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1 StickyBot Model

This model depicts StickyBot in the dorsal plane, parallel to StickyBot’s climbing surface.
Each contact point is treated as a rotational joint. Each leg is modeled as a serial mechanism
and is connected to the StickyBot body at a fully compliant hip, which ensures that the body
of StickyBot retains full mobility. (3 DOF in the planar case, 6 for spatial).

The current method relies upon simple limbs consisting of one segment connecting the foot
(rotational joint) to the hip (massless compliant prismatic-prismatic-revolute) joint. No
damping is currently included, so, at best, a marginally stable system is expected. Adding
damping is easily done; it just complicates the equations.

At a given instant, the limb joint angles and the body position/orientation are known. From
the differences in the body position and the end of each limb, the forces on the body and
the end of the limbs are known. The sum of forces and moments defines the resulting
acceleration of the body’s center of mass. The limbs’ accelerations are then determined by
the inverse dynamics of each limb.

Some notation:

xhbi Location of the i-th hip joint on the body
xhli Location of the end of the i-th limb
x fi Location of the i-th foot

xlcgi Location of the i-th limb’s center of mass
xcg Location and orientation of the robot body
ri Location of i-th hip with respect to the CG (fixed)

rhli Location of i-th hip with respect to the i-th foot
Ki Hip stiffness for the i-th hip

gRb Rotation matrix from body to ground coordinates
Fi Forces & moment at the i-th hip
fi Equation relating joint angles to the i-th hip position
Ji Jacobian relating joint velocities to the i-th hip velocity
hi Equation relating joint angles to position of the i-th limb’s center of mass

Jlcgi Jacobian relating joint velocities to the velocity of the i-th limb’s center of mass
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Mcg Body’s inertia tensor
mcg Body’s mass
mi i-th limb’s mass
qi i-th limb’s joint values (only one joint, the foot in this formulation . . . )
L Leg length
Ai Limb’s inertia tensor around the contact point
ri Location of i-th hip with respect to the body’s center of mass, in body coordinates

rcg→hi Vector from the i-th limb’s center of mass to the i-th hip
rcg→ fi Vector from the i-th limb’s center of mass to its foot

I Identity matrix (3x3)
φ Body angle with respect to vertical

q1

q2

q3

q4

phi

Figure 1: StickyBot Dorsal Model
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bFi = Ki

(
bxhli −

bxhbi

)
(1)

gFi = gRb bFi (2)

gRb =

 cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 (3)

xhli = fi (qi) (4)

Ji =
∂fi

∂qi
(5)

ẋhli = Jiq̇i (6)

ẍhli = J̇iq̇i +Jiq̈i (7)
xhbi = xcg + ri (8)
ẍhbi = ẍcg (9)

1.1 Equations of Motion

Newtonian moment balance around the contact point:

Ai =
(

1
4

miL2 + Ii

)
(moment of inertia around foot) (10)

Aiq̈i1 = rcgli ×mig− rhli ×Fi−
[

0 0 1
]

Fi (11)

Equation (11) is specific for this single joint limb formulation. More work required here to
analyze a system with limbs that are multi-jointed.

Matrix and vector cross product equivalents:

r×=

 0 0 0
0 0 0
−ry rx 0

 = r̃ (planar cross product) (12)

r×=
[
−ry rx 1

]
= ř (scalar cross product with moment addition) (13)

⇒ Aiq̈i1 = miřcglig− řhli
gFi = 0 (14)

Aiq̈i1 = miřcglig− řhli
gRb Ki

(
bxhli −

bxhbi

)
= 0 (15)

Aiq̈i1 = miřcglig− řhli
gRb Ki

(
gRb−1

xhli −
gRb−1

xcg− ri

)
(16)
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From Newtonian force balance on body:

Mcgẍcg = mcgg+Σ
gFi +Σ

(
bri× bFi

)
(17)

(Taking advantage of the fact that the z-axes are the same in the body and ground frames)

Mcgẍcg = mcgg+Σ

([
gRb + br̃i

][
Ki

bRg (xhli −xcg)−Kiri

])
(18)

We now have acceleration equations for each unknown.

Next step is to compute the extensions and wall reaction forces. Figure out a strategy to
accomplish desired motion, and minimize/equalize wall reaction forces.

Connection Extensions:

bxhli −
bxhbi = gRb−1

(gxhli −
gxcg)− bri (19)

= gRb−1
(fi(qi)− gxcg)− bri (20)

Reaction forces are found by taking the sum of forces and moments around each limb’s
center of mass and using the accelerations of the center of mass, previously determined:

Mlcgi ẍlcgi =−Fi +Fri +mig− r̃cg→hiFi + r̃cg→ fiFri (21)

=−
(
I+ r̃cg→hi

)
Fi +mig+

(
I+ r̃cg→ fi

)
Fri (22)

⇒
(
I+ r̃cg→ fi

)
Fri = Mlcgi ẍlcgi +

(
I+ r̃cg→hi

)
Fi−mig (23)

Since there are only reaction forces (no moments) at the foot contact, the cross product
portions drop out, which leaves:

Fri =
[

1 0 0
0 1 0

](
Mlcgi ẍlcgi +Fi−mig

)
(24)

Fri =
[

1 0 0
0 1 0

](
Mlcgi

(
J̇liq̇i +Jliq̈i

)
+Fi−mig

)
(25)

where Jli is the jacobian that relates the joint velocity to the cartesian velocity of the limb’s
center of mass.

Expanding out Mlcgi ẍlcgi yields:

Mlcgi ẍlcgi = Di +Eiri (26)

Di = Mlcgi J̇liq̇i +MlcgiJliA−1
i

[
miřcglig− řhli

gRb Ki
bRg (xhli −xcg)

]
(27)

Ei = MlcgiJliA−1
i řhli

gRb Ki (28)
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Expanding out q̈i and Fi yields:

Fri =
[

1 0 0
0 1 0

]{
Di−mig+ gRb Ki

bRg (xhli −xcg)+
(

Ei− gRb Ki

)
ri

}
(29)

Remember that the current method of control is modifying riφ, so let’s get everything in
terms of ri.

Fri = Ai +Ciri (30)

where:

Ai =
[

1 0 0
0 1 0

]{
Di−mig+ gRb Ki

bRg (xhli −xcg)
}

(31)

Ci =
[

1 0 0
0 1 0

]{
Ei− gRb Ki

}
(32)

Pulling ri out of the equation (18) is possible if you’re really only interested in changing
riφ, which does not show up in r̃i:

ẍcg = G+ΣHiri (33)

where:

G = M−1
cg

[
mcgg+Σ

([
gRb + br̃i

]
Ki

bRg (xhli −xcg)
)]

(34)

Hi = M−1
cg

[
gRb + br̃i

]
Ki (35)

So now, you have N controls that yield equations (30) and (33) which may allow us to
answer these questions:

• How can one equalize the |Fr|’s while maintaining ẍcg (or ẋcg)?

• What is the limit of ẍcg (or ẋcg) for a given limit on |Fr|?

Go back and look at increasing the number of joints per limb and modifying/generalizing
the hip compliance assumption?

To start, I’ll need to do a visualization routine for the StickyBot model, and run a simulation
for a generic gait. Then, look at implementing a reaction force reduction controller on that
simple gait.

1.1.1 Adding Damping

In order for a gait simulation to have a chance at being stable, joint damping must be
included. This is accomplished by estimating a damping constant that will make the sytem
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approximately damped. This is done by assuming a damping ratio of one for each axis
in each joint, using 1/N of the body’s mass and rotational inertia for the prismatic and
rotational joints, respectively.

bix,y = 2

√
mcg kix,y

N
(36)

biφ = 2

√
Icg kiφ

N
(37)

bFi = Ki

(
bxhli −

bxhbi

)
+Bi

(
bẋhli −

bẋhbi

)
(38)

= Ki

(
bRg (gxhli −

gxcg)− bri

)
+Bi

(
bRg (gẋhli −

gẋcg)+ bṘg (gxhli −
gxcg)− ṙi

)
(39)

gFi = gRb bFi (40)
gFi = Li +Ni ri +Pi ṙi (41)

Li = gRb
(

Ki
bRg (gxhli −

gxcg)+Bi

(
bRg (gẋhli −

gẋcg)+ bṘg (gxhli −
gxcg)

))
(42)

Ni =−gRb Ki (43)

Pi =−gRb Bi (44)

Adding to equation (30), the reaction force is now:

Fri = Ai +Ci ri +Si ṙi (45)

Ai =
[

1 0 0
0 1 0

]
(Di +Li−mig) (46)

Si =
[

1 0 0
0 1 0

]
Pi (47)

Ci is the same as before.

1.2 Effect of riφ on Reaction Forces and Body Acceleration

The effect of the “control” on the reaction forces is found by taking the partial of the
reaction forces with respect to riφ . This yields:

∂Fri

∂riφ
= Ci

 0
0
1

 (48)

∣∣∣∣∣∂Fri

∂riφ

∣∣∣∣∣ =

[
0 0 1

]
CT

i Ci

 0
0
1

 1
2

=
L
2

mi

Ai
kφ (49)
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∂Fri

∂ṙiφ
= Si

 0
0
1

 (50)

∣∣∣∣∣∂Fri

∂ṙiφ

∣∣∣∣∣ =

[
0 0 1

]
ST

i Si

 0
0
1

 1
2

=
L
2

mi

Ai
bφ (51)

This is ignoring the effect of ankle angle on the reaction force, which is dependent on riφ
. . .

As for body acceleration, Equation (33) is modified with the addition of damping at the
hip:

ẍcg = G+ΣHiri +ΣTiṙi (52)

where:

G = M−1
cg mcgg+M−1

cg Σ

(
I+ br̃i

bRg
)

Li (Li defined in equation (42)) (53)

Hi = M−1
cg

(
I+ br̃i

bRg
)

Ni (Ni defined in equation (43)) (54)

Ti = M−1
cg

(
I+ br̃i

bRg
)

Pi (Pi defined in equation (44)) (55)

Changes of the body’s acceleration with respect to changes in control are:

∂ẍcg

∂riφ
= Hi

 0
0
1

 =−
kφ

Icg
(56)

∂ẍcg

∂ṙiφ
= Ti

 0
0
1

 =−
bφ

Icg
(57)

This is ignoring the effect of ankle angle on the body’s acceleration, which is dependent on
riφ . . .
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1.3 Some Specifics

Starting with the limb equations:

xhli =

 Lcosqi1
Lsinqi1

qi1

 (58)

ẋhli =

 −Lsinqi1
Lcosqi1

1

 q̇i1 (59)

⇒ Ji =

 −Lsinqi1
Lcosqi1

1

 (60)

J̇i =

 −Lcosqi1
−Lsinqi1

0

 q̇i1 (61)

ẍhli =

 −Lcosqi1
−Lsinqi1

0

 q̇2
i1 +

 −Lsinqi1
Lcosqi1

1

 q̈i1 (62)
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