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3.1 TRANSFORMATION OF COORDINATES

Any vector r can be resolved in one or more systems of coordinates. In
many problems of dynamics relations between the components of r in various
coordinate systems prove extremely useful. To derive such relations, let us
consider Fig. 3.1 and write the vector r in terms of components along two
rectangular sets of axes, xj (i = 1, 2, 3) and ~ (i = 1, 2, 3). The unit vectors
along these axes are del ~‘6yi,j,jc and-P~j’k’~ ~pectively, so that

r = x1i + x2j + x3k = e1i’ + e2j’ + ~3k’. (3.1)
Since these are two ways of expressing the samevector, thecomponents xj and
~ must evidently be related. The relation between e and the components

- --

x~can be obtained by writing the scalar product ofr and i’ with the result
= (i’ i)x1 + (i’ j)x2 + (i’ k)x3
x1 cos (e1,x1) + x2 cos (e1,x2) + x3 cos (e1,x3)

= 111x1 + 112x2 + l13x3, (3.2)
where i~, = cos (e1,x1) (j = 1, 2, 3) are the direction cosines between axis ~
and axes x1. Similarly, we can express e2 and ~ in terms of the x, com
ponents so that Eq. (3.2) can be generalized to

= 4~x~ + l~2x2 + 43x3 = ~ i = 1, 2, 3.

Next let us define the 3 x 1 column matrices {x} = {x,} and {~} = {~}
representing the vector r in terms of the corresponding components, as well

FIGURE 3.1

as the 3 x 3 square matrix [1] = [lu] of the direction cosines, and write Eq.
(3.3) in the matrix form

{~} = [l]{x}, (3.4)
where the matrix [1] may be regarded as an operator transforming the vector
{x} into the vector {~}. Equation (3.4) represents a coordinate transformation
between two cartesian sets of axes. As such, it is not the most general type
of coordinate transformation; a more general one would be the transforma
tion between cartesian coordinates and generalized coordinates given by Eq.
(2.81). In the case of the linear transformation

{y} = [a]fx}, (3.5)

in which [a] is a square matrix of coefficients at1, we can obtain the vector {x}
by premultiplying both sides of Eq. (3.5) by the reciprocal [a]1 of [a]

{x} = [a]’{y}, (3.6)

provided that the matrix [a] is not singular. In the special case of the trans
formation matrix [1], however, the coefficients 4, are not all independent.
To show this, we can write the scalar products of r and i, j, and k in sequence
and obtain the relation

= ~ l~8, r = 1, 2, 3, (3.7)

which assumes the matrix form

{x} = [l]T{e}, (3.8)

where [l]T, defined by [4,]T = [l,~] (i,j 1, 2, 3), denotes the transpose of the
matrix [1]. Introducing Eq. (3.4) into (3.8), we arrive at

[l]T[i] = [.1] = [8q], (3.9)

where [1] is the identity matrix or unit matrix, namely, a matrix with all its
elements equal to the Kronecker delta defined by

11
=

From Eq. (3.9), we can easily conclude that the matrix of the direction
cosines 4~ satisfies the relation

[l]_1 = [l]T, (3.11)

which implies that the reciprocal, or inverse, of [1] is equal to the transpose
of [I]. A transformation satisfying relation (3.11) is called an orthr’normal

(3.3)

x3

£2
i =
i ~ I. (3.10)
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transformation. Equation (3.9) can be written in index notation as

l~l~ = 8~, i, j = 1, 2, 3,

which expresses the fact that axes xj on the one hand and axes on the other
form orthogonal sets of axes and also that the length of the vector r is the
same regardless of the set of axes in which it is resolved. The latter statement
can be written

rr = {x}T{x} = (3.13)
which can also be used to derive Eq. (3.9).

It may prove of interest to calculate the value of the determinant Ill of
the matrix [1]. From matrix algebra we have the relation

I[al[b]I = IaI IbI, (3.14)
or the determinant of a product of two matrices is equal to the product of the
determinants of the two matrices. But the determinant of the identity matrix
is equal to 1, and since the determinant of a matrix is equal to the determinant
of the transposed matrix, it follows from Eqs. (3.9) and (3.14) that

I~2 = 1. (3.15)

Equation (3.15) indicates that I may assume the value +1 or —1. For the
type of transformations we shall be concerned with the value is + 1 (see
Sec. 4.1).

The matrix [1] can be regarded as being the result of three successive
rotations leading from system {x} to system {ç}, as we are going to see in the
next section.

3.2 ROTATING COORDINATE SYSTEMS

In many dynamical problems involving spinning bodies it is convenient to
express the motion in terms of components along rotating frames of reference,
which, by definition, are noninertial frames. If this motion is to be related
to the inertial space again, we must produce expressions relating the com
ponents of the rotating and the fixed systems of axes. In doing so, we
recognize, that one of the coordinate systems of Sec. 3.1 may be regarded as
inertial and the other one as rotating in space, in which case the associated
direction cosines are implicit functions of time. In the sequel we shall develop
explicit expressions for the direction cosines between an inertial set of axes,
•say xj, and a rotating one, denoted by ~. The latter is obtained from the
former by means of three successive rotations 0~, 02, and 03 about axes x1, Y2,
~ resulting in the systems yj, z~, and ~, respectively.

J/;~~•7~ A:j,~•~.~r

(3.12)

x3

ri,

x2

FIGURE 3.2

From Fig. 3.2 we conclude that the relation between the systems of
coordinates x, and y, is as follows:

y1 = x1,
Y2 x2 cos 01 + x3 sin 01, (3.16)
= —x~ sin 01 + x3 cos 01,

which can be written in matrix form as

IY1 1 0 0
Y2 = 0 cos 01 sin °1 x2 (3.17)
~y3 0 —sin 0~ cos 0~ [x3J

or in more compact notation as

{y} = [R1(01)]{x}. (3.18)

The rotation matrix [R1(01)], denoting the square matrix of the coefficients in
Eq. (3.17), represents the rotation of a system of axes originally coincident
with axes xj by an angle 01 about axis x1. In a similar fashion, we can write

cos 02 0 —sin 02
{z} = 0 1 0 {y} = [R2(02)]{y} (3.19~

sin 02 0 cos 02
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{~} = [R3(03)][I?2(02)][R1(01)]{x) = [l]{x},

and
cos 03 sin 03 0

{~} = —sin 03 cos 03 0 {z} = [R3(03)J{z}.
0 0 1

Combining Eqs. (3.18) to (3.20), we obtain

(3.20)

(3.21)
where the matrix of direction cosines has the form

c02 c03 c01 sO3 + sO1 sO2 c03 sO1 sO3 — c01 sO2 c03
[1] = —cO2 sO3 c01 c03 — sO1 sO2 s0~ sO1 c03 + c01 sO2 sO3 , (3.22)

-. sO2 —sO1 c02 cO1 cO2
in which the abbreviations s0~ = sin 0, and cO~ = cos 0~ are used to save
space.

Next we wish to explore the possibility of expressing finite rotations as
vector quantities. The natural thing to investigate is whether the preceding
rotations can be represented as vectors O~ (i = 1, 2, 3) directed along the axes
x1, Y2, and z3, respectively. For this purpose, let us check whether the
rotations satisfy the addition rule for vectors, namely, that addition is a
commutative process. This is equivalent to requiring that the order of the
rotations be immaterial. The check can be made by using the rotation
matrices developed above and going from system {x} to system {z} in two
ways: (1) according to the sequence given by Eqs. (3.18) and (3.19) and (2)
by a rotation 02 about axis x2 followed by a rotation O~ about axis Yi. If the
results obtained in the two ways are equal, it can be concluded that finite
rotations are commutative and satisfy at least the addition rule for vectors.
The two different sequences yield

cO2 sO1 sO2 —c01 sO2
{z} = [R2(02)][R1(01)]{x} = 0 c01 sO1 {x} (3.23)

502 —sO1cQ2 c01c92
and

cO2 0 —sO2
{z} = [R1(0i)][R2(02)]{x} = sO1 sO2 cO1 sO1 cO2 {x}, (3.24)

c01 502 —sO1 cO1 cO2
and it is not difficult to see that the addition rule for vectors is violated, as the
two resulting vectors {z} are not the same. This is not at all surprising since,
in general, matrix products are not commutative

[R2(02)][R1(01)] # [R1(01)][R2(02)].

Fortunately, however, considerable interest remains in representing
infinitesimal rotations, rather than finite rotations, by vectors. Indeed, in the
particular case in which the angles of rotation are sufficiently small to permit
higher-order terms to be ignored Eqs. (3.23) and (3.24) both yield the same
result. Hence, following this line of thought, ahOWtliãtiñfihitësimal
fö~itidhs can be represented by vectors. As we are not so much interested
in representing rotations by vectors as in representing rates of change of
rotations, namely, angular velocities, by vectors we shall fi~iid it~ to our
a. vantage to ch eih~ approach slightly.

Let us~cànsider a vector r fixed with respect to a set of moving a~es. s~~
Because the set of axes e~.rotates relative to an inertial space, say he set x~,
the vectorr undergoes some change. We may recall that a change in the
directfdn of a vector is sufficient to bring about a change in the vector, and•
our interest lies in calculating the rate of change of r due to the angular
velocity of the reference frame ~. We have the choice of expressing r and
the rate of change of r in terms of components along the inertial system x~ or
along the movin~~t~?n ~. This may sound like a paradox in view df the
fact that the ve~fö rf led relative to the system ~. The fact remains,
however, that, due to the rotation of the system_~, the vector r changes
continuously with respect to an inertial space and the vector representing the
corresponding rate of change can be resolved into components along the set
x~ or the set ~,. It turns out that in the study of spinning. bodies it is fre
quently ffi~?~Ii~ful to express the motion in terms of components along the
moving systern~. To accomplish this, let us assume that the angles of
rotation z~O~ are sufficiently small for the approximations sin AO~ z~O~ and
cosOLl(i= 1, 2, 3) to be justified. Then premultiplying both sides of
Eq. (3.21) by [i]T, we a~ive at

1 ~1~03 z~O2
{x} = {~} + {~4} = [l]~’{~} = I~O3 1 —~0~ {ç}

~ E~O~
• 0. ~1103 t~kO2

= [1.1{e} + ~ 0 ~ e, (3;26)
~L~O2 L~O1 0

where [l]T was obtained by transposing Eq. (3.22) and letting O~ —~
(i = 1, 2, 3). Equation (3.26) leads to

{~} = [~O]{~}, (3 2~)
0 —~O3 ~O2

[z~O] = I~O3 0 —z~0~ (3.28)
~i~02 AO1 0

(3.25) where
Hence, finite angles of rotation cannot be represented by vectors.
—~--.
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= Ejjj~W~~,

j=i k~i

1W

F

is a skew-symmetric, or antisymmetric, matrix. Hence, a vectorr, fixed with
respect to a moving system of coordinates ~, will undergo an incremental
change z~r relative to an inertial space as a r~ült of an incremental rotation
with components ‘~O~ (i = 1, 2, 3) of the moving system about axes ~,

respectively. In terms of components along the inertial system, the vector
r + z~r is given by {x}, whereas in terms of components along the system ~,

it is expressed by {~} + {&~}, where the column matrix {t~} represents the
increment tsr. All quantities in Eqs. (3.27) and (3.28) are in terms of com
ponents along the moving system ç~. Clearly, the results (3.27) and (3.28)
do not depend on the order of the rotations if the rotations are small.
Dividing Eqs. (3.27) and (3.28) by the associated time increment /Xt and letting

—~- 0, we obtain the time derivative

{~} = lirn {~f} = lirn =[w]{~}, (3.29)

where [w] is the skew-symmetric matrix

0 —W3 W2

[w] = W3 0 —w~ , (3.30)
—U2 W~ 0

in which Wf (i = 1, 2, 3) are the angular velocity components of the moving
system ~ relative to the inertial space x~ when expressed in terms of com
ponents along the system ~.

It is easy to show that the vector counterpart of Eq. (3.29) is

t =. w X r, (3.31)
where r = ~1i’ + e2j’ + ~3k’ (3.32)

•, ., Ianu (U = W~1 + W2j + U3

Equation (3.31) can easily be interpreted physically by means of Fig. 3.3, in
which r represents the position vector, w the angular velocity vector which
is coincident with the instantaneous axis of rotation, and t a vector normal
to both r and w and in the direction shown.

As a special application of Eq. (3.31), we can obtain expressions for the
time derivatives of the unit vectors i’, j’, and k’, respectively, in the form

di’
= Ci) X 1 = W3j — W2k,

Ci) Xj’ = w1k’ — W~1’, (3.34)

dk’ , .wXk =w2i —U1j.

FIGURE 3.3

In fact, Eq. (3.31) can be interpreted as the time derivative of r, in which the
magnitudes ~, e2, and ~ are constant in time and the unit vectors have time
derivatives according to Eqs. (3.34).

In the above discussion, although not specifically stated, it was implied
that the elements of the skew-symmetric matrix [w] form a vector w in all
cartesian coordinate systems. For w to qualify as a vector, however, it must
also transform like the components of a vector, which has yet to be shown.
In the sequel we shall examine this question.

The relation between the components of the vector co and the matrix [U]
can be written in the form

(3.35)

in which E~1k is the standard epsilon symbol, defined to be equal to zero if an~
two of the three indices are equal, equal to + 1 if the indices are in cyclic
order, and equal to —1 if they are not. The inverse relation corresponding
to Eq. (3.35) is

3

Wnm ~ (3.36)

For w to qualify as a vector, it must be shown that for an orthonormal
transformation defined by the matrix [a], [alT = [a] -1, relating the elements
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= :~~: ~ aknwnmajm,
m=1 n~l

= ajjw,.
j~1

= al afjw1,

(3.41)
(3.42)

Wnm to the elements Uki of the transformed matrix by x3
Ct)

k’

x1

(3.37)

the components in the new coordinate system have the form
3

(3.38)

It turns out that the coordinate transformation in question has the form

(3.39)

where al is the determinant of the matrix [a], rather than the form (3.38) (see
Ref. I, p. 130). Thus for w to qualify as a vector, al must be equal to + 1.
This actually happens only in the case of an orthonormal transformation
corresponding to a proper rotation defined by a transformation matrix with
the determinant equal to + 1, as opposed to the improper rotation with the
determinant equal to —1. An orthonormal transformation corresponding
to a proper rotation transforms a right-handed system into another right-
handed system, as in the case described by Eq. (3.4). Quantities trans
forming according to Eq. (3.39) are called pseudovectors or axial vectors.
Hence, the elements of any 3 x 3 skew-symmetric matrix form the com
ponents of a pseudovector. For all practical purposes, however, we need not
make the distinction and can regard co as a vector.

3.3 EXPRESSIONS FOR THE MOTION IN TERMS OF MOVING
REFERENCE FRAMES

In Sec. 3.2 we considered systems of coordinates rotating relative to
an inertial system. In particular, we derived an expression for the
rate of change of a vector fixed in the rotating system. Now we wish to
obtain an expression for the time derivative of a vector whose components
along the moving system vary with time. Refer to Fig. 3.4 and denote by r
the position of point P relative to 0 when expressed in terms of the com
ponents x~ in an inertial space and by r’ when expressed in terms of the
components ~ along the rotating system. Of course, the two represent the
same vector

r = = Cii’ + C2j’ + C3k’. (3.40)

FIGURE 3.4

in terms of components along the rotating system. Differentiating (3.40)
with respect to time, we obtain

— dC1., dC2., dC3 k’ di’ dj’ dk’
r~~T~i +-~-j +-~- +C1~+C2-~+C3-~-
= t’ + Ct) X r’,

where f~’ = + ~2j’ + e3k’

denotes the rate of change of r’ relative to the system C1, C2, C3 and co X r’
denotes the rate of change of r’ due to the rotational motion of the system
C1, C2, C3. Notice that’ the latter is precisely the expression derived in Sec. 3.2.
In terms of velocities, t’ is the velocity of point P relative to the rotating
system, and w x r’ is the velocity of the coincident point (a point coinciding
with P instantaneously).

Equation (3.41) represents the time derivative of the vector r in an
inertial space when the vector is expressed in terms of a rotating frame of
reference and is valid for any vector, such, as the velocity or the angular
momentum vector. Under these circumstances, the second derivative of r
assumes the form

r = ~‘- (ij’) + )( r’ + w )( (r’)

=r’+wXf’+w’Xr’+(wXw)Xr’+wX~’+wX(wXr’)
= i~’ + 2w X ‘~‘ + co X r’ + co X (w X r’), (3.43)

(3.44)We pointed out in Sec. 3.2 that it is often advantageous to express the motion where = E’i’ + E2j’ + E3k’



112 Methods of Analytical Dynamics Motion Relative to Rotating Reference Frames 113

is the second derivative of r’ relative to the rotating system. In terms of
accelerations, r is the acceleration of P in an inertial space, 1’ is the accelera
tion of P relative to the rotating frame, 2w X t’ is known as the Coriolis
acceleration, and w x r’ + w X (w X r’) is the acceleration of the coin
cident point. The term w x (w x r’) is called the centripetal acceleration
and is directed toward the instantaneous axis of rotation.
If the origin 0 translates with velocity v0 and acceleration a0 with

respect to the inertial space, the absolute velocity and acceleration of point
P are

(3.45)
and a=a0+i~,

respectively, where r is given by Eq. (3.41) and r by Eq. (3.43).

3.4 MOTION RELATIVE TO THE ROTATING EARTH

Although Newton’s second law has an extremely simple form when the
motion is referred to an inertial system, it frequently is more convenient to
refer the motion to a noninertial system. It is natural to assume that there
are advantages in referring motion in the vicinity of a point on the earth’s
surface to a coordinate system rigidly attached to that surface. This indeed
proves to be the case. Such a reference frame, however, is not inertial
because the earth’s center revolves around the sun and the earth rotates about
its own axis. The expressions developed in Sec. 3.3 in connection with non-
inertial reference frames are extremely useful in treating these types of
problems.•

Although the center of the earth is moving around the sun, the accelera
tion is relatively small compared to the acceleration due to gravity or even the
acceleration of a point on the earth’s surface due to the earth’s spin, where
the point in question is reasonably far from the poles. Furthermore, for the
present purpose, the earth’s axis of rotation can be assumed to be fixed in
space (for a discussion of this assumption, see Sec. 11.8). Hence, we can
choose as an inertiaLsystern~a rectangula set XJçZ with the origin at the
earth’s center C and axis Z aligned with the earth’s axis of rotation. Axes X
and Yare in the equatorial plane, with X axis pointing toward the vernal
equinox (see Fig. 3.5). The earth rotates with an angular velocity ≤2, which,
for all practical purposes, can be assumed constant and equal to one rotation
per day.

We shall be concerned with the motion of a particle in the neighborhood
of the earth’s surface, the earth being assith&tt~i b~a~perfecr sphere. To
express the motion of the particle relative to the earth, we attach a coordinate

system x, y, z to the surface of the earth with the origin 0 situated at a given
latitude A; the longitude turns out to be immaterial. The x axis is tangent to
the meridian circle pointing south, y is tangent to the parallel pointing east,
and z, since it is directed toward the zenith, coincides with the local vertical.
The corresponding unit vectors are i, j, and k. The system x, y, z, being
rigidly attached to the earth’s surface, possesses the same angular velocity as
the earth. From Fig. 3.5 we conclude that the angular velocity can be
expressed in terms of components along thex, y, zaxes in the following form

= —(~2co(~)i + (~2sin A)k = const. (3.47)

The position of the mass m relative to the system x, y, z is denoted by r,
and the radius vector from center Cto the origin 0 is denoted by R0. Hence,
using Eq (3 46), the acceleration of m inaninertial space is

a=a0+I’+2wX~’+d’Xr’+wX(wXr’)

= ≤≥~ X (≤~ x R0) 2S~ x v’ + ~2 x (≤~ X r), (3A8)

where v’ and a’ are, respectively, the velocity and- acceleration of m relative
to the x,y,_z-system.

(3.46)

•

x

S

FIGURE 3.5
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= — 2≤2p sin A — f12R0 sin A cos A,

= 9 + 2~2(~ sin A + ± cosA~, (3.50)

x(O) = 0, y(O) = 0, z(0) =
±(O) = u0, ~(0) = v0, ±(0) = w0,

we can integrate Eqs. (3.51) once and obtain
± — 2~lysinA = u0,

‘ + 2≤2(x sin A + z cos A) = v0 + 2~2h cos A,
± — 2≤2y cos A + gt = w0.

Let the forces acting upon m be gravity and forces from yet unspecified
sources, where the latter are combined into a resultant F. For motion in the
vicinity of 0, the effect of the earth’s curvature may be neglected and the
gravitational field assumed uniform. It follows that the gravity force vector
is constant in magnitude, always parallel to the z axis, and pointing in the
negative direction of the z axis. Under these circumstances, Newton’s
second law takes the form

~(3.49)

The last term on the right side of (3.49) is generally very small, so that the
differential equations of motion become

—g + = — 2~2j) cos A — ≤22R0 cos2 A,

which can be solved for the relative motion x, y, z.

3.5 MOTION OF A FREE PARTICLE RELATIVE TO THE
ROTATING EARTH

The problem of a particle moving freely relative to the rotating earth has
interesting implications. For simplicity let us neglect air resistance and any
other forces except gravity, F~ = F~ = 0. Because the rotation of the
earth is very small, ~ = 7.29 x 10-s rad/sec, second-order terms in ≤2 lead
to accelerations which are negligible compared with the acceleration due to
gravity and will be ignored throughout. Under these assumptions, Eqs.
(3.50) reduce to

— 2~ sin A = 0,

9 + 2~(± sin A -~4.cQ$~) = 0, (3.51)
2 — 2~) cos A +~

Assuming that at t = 0 the relative position and velocity components are

(3.53)

Introducing the first and third of Eqs. (3.53) into the second of Eqs. (3.51)
and neglecting terms in ~22, we obtain

9 + 2~2(u0 sin A + w0 cos A) — 2≤2gt cos A = 0, (3.54~
which can be integrated twice with the result

y = v0t — f~t2(uo sin A + w0 cos A) + ~f2gt3 cos A. (3.55)

A substitution of Eq. (3.55) into the first and third of Eqs. (3.53) and in
tegrations with respect to time yield

x=u0t+Qv0t2sinA, 356
z = h + w0t + ~v0t2cosA —~gt2, . )

where again terms in I~2 have been ignored.
If a particle is dropped from rest, u0 = = w0 0, at a height h, it

will land on the earth’s surface after an interval of time

= ~ (3.57)

The coordinates of the landing point are

x = z = 0, y = cos A, (3.58)

where the positive sign of y indicates that it lands at a point on the y axis east
of the origin. This result may seem a little puzzling in view of the fact that
the earth is rotating from west to east. This can be easily explained, however,
since as the particle drops with a downward velocity gt, it is being deflected
eastward by the Coriolis effect. Due to the nature of the assumptions, the
above result is difficult to verify experimentally.

Another case of interest which can be attributed directly to the Coriolis
effect but is easier to detect is the cyclone, created when a point of low pres
sure is surrounded by points of high pressure. The winds rushing toward the
point of low pressure are deflected so as to generate a cyclone. In Fig. 3.6,
which shows an idealized situation as it might occur in the Northern Hemi
sphere, the concentric circles represent isobars, with the pressure decreasing
toward the center. The dashed arrows represent the direction the winds
would have in the absence of the earth’s rotation, whereas the solid arrows
include the deflection produced by the Coriolis effect, as reflected by the(3.52)
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It is often convenient to choose as the six coordinates describing the
motion of a rigid body three translations of a certain point within the body
and three rotations about that point. To this end, a system of axes, called
body axes, is embedded in the body, and the motion is described in terms of
the translation of the origin 0 of the body axes as well as the rotation of
these axes with respect to an inertial space. But (by design and not by
coincidence) this is just how the motion was described in Chap. 3, so that
the derivations there can be applied equally well here. In fact, the description
of the motion of a rigid body is simpler because there is no motion of the
mass points with respect to the body axes. Hence, from Eqs. (3.41), (3.43),
(3.45), and (3.46) we obtain the absolute velocity of a point in a rigid body

and the absolute acceleration
V0 + (I) X F

a=a0 +wXr+wX(wXr)

(4.1)

(4.2)
after setting t’ = = 0 and letting r = r’ be the radius vector of the point
in question measured with respect to the body axes.

The case in which one of the points of the body is fixed in an inertial
space is of considerable interest in rigid body dynamics. The orientation of
the body can be defined in terms of an orthogonal transformation given by
the 3 x 3 matrix [1(t)] relating the body axes to the inertial system at any
time t. If initially the body axes were coincident with the inertial system,
then [1(0)] = [I], where the latter is the unit matrix.

Next we shall show that the general displacement of a rigid body with
one point fixed is a rotation about some axis through the fixed point. ~
implies t~ in the inertial s~ce there isan axis in the rigid body left Un
afiècte~by the rotation, which is equivalent to sayin(that the components
of a vector coinci&~g with the axis of rotation remain the same as before the
rotation. Using Eq. (3.4), this can be expressed mathematically in the
matrix form

{~} = [l]{x} = {x}.
Now let us consider the general eigenvalue problem

[l]{x} =

(4.3)

(4.4)
of which Eq. (4.3) is a special case. The homogeneous equation (4.4) has
nontrivial solutions for only certain values of A. These constants, called
eigenvalues, are denoted by Ar, and the corresponding vectors, known as
eigenvectors, are denoted by {x~} (r = 1, 2, 3) (see Ref. 2, sec. 4-3). Thus
the real orthogonal matrix [1], representing the rotation of a rigid body, must
have an eigenvalue equal to +1 if the statement concerning the general
displacement of a rigid body is to be true.

In general, Eq. (4.4) has three distinct eigenvalues Ar, which can be
arranged in a diagonal matrix [A], and three associated eigenvectors {X(T)},

forming the square matrix [x], so that Eq. (4.4) can be rewritten
[l][x] = [x][A].

Premultiplying Eq. (4.5) through by [x] -1, we obtain
[x]_1[l][x] = [A],

(4.5)

(4.6)

so that the solution of the eigenvalue problem reduces to finding a matrix
[x] which transforms [1] into a diagonal matrix. A transformation of the
type (4.6) is known as a similarity transformation. Certain properties of
similarity transformations will be introduced as needed.

Because [l] is not symmetric, although it is real, some of the eigenvalues
may be complex, from which it follows that the associated eigenvectors must
also be complex. Complex eigenvectors have no meaning as far as our
physical problem is concerned, but this point turns out to be irrelevant.
What is relevant is that we must insist that the orthogonal transformation in
question does not affect the magnitude of the vector {x}, so that denoting by
{~} and {x*} the complex conjugates of {~} and {x}, we must have

{~*}T{~} = {x*}T{x},

and if {x} is an eigenvector, we must also have
{x*}T{x} =

(4.7)

(4.8)

where A* is the complex conjugate of the eigenvalue A. From Eq. (4.8) it
follows that

A*A = 1, (4.9)

or the magnitude of the eigenvalues is equal to unity.
The matrices [l] and [A] of Eq. (4.6) are said to be similar, which implies

that their eigenvalues are equal and so are the values of the corresponding
characteristic determinants. This allows us to write

Jl~ — A~~I = 1R1 — A)8111 = 0, (4.10)

where 8~ is the Kronecker delta and the notation A1 = A~ (i = 1, 2, 3) has
been used. Expanding the two determinants, we conclude that

= A~A2A3, (4.11)

where, because all the elements 4~ are real, the determinant l~ is real. It
follows that at least one of the eigenvalues must be real and the other two are
either real or complex conjugates.

In Sec. 3.1 we showed that lj = ± 1, so that the product of the three
eigenvalues must equal ± 1. But the value l~ = —1 corresponds to an


