well. It can be turned on or off from the View menu. An example
of a detached log window is shown below.

Figure 18-4: Floating EcLogPlugin window. It is useful to use this Plugin to determine if there are
any problems with simulation files. Here a file gets loaded, but a reference to an image file cannot
be found.

19 Filters

The efficiency of network operations (especially wireless networks) can be dramatically improved
using data compression. Encryption is also prudent when operating in an unknown networking
environment. To provide efficient and secure operations, a generic infrastructure is provided that
implements the concept of a filtering pipeline. A pipeline is also known as the design pattern “pipes
and filters” [34], and consists of a chain of processing elements arranged so that the output of each
element is the input to the next. Each element is a filter, in that it analyzes and transforms (i.e. it
“filters”) its input data stream to produce its output stream. A filtering pipeline may operate on any
standard C++ stream, including files on disc and in-memory streams such as strings. Energid’s
implementation leverages the work in the Boost libraries- a set of open source C++ libraries that are
well respected, heavily tested, and continuously improved.

 388

Figure 19-1: Two filtering pipelines

A filtering pipeline allows the user to select an ordered series of one or more transformations to be
performed on a stream of data. For example, process A may wish to take a stream of raw XML data,
compress it using the bzip2 algorithm then encrypt it using XXTEA and its key. The flow of data
through the pipelines is illustrated in Figure 19-1, showing A's pipeline that streams data through the
compression filter and encryption filter resulting in the final stream. Process B inverts A's pipeline to
retrieve the original raw data.

Three compression (bzip2, zlib, gzip), one encryption (TEA), and one encoding filter (base64) are
provided. The list of classes that implement filters and filtering streams are shown in Figure 19-2,
and are described in the following sections.

Figure 19-2: Class list.

 389

19.1 Filter Enumeration
The currently supported filters are listed in the FILTER enumeration found in the Ec::EcFilters.h
header file. The filters are listed in Figure 19-3.

Figure 19-3: Filters enumeration.

New filters may be added as necessary to the library. Currently, the RSA filters are just placeholders
and their attempted use will fail.

19.2 Filter Arguments Class
Some filters may require arguments. Encryption filters typically need one or two keys, for example.
The EcFilterArg class stores arguments to exactly one filter in the filtering pipeline. The class
reference is shown in Figure 19-4. The current implementation is specific to the available filters and
their arguments.

enum FILTER

 {

 RAW

 ,BZIP2_COMPRESS,BZIP2_DECOMPRESS

 ,ZLIB_COMPRESS,ZLIB_DECOMPRESS

 ,GZIP_COMPRESS,GZIP_DECOMPRESS

 ,BASE64_ENCODE,BASE64_DECODE

 ,RSA_ENCRYPT,RSA_DECRYPT

 ,TEA_ENCRYPT,TEA_DECRYPT

 };

 390

Figure 19-4: EcFilterArg class reference.

19.3 Filters Class
EcFilters is a convenience class for holding the ordered list of filters (a “filter spec”) to be applied to
an f input stream. It has methods for adding each available filter and any filter-specific data that is
required. See Figure 19-5 below. The user would create an instance of EcFilters, and call its various
methods in order to append the filters of choice. For example, calling addBizp2Compress() would
add the bzip compression filter to the end of the current filter spec. Of note in the class reference for
EcFilters is the convenience method “invert”. This method creates a new filter spec to transform data
back into its original form. As example, the invert method would convert the filter spec containing
“bzip2, TeaEncrypt” into the inverse filter spec “TeaDecrypt,bzip2Decompress”.

 391

Figure 19-5: EcFilters class reference.

19.4 Filter Stream Class
This generic filtering stream pipeline infrastructure has the added benefit of allowing new filters and
streams to be readily added in the future; possibilities include UDP, TCP, and HTTP socket streams.
As built, the filter stream class performs filter operations on various combinations of in streams,
buffers and strings on input or output. The complete EcFilterStream class is detailed in Figure 19-6.

 392

Figure 19-6: EcFilterStream class reference.

The filterInput methods apply the filter spec to an input stream and write the filtered sequence to the
output stream.

The process of creating and using a filtering stream is straightforward and consists of a few simple
steps as shown in the example in Figure 19-7.

.

 393

 Figure 19-7: Sample code creating a filtering stream with bzip2 compression and TEA encryption.

19.5 Filter Inheritance
Some filters in the Energid toolkits (base64 and XXTea) derive from the abstract base class
“aggregate_filter“ in the Boost Iostreams library. The aggregate_filter synopsis [35] is shown in
Figure 19-8. Note the private virtual, abstract method “do_filter”. The base64 and XXTea filters
must inherit from the aggregate_filter class and provide a concrete implementation of this method to
fulfill the interface obligation.

Figure 19-8: aggregate_filter class reference.

In the following sections, implementation details are provided for the TEA and base64 filters.

19.6 TEA Data Encryption Filter Details
Encrypting data before storing it or sending it out over the internet is a critical feature. For real-time
performance with minimal impact on computing resources including memory and CPU, a corrected
derivative of the Tiny Encryption Algorithm (“TEA”) known as XXTEA has been implemented
[36]and made available as another filter in the stream pipeline.

XXTEA operates on data in 64-bit chunks using 128 bits of key divided into two sub-keys. In
XXTEA, the number of rounds is calculated as a function of the length of the clear text, with a

EcFilters myFilters;
myFilters.addBzip2Compress();
myFilters.addTeaEncrypt(key);
std::ifstream myInputFile(“rawFile.xml”,std::ios_base::in|std::ios_base::binary);
std::ofstream myOutputFile(“filteredOutput.bz2.tea”,std::ios_base::out|std::ios_base::binary);
EcFilterStream myFilterStream;
myFilterStream.filterInput(myFilters,myInputFile,myOutputFile);
myInputFile.close();
myOutputFile.close();

 394

minimum of six rounds (determined by the cryptanalysis). XXTEA is a Fiestel block cipher like the
accepted Data Encryption Standard, with the structural property that encryption and decryption
operations are very similar [37]. XXTEA combines multiple rounds of repeated operations including
shifts, XORs, and additions as shown in Figure 19-9.

Figure 19-9: XXTEA circuit diagram showing two Feistel Rounds [38].

The class EcTeaFilter implements the high-level interface used in the filtering streams, and defines
the aforementioned do_filter method. This class holds a pointer to an instance of the base class
EcTeaBase, which is refined by the derived class EcXXTea. The EcXXTea class is the concrete
implementation of the corrected TEA algorithm, and provides separate methods for encryption and
decryption. The class reference for the XXTEA algorithm is show in Figure 19-10.

 395

Figure 19-10: The EcXXTea class reference

The XXTEA algorithm requires padding for the last block of input data. The PKS padding method
has been implemented to provide this functionality. The XXTEA algorithm also requires
conversions between the user's character arrays and the algorithm's vectors of floating point. The
padding and conversion methods are provided in the utility class EcTeaManipulators.

 396

19.7 Base 64 Encoding Filter Details
For integration with Energid's GUI program “Actin Viewer” and the Skype network transport, a new
filter was necessary, since the Skype API requires that all network messaging be free of embedded
null (0x00) characters. The base64 encoding scheme meets this requirement nicely.

The base64 encoding method, as defined in RFC 1421 [39], uses a 64-character alphabet consisting
of [a-z,A-Z,0-9,+,/]. This alphabet results in a “printable encoding” scheme. Base64 transforms an
arbitrary sequence of 8-bit bytes into 7-bit ASCII text characters. Each three bytes of the original
data are divided into four 6-bit blocks that are represented by four 7-bit ASCII characters mapped to
the alphabet above. The encoded data is typically 33% larger than the original since 3 bytes are
converted into 4. The encoding algorithm is outlined in Figure 19-11.

Figure 19-11: Base64 Encoding Algorithm

The class reference for the Base64 filter is shown in Figure 19-12. Of particular note are the methods
do_filter, encode and decode. The concrete method do_filter method calls encode or decode
depending on the value of the class variable m_doEncode. The encode() method converts raw text
into base64 and the decode() method converts base64 back into raw text.

1. Divide the original data into blocks of 3 bytes

2. Divide the 24 bits in each 3-byte block into 4 groups of 6 bits

3. Map each group of 6 bits into 1 ASCII character in the bas64
alphabet

4. If the last 3-byte block has only 1 byte of original data, pad 2 bytes
of zero. After encoding it normally as in step 3, replace the last 2
characters with 2 equal signs “==”.

5. If the last 3-byte block has 2 bytes of original data, pad 1 bytes with
zero, encode it normally, then replace the last byte with 1 equal sign
“=”.

 397

Figure 19-12: EcBase64Filter class reference

20 Network Operation
Energid provides a set of classes that support TCP (“Transmission Control Protocol”), UDP (“User
Datagram Protocol”) and Skype network operations. Network operations allows interactive
engineering collaboration, supports engineers wanting to run validation software on fast remote
computers while working on a desktop, enables interactive demonstrations to managers or other non-
engineers, supports parallelization of simulation runs, and allows teleoperation and control of
untethered, autonomous robots.

TCP and UDP support is part of the toolkit. A UDP datagram is an unreliable message limited to
65535 bytes (1400 bytes for Skype UDP). It suffers much better than TCP under unreliable networks
since ACKs and retransmits are not involved. UDP datagrams are ideal for small command and
control messages of sufficient frequency that missing several in a series is non-critical. For reliable
messaging, TCP packets are required. TCP packets are limited to 65535 bytes and may suffer
transmission delays across unreliable networks due to packet collisions, window resizing, and
timeout/resend cycles.

 As discussed in the section on filtering streams, efficient and secure operations are important for
network operations. Filtering streams provide compression and encryption options to the user and are
integrated with the TCP and UDP classes.

Another impediment to integrated network operation over a WAN (such as the public Internet) is the
existence of firewalls and Network Address Translator (NAT) routers that stand between software

 398

components. Energid provides the unique capability to punch through firewalls and NATs to
discover software components through its Skype peer-to-peer transport.

20.1 Low-level Sockets

20.1.1 Hierarchy
At the lowest level, sockets provide the TCP and UDP functionality for network operations.
Energid’s toolkit uses simple inheritance for sockets, as shown in Figure 20-1.

Figure 20-1: Low-level socket hierarchy.

20.1.2 Base Socket Class
The class ecSocketBase is the base class for low-level sockets. The class reference is shown in
Figure 20-2. The class is not intended for public consumption, but is provided here for completeness
and for insight into its derived classes that are discussed later.

 399

Figure 20-2: EcSocketBase class reference.

Of interest in the class is the anonymous enum for socket error codes. At this level in the hierarchy,
several standard socket error codes have been combined to simplify and abstract the details. They
are:

• ECSOCK_ERROR_GENERIC
Likely an illegal parameter or calling functions out of order

• ECSOCK_ERROR_NO_BROADCAST_ACCESS
Trying to broadcast without enabling broadcasting

• ECSOCK_ERROR_NOT_CONN
Socket is not currently connected

• ECSOCK_WOULD_BLOCK
Operation would block, or it has timed out

 400

• ECSOCK_HOST_UNREACHABLE
Cannot communicate with the specified remote address

• ECSOCK_CONN_LOST
The socket connection has been interrupted

• ECSOCK_NETWORK_DOWN
The network is down

• ECSOCK_ADDR_IN_USE
The specified address is already in use

Also of note is the requirement that every socket message contain a header of information that serves
two purposes: uniquely identifies the message and explicitly states the number of bytes in the data
payload of the message.

20.1.3 Tcp Socket
The class reference for Transmission Control Protocol sockets (derived from ecSocketBase) is
shown in Figure 20-3. The TCP protocol provides reliable, ordered delivery of the data payload. This
form of communication is typically used by the toolkit when sending XML configuration data.

Tcp sockets follow the standard sequences for behaving as clients or servers.

 // Prepare data

 static const EcU32 TEST_DATA_SIZE = 10000;

 EcReal doubleArray[TEST_DATA_SIZE];

 EcU32 ii;

 for(ii=0;ii<TEST_DATA_SIZE; ++ii)

 {

 doubleArray[ii] = ii;

 }

 // Put size in header

 EcSocketHeader sHeader;

 401

Figure 20-3: EcTcpSocket class reference.

For the client, the process generally involves the following events:

1) Create a socket
2) Connect to server
3) Send/Receive data
4) Close socket

For the server, the process generally involves:

1) Create a socket
2) Bind to a port
3) Listen for a connection request from client
4) Accept connection
5) Send/Receive data
6) Close socket.

These events are illustrated in Figure 20-4.

 402

socket() bind() listen() accept() send()
receive()

socket() connect() send()
receive()

Client

Server
close()

close()

socket() bind() listen() accept() send()
receive()

socket() connect() send()
receive()

Client

Server
close()

close()

Client

Server

connect()

accept()

listen()

Client

Server

connect()

accept()

listen()

Figure 20-4: TCP client and server events.

20.1.4 Udp Socket
The class ecUdpSocket is a straight-forward implementation of the User Datagram Protocol. Data
sent according to this protocol is known as a datagram. The UDP protocol does not guarantee that a
datagram will be delivered in any particular order, and does not guarantee that it will be delivered at
all, i.e., the protocol is unreliable. The advantage of UDP over TCP is the overhead efficiency of
avoiding the delivery guarantee and state if each packet. This form of communication is typically
used for higher-rate data such as streaming video. The received data can be corrupt or out of order.
Corrupted data is typically dropped. Out-of-order data is typically handled by preferring “newer”
data identified using an embedded timestamp. For the UDP client, the process generally involves the
following events:

1) Create a socket

2) Send/Receive data

3) Close socket

For the server, the process generally involves:

1) Create a socket

 403

2) Bind to a port

3) Send/Receive data

4) Close socket

These events are illustrated in Figure 20-5.

socket() bind() send()
receive()

socket() send()
receive()

Client

Server
close()

close()

socket() bind() send()
receive()

socket() send()
receive()

Client

Server
socket() bind() send()

receive()

socket() send()
receive()

Client

Server
close()

close()

Figure 20-5: UDP client/server events.

 The class reference is shown in Figure 20-6.

Figure 20-6: UDP class reference.

20.2 Mid-Level Classes
Just above the low-level socket classes is a layer supporting higher-level, typically communications
functionality in terms of client-server roles, abstracted transport mechanisms, encryption and
compression. The classes of interest are listed in Figure 20-7 with their brief descriptions.

 404

Figure 20-7: Mid-level class descriptions

20.2.1 Hierarchy
The standard methods for interfacing via the TCP and UDP protocols have been implemented as
shown in Figure 20-8. The standard methods for connection management, reading and writing are
provided. At the top of the illustration, an abstract base class “Protocol” provides methods and data
common to both TCP and UDP. In the middle are separate derived classes providing interface
methods unique to each protocol. A new protocol called “Skype” was created, which is a hybrid that
provides both TCP and UDP-like functionality simultaneously. This is implemented via diamond
inheritance and is shown near the bottom of the illustration.

Figure 20-8: Mid-level hierarchy.

The TCP implementation is currently implemented by reusing existing ecTcpSocket code. In the
future this will be replaced with the boost ASIO networking implementation that should provide
improved operations in asynchronous, multi-threaded environments.

20.2.2 Protocols
The protocol classes are shown together in UML form in Figure 19-9. Of interest are the data
structures and methods for applying filters such as compression and encryption. The user will specify

 405

the filters to use in the communications via the methods “setReadFilters” and “setWriteFilters”.
These methods provide asymmetrical filtering such that each end point in the communication may
choose to use different or unique sequences of filters.

Figure 20-9: Protocol hierarchy

 406

20.2.2.1 Protocols::Protocol

Figure 20-10: Class reference for Protocol

As mentioned, the interesting methods are those for setting the filters for reading and writing. In
addition to the standard methods as seen in this base class, the protocols support on-the fly data
filtering that compresses, decompresses, encrypts and decrypts the stream (see the class reference in
Figure 20-10).

As example, to create a sequence of filters that compress and encrypt the outbound data on the
protocol, and expect the inbound data to be the same such that the inverse filter operations must be
applied, see the code snippet in Figure 20-11. The example code also works the UDP protocol class.

 407

Figure 20-11: Setting filters for the protocol.

A timeout value may be specified for each of the input/output operations connect, disconnect, read
and write for TCP, and datagram for UDP. These timeout units are milliseconds, and the value “-1”
meaning is to wait forever for the operation to complete. Beware that infinite timeouts may have
undesired consequences should communications be interrupted.

20.2.2.2 Protocols::Tcp

The Tcp protocol class is an abstract base class, requiring a concrete implementation as provided in
EcComm::Transports::AsioTcp. This class basically adds and exposes the methods for reading and
writing to the Protocol base class. The class reference is shown in Figure 20-12.

// create an instance of the filters
Ec::EcFilters writeFilters;
//base64 encoding will be the first filter operation on outbound data
writeFilters.addBase64Encode();
// zlib compression will be performed after base64
writeFilters.addZlibCompress();

// set the write filters assuming we have a valid instance of
// EcComm::Protocols::Tcp* myTcpClientPtr;
myTcpClientPtr->setWriteFilters(writeFilters);

// we are expecting the other endpoint to use the same filtering
// operations, so set the read filters as the inverse operation of the write
 myTcpClientPtr->setReadFilters(writeFilters.invert());

 408

Figure 20-12: Class reference for Protocols::Tcp.

20.2.2.3 Protocols::SkypeT

Network operations can be performed at several levels, from the lowest socket operations to a high-
level communications factory that supports communications across various network topographies
and through various firewalls and NATs using the peer-to-peer (P2P) protocol Skype.

P2P is a preferred architecture since it is decentralized and without the bottleneck problems
associated with traditional client-server networks. P2P connects an ad-hoc association of nodes in
which each node provides both client and server functionality in such fashion as to be robust to peer
dropouts, bandwidth shortage and network latencies. Skype implements P2P and has proved quite
capable across firewall and Network Address Translation (NAT) problems.

Skype provides an Application Programming Interface (API) that allows its functionality to be
embedded within a third-party application [40]. Energid’s networking embeds this functionality. The
Skype API provides “application to application” messaging in the form of UDP (“User Datagram
Protocol” and TCP (“Transmission Control Protocol”) messages. The ability to choose the transport
mechanism is key to efficient real-time control, given how poorly TCP, designed for wired
networks) behaves over unreliable networks such as 802.11 wireless.

 409

Currently, Skype requires the API to connect through a Skype client running on both host computers.
This inconvenience is being corrected in a forthcoming release of the API. Skype is a proprietary
messaging protocol, though the performance benefit may dominate these concerns.

The Protocols::SkypeT class is an abstract base class for the Skype protocol. It has a concrete
implementation in EcComm::Transports::Skype discussed later. It inherits from both Protocols::Tcp
and Protocols::Udp since the Skype API provides both protocols also. The class reference is shown
in Figure 20-13.

Figure 20-13: Class reference for Protocols::SkypeT.

20.2.3 Transports
The transport classes provide concrete implementations of the protocols mentioned previously. The
transport classes are each discussed in the following sections. The transports add the mechanisms
required to support filtering, on top of the low-level socket implementations.

20.2.3.1 AsioTcp

AsioTcp is the concrete implementation of the TCP protocol provided in the Energid toolkit.
Although the name suggests that the implementation takes advantage of asynchronous input/output,
this is not yet the case: the implementation relies on EcTcpSocket discussed previously.

Of special note is the constructor flag “beServer”. If set to true, then the connection will behave as a
server such that it will bind to a local port and listen for and accept incoming connections. If the flag
is false (the default), then the connection will be attempted to the host computer and port. The class
reference is shown in Figure 20-14.

 410

The low-level implementation is hidden, replaced with higher-level methods and some convenience
methods. The methods and their descriptions are given in Figure 20-15. A complete example is
given in Figure 20-23.

Figure 20-14: Class Reference for AsioTcp.

Method Description

Connect For the server: bind, listen and accept connections from a client. For the
client: initiate connection on remove host and port

Disconnect Terminate the connection

isConnected Return true if a connection is established, false otherwise

In_avail Return the number bytes currently available for reading from the socket

read Read from the socket

write Write to the socket

Figure 20-15: Primary methods in AsioTcp.

20.2.3.2 Skype

The Skype transport provides simultaneous UDP and TCP functionality via the official Skype
Application-To-Application API. As a transport, the Skype API is consistent between Windows and
Linux. However, at the interface level, the implementations for the two operating systems are quite
different.

The windows implementation makes use of the WMCOPYDATA methodology, requiring an
invisible window for the transport to send and receive events and data from the API. There are two
methods in Linux for communicating with the Skype API: the DBUS method and X-Event method.

 411

Energid’s implementation us based on the X-Event method, since the DBUS method burdens the
user with extra requirements including additional libraries and correct system configuration.

Though the lowest level implementations are different for Windows and Linux, a major portion of
required functionality was implemented in a base class “EcComm::Transports::SkypeImplBase” that
the operating system-specific implementations derived from. See Figure 20-16.

Figure 20-16: Inheritance diagram for Skype implementation.

Figure 20-17 shows the UML for the above classes and the class reference is given in Figure 20-18.
The unique methods are “datagram” and “subscribe”. The datagram method is used for sending a
UDP datagram in the form of a string. A timeout value (in milliseconds) may also be specified. The
subscribe method is the primary means to receive UDP datagrams and requires that a callback
method be created with a specific method signature: void (const std::string&). An example of a
callback method and how it is registered is given in Figure 20-19.

 412

Figure 20-17: UML for the Skype transport implementation.

 413

Figure 20-18: Class reference for the Skype transport.

 414

Figure 20-19: Code sample for Skype UDP.

20.3 CommFactory Utility Class
In addition to the low- and mid-level classes described previously, a utility factory class is available
to provide simpler instantiation of a transport. The factory class returns a pointer to an instance of a
desired protocol and transport, properly parameterized. Figure 20-20 shows the salient methods in
the factory class- the three public member functions for creating a transport instance.

Figure 20-20: CommFactory methods.

void echoUdpCallback(const EcString buff)
{
 std::cerr<<"Received UDP echo: len="<<buff.size()<<"data=["<<buff<<']'<<std::endl;
}

int main()
{
 EcString theSkypeUser="mySkypeUserName";
 EcString theSkypeApp="energidAPI";
 Udp* myUdp = CommFactory::createSkype(SKYPE,theSkypeUser,theSkypeApp);
 if (! myUdp->connect(theConnectTimeout))

 {

 EcERROR("connect failed\n");

 return 1;
 }
 if (! myUdp->subscribe(echoUdpCallback))
 {
 EcERROR("subscribe udp callback failed\n");
 return 1;
 }
 if (! myUdp->datagram(os.str(),-1))

 {

 EcERROR("udp datagram send failed\n");

 return 1;
 }
 if (! myUdp->disconnect(theDisconnectTimeout))

 {

 EcERROR("disconnect failed\n");

 return 1;
 }
 return 0;
}

 415

Please refer to Figure 20-19 for sample code showing the creation of a Skype transport using the
commFactory, and Figure 20-23 showing creation of a TCP transport.

20.4 Complete Examples

20.4.1 Viewer
Filtering streams, compression and base64 encoding have been integrated with the primary tool for
visualization and study- Energid’s ActinViewer. Figure 20-21 shows the concept as implemented,
with data flow from the viewer, through the filters and transport, across the internet, to a live robot
on the other end. Shown in Figure 20-22 is the dialog box for configuring the new network options,
allowing for the specification of the various parameters in an easy-to-use graphical form.

Figure 20-21: Command and Control using Skype and the Actin Viewer.

The Actin Viewer, now with Skype’s ability to bust through firewalls and Network Address
Translations “NATs” was demonstrated at the 2007 RoboBusiness conference in Boston,
Massachusetts. From the conference, the viewer was used to control a real robot arm physically
located at Energid’s office in India- some 7000 miles distant.

 416

Figure 20-22: Actin Viewer with dialog for network configuration.

20.4.2 Tcp Client and Server with base64 encoding and bzip
compression

Figure 20-23 shows a compete example using the TCP protocol along with base64 encoding and
compression. The server waits forever for a client to connect, then waits forever to receive a
message from the client (“Johnny”), then writes a message back to the client that contains the text of
the client message along with some additional text (“Hello Johnny. My name is Frankie”).

 417

#include <boost/thread/thread.hpp>
#include <boost/bind.hpp>
#include <transport/ecCommFactory.h>

class ecTcpExample
 {
 public:
 ecTcpExample()
 { }

 virtual ~ecTcpExample()
 { }

 virtual void helloServer()
 {
 myTcpServerPtr.reset(EcComm::CommFactory::createTcp(

EcComm::ASIO,"127.0.0.1",9876,true));
 myTcpServerPtr->setWriteFilters(writeFilters);
 myTcpServerPtr->setReadFilters(writeFilters.invert());
 if (myTcpServerPtr->connect(-1))
 {

 418

Figure 20-23: Complete TCP Client-Server example with encoding and compression.

 EcString buff;
 if (myTcpServerPtr->read(buff,-1))
 {
 EcPRINT("Server received client name: %s\n",buff.c_str());
 EcString msg="Hello " + buff+". My name is Frankie";
 myTcpServerPtr->write(msg,-1);
 }
 }
 }

 virtual void helloClient()
 {
 myTcpClientPtr.reset
(EcComm::CommFactory::createTcp(EcComm::ASIO,"127.0.0.1",9876,false));
 myTcpClientPtr->setWriteFilters(writeFilters);
 myTcpClientPtr->setReadFilters(writeFilters.invert());
 if (myTcpClientPtr->connect(-1))
 {
 if (myTcpClientPtr->write("Johnny",-1))
 {
 EcString buff;
 if (myTcpClientPtr->read(buff,-1))
 {
 EcPRINT("Client received message: %s\n",buff.c_str());
 }
 }
 }
 }

 virtual void run()
 {
 writeFilters.addBase64Encode();
 writeFilters.addZlibCompress();

 boost::thread serverThread(boost::bind(&ecTcpExample::helloServer,this));
 boost::thread clientThread(boost::bind(&ecTcpExample::helloClient,this));
 clientThread.join();
 serverThread.join();
 }

 protected:
 boost::shared_ptr<EcComm::Protocols::Tcp> myTcpServerPtr;
 boost::shared_ptr<EcComm::Protocols::Tcp> myTcpClientPtr;
 Ec::EcFilters writeFilters;
 };

#endif

int main()
 {
 ecTcpExample myExample;
 myExample.run();
 return 0;
 }

 419

20.4.3 Low-level UDP Example
Figure 20-24 gives the header file for a UDP server class.

Figure 20-24: ecUdpServerThread.h.

The code to run the example is given in Figure 19-25, and Figure 19-26 shows the implantation
details of the server thread class.

#include <boost/thread/condition.hpp>

#include <boost/thread/mutex.hpp>

class EcUdpServerThread

{

public:

 /// constructor

 EcUdpServerThread(boost::mutex& mutex, boost::condition& condition);

 // thread initial function

 void operator()

 ();

private:

 boost::mutex& m_Mutex;

 boost::condition& m_Condition;

};

 420

 Figure 20-25: Code to run the UDP example

#include <boost/scoped_ptr.hpp>
#include <boost/thread/thread.hpp>
#include <foundCore/ecMacros.h>
#include "ecUdpServerThread.h"
#include <socket/ecUdpSocket.h>
static const EcU32 EC_TEST_DATA_SIZE = 100000;
int main(argc, char**argv)
{
 // For this example, a server is created. mutex and condition help
 // coordinate events between the client and server.
 boost::mutex mutex;
 boost::condition condition;
 boost::scoped_ptr<boost::thread> pServerThread;
 {
 // Acquire lock before starting server
 boost::mutex::scoped_lock lock(mutex);
 // start the server thread
 pServerThread.reset(new boost::thread(EcUdpServerThread(mutex, condition)));

 // wait until server is ready so the server won't miss data
 // this unlocks the mutex, which is relocked when signaled by the server
 condition.wait(lock);
 }

 {
 // This lock is required to make sure the server does not close the socket
 // before all the data is received here at the client
 boost::mutex::scoped_lock lock(mutex);
 // send data to server and then receive it back prepare data
 EcReal doubleArray[EC_TEST_DATA_SIZE];
 for(EcU32 ii = 0; ii < EC_TEST_DATA_SIZE; ++ii)
 {
 doubleArray[ii] = ii;
 }
 // Put size in header
 EcSocketHeader sHeader;
 EcU32 size = EC_TEST_DATA_SIZE * sizeof(EcReal);
 sHeader.size = size;
 sHeader.ID = 0;
 EcString peerAddress = EcTestIp; // this is local IP address
 EcU16 peerPort = EcTestPort; // port
 // Send the data as a string to the server
 EcUdpSocket socket;
 EcInt32 sent = socket.send(sHeader, (EcInt8*)(&doubleArray),

 peerAddress, peerPort);
 if(static_cast<EcInt64>(sent) == static_cast<EcInt64>(size))
 {
 // let the receive timout (2 secs), otherwise it will block indefinitely.
 socket.setRecvTimeout(5000);
 EcInt8* buffer = EcNULL;
 EcInt32 received = socket.receive(sHeader, buffer, peerAddress, peerPort);
 if(static_cast<EcInt64>(received) != static_cast<EcInt64>(size))
 {
 EcWARN("EcNetworkOperationExample::run: clientToServer failed.\n");
 }
 // Destructor closes the socket.Delete buffer if it is not empty
 EcARRAYDELETE(buffer);
 }
 else
 {
 EcWARN("EcNetworkOperationExample::run: clientToServer failed.\n");
 }
 }
 // wait until server is done
 pServerThread->join();
 return 0;
}

 421

Figure 20-26: ecUdpServerThread.cpp

#include "ecUdpServerThread.h"
#include <socket/ecUdpSocket.h>
#include <foundCore/ecMacros.h>

EcUdpServerThread::EcUdpServerThread(boost::mutex& mutex, boost::condition& condition)
 :m_Mutex(mutex), m_Condition(condition)
{}

void EcUdpServerThread::operator()()
{
 // create new socket, and binds to port
 EcUdpSocket socket(EcTestPort);
 // If this lock occurs before the client wait call, the server will pause because
 // a lock was previously called by the client. If this lock occurs after the client
 // wait call, the server will continue as normal.
 {
 boost::mutex::scoped_lock lock(m_Mutex);
 }
 // Server and client sockets are now ready,so release client to start sending
 m_Condition.notify_all();
 // receive and return data from/to client. Peer port and address will be set when
 // done receiving data. This will enable the data to be sent back.
 EcU16 sourcePort;
 EcString sourceAddress;
 // this buffer will be allocated inside receive(); we do not know the
 // buffer size until we receive the socket header
 EcInt8* buffer = EcNULL;
 // socket header is a struct invented ourself, can be extended for new need.
 EcSocketHeader sHeader;
 // this will let the receive timout (5 secs), otherwise it will block indefinitely.
 socket.setRecvTimeout(5000);
 EcInt32 received = socket.receive(sHeader, buffer, sourceAddress, sourcePort);
 if (received == -1)
 {
 EcWARN("EcUdpSocket::operator() Error: received timed out. Trying again.\n");
 received = socket.receive(sHeader, buffer, sourceAddress, sourcePort);
 if (received <= 0)
 {
 // trouble receiving
 EcWARN("EcUdpSocket::operator() Error: server receive failed\n");
 EcARRAYDELETE(buffer);
 return;
 }
 }
 else if (received == 0)
 {
 EcWARN("EcUdpSocket::operator() Error: server receive failed\n");
 EcARRAYDELETE(buffer);
 return;
 }
 // send back to client
 EcInt32 sent = socket.send(sHeader, buffer, sourceAddress, sourcePort);
 if (sent != sHeader.size)
 {
 EcWARN("EcUdpSocket::operator(): failed on send()\n");
 }
 EcARRAYDELETE(buffer);
 // Locked first by client.
 // Wait to delete until client gets all of its data.
 {
 boost::mutex::scoped_lock lock(m_Mutex);
 }
}

 422

21 Models and Other Format Loading
The primary method of loading data into the toolkit is through XML configuration files. The
Actin™ toolkit provides several converters that enable the user to load in other formats. These
formats can be transformed into an EcSystemSimulation or EcVisualizableStatedSystem. Once
loaded, the objects can be used or written out into an XML configuration file. New converters can
also be added through a dynamic library.

21.1 Overview of Converters
Table 21-1 contains a description of the converters supported in the Actin™ toolkit.

Format Class Description

3DS EcSystem3dsLoader Standard format for describing 3-dimensional scenes
with one or more objects.

ASE EcSystemAseLoader Standard format for describing 3-dimensional scenes
with one or more objects.

CFG EcSystemCfgLoader NASA JSC format for RoboSim. A CFG file includes
VEC files to build 3-dimensional scenes. For example,
this format is used for describing Robonaut.

PNTP EcSystemPntpLoader Energid format. Point polygon files (.pntp) contain a
list of 3 files for describing 3-dimensional objects:
point polygons (.pp), system (.system), and state
(.state).

VEC EcSystemVecLoader NASA JSC format for Robosim. A VEC file describes
an object that can be combined with other objects
through CFG files.

Table 21-1: List of format converters.

The converters are contained and called from EcSystemAllLoader, which also contains a dynamic-
library technique for adding new converters. Currently, EcSystemAllLoader is only created and
called from the GUI. Through the GUI, the user can use the “File->Open” command to open new
files. If EcSystemAllLoader does not recognize the file extension, it calls the library to get new
converters. The current converter dynamic library contains an example for how to add a “sphere-
type” converter.

All of the converters build upon EcBaseSystemLoader. Table 21-2 shows the primary methods of
EcBaseSystemLoader which is the interface for each new and existing converter.

Method Description

loadSimulationFromFile Create a simulation given a simulation reference

 423

and filename.

loadVisualizableStatedSystemFromFile Create a visualizable stated system given a
reference and filename.

Table 21-2: Listing of primary methods available through the EcBaseSystemLoader class. Each file
converter including EcSystemAllLoader contains an overloaded version. The overloaded version of
EcSystemAllLoader contains calls to all the other converters and the dynamic library. Check the code
documentation for a complete list and description.

Although the interface for EcSystemAllLoader is currently only called by the GUI, it can be used by
new code as the developer dictates. Text Box 21-1 shows an EcSystemAllLoader example taken
from the self test code.

Text Box 21-1: EcSystemAllLoader example. In this example, a “sphere-type” file is loaded to a
simulation and then written out to an XML file.

21.1.1 Point Polygon Format
The point polygon format is an Energid format that is described in more detail here. There are two
point polygon format examples for the PUMA and RRC K-1207i in the data directory. The primary
point polygon file contains filenames for three other files that describe the point polygons, system
and state. The text box below shows an example. Each of these files consists of raw data in space
delimited ASCII format.

Text Box 21-2: Point Polygon File Example.

 pSimulation = new EcSystemSimulation;
 loadFile = "dllTest.sphere";

 // Load the CFG file from the DLL
 // The file extension is “testcfg” to force the loader to
 // call the DLL.
 if(loader.loadSimulationFromFile(*pSimulation,loadFile))
 {
 // If successfully loaded, write out to an XML file
 filename=EcString("./")+
 EcSelfTestDirectory+
 EcString("/")+
 EcString("sphere.xml");
 pSimulation->writeToFile(filename,EcSim::EcSimulationToken);
 }

 EcDELETE(pSimulation);

 # Point Polygon Data File
 pp: puma6.pp

 # System Data File
 sys: puma6.sys

 # System Data File
 state: puma6.state

 424

A conversion tool, EcConversionTool, is called within the point polygon converter to read the
system, state, and point polygons, and do the conversion to a simulation or stated system.

The system data file contains the static parameters that define the system. The file starts with the
number of degrees of freedom followed by the DH parameters, centers of mass in DH frame, masses,
inertias at center of mass expressed in DH frame, gravity vector, viscous friction coefficients, motor
inertias, gear ratios, lower joint limits, and upper joint limits. Except for the gravity vector, each
data item is repeated for each degree of freedom. A description of the data can be placed at the
bottom of the file.

The state data file contains initializations for the dynamic parameters that define the state. The file
contains joint positions and rates for each degree of freedom. A description of the data can be placed
at the bottom of the file.

The point polygon data file contains sets of points and polygons. The number of sets is equivalent to
the number of degrees of freedom plus the base. The number of degrees of freedom is determined by
the system file. The first set in the point polygon file is for the base. Each set of data starts with two
numbers defining the number of points and polygons. The point and polygon data follows. Each
polygon collection starts with a number of indices which enables the reader to iterate through the
data.

21.2 Description for Adding New Converters
The toolkit provides a base class for building new converters and it provides dynamic-library source
code for integrating the new converters into the developer’s application. Source code for the
example “sphere-type” format is contained with the dynamic-library interface; the developer can use
these files as an example for developing new converters.

Once a new converter class is created, it needs to be added to the converter dynamic library. The
converter DLL is organized similarly to the plugin interface described in Section 18. The dynamic
library contains two functions that provide the interface to the application: getSimulation and
getVisualizableStatedSystem. These two functions need to be updated with each new converter.
Text Box 21-3 shows an example of the contents of getSimulation.

Text Box 21-3: Example code for getSimulation.

New converters can be added to the dynamic-library interface through new “else if” statements.
Through this process, new converters can be added by the developer to the application.

21.3 SolidWorks Plugin Converter

 if(filename.find(EcString(".sphere"))!=EcString::npos)
 {
 EcSystemSphereLoader systemSphereLoader;
 return systemSphereLoader.
 loadVisualizableStatedSystemFromFile(visStatedSystem,filename);
 }
 else
 {
 EcWARN("ecConvertApi::getVisualizableStatedSystem(): "
 "unknown file extension in %s\n", filename.c_str());
 return EcFalse;
 }

 425

The Actin SolidWorks Converter is a tool for converting SolidWorks models to the Actin XML
format. This format can be loaded into the Actin viewer (see Figure 21-1) or utilized by other Actin
applications which are created with the Actin libraries and header files. The converter is a
SolidWorks add-in that is visible after selecting “Tools/Add-Ins” and checking “convert”. Once
loaded, a Converter menu and toolbar options become visible.

Figure 21-1: The left picture shows a hexapod model within SolidWorks and the right picture shows
the converted hexapod model within the Actin viewer.

The conversion process captures the physical extent and joint information of the model and other
SolidWorks data such as color and mass properties. The documentation below describes the model
modifications necessary to enable the conversion, and it describes the conversion options.

21.3.1 Model Setup

21.3.1.1 Step 1: Label Each Joint
SolidWorks provides many options for mating parts together into assemblies. During the conversion
to the Actin format, these mates are analyzed to determine which parts are combined into
manipulator links and to determine the joint definitions between the links. To simplify the analysis,
mates associated with joints are identified by a prefixed label. This label has the following syntax:

EcJoint groupTag

EcJoint is a keyword and groupTag is a user-define alphanumeric tag that groups the mates
associated with a joint. If the EcJoint label is present for any mate, the mate description is added to a
joint. If the label is not present, the mated parts are combined into a link. More than one mate is
necessary for defining a joint. The group tag identifies collections of mates for each joint.

All mates contain information describing which mate entities to connect. The Actin converter only
recognizes mate entities that are parts. For example, if a part is mated to an assembly, or an axis or
reference plane not associated with a part, the mate is ignored. It is possible that enough information
could be lost in this process where a link might artificially fragment. If this happens, typically a
couple mates can be redefined to solve the issue. Connecting parts is a requirement because
assemblies do not map well to links. Assemblies can represent a subset of a link or contain multiple
links. Mapping an assembly to a link would require extra information from the user.

 426

Figure 21-2 shows the mates for one leg. This hexapod has 4 joints per leg. Three are in the leg
subassembly and one is in the higher level assembly where the legs are attached to the base. As can
be seen, there are three joints in the mate list. Each of the three joints is defined by a coincident,
concentric, and an optional angle limit mate. Note: a distance mate can be used in lieu of a
coincident mate. If no angle limit mate is defined, the joint limit defaults to -180 to 180 degrees.

Figure 21-2: Mate group. Mates associated with joints are prefixed with the keyword “EcJoint” and
a grouping tag.

21.3.1.2 Step 2: Defining Reference Frame for End Effector
Currently, there is one other model modification which is useful for the conversion process. All
other settings are established by the Converter Property Manager which is described below. The
placement of the end effector frames are more intuitively set through the model instead of through
data in the property manager. The end effector frames are set through a reference point named “End
Effector”. Figure 21-3 illustrates where the reference point is placed for the hexapod arm. The
feature manager in the left graphic shows the name of the end effector part at the top and the
reference point at the bottom. Figure 21-4 illustrates how the reference point is added to the part.
SolidWorks provides a flexible capability for adding reference points as described in the figure.
Figure 21-5 shows how the guide frame is nicely placed on the tip of the end effector in the location
of the reference point. This provides an intuitive approach to placing the end effectors.

 427

Figure 21-3: View of the end effector reference point. The Feature Manager (left) shows the named
“End Effector” reference point at the bottom of the list. The middle and right figures show the
placement of the end effector.

Figure 21-4: Illustration of how to add a reference point. Select “Point” from the toolbar at the top,
which opens a property manager to the left. For the hexapod peg, select two intersecting lines on the
peg. Once complete, rename the reference point in the Feature Manger to “End Effector”. This
enables the user to use other reference points for other purposes.

 428

Figure 21-5: Illustrates the before and after of the end effector reference point attachment. Notice
that the end effector guide frame in the right figure is placed nicely at the tip of the end effector,
whereas it was previously in the center of the link.

21.3.1.3 Step 3: Fill in the Property Manager Page (PMP)
Several parameters can be set through a property manager page. Figure 21-6 illustrates how to get to
the Converter Property Manager Page by selecting “Converter/Show Converter PMP” from the
menu. (Note that selecting “Converter/Convert” from the menu converts the assembly. The
converter will warn the user if the appropriate parameters are not set in the Converter Property
Manager Page.)

Figure 21-6: By selecting Converter/Show Converter PMP, the user can configure the conversion
process.

 429

Figure 21-7 shows the settings available through the Converter Property Manager Page. There are
currently two groups of properties: top level inputs and visualization parameters. The Model Name
and Base Part are mandatory parameters. The converter will warn the user if these are not set. The
visualization parameters, described in Table 21-4 are optional. These parameters define the
appearance of the model in the Actin viewer.

Figure 21-7: Property Manager Page. The left figure shows a complete PMP. The right figure
shows how the data is saved in the file properties page. These parameters can be viewed when
SolidWorks is closed.

Property Name Description

Model Name Name of model (e.g., hexapod). Currently, this is only used as
the base name for the output file (e.g., hexapod.ecz).

Base Part Name of base part. The base part defines the base link which
is needed by the simulation and control system.

 430

Mass Properties Filename Excel XML file with mass properties (optional)

Table 21-3: Group 1 input parameters.

Property Name Description

Eye Point Eye point vector which defines the location of the eye point.

Center of Interest Center of interest vector which defines the point being viewed.

Field of View Field of view angle in radians.

Guide Frame Size of guide frame that is placed on end effector.

Sphere Radius Radius size of center of interest sphere. This center of interest
sphere can be moved around in the Actin viewer to viewer
different locations.

Up Vector The up-vector is used in Actin to assist with viewing models.

Table 21-4: Group 2 visualization parameters. The conversion process will work without setting
these parameters.

The most difficult parameter to set is the base part. The SolidWorks API uses a slightly different
part naming syntax than what is shown in the SolidWorks GUI. If the base part is selected through
the Feature Manager design tree (see Figure 21-8), the Converter Property Manager Page will extract
the name of the selected part and initialize the base part to the selected part (see Figure 21-9).
Selecting the base part through the Feature Manager is recommended instead of selection through the
main window, because it is difficult to select a whole part in the main window. Typically faces,
edges, and vertices (not parts) are selected through the main window. If this process produces
unexpected results, the user can test the part selection through the “Converter/Name Selected Part”
menu. This menu feature prints the selected part name to the screen. If there is a problem with the
selection, this command will provide feedback to the user.

 431

Figure 21-8: Illustration of selecting the base part in the Feature Manager. The selected part is
highlighted in green in the main window.

Figure 21-9: Results of selecting the base part in the Feature Manager prior to opening the
Converter Property Page.

 432

Mass Properties
There are three methods of defining mass properties through the conversion process: 1) use
SolidWorks defined mass properties, 2) set the mass properties for each link through a spreadsheet,
and 3) let Actin define the mass properties.

By leaving the mass properties filename blank in the PMP, SolidWorks will define the mass
properties. Figure 21-10 shows the SolidWorks mass properties in the Actin viewer.

Option 2 enables use of an Excel XML file by placing the filename in the mass properties field of the
PMP. An example Excel sheet is in Figure 21-11.

Option 3 enables use of Actin for setting the mass properties. This is done by placing the keyword
“Actin” in the mass properties field. This option was primarily added to overcome problems with
SolidWorks models that contain surface bodies (not solid bodies). Surface bodies don’t have mass
properties and oftentimes SolidWorks sends bad data for surface bodies to the converter. If the
model has surface bodies, it is recommended that Option 2 or 3 be used.

Figure 21-10: Mass Properties Illustration. The left figure shows the default model and the right
figure shows mass property ellipsoids overlaying each link. This visual approach to viewing the
mass properties is a valuable verification tool.

 433

Figure 21-11: Spreadsheet Illustration. This spreadsheet illustrates the format for setting mass
properties by link. Use “Save As” to convert to an XML file which the SolidWorks converter can
use.

21.3.1.4 Final Step: Run Converter
The converter menu contains four options: 1) convert the model, 2) capture a part list, 3) identify the
selected part, and 4) open the converter property manager page (see Figure 21-12). The first three
menu options are also executable through the “Converter” toolbar (see Figure 21-13). The icons
numbered 1, 2, and 3 are available for executing the menu items. Table 21-5 provides a description
of the Converter menu and toolbar options.

Figure 21-12: Execute Conversion. Conversion can be executed through the menu or toolbar.

 434

Figure 21-13: Illustration of the Converter toolbar.

Table 21-5: Description of the converter menu and toolbar.

Converter Menu Converter Toolbar Description

Convert

Convert model

List Parts

Create part list in
EcPartList.txt

Name Selected Part

Show name of selected part

Show Converter PMP No toolbar option Show converter property
manager page

After the parameters in the Converter Property Manager Page are set and the “okay” button is
selected, the parameter values are extracted from the Converter Property Manager Page and are
stored in the file properties. The file properties are visible within SolidWorks and outside of
SolidWorks. Within SolidWorks, the properties are visible through the “File/Properties” menu (see
Figure 21-14). From outside of SolidWorks, the properties are visible by right clicking the file and
selecting “properties” (see Figure 21-15). The properties are also editable through these paths,
though the Converter Property Manager Page is the preferred approach.

 435

Figure 21-14: Custom file properties for the conversion process are available for viewing or editing
through SolidWorks by selecting the “File/Properties” menu.

Figure 21-15: Custom file properties provide data for the conversion process. The left figure shows
a blank properties page and the right figure shows a properties page with conversion properties as set
by the Converter Property Manager Page. The properties page can be accessed by right clicking on
the file and selecting “Properties”.

21.3.1.5 Summary
The conversion time takes approximately 1 second and the file output, hexapod.ecz, is about 150 KB
for the current model. Once hexapod.ecz is created, it can be viewed by the Actin viewer and the

 436

manipulator can be commanded to perform various actions. The Actin libraries and headers can also
be used to create new applications of which the Actin viewer is just one of them.

22 Analysis Tools

22.1 Using Simulink to Drive Actin with Desired End Effector
Positions

The contents of the Simulink end-effector model are in
[InstallPath]\toolkits\software\actinSimulinkInterface\driveActinWithEndEffectors. There are five
files in the directory as shown in Figure 22-1. All of these files are text files. Simulink models have
the “mdl” extension. To exercise this example, double click driverActinWithEndEffector.mdl.

Figure 22-1: Directory content for End Effector simulation.

Figure 22-2: Example Simulink model for the End Effector simulation.

 437

Figure 22-3: Build model using CMex.

Double clicking the mdl file opens both the model (see Figure 22-2) and a Matlab command window
(Figure 22-3). As seen in the mdl file, there are three primary features in the simulation: 1) the S-
Function which is the large block in the middle, 2) the S-Function inputs to the left, and 3) the S-
Function outputs to the right. The inputs are time and end-effector positions (three translations and
four quaternions for orientation). The outputs are a vector of joint angles. The inputs and outputs of
the S-Function can be redirected to a much more sophisticated simulation. The current inputs and
outputs primarily illustrate capability and provide test signals.

As seen in Figure 22-1, there are three C++ source files: driverActinWithEndEffectorSfunction.cpp,
ecClientApi.cpp, and ecClientApi.h. These source files need to be built prior to running the
simulation that is visible in the Simulink model (mdl file). Figure 22-3 illustrates how to build the
files using the build.m script. Build.m contains the build setting for CMex and calls the CMex
compiler (see the text box below).

 438

Text Box 22-1: Contents of build script.

Once the model is built, the simulation can be executed. The S-Function in the Simulink model
connects to the Actin Viewer through TCP/IP. Before running the simulation, open the Actin
Viewer and load a model (see Figure 22-4). Put the viewer in server mode (see Figure 22-5). Server
mode enables the viewer to run the simulation and send out data to other applications through
TCP/IP.

TOOLKITS = getenv('EC_TOOLKITS');
includeDirs = [...
 '-I' TOOLKITS 'include' ' ' ...
 '-I' TOOLKITS '..\external\boost_1_34_1' ' ' ...
 '-I' TOOLKITS 'software\actin\src\test' ' ' ...
 '-I' TOOLKITS 'software\foundation\src\test' ' ' ...
];

flags = '-DWIN32 -DMATLAB_INTERFACE -DBOOST_ALL_NO_LIB -
DEC_STABLE_FOUNDCORE_DYNAMIC_LIBS';

LIBPATH = [TOOLKITS ...
 'lib\' ...
];
LIBPATH1 = [TOOLKITS ...
 'external\bzip2-1.0\lib\' ...
];
LIBPATH2 = [TOOLKITS ...
 'external\qhull-2003.1\lib\' ...
];
LIBPATH3 = [TOOLKITS ...
 'external\zlib-1.2.3\lib\' ...
];
libs= [...
 LIBPATH 'control.lib' ' '...
 LIBPATH 'convertSimulation.lib' ' '...
 LIBPATH 'convertSystem.lib' ' '...
 LIBPATH 'filterStream.lib' ' '...
 LIBPATH 'foundCore.lib' ' '...
 LIBPATH 'function.lib' ' '...
 LIBPATH 'geometry.lib' ' '...
 LIBPATH 'grasping.lib' ' '...
 LIBPATH 'imageSensor.lib' ' '...
 LIBPATH 'iostreams.lib' ' '...
 LIBPATH 'manipulator.lib' ' '...
 LIBPATH 'matrixUtilities.lib' ' '...
 LIBPATH 'measure.lib' ' '...
 LIBPATH 'simulation.lib' ' '...
 LIBPATH 'simulationAnalysis.lib' ' '...
 LIBPATH 'socket.lib' ' '...
 LIBPATH 'stream.lib' ' '...
 LIBPATH 'visualization.lib' ' '...
 LIBPATH 'vrml97.lib' ' '...
 LIBPATH 'walking.lib' ' '...
 LIBPATH 'xml.lib' ' '...
 LIBPATH1 'bzip2.lib' ' '...
 LIBPATH2 'qhull.lib' ' '...
 LIBPATH3 'zlib.lib' ' '...
];

src= ['driveActinWithEndEffectorSfunction.cpp ecClientApi.cpp'];

% build the mex file.
eval(['mex ' flags ' ' includeDirs ' ' src ' ' libs]);

 439

Figure 22-4: Model to run with Simulink simulation.

Figure 22-5: Enter server mode so that Actin simulation can calculate joint angles from end-effector
commands.

 440

After entering server mode, the viewer waits for Simulink to send commands. In the Simulink
window, the user can configure various parameters like execution time, and then tell the simulation
to run (see Figure 22-6). This figure also shows a plotting window which gives a time history of the
joint angles.

Figure 22-6: Run Simulation

S-Functions are powerful and can be very complex. Simulink supplies several tools and techniques
to assist with development. Figure 22-7 shows the S-Function builder for auto-generating simple S-
Functions. This S-Function builder was used to create the initial code for the current S-Function.
The builder always starts from scratch and creates a new C file with the S-Function name. In this
example, the C file was renamed with a C++ file extension. Rerunning the builder will not overwrite
this cpp file. The edits to the auto-built file were minimal. This is nice because the builder can be
reused to make changes and the Actin code interface can be reinserted. This approach is currently
helpful to resolve one of the primary issues with S-Functions; that is, that the number of inputs is
hardwired. S-Functions have some dynamic capability and Energid is researching this. For
example, Actin can receive a vector of end-effector commands from a vector of manipulators. In
this Simulink model though, only one end-effector command is used from one manipulator. Many
more end-effector inputs can be added to this S-Function as desired by the developer. The builder
(Figure 22-7) enables the developer to easily change the input and output interface. Once modified,
the build button needs to be pushed, the Actin code needs to be re-integrated with
driverActinWithEndEffectorSfunction.cpp, and the Matlab build script needs to be executed again.
For an experienced user, this can be done in 10-15 minutes.

 441

Figure 22-7: Overview of S-Function builder for simple functions.

Developers experienced with S-Functions can also bypass the builder and edit the file directly. The
text box below shows an example of the end-effector inputs. INPUT_1_WIDTH shows the hard-
wired size of the end-effector input array (currently set to 7).

 442

Text Box 22-2: Section of auto-code that shows settings for end-effector inputs.

In the S-Function code (e.g., driverActinWithEndEffectorSfunction.cpp), there are three primary
functions as illustrated in Table 22-1. Though there are lots of functions, many of which are not
utilized in this example, these 3 function provide the interface to Actin.

Function Description

mdlStart One-time initialization function. This is called once at the beginning of each
simulation start.

mdlOutputs Outputs data once per timestep. Since this S-Function does not calculate states
and derivatives, most of the content of the S-Function is called through
mdlOutputs.

mdlTerminate One-time termination function. This is called once at the end of each
simulation run.

Table 22-1: Primary functions of S-Function.

22.1.1.1 Using Simulink to Drive Actin with Joint Angles
The contents of the Simulink joint model are in
[InstallPath]\toolkits\software\actinSimulinkInterface\driveActinWithJoints. There are five files in
the directory as shown in Figure 22-8. To exercise this example, double click
driverActinWithJoints.mdl.

/* Input Port 1 */
#define IN_PORT_1_NAME endEffector
#define INPUT_1_WIDTH 7
#define INPUT_DIMS_1_COL 1
#define INPUT_1_DTYPE real_T
#define INPUT_1_COMPLEX COMPLEX_NO
#define IN_1_FRAME_BASED FRAME_NO
#define IN_1_DIMS 1-D
#define INPUT_1_FEEDTHROUGH 1
#define IN_1_ISSIGNED 0
#define IN_1_WORDLENGTH 8
#define IN_1_FIXPOINTSCALING 1
#define IN_1_FRACTIONLENGTH 9
#define IN_1_BIAS 0
#define IN_1_SLOPE 0.125

 443

Figure 22-8: Directory content for joint simulation.

Figure 22-9: Example Simulink model for joint simulation.

 444

Figure 22-10: Build model using CMex.

Double clicking the mdl file opens both the model (see Figure 22-9) and a Matlab command window
(Figure 22-10). As seen in the mdl file, there are three primary features in the simulation: 1) the S-
Function which is the large block in the middle, 2) the S-Function inputs to the left, and 3) the S-
Function outputs to the right. The inputs are time, base position, and joint angles. The inputs and
outputs of the S-Function can be redirected to a much more sophisticated simulation just as with the
end-effector simulation. The current inputs and outputs primarily illustrate capability and provide
signals for testing. These can be changed any way the developer wishes. To activate the Simulink
simulation, Figure 22-10 illustrates how to build the source files using the build.m script. The text
box below shows the contents of the build script. This script has less content than the end-effector
build script due to the need for less Actin code.

 445

Text Box 22-3: Contents of build script.

Once the model is built, the simulation can be executed. The S-Function in the Simulink model
connects to the Actin Viewer through TCP/IP. Before running the simulation, open the Actin
Viewer and load a model (see Figure 22-4). Put the viewer in responder mode (see Figure 22-11).
Note that the end-effector simulation requires server mode. Responder mode is different in that it
does not run the Actin simulation. The Actin Viewer takes the base positions and joint angles,
updates the state, and renders to result. Responder mode enables the viewer to receive these inputs
through TCP/IP from another application like Simulink and render the results.

TOOLKITS = getenv('EC_TOOLKITS');
includeDirs = [...
 '-I' TOOLKITS 'include' ' ' ...
 '-I' TOOLKITS '..\external\boost_1_34_1' ' ' ...
];

flags = '-DWIN32 -DMATLAB_INTERFACE -DBOOST_ALL_NO_LIB -
DEC_STABLE_FOUNDCORE_DYNAMIC_LIBS';

LIBPATH = [TOOLKITS ...
 'lib\' ...
];
LIBPATH1 = [TOOLKITS ...
 'external\bzip2-1.0\lib\' ...
];
LIBPATH2 = [TOOLKITS ...
 'external\zlib-1.2.3\lib\' ...
];
libs= [...
 LIBPATH 'foundCore.lib' ' '...
 LIBPATH 'xml.lib' ' '...
 LIBPATH 'filterStream.lib' ' '...
 LIBPATH 'iostreams.lib' ' '...
 LIBPATH 'stream.lib' ' '...
 LIBPATH 'socket.lib' ' '...
 LIBPATH1 'bzip2.lib' ' '...
 LIBPATH2 'zlib.lib' ' '...
];

src= ['driveActinWithJointsSfunction.cpp ecClientApi.cpp'];

% build the mex file.
eval(['mex ' flags ' ' includeDirs ' ' src ' ' libs]);

 446

Figure 22-11: Enter responder mode so that the Actin viewer can display the rendered model with
joint angles that reflect the angles sent from Simulink.

After entering responder mode, the viewer waits for Simulink to send commands. Figure 22-12
shows a running simulation with a model being rendered with dynamic joint angles. This figure also
shows a plotting window which gives a time history of the joint angles. Note that the output is a
direct feed through. No data is returned from Actin in this example.

Figure 22-12: Run Simulation.

 447

As with the end-effector S-Function, the inputs and outputs are hardwired into the auto-generated C
code. Figure 22-13 illustrates the input port page of the S-Function builder. The inputs and outputs
can be modified through this GUI or the auto-generated source code can be edited.

Figure 22-13: Display of S-Function input ports.

23 Boost

1.1 What is Boost
Boost is a collection of C++ libraries. At the time of this writing, Boost version 1.34.1
contains 73 libraries of varying complexity. Many of the libraries were designed and
implemented by industry experts, and all of the libraries are peer-reviewed by industry
experts. At least 9 of the Boost libraries have been chosen for inclusion into Technical
Report 1, or TR1, which is likely to be included in the next official standard of C++. This is
a testament to the utility and quality of the Boost libraries.

 448

1.2 Why use Boost
There are many reasons to use Boost libraries. The libraries are designed by experts with a
focus on genericity, reusability, and portability. This means that the libraries are applicable
to a wide range of problem domains, and they work on a wide range of platforms. The
libraries are highly-orthogonal. This allows individual libraries to be used without incurring
overhead from unused libraries, and it also implies synergy from combining multiple Boost
libraries. Boost provides a window into the future of C++. As previously mentioned, many
Boost libraries are already on the track to standardization in C++. The bottom line is that
the proper understanding and application of Boost libraries improves productivity and code
quality.

1.3 Overview of Boost libraries
The shear number and scope of Boost libraries makes them difficult to summarize. This
overview merely scratches the surface of several libraries that are widely used in Energid
software. To obtain detailed, up-to-date documentation for the libraries, please visit
http://boost.org/libs/libraries.htm.

1.3.1 Boost.Assign
Boost.Assign is a header-only library that eases the task of populating STL-compliant
containers. Container objects, such as vectors and maps typically require multiple phase
construction. In order to construct an instance of EcStringVector with three string elements,
the vector construction must be followed by three calls to push_back.

EcStringVector v1;

v1.push_back("one");

v1.push_back("two");

v1.push_back("three");

This multi-phase construction can be eliminated with the use of boost::assign::list_of.
const EcStringVector v2 = boost::assign::list_of

 ("one")("two")("three");

Notice that single-phase construction allows the container object to be declared constant.
This is not possible with multi-phase construction.

Boost.Assign can also be used to construct map container objects. The following example
demonstrates populating an instance of EcStringStringMap.

EcStringStringMap m1;

m1["English"] = "Hello";

m1["Spanish"] = "Hola";

Using boost::assign::map_list_of, this task is greatly simplified.
const EcStringStringMap m2 = boost::assign::map_list_of

 ("English", "Hello")("Spanish", "Hola");

 449

1.3.2 Boost.Conversion
Boost.Conversion is a header-only library that provides boost::lexical_cast. The following
example demonstrates using boost::lexical_cast to convert non-string types to a string.

assert(boost::lexical_cast<EcString>(10) == "10");

assert(boost::lexical_cast<EcString>(3.14159) == "3.14159");

The reverse conversion is also handled by boost::lexical_cast.
assert(boost::lexical_cast<EcInt32>("10") == 10);

assert(boost::lexical_cast<EcReal>("3.14159") == 3.14159);

Failed conversions will throw a boost::bad_lexical_cast exception.
try {

 boost::lexical_cast<EcInt32>("two")

} catch {boost::bad_lexical_cast&) {

 EcERROR(“Unable to cast \”two\” to EcInt32!\n”);

}

1.3.3 Boost.Filesystem
Boost.Filesystem provides an interface for portably dealing with file path operations. This
library is not a header-only library; therefore, its usage requires linking in the binary
“filesystem” library. The following demonstrates basic path operations:

// Use namespace alias to reduce line length in this example

namespace bfs = boost::filesystem;

// Construct paths

const bfs::path basePath = bfs::path("base/path",
bfs::native);

bfs::path examplePath = bfs::path(basePath / "dir");

// Append to path

examplePath /= "basename.ext";

// Basic operations

assert(examplePath.branch_path() == "base/path/dir");

assert(examplePath.leaf() == "basename.ext");

The library provides numerous convenience functions.
assert(bfs::basename(examplePath) == "basename");

assert(bfs::extension(examplePath) == ".ext");

assert(!bfs::exists(examplePath));

In order to get the current working directory, boost::filesystem::current_path can be used.
assert(bfs::is_directory(bfs::current_path()));

 450

1.3.4 Boost.Foreach
Boost.Foreach is a header-only library that provides a simple mechanism for iterating over a
container.

const EcStringVector strings = boost::assign::list_of

 ("one")("two")("three");

BOOST_FOREACH(const EcString& value, strings)

{

 EcPRINT(“%s\n”, value.c_str());

}

1.3.5 Boost.Format
Boost.Format is a header-only library that provides a type-safe C++ alternative to printf. It
allows standard printf-style formatting.

const EcString value =

 str(boost::format("Real %.1f, Int %3d") % 3.1 % 10);

assert(value == "Real 3.1, Int 10");

It also has a more expressive style for formatting.
const EcString value =

 str(boost::format("Real %|1$0.1f|, Int %|2$3d|") % 3.1 %
10);

assert(value == "Real 3.1, Int 10");

Boost.Format can repeat arguments.
const EcString value =

 str(boost::format("Real %1%, Int %2%, Repeat First %1%")
% 3.1 % 10);

assert(value == "Real 3.1, Int 10, Repeat First 3.1");

An exception is thrown if the expected number of arguments do not match the actual number
of arguments.

try {

 str(boost::format("Real %1%, Int %2%") % 3.1);

} catch (boost::io::too_few_args&) {

 EcERROR(“Format is missing an argument!\n”);

}

1.3.6 Boost.Iostreams
Boost.Iostreams provides a framework for building complex streams. This library is not a
header-only library; therefore, its usage requires linking in the binary “iostreams” library.

 451

With Boost.Iostreams, it is easy to add filters inline to a stream. For instance, an ostream to
compress data while placing it into a string buffer can be defined as follows:

EcString buffer;

// Create the ostream

boost::iostreams::filtering_ostream out;

out.push(boost::iostreams::bzip2_compressor());

out.push(boost::iostreams::back_inserter(buffer));

The stream can now be used as expected, and the data will be compressed in the buffer.
// Serialize data to the buffer

out << 3.14 << " " << 10 << " " << EcString(“Hello”);

out.flush();

In order to read the stream, a corresponding istream can be created.
// Create the istream

boost::iostreams::filtering_istream in;

in.push(boost::iostreams::bzip2_decompressor());

in.push(boost::make_iterator_range(buffer));

Finally, the new istream an be used as expected, and the data will be decompressed when it
is read from the buffer.

EcReal inR;

EcU32 inI;

EcString inS;

// Deserialize from the buffer

in >> inR >> inI >> inS;

1.3.7 Boost.Numeric
Boost.Numeric is a header-only library that provides boost::numeric_cast. Normal casting
operations, such as static_cast, do not detect the loss of range of a numeric type; therefore,
casting between numeric types is a traditionally unsafe operation. To remedy this,
Boost.Numeric provides boost::numeric_cast, which throws exceptions during unsafe
casts. The following example shows safe casts from an integer and double to a EcU8 value:

assert(boost::numeric_cast<EcU8>(42) == EcU8(42));

assert(boost::numeric_cast<EcU8>(3.14) == EcU8(3));

If the value is too large to fit in the destination type, an exception is thrown.
try {

 boost::numeric_cast<EcU8>(256);

} catch (boost::numeric::positive_overflow&) {

 EcERROR(“Unable to cast 256 to EcU8!\n”);

 452

}

Similarly, if a value is too small to fit in the destination type, an exception is thrown.
try {

 boost::numeric_cast<EcU8>(-1);

} catch (boost::numeric::positive_overflow&) {

 EcERROR(“Unable to cast -1 to EcU8!\n”);

}

Consistently using boost::numeric_cast allows some logic errors to be flagged at runtime.
This prevents undefined behavior and reduces the burden of debugging problems that are
difficult to track down. An actual example from a color interpolation routine is shown
below.

// Can you spot the error?

const EcU8 startR = 255;

const EcU8 stopR = 0;

const EcReal dR = boost::numeric_cast<EcReal>(stopR -
startR);

const EcU8 interpR = startR + boost::numeric_cast<EcU8>(dR);

The red color is being interpolated between a start value and an end value. Since, a red
value can only contain a value between 0 and 255, EcU8 is used as the type. When the
starting red value is larger than the ending red value, dR contains a negative number, and a
boost::numeric::bad_numeric_cast exception is thrown in the last line. The remedy to
this is shown below:

const EcInt16 deltaR = boost::numeric_cast<EcInt16>(dR);

const EcU8 interpR = boost::numeric_cast<EcU8>(startR +
deltaR);

1.3.8 Boost.Program_Options
Boost.Program_Options provides a framework for parsing command line options. This
library is not a header-only library; therefore, its usage requires linking in the binary
“program_options” library. The following example shows how to specify options:

// Use namespace alias to reduce line length in this example

namespace bpo = boost::program_options;

// Create the options description

bpo::options_description desc("Options");

// Add options

desc.add_options()

 // -h or –help flag : No associated value

 ("help,h", "Show this help message")

 // -i or –in-file : Value must be a string, not defaulted

 453

 (

 "in-file,i", bpo::value<EcString>(),

 "Name of the input file"

)

 // -o or –out-file : Value must be a string, defaulted

 (

 "out-file,o", bpo::value<EcString>()-
>default_value("default.out"),

 "Name of the output file"

)

 // -s or –short-int : Value must be an unsigned int,
defaulted

 (

 "start-int,s", bpo::value<EcU32>()->default_value(5),

 "The starting integer"

)

 // -f or –real-value : Value must be a float, not defaulted

 ("real-value,f", bpo::value<EcReal>(), "The real value")

;

Positional options can also be specified. For instance the following command specifies that
the first argument that does not follow an option flag should be treated as a value for “in-
file”.

// First non-flag argument is in-file value

bpo::positional_options_description posOptions;

posOptions.add("in-file", -1);

After creating the options descriptions, the command line arguments can be parsed and
stored in a map.

const EcInt32 argc = 4;

char* argv[argc] = {"thisProgram", "someInputFile.in", "-f",
"3.14"};

bpo::parsed_options parsed =
bpo::command_line_parser(argc,argv)

 .options(desc)

 .positional(posOptions)

 .run();

bpo::variables_map vm;

bpo::store(parsed, vm);

bpo::notify(vm);

 454

Finally, the application logic can work with the stored option values.
if (vm.count("help"))

{

 // Print a usage message

 std::cout << desc << std::endl;

}

else if (!vm.count("in-file"))

{

 EcERROR(“Missing an input file argument!\n”);

}

else

{

 // See if real-value was specified on the command line

 const EcReal realValue =

 (vm.count("real-value")) ? vm["real-value"].as<EcReal>()
: 0.0;

 // First non-flagged argument, thanks to positional options

 assert(vm["in-file"].as<EcString>() == "someInputFile.in");

 // Still has the default value

 assert(vm["out-file"].as<EcString>() == "default.out");

 // Still has the default value

 assert(vm["start-int"].as<EcU32>() == EcU32(5));

 assert(realValue == 3.14);

}

1.3.9 Boost.Regex
Boost.Regex provides a native C++ regular expression library. This library is not a header-
only library; therefore, its usage requires linking in the binary “regex” library. The first step
in using the library is to create the regular expression.

const boost::regex e("^Hello,?\\s+(\\S+)$");

This expression can then be used to test arbitrary strings for a match.
// Good match

assert(boost::regex_match("Hello Bob", e));

// Bad match: begins with a space

assert(!boost::regex_match(" Hello Bob", e));

// Bad match: need at least one whitespace character after
Hello

assert(!boost::regex_match("HelloBob", e));

 455

// Good match: optional comma

assert(boost::regex_match("Hello, Bob", e));

// Bad match: need at least one whitespace character after
comma

assert(!boost::regex_match("Hello,Bob", e));

// Good match: more than one whitespace is OK

assert(boost::regex_match("Hello World", e));

1.3.10 Boost.Signals
Boost.Signals provides a powerful signals and slots callback mechanism. This library is not
a header-only library; therefore, its usage requires linking in the binary “signals” library.
Signals are an ideal way to inform observers when a particular even occurs. The following
code creates a signal.

// Create a signal that takes a single argument and returns
void

// The argument is a reference to EcStringVector

boost::signal<void (EcStringVector&)> notificationSignal;

The observers must be convertible to functions with the same signature as the signal. In this
case, there are two observer functors.

struct Observer1

{

 void operator() (EcStringVector& sv) const

 {

 sv.push_back("Observer1");

 }

};

struct Observer2

{

 void operator() (EcStringVector& sv) const

 {

 sv.push_back("Observer2");

 }

};

The observers must be registered with the signal.
// Connect observer slots to the signal

notificationSignal.connect(Observer1());

notificationSignal.connect(Observer2());

 456

// Observer1 is added twice, so the observer will be notified
twice

notificationSignal.connect(Observer1());

Finally, the signal can be triggered, and the observer functors will be called.
// Trigger the signal

EcStringVector sv;

notificationSignal(sv);

1.3.11 Boost.Smart_Ptr
Boost.Smart_Ptr is a header-only library that provides several variants of smart pointers.
This library is perhaps the most widely used of all Boost libraries. The primarily-used smart
pointers are boost::scoped_ptr, boost::shared_ptr, and boost::weak_ptr. Here is a simple
Resource class that is used in the examples.

struct Resource

{

 EcU32 value;

};

A boost::scoped_ptr automatically frees its managed pointer when the pointer is no longer
used or when the pointer goes out of scope. Since the scope of an object ends when an
exception is thrown, the boost::scoped_ptr works correctly in the presence of exceptions.
Exception-safe code with pointers is often impossible without the use of a smart pointer,
such as boost::scoped_ptr.

// Begin scope

{

 typedef boost::scoped_ptr<Resource> ResourceScopedPtr;

 ResourceScopedPtr ptr(new Resource);

 // First Resource pointer is automatically freed

 ptr.reset(new Resource);

 // Second Resource pointer is automatically freed at scope
end

}

A boost::scoped_ptr is noncopyable, and it does not allow sharing of its managed resource.
For this reason, it is not possible to create STL containers of such pointers. If it is necessary
to share resources, copy smart pointers, or store smart pointers in a STL container, then a
boost::shared_ptr can be used.

// Begin scope

{

 typedef boost::shared_ptr<Resource> ResourceSharedPtr;

 typedef std::vector<ResourceSharedPtr> ResourcePtrVector;

 457

 ResourcePtrVector resourcePtrs;

 for (EcU32 i = 0; i < 10; ++i)

 {

 ResourceSharedPtr ptr(new Resource);

 resourcePtrs.push_back(ptr);

 ptr->value = i;

 // ptr goes out of scope, and the Resource pointer is
not

 // not freed because it is still used in resourcePtrs

 }

 // All Resource pointers in resourcePtrs are freed at scope
end

}

Using boost::shared_ptr, there can be many references to the same resource. As long as a
single boost::shared_ptr is managing a resource, it will not be freed. At times, thee is a
need to observe the resource in a boost::shared_ptr without actually referencing that
resource. The boost::weak_ptr is designed for this task.

typedef boost::weak_ptr<Resource> ResourceWeakPtr;

ResourceWeakPtr weakPtr;

// The weak_ptr is not referencing a valid shared_ptr

assert(weakPtr.expired());

// Begin scope

{

 typedef boost::shared_ptr<Resource> ResourceSharedPtr;

 ResourceSharedPtr ptr(new Resource);

 weakPtr = ptr;

 // The weak_ptr is now referencing a valid shared_ptr

 assert(!weakPtr.expired());

 // ptr goes out of scope, and the Resource pointer is freed

}

// The weak_ptr is no longer referencing a valid shared_ptr

assert(weakPtr.expired());

1.3.12 Boost.Thread
Boost.Thread provides a portable interface for creating threaded applications. This library is
not a header-only library; therefore, its usage requires linking in the binary “thread” library.
The fundamental primitive of the library is boost::mutex. This primitive serializes access
to a specific section of code. The mutex is usually used to guard resources that are shared

 458

across threads. Normally, a boost::mutex::scoped_lock is used to serialize access to a
section of code. The scoped lock waits to acquire a lock on a mutex, and it automatically
releases the lock on the mutex when it goes out of scope.

// Create a mutex (shared across threads)

boost::mutex m;

// Mutex m must be shared across threads that run the
following code

{

 // Wait until mutex m is unlocked, then acquire the lock

 boost::mutex::scoped_lock lock(m);

 // A lock on mutex m is acquired

 // ... operations that must be serialized

 // lock goes out of scope, and the lock on mutex m is
released

}

Sometimes it is desirable to wait for a particular condition prior to processing logic in a
thread. This can be accomplished with boost::condition.

// Create a condition and a mutex (shared across threads)

boost::condition c;

boost::mutex m;

// In one thread

{

 boost::mutex::scoped_lock lock(m);

 // A lock on mutex m is acquired

 // Release the lock on mutex m until the condition c is
triggered

 c.wait(lock);

 // A lock on mutex m is acquired (again)

 EcPRINT(“Notified of condition c!\n”);

 // ... operations that should run upon notification of
condition c

 // lock goes out of scope, and the lock on mutex m is
released

}

// In another thread

{

 // ... do some processing to determine when to trigger

 459

condition

 // Trigger the condition

 c.notify_all();

}

Unfortunately, if a condition is never triggered, the wait will never return. It is often
necessary to place a timeout on the wait. This can be accomplished with
boost::condition::timed_wait and a boost::xtime object.

{

 boost::mutex::scoped_lock lock(m);

 boost::xtime expiration;

 // Get the current time

 boost::xtime_get(&expiration, boost::TIME_UTC);

 // Expire one second from now

 expiration.sec += 1;

 // Wait for condition c with a timeout

 if (c.timed_wait(lock, expiration))

 {

 // A lock on mutex m is acquired

 EcPRINT(“Notified of condition c!\n”);

 }

 else

 {

 EcPRINT(“Timeout during wait for condition c!\n”);

 }

 // lock goes out of scope, and the lock on mutex m is
released

}

A thread can be commanded to sleep using boost::thread::sleep and a boost::xtime object.
boost::xtime sleepExpiration;

// Get the current time

boost::xtime_get(&sleepExpiration, boost::TIME_UTC);

// Expire sleep two seconds from now

sleepExpiration.sec += 2;

boost::thread::sleep(sleepExpiration);

A thread is created by constructing a boost::thread object. The thread constructor takes a
thread function as an argument. Here is an example thread functor.

 460

class AlarmFunc

{

public:

 AlarmFunc

 (

 EcU8 timeoutSec,

 boost::condition& startCondition

) :

 m_StartCondition(startCondition),

 m_Mutex(),

 m_Timeout(timeoutSec)

 {}

 void operator() ()

 {

 EcPRINT(“AlarmFunc awaiting start command!\n”);

 boost::mutex::scoped_lock lock(m_Mutex);

 m_Condition.wait(lock);

 EcPRINT(“AlarmFunc started!\n”);

 boost::xtime expiration;

 boost::xtime_get(&expiration, boost::TIME_UTC);

 expiration.sec += m_Timeout;

 boost::thread::sleep(expiration);

 EcPRINT(“AlarmFunc exiting!\n”);

 }

private:

 boost::condition& m_StartCondition;

 boost::mutex m_Mutex;

 EcU8 m_Timeout;

};

It is often convenient to create a thread pointer in order to delay spawning the thread.
typedef boost::scoped_ptr<boost::thread> ThreadPtr;

ThreadPtr threadPtr1;

ThreadPtr threadPtr2;

// Neither thread is currently running

boost::condition startCondition;

AlarmFunc func1(EcU8(2), startCondition);

 461

AlarmFunc func2(EcU8(4), startCondition);

// Spawn the threads

threadPtr1.reset(new boost::thread(func1));

threadPtr2.reset(new boost::thread(func2));

// Start the alarms

startCondition.notify_all();

// Wait for the threads to exit

threadPtr1->join();

threadPtr2->join();

 462

24 Bibliography
 [1] Robotic Manipulators: Mathematics, Programming, and Control, R.P. Paul, Cambridge, MA: MIT

Press, 1981.
[2] Introduction to Robotics, J.J. Craig, Reading, MA: Addison-Wesley, 1989.

[3] “Animating Rotation with Quaternion Curves,” K. Shoemake, SIGGRAPH, vol. 19, no. 3, San
Francisco, CA, July 22-26, 1985, pp. 245-254.

[4] D.H. Eberly, 3D Game Engine Design, Morgan Kaufmann Publishers, 2000.
[5] SEDRIS Web Site, www.sedris.org.
[6] "Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators," C.A. Klein

and C.H. Huang, IEEE Trans. on Sys., Man, and Cybernetics, vol. SMC-13, pp. 245-250, Mar./Apr.
1983.

[7] "Robot Manipulability," K.L. Doty, C. Melchiorri, E.M. Schwartz, and C. Bonivento, IEEE J. Robot.
Automat., vol. 11, pp. 462-468, June 1995.

[8] "Task Space Tracking with Redundant Manipulators," O. Egeland, IEEE J. Robot. Automat., vol. RA-
3, pp. 471-475, Oct. 1987.

[9] "Configuration Control of Redundant Manipulators: Theory and Implementation," H. Seraji, IEEE
Trans. Robot. Automat., vol. 5, pp. 472-490, Aug. 1989.

[10] "Kinematic Programming Alternatives for Redundant Manipulators," J. Baillieul, Proc. 1985 IEEE Int.
Conf. Robot. Automat., St. Louis, MO, Mar. 25-28, 1985, pp. 722-728.

[11] "Improved Configuration Control for Redundant Robots," H. Seraji and R. Colbaugh, J. Robot. Syst.,
vol. 7, no. 6, pp. 897-928, 1990.

[12] "Optimal Rate Allocation in Kinematically Redundant Manipulators—The Dual Projection Method,"
M.Z. Huang and H. Varma, Proc. 1991 IEEE Int. Conf. Robot. and Automat., Philadelphia, PA, Apr
24-29, 1988, pp28-36.

[13] "An Efficient Gradient Projection Optimization for Manipulators with Multiple Degrees of
Redundancy," H. Zghal, R.V. Dubey, and J.A. Euler, Proc. IEEE 1990 Int. Conf. Robot. and Automat.,
Cincinnati, OH, May 13-18, 1990, pp. 1006-1011.

[14] "On the Implementation of Velocity Control for Kinematically Redundant Manipulators," J.D. English
and A.A. Maciejewski, IEEE Trans. on Sys., Man, and Cybernetics—Part A: Systems and Humans,
vol. 30, no. 3, May 2000, pp. 233-237.

[15] "Efficient Dynamic Computer Simulation of Robotic Mechanisms," M.W. Walker and D.E. Orin,
Journal of Dynamic Systems, Measurement, and Control, vol. 104, Sep. 1982, pp. 205-211.

[16] “Fault Tolerance for Kinematically Redundant Manipulators: Anticipating Free-Swinging Joint
Failures,” J.D. English and A.A. Maciejewski, IEEE Transactions on Robotics and Automation, vol.
14, pp. 566-575, 1998.

[17] Robot Dynamics Algorithms, R. Featherstone, Kluwer Academic Publishers, 1987.

[18] “On-Line Computational Scheme for Mechanical Manipulators,” J.Y.S. Luh, M.W. Walker, and
R.P.C. Paul, Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 69-76, June 1980.

[19] “The Minimum Form of Strength in Serial, Parallel and Bifurcating Manipulators,” R.O. Ambrose and
M.A. Diftler, Proceeding of the 1998 IEEE International Conference on Robotics and Automation,
Leuven, Belgium, May 1998.

[20] D. Baraff, “Coping with Friction for Non-Penetrating Rigid Body Simulation,” Siggraph ’91, Las
Vegas, vol. 25, no. 4, July 1991, pp. 31-40.

 463

[21] K.C. Cheok, H. Hu, and N.K. Loh, “Modeling and Identification of a Class of Servomechanism
Systems with Stick-Slip Friction,” Journal of Dynamic Systems, Measurement, and Control, vol. 110,
Sept 1988, pp 324-328

[22] D. Karnopp, “Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems,”
Transactions of the ASME, vol. 107, March 1985, pp. 100-103.

[23] M.W. Walker and D.E. Orin, “Efficient Dynamic Computer Simulation of Robotic Mechanisms,”
Journal of Dynamic Systems, Measurement, and Control, 104, 205-211, 1982.

[24] A. Fijany and A.K. Bejczy, “An Efficient Algorithm for Computation of Manipulator Inertia Matrix,”
Journal of Robotic Systems, 7(1), 57-80, 1990.

[25] R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston, 1987.

[26] K.W. Lilly, Efficient Dynamic Simulation of Robotic Mechanisms, Kluwer Academic Publishers,
Boston, 1993.

[27] K.C. Cheok, H. Hu, and N.K. Loh (1988), “Modeling and Identification of a Class of Servomechanism
Systems with Stick-Slip Friction,” Journal of Dyn. Systems, Meas., and Control, vol. 110, Sept 1988,
pp 324-328

[28] D. Karnopp (1985) “Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems,”
Transactions of the ASME, vol. 107, March 1985, pp. 100-103.

[29] M.W. Spong (1987), “Modeling and Control of Elastic Joint Robots,” Journal of Dynamic Systems,
Measurement, and Control, vol. 109, pp. 310-319, 1987.

[30] J-H Yang and L-C Fu (1996), “Nonlinear Adaptive Control for Manipulator System with Gear
Backlash,” Proc. 35th Conf. Decision and Control, Kobe, Japan, Dec 1996, pp. 4369-4374.

[31] S. Queen, K. London, and M. Gonzalez, “Momentum-Based Dynamics for Spacecraft with Chained
Revolute Appendages,” NASA 2005 Flight Mechanics Symposium, Greenbelt, MD, October 18-20,
2005.

[32] "On the Implementation of Velocity Control for Kinematically Redundant Manipulators," J.D. English
and A.A. Maciejewski, IEEE Trans. on Sys., Man, and Cybernetics—Part A: Systems and Humans,
vol. 30, no. 3, May 2000, pp. 233-237.

[33] S. Sykora, “Volume Integrals over n-Dimensional Ellipsoids,” Stan’s Library, v. 1, 2005.
http://www.ebyte.it/library/docs/math05a/nDimEllipsoidVolumes05.html

[34] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-Oriented Software
Architecture – A System of Patterns, John Wiley & Sons, 1996

[35] The Boost Iostreams Library. Retrieved 11:30, May 25, 2007, from
http://boost.org/libs/iostreams/doc/index.html

[36] Roger M. Needham and David J. Wheeler. "Tea extensions." Technical report, Computer Laboratory,
University of Cambridge, October 1997

[37] Feistel cipher. (2007, February 26). In Wikipedia, The Free Encyclopedia. Retrieved 22:18, February
28, 2007, from http://en.wikipedia.org/w/index.php?title=Feistel_cipher&oldid=111030203

[38] XTEA. (2007, January 3). In Wikipedia, The Free Encyclopedia. Retrieved 00:47, March 1, 2007, from
http://en.wikipedia.org/w/index.php?title=XTEA&oldid=98176875

 464

[39] XTEA. (2007, January 3). In Wikipedia, The Free Encyclopedia. Retrieved 00:47, March 1, 2007, from
http://en.wikipedia.org/w/index.php?title=XTEA&oldid=98176875

[40] Skype API. Retrieved 06:00, March 1, 2007, from
https://developer.skype.com/Docs/ApiDoc/Skype_API_reference.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

