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r blems for Sec. 8.2
Find u’, u’I, u”, and Iu”l, where u equals

1. a + bt 2. ti + t2j 3. cos 1 i + sin tj
4. cos 11 + 4sin tj + k 5. Il + t~j + t3k 6. 2cos ti + 2sin tj + 1k
7. eti + e_tj 8. e_t(cos 11 + sin tj) 9. sin 3t (i + ~)

Let u ti + 2t2k, v = t3j + 1k, and w = I + tj + t2k. Find
10. (u v)’ 11. (u x v)’ 12. (u v
13. [(uxv)xw]’ 14. [ux(vxw)]’ 15. [(u + v)w]’

In each case find the first partial derivatives with respect to x, y, z.
16. xi + 2yj 17. (x2 — y2)i + 2xyj 18. x2i + y2j + z2k
19. yzi + zxj + xyk 20. (x + y)j + (x — y)k 21. x2yi + y2zj + z2xk

22. Using (8) in Sec. 6.5, prove (8). Prove (9).
23. Derive (10) from (8) and (9).
24. Give a direct proof of (10).
25. Find formulas similar to (8) and (9) for (u . v)” and (u x v)”.
26. Show that if u(t) is a unit vector and u’(t) ≠ 0, then u and u’ are orthogonal.
27. Show that the equation u’(t) c has the solution u(t) = Cl + b where c and b are

constant vectors.
28. Show that u(t) = beXt + ce~ satisfies the equation u” — X2u = 0. (b and c are

constant vectors.)

29. Show that = u’(u . u) — u(u . u’)\IuI / (u . u)3”2
30. Differentiate (11 + t2j)/lti + 12j1.

8.3 Curves
As an important application of vector calculus, let us now consider some basic
facts about curves in space. The student will know that curves occur in many
considerations in calculus as well as in physics, for example, as paths of moving
particles. The consideration will be a part of an important branch of mathe
matics, which is called differential geometry and which may be defined as the
study of curves and surfaces by means of calculus. Cf. Ref. [C8] in Appendix 1.
A Cartesian coordinate system being given, we may represent a curve C by a

vector function (Fig. 151 on the next page)

(1) r(t) = xQ)i + y(t)j + zQ)k;

to each value t0 of the real variable t there corresponds a point of C having the
position vector r(t0), that is, the coordinates x(t0), y(t0), z(t0).
A representation of the form (1) is called a parametric representation of the

curve C, and I is called the parameter of this representation. This type of
representation is useful in many applications, for example, in mechanics where
the variable I may be time.
Other types of representations of curves in space are
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Fig. 151. Parametric rep- Fig. 152. Parametric representation of a
resentation of a curve straight line

y=f(x), z=g(x)

By setting x = t we may write (2) in the form (1), namely

r(t) = 11 + f(t)j ± g(t)k.

In (3), each equation represents a surface, and the curve is the intersection of the
two surfaces.
A plane curve is a curve which lies in a plane in space. A curve which is not a

plane curve is called a twisted curve.

Example 1. Straight line
Any straight line L can be represented in the form

(4) r(l) = a + lb = (a1 + 1b1)i + (a2 + 1b2)j + (a3 + 1b3)k

where a and b are constant vectors. L passes through the point A with position vector r = a and has
the direction of b (Fig. 152). If b is a unit vector, its components are the direclion cosines of L, and
in this case, ~1j measures the distance of the points of L from A.

Example 2. Ellipse, circle
The vector function

(5) r(1) = a cos I i + b sin I

represents an ellipse in the xy-plane with center at the origin and principal axes in the direction of
the x andy axes. In fact, since cos2 I + sin2 I = 1, we obtain from (5)

x2 y2 z=O.

If b = a, then (5) represents a circle of radius a.

Example 3. CIrcular helix
The twisted curve C represented by the vector function

r(I) a cos I i + a sin I j + clk (c ~ 0)

is called a circular helix. It lies on the cylinder x2 + y2 a2. If c > 0, the helix is shaped like a
right-handed screw (Fig. 153). If c < 0, it looks like a left-handed screw (Fig. 154).

bA

y

(2)
and
(3) F(x,y,z) =0, G(x,y,z) =0.

(6)
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FIg. 153. Right-handed
circular helix

CURVES

The portion between any two points of a curve is often called an arc of a
curve. For the sake of simplicity we shall use the single term “curve” to denote
an entire curve as well as an arc of a curve.
A curve may have self-intersections; the points of intersection are called

multiple points of the curve. Two examples are shown in Fig. 155. A curve
having no multiple points is called a simple curve.

Example 4. SImple and nonslmple curves
Ellipses and helices are simple curves. The curve represented by

r(f) = (~2 — l)i + (t3 — t)j

is not simple since it has a double point at the origin; this point corresponds to the two values t =
and K = —I. I
We finally mention that a given curve C may be represented by various vector

functions. For example, if C is represented by (1) and we set t = h(t*), then we
obtain a new vector function i~(t*) = r(h(t*)) representing C, provided h(t*)
takes on all the values of t occurring in (1).

Example 5. Change of parameter
The parabola y = x2 in the xy-plane may be represented by the vector function

r(t) = ti + 12j (-co <1< co)

If we set t = _2t*, we obtain another representation of the parabola:

If we set I = Is2, we obtain
‘i(t~) = r(—215) = ~2i~i + 4152j.

+

but this function represents only the portion of the parabola in the first quadrant, because ~ ~ o
for all t~.

>~ c~D

FIg. 154. Left-handed
circular helix

FIg. 155. Curves having double points
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Problems for Sec. 8.3
Find a parametric representation of the straight line through a point A in the direction
of a vector b, where

1. A: (0,0,0), b = i + j 2. A: (1, 3,2), b = —i + k
3.A:(2,l,0), b=2j+k 4.A:(0,4,1), bi—j+2k

Find a parametric representation of the straight line through the points A and B, where
5. A: (0,0,0), B: (1,1,1) 6. A: (—1,8,3), B: (1,0,0)
7. A: (1,5,3), B: (0,2, —1) 8. A: (1,4,2), B: (1,4, —2)

Find a parametric representation of the straight line represented by
9.y=x, z=0 10.7x_3y+z=14,4X—3y—2Z=—l
11. x+y=0, x—z=0 12.x+y+z=1, y—z=0

Represent the following curves in parametric form and sketch these curves.
13.x2+y2=l, z=0 14.y=x4, z=0
15.y=x2, z=x3 16.x2+y2_2x_4y_1,Z0
17.4(x+l)2+y2=4, z=0 18.x2+y2=4, z=ex

19. Determine the orthogonal projections of the circular helix (6) in the coordinate
planes.

Sketch figures of the curves represented by the following functions r(t).
20. ti + 21j — 1k 21. 2 sin 11 + 2 cos I
22. (1 + cos 1)1 + sin I j 23. cos 11 + 2 sin I
24. cos I i + sin I j + I k 25. Il + I2j + t3k

8.4 Arc Length
To define the length of a simple curve C we may proceed as follows. We inscribe
in C a broken line of n chords joining the two endpoints of C as shown in Fig.
156. This we do for each positive integer n in an arbitrary way but such that the
maximum chord-length approaches zero as n approaches infinity. The lengths of
these lines of chords can be obtained from the theorem of Pythagoras. If the
sequence of these lengths 11, 12, . . . is convergent with limit 1, then C is said to
be rectifiable, and 1 is called the length of C.
If C is not simple but consists of finitely many rectifiable simple curves, the

Fig. 156. Length of a curve
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length of C is defined to be the sum of the lengths of those curves.
If C can be represented by a continuously differentiable2 vector function

r=r(t) (a≤t≤b),

then it can be shown that C is rectifiable, and its length 1 is given by the integral
b IC i—- ,. dr(1) l=j vrrdt

a

whose value is independent of the choice of the parametric representation. The
proof is quite similar to that for plane curves usually considered in elementary
integral calculus (cf. Ref. [A14]) and can be found in Ref. [C8] in Appendix I.
If we replace the fixed upper limit b in (1) with a variable upper limit t, the

integral becomes a function oft, say, s(t); denoting the variable of integration
by t~, we have

(2) 5(t) = j \/~.~dt* (~ = dr)
This function s(t) is called the arc length function or, simply, the arc length of C.
From our consideration it follows that, geometrically, for a fixed t = t0 ≥ a,

the arc length s(t0) is the length of the portion of C between the points corre
sponding to t = a and t = t0. For t = t0 <a we have s(t0) <0 and that length
is —s(t0).
The arc length s may serve as a parameter in parametric representations of

curves. We shall see that this leads to a simplification of various formulas.
The constant a in (2) may be replaced by another constant; that is, the point

of the curve corresponding to s = 0 may be chosen in an arbitrary manner. The
sense corresponding to increasing values of s is called the positive sense on C; in
this fashion any representation r(s) or r(t) of C defines a certain orientation of C.
Obviously, there are two ways of orienting C, and it is not difficult to see that the
transition from one orientation to the opposite orientation can be effected by a
transformation of the parameter whose derivative is negative.
From (2) we obtain

ds2 dr dr dx2 dy2 dz2(3) (.~) = . -a- = (-~~) ~ (-E~~-) + (~).
It is customary to write

dr dxi + dyj + dzk

and

(4) ds2=drdr=dx2+dy2+dz2.

ds is called the linear element of C.

2”Continuously differentiable” means that the derivative exists and is continuous; “twice contin
uously differentiable” means that the first and second derivatives exist and are continuous, and
so on.
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Example 1. CIrcle. Arc length as parameter
In the case of the circle

r(t) = a cos 11 + a sin I j

we have t = —a sin! i + a cos tj, t = a2, and therefore,

s(t) = f a dl* = at.

Hence f(s) = s/a and a representation of the circle with the arc length s as parameter is

Is\ s. . a.ri—I = acos—i + asin—j.
\aI a a

The circle is oriented in the counterclockwise sense, which corresponds to increasing values of s.
Setting s = —1 and remembering that cos (—a) = cos a and sin (—a) = —sin a, we obtain

/ ~rl ——I = aCOs—i — asin—J;
\ aI a a

we have ds/d~ = — I < 0, and the circle is now oriented in the clockwise sense.

Problems for Sec. 8.4
Graph the following curves and find their lengths.

1. Catenaryy = coshx, z = 0, fromx =0 tox =
2. Circular helix r(t) = a cos I i + a sin I j + ctk from (a, 0, 0) to (a, 0, 2src)
3. Semicubical parabola y = x312, z = 0, from (0, 0, 0) to (4, 8, 0)
4. Four-cusped hypocycloid r(t) = a cos3 t i + a sin3 t j, total length
5. Involute of circle r(t) = (cos t + I sin t)i + (sin I — I cos t)j from (1, 0, 0) to
(—1, ~r, 0)

6. r(t) = et costi + et sintj, 0 ≤ 1≤ sr/2

7. If a plane curve is represented in the formy = f(x), z = 0, using(l) show that its
length between x = a and x = b is

= Vl +y’2dx.

8. Using the formula in Prob. 7, find the length of a circle of radius a.
9. Show that if a plane curve is represented in polar coordinates p = v’x2 + y2 and

0 = arc tan (y/x), then dr2 = p2 dO2 + dp2.

Using the formula in Prob. 9, find the lengths of the following curves.
10. Circle of radius a, total length
11.p=e0,0≤0≤ir
12. p = 02, 0 ≤ 0 ≤ sr/2
13. Cardioid p = a(l — cos 0). (Graph this curve.)
14. p = 1 + cosO, 0 ≤ 0 ≤ TT/2

15. If a curve is represented by a parametric representation, show that a transforma
tion of the parameter whose derivative is negative reverses the orientation.
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8.5 Tangent.
Curvature and Torsion

The tangent to a curve C at a point P of C is defined as the limiting position of
the straight line L through P and another point Q of C as Q approaches P along
the curve (Fig. 157).
Suppose that C is represented by a continuously differentiable vector function

r(t) where t is any parameter. Let P and Q correspond to t and t + ~ t, respec
tively. Then L has the direction of the vector

[r(t + i~t) — r(t)]/~t.

Hence, if the vector

r(t + i~t) — r(t)
r = lim 1~t

is not the zero vector, it has the direction of the tangent to C at P. It points in
the direction of increasing values of t, and its sense, therefore, depends on the
orientation of the curve. f is called a tangent vector of C at F, and the corre
sponding unit vector

(2) u=~r_ri

is called the unit tangent vector to C at P.
If in particular C is represented by r(s), where s is the arc length, it follows

from (3), Sec. 8.4, that the derivative dr/ds is a unit vector, and (2) becomes

(3) u=r’-~-.

Fig. 158. RepresentatiOn of the
tangent to a curve

C

C

Fig. 157. Tangent to a curve
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Clearly the position vector of a point T on the tangent is the sum of the
position vector r of P and a vector in the direction of the tangent. Hence a
parametric representation of the tangent is (Fig. 158)

(4) q(w) =r + wi~

where both r and t depend on P and the parameter w is a real variable.
Consider a given curve C, represented by a three times continuously differ

entiable vector function r(s) (cf. footnote 2 in Sec. 8.4) where s. is the arc
length. Then

11c

(5) K(S) = Iu’(s)I = Ir”(s)I (K ≥ 0)

JKcs~ ~Js ~ ≠ C ~)
is called the curvature of C. If K ~ 0, the unit vector p in the direction of u’(s) is

(6) p (K >0)

c ~ ~ / ) _~,
and is called the unit principal normal vector of C. From Example 1 in Sec. 8.2
we see that p is perpendicular to u. The vector

(7) b=uxp (K>O)

is called the unit binormal vector of C. From the definition of a vector product it
follows that u, p, b constitute a right-handed triple of orthogonal unit vectors
(Secs. 6.3 and 6.7). This triple is called the trihedron of C at the point under
consideration (Fig. 159). The three straight lines through that point in the
directions of u, p, b are called the tangent, the principal normal, and the
binormal of C. Figure 159 also shows the names of the three planes spanned by
each pair of those vectors.
If the derivative b’ is not the zero vector, it is perpendicular to b (cf. Example

1 in Sec. 8.2). It is also perpendicular to u. In fact, by differentiating b u = 0 we
have b’ u + b . u’ = 0; hence b’ . u = 0 because b u’ = 0. Consequently, b’ is
of the form b’ = ap where a is a scalar. It is customary to set a = —‘r. Then

(8) b’ = —Tp (K > 0).

The scalar function T is called the torsion of C. Scalar multiplication of both
sides of (8) by p yields

(9) T(S) —p(s) . b’(s).

The concepts just introduced are basic in the theory and application of curves.
Let us illustrate them by a ty~ica1 example. Further applications will follow
later.
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Recti~’ing

Fig. 159~ Trihedron

Example 1. CIrcular helIx
In the case of the circular helix (6) in Sec. 8.3 we obtain the arc length s = I ~‘.,/a2 + c2. Hence we
may represent the helix in the form

r(s) = acos-~i + asin-~j + c-bk where K = v’a2 + c2.

It follows that

~ ~ u(s)=r’(s)~~

a s. a . S.r (s) = —— cos — i — — sin —J
K2 K K2 K

(Od~t1I1~K = Ir”I = ~/~“= ~~=2 ± c2

r”(s) s s/? p(s) = —~—~- = co,~k~i — sin

5 b(s) = u(s) x p(s) = sin -~ I — -~ cos -~j + -~ k

b’(s) = _S_cos~!_i ~
K2 K K2 K

T(S) = —p(s)b’(s) a2

Hence the circular helix has constant curvature and torsion. If c > 0 (right-handed helix, cf. Fig.
153), then r ) 0, and if c < 0 (left-handed helix, cf. Fig. 154), then T <0.

Since u, p, and b are linearly independent vectors, we may represent any
vector in space as a linear combination of these vectors. Hence if the derivatives
u’, p’, and b’ exist, they may be represented in that fashion. The corresponding
formulas are
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(a) u’=

(10) (b) p’ = —,cu + Tb

(c) b’= —~p

They are called the formulas of Frenet. (1 Oa) follows from (6), and (lOc) is
identical with (8). To derive (lOb) we note that, by the definition of a vector
product,

p=bxu, pxu=—b, bxp=—u.

Differentiating the first of these formulas and using (lOa) and (lOc), we obtain

p’ =b’xu + bxu’ = —TpXU + bxicp = —T(—b) + ic(—u),

which proves (lOb).

Problems for Sec. 8.5
Find a parametric representation of the tangent of the following curves at the given
point P.

1. r(t) = costi + sintj, P: (—l/’y~ l/’~/i)
2. r(t) ti + t2j + 13k, F: (1, 1, 1)
3. r(t) cos ti + sin tj + 2tk, F: (1,0, 4Tr)
4. r(t) 4 cos t I + 4 sin I j, P: (2 ‘~/~ —2 ‘~/i~ 0)

5. Show that in Example 1, the angle between u and the z-axis is constant.
6. Show that straight lines are the only curves whose unit tangent vector is constant.
7. Show that the curvature of a straight line is identically zero.
8. Show that if the curve C is represented by r(I) where I is any parameter, then the
curvature is

((I~) — (f•F)2(5) K = (f~~f~)312

9. Show that the curvature of a circle of radius a equals 1/a.
10. Find the curvature of the ellipse r(t) = a cos I i + b sin t j.
11. Using (5’), show that for a curve y = y(x) in the xy-plane,

K = Iy”I/(’ + y’2)312 (y’ = dy/dx, etc.).

12. Show that the torsion of a plane curve (with K > 0) is identically zero.
13. Using (7) and (9), show that

(9’) T(Upp’) (K>0).

14. Using (6), show that (9’) may be written

(9”) T = (r’ r” r”)/K2 (K > 0).

15. Show that if the curve C is represented by r(t) where I is any parameter, then (9”)
becomes

(9”) T = ¶~ F ~ 2 (K > 0).(r.r)(r.r) — (r~r)


