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Safe Control of Hopping in Uneven Terrain
Brian Howley, Member, AIAA, and Mark Cutkosky, Member, IEEE

Abstract— Legged robots have long been proposed as a means
of locomotion in unstructured environments. However, much
of the analysis to support the design and analysis of legged
systems has assumed level or mildly varying terrain. This work
determines the maximum terrain variability that a single legged
vertical hopping robot can safely negotiate without stumbling or
violating joint constraints. The analysis assumes that the step to
step variation in terrain height is unknown but bound and casts
the hopping problem as a non-cooperative game between robot
and environment. The maximum worst case terrain variation
that the system can accommodate safely is a measure of the
system’s “ruggedness”. Mechanical properties which maximize
ruggedness under closed loop control are identified. Extension
of this analysis to more complex systems requires a numerical
approach that is a topic of a companion paper.

Index Terms— Hybrid systems, legged robots, safe control,
uneven terrain.

I. INTRODUCTION

LEGGED robots can operate in environments that wheeled
or tracked vehicles of similar size cannot. Generally,

these machines follow one of two fundamental approaches
to the problem of legged locomotion. One approach is to
plan foot placement to maintain static stability throughout
the step. Examples of statically stable machines include the
Autonomous Suspension Vehicle [15], Titan VII [6], Dante II
[1], and ATHLETE, a six legged wheeled vehicle proposed for
lunar exploration [8]. These machines rely on a high degree
of motion planning or tele-operation and require knowledge of
the environment. Another approach, pioneered by Raibert [12]
relies on dynamic stability. Dynamically stable systems run or
hop by exchanging kinetic and potential energy in different
phases of motion. Recent examples of running machines that
include some dynamic stability include RHex [13], the Sprawl
family of robots [3] and [4], and Tekken [5]. These robots are
relatively fast, from one to several body lengths per second,
and rely on passive mechanical properties to stabilize against
disturbances or variations in the environment.

Despite impressive experimental results, a comprehensive
framework for understanding the interaction between dynam-
ically stabilized legged robots and a variable environment
is lacking. The present work takes the position that robot
performance is ultimately constrained by safe operating limits
and investigates the notion of safety as a design criterion.
Here, safety is specified by legal values for the state variables
describing robot dynamics. Safe operation is maintained under
worst case environmental disturbances. Worst case distur-
bances and the corresponding optimal control are determined

Manuscript received January 20, 2002; revised November 18, 2002. This
work was supported by the IEEE.

Brian Howley is with Lockheed Martin Space Systems Company, Sunny-
vale, CA

Mark Cutkosky is with Stanford University, Stanford, CA

by application of game theory to the safety problem. The
approach has several advantages, including: 1) design limita-
tions such as maximum force and joint deflections are treated
explicitly, 2) only the general nature of the control (e. g. feed-
back versus open loop) and not the specific implementation is
prescribed so that safety over a wide range of possible control
implementations is determined, and 3) the method does not
assume small perturbations from a stable, steady state cycle
and is appropriate for analysis of motion over highly irregular
terrain.

A central problem to studying the effects of uneven ter-
rain is determining a meaningful method of analysis. Large
terrain variations preclude steady state running trajectories re-
quired for a traditional stability analysis. Furthermore, perfect
knowledge of the environment is generally not practical, so
the method of analysis must accommodate uncertainty. One
approach is to treat the problem as a random process. For
non-Gaussian systems this approach requires repeated convo-
lutions of probability density functions and is computationally
prohibitive. Even if the approach was feasible, sensitivity to
assumptions about the statistics of the terrain variation and
sensor and actuator errors would make interpretation of any
results difficult. An alternative is to treat the problem as a game
between between the robot and its environment. Rather than
exist passively, the environment is assumed to act perversely
but within some prescribed limits. A game theoretic approach
transforms the uncertainty into a deterministic problem by
considering worst case conditions [2].

Consider the problem of a single legged robot hopping
over an uneven surface as illustrated in Figure 1. The robot
must jump high enough to clear each step during its ballistic
phase. However, the environment is unknown and the change
in elevation may be either higher or lower. If the robot applies
maximum thrust and the elevation of the next step is lower,
the robot may land with enough velocity to cause damage or
lose control. In the context of a game, the robot attempts to
stay within a safe operating regime while crossing over the
terrain and the environment varies in a way that attempts to
force the robot out of safe operation. The robot “wins” if it
can negotiate the environment without violating constraints,
and the environment “wins” otherwise. Because the robot’s
position and velocity during one step influence the position
and velocity of succeeding steps, the game is played out over
a sequence.

Tomlin, et. al. [14] use a game theoretic framework for the
controller design of hybrid systems. A hybrid system has both
discrete and continuous dynamics. For example, a hopping
robot is a hybrid system because there are discrete changes in
the robot’s dynamics between contact and flight. The control
problem is cast as a pursuit–evasion game where the controller
wins if the systems remains within a safe subset of states
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Fig. 1. Hopping over uneven terrain cast as a game. The robot attempts to
hop over uneven terrain without violating joint constraints or stumbling over
obstacles. The environment is unknown to the robot but is assumed to vary
in a way to force an unsafe condition if possible.

for a specified period of time. The methodology searches
for a feedback control law that guarantees that the system
remains within the largest possible safe subset of the state
space despite disturbances by the environment. The resulting
control law is least restrictive in the sense that the control
may take on any legal value except at the boundary of the
subset where it must act to maintain safety. It can be used in
combination with other control laws to achieve performance
specifications under normal operating conditions and maintain
safety when safety constraints would otherwise be violated [9].
The approach is motivated by high confidence systems such as
air traffic management and automated highway systems, but
can be applied to other systems where safety can be expressed
as a subset of the state space.

Section 2 of this paper describes the dynamics of a single
legged vertical hopper including the effects of variable terrain.
Section 3 describes the safety problem and recites a general
approach for the control synthesis problem given in [14]. This
section also describes some issues with the general approach
not cited in the previous work. Section 4 describes the results
of the analysis method as applied to the robot hopping
problem. Section 5 examines the effects of the robot’s thrust
capability and mechanical properties on terrain hopping ability.
A metric for “ruggedness” is defined which is the maximum
change in terrain height the system can tolerate between hops
and guarantee safe operation. Section 6 discusses extension of
the approach to running with single and multiple legs. Running
complicates the problem requiring additional states and hybrid
mode transitions. Detailed study of the running problem is
beyond the scope of the current work but is feasible.

II. HOPPER DYNAMICS

Figure 2 is a schematic of a single legged vertical hopping
robot. The hopper leg consists of a spring, damper, and linear
actuator connected in parallel. The unsprung length of the leg
from the hopper mass center is l. The spring and damper are
linear time invariant elements. The linear actuator can exert an
upward force on the hopper body between 0 and fmax. The
broken line at the bottom of the figure is a fixed reference.
The height of the hopper mass center with respect to the fixed
reference is y. The height of the ground directly beneath the
hopper with respect to the fixed reference is h.
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Fig. 2. Schematic representation of a vertical hopper. The hopper dynamics
are described the height, y, and velocity, ẏ, above a reference and the height,
h, of the ground with respect to that reference. Parameters affecting hopper
dynamics include unsprung leg length, l, spring and damping constants, and
maximum thrust capability.

The effect of uneven or variable terrain are included by
allowing the height of the ground, h, to change when the
hopper is at the apex of flight. This construct treats the robot as
if it were hopping in place while the ground moves underneath.
To support this construct, the flight phase of motion is divided
into three phases as shown in Figure 3: ascent, descent,
and step. The step phase is a discrete (instantaneous) phase
of motion in which the height of the ground, h, changes by an
amount over some range, ∆h ∈ [∆hmin∆hmax]. If the robot
has insufficient clearance at the time of the step then a collision
occurs and the robot stumbles.

Since the ground height, h, is constant except at the instant
of the step, we can simplify the dynamics by adjusting our
reference so that ŷ , (y − h − l)/l. This incorporates the
ground height into the dynamics and normalizes the vertical
height so that at ŷ = 0 the robot leg is just in contact with the
ground. The dynamics can be further simplified by dividing
by mass and normalizing time by

√
g/l so that the force

from gravity has a non-dimensional value of -1. The non-
dimensional equations of motion then become:

ŷ′′ =
{ −1 ascent, descent
−k̂ŷ − b̂ŷ′ + u− 1 contact

(1)

where 0 ≤ u ≤ (fmax/mg) = umax in contact
and ŷ+ = ŷ− + ∆̂h in step

The primes for ŷ′′ and ŷ′ denote differentiation with respect
to normalized time. k̂ and b̂ are normalized leg spring and
damping coefficients and u is the normalized actuation force.
ŷ+ is the hopper height above ground just after the change
in ground height in the step phase and ŷ− is the height
above ground immediately prior to step. Note that in this
problem there are no continuous disturbances, d = ∅, but that
the change in terrain height constitutes a discrete disturbance
σd = ∆̂h.

The hybrid system phases of motion are shown in Figure
3. Once ŷ < 0 the system remains in contact until either ŷ
becomes positive again, or, since the ground can’t pull down
on the suspended mass, the ground reaction force drops below
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Fig. 3. Hopper flight and contact phases of motion. To accommodate a sudden
change in height above ground the Flightphase is divided into Ascent,
Step, and Descent. Furthermore, the contact phase is divided into normal
Contact and Liftoff. The Liftoff phase addresses the problem of
zero ground reaction force by fixing the value of the leg thrust. If leg thrust
is zero hopper motion is ballistic. If leg thrust is umax the motion remains
in contact.

zero. The ground reaction force, which is a function of the
thrust, u is given below.

ĜRF = −k̂ŷ − b̂ŷ′ + u (2)

The transition from contact to ascent phases of motion
is complicated by the dependence on u. For ŷ′ > 0, the motion
in the region of state space between k̂ŷ − b̂ŷ′ > umin and
ŷ < 0 is either ballistic or oscillatory. Allowing u to vary
within this region may cause undesirable thrashing between
modes. We resolve this dilemma by introducing a transition
mode, liftoff, which fixes the value of u. To maximize
liftoff vertical velocity we fix u = umax. To minimize liftoff
velocity we fix u = umin. The appropriate value for u is
determined as we proceed through the maximal controlled safe
invariant algorithm.

III. HOPPER SAFETY AND CONTROL SYNTHESIS
APPROACH

During contact phases of motion, the hopper is safe if the
leg remains within joint constraint limits. For this problem we
have assumed that the leg can safely compress to 50% of its
unsprung length, hence ŷ > −0.5 is safe. During flight phases
of motion the hopper is safe if it clears obstacles and avoids
stumbling. Since we adjust the ground height during the step
phase the hopper remains safe if ŷ > 0 in step. In general,
the safe set, F , is one or more subsets of the discrete and
continuous state space. A complete description of the safe set
also requires bounds on position and velocity for ascent and
descent phases of motion but these are not limitations on
the hopper.

The ability to remain within the safe set over time depends
on the control and disturbance inputs to the system. We

consider both continuous time control and disturbance inputs,
u and d, and discrete event control and disturbance inputs,
σu and σd. The control and disturbance inputs are bound
within prescribed limits. Tomlin, et. al. (2000, [14]) pose the
following controller synthesis problem:

Given a safe set F, determine (i) the maximal invari-
ant safe set contained in F, and (ii) the controller
which renders this set invariant

A subset of the state space is controlled invariant if there
exists a controller which guarantees that any execution that
begins in the subset remains in that subset.

The algorithm proposed by Tomlin, et. al. starts with an
initial safe subset, W 0 = F , and goes backwards in time
determining the region of state space that will remain within
F despite antagonistic disturbance inputs. The algorithm is
a form of dynamic programming [2] and iterates until a
controlled invariant subset of F is found, if one exists.

The backward time propagation is both continuous and
discrete. For discrete event propagation Tomlin, et. al. define
two operators: Pre1(·) and Pre2(·). Pre1(·) is the control-
lable predecessor operator. For a given set of continuous and
discrete states, K ⊂ Q × X , Pre1(K) is the set of states
which force a discrete event transition that remains within K.
The uncontrollable predecessor operator, Pre2(Kc) contains
all states in the complement of K, Kc, as well as all states
from which disturbances (d, σd) can possibly force the state
outside of K.

For the continuous portion of the algorithm Tomlin, et. al.
define the Reach operator. Reach(G,E) describes those states
from which for all control inputs, u, there exist disturbance, d,
such that the state trajectory can be driven to G without reach-
ing the desired “escape” set E. In the operator expression, G
is the set of states which are unsafe or can be made unsafe
during a discrete transition, i.e. Pre2(Kc), and E is the set
of states which remain safe through a discrete transition, i.e.
Pre1(K).

The algorithm that satisfies the controller synthesis problem
posed by Tomlin, et. al. is given below.

Maximal controlled safe invariant for hybrid systems

initialization: W 0 = F, W−1 = ∅, i = 0.
while W i 6= W i−1 and W i 6= ∅ do

W i−1 = W i \Reach(Pre2((W i)c), P re1(W i))
i = i− 1

end while

The first iteration through the while loop removes all states
for which a disturbance can force the system outside of F
without first causing a transition between modes that remain
within F . Subsequent steps iterate to remove states that can
be forced outside of F after transitions between modes. The
index, i, decreases with each step to indicate propagation in
backwards time. At each iteration W i−1 ⊆ W i so that the set
W i decreases monotonically. The algorithm continues until
either a fixed point, W i−1 = W i , W ∗, or a null solution,
W i−1 = ∅, is reached.

Implementation of the maximal controlled invariant algo-
rithm requires determination of the Pre1(K) and Pre2(Kc)
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set of states and calculation of the Reach operator. Pre1(K)
and Pre2(Kc) are determined at discrete transitions between
phases. The Reach operator is determined during the contin-
uous time propagation within a phase of motion. Thus, the
algorithm progresses phase by phase going backwards in time.

Tomlin, et. al. solve the Reach operation using an inter-
connected pair of Hamilton–Jacobi equations. The resulting
feedback control is least restrictive in the sense that control is
only applied to avoid the unsafe set, (W i)c. Since the hopper
example is only second order, the algorithm can be applied
semi-analytically and shown graphically. In fact, for a large
class of problems, explicit solution of the Hamilton–Jacobi
equations is not required [7].

A. The Reach Operation
Tomlin, et. al. [14], characterize the reach operation as

the solution to two nested optimizations. One optimization
is to avoid the unsafe states, G = Pre2((W i)c). The other
optimization problem is to achieve the desired escape set,
E = Pre1(W i). Both optimizations can be cast as pursuit–
evasion games.

The optimizations require value functions: JG(x, t) is the
value function for avoiding the set of unsafe states, G, and
JE(x, t) is the value function to achieve the desired escape
set, E.

JG(x, u, d, t) = φG(x(tf )) (3)

where
{

φG(x) < 0 for x ∈ G
φG = 0 for x /∈ G

JE(x, u, d, t) = φE(x(tf )) (4)

where
{

φE(x) < 0 for x ∈ E
φE = 0 for x /∈ E

The value functions depend only on functions of the contin-
uous state vector, x, at the terminal time, tf , which is arbitrary
but fixed. To enforce transitions between modes we impose
the terminal boundary constraints ψExit(x(tf )) = 0 and
ψInit(x(t0)) = 0. For t < tf , JG and JE are functions of the
continuous state vector, x, the control and disturbance inputs, u
and d, respectively, and time, t. The state evolves according to
ẋ = fq(x, u, d) and we assume that the control and disturbance
inputs are separable so that fq(x, u, d) = fq1(x, u)+fq2(x, d).

The hopper wishes to maximize the value for JG and
minimize the value of JE while the environment wishes the
opposite. Optimal values for JG, JE , u, and d are denoted
with an asterisk.

J∗G(x, t) = max
u∈U

min
d∈D

JG(x, u, d, t) (5)

u∗ = arg max
u∈U

min
d∈D

JG(x, u, d, t) (6)

d∗ = arg min
d∈D

JG(x, u∗, d, t) (7)

J∗E(x, t) = min
u∈U

max
d∈D

JE(x, u, d, t) (8)

u∗ = arg min
u∈U

max
d∈D

JE(x, u, d, t) (9)

d∗ = arg max
d∈D

JE(x, u∗, d, t) (10)

Assuming J∗G and J∗E exist, are continuous, and contain
continuous first and second derivatives for all points of interest
in the (x, t) space, J∗G and J∗E can be found from solving
Hamilton–Jacobi partial differential equations. However, as
originally formulated JG and JE depend only on the value of
x(t) at time t = tf . This leaves the possibility that x(t) ∈ G
for t < tf , which is undesirable. To address this possibility
Tomlin, et. al. [14] define the interconnected set of optimal
Hamiltonians H∗

G and H∗
E .

H∗
G(x,

∂J∗G
∂x

) =
{

0 for {J∗E(x, t) < 0}, else
maxu∈U mind∈D

∂J∗G
∂x fq(x, u, d)

(11)

H∗
E(x,

∂J∗E
∂x

) =
{

0 for {J∗G(x, t) < 0}, else
minu∈U maxd∈D

∂J∗E
∂x fq(x, u, d)

(12)

J∗E < 0 if x(t) can be forced to reach the escape set, E, de-
spite worst case disturbances. Then the optimal Hamiltonian,
H∗

G, is zero. Similarly, J∗G < 0 if x(t) can be forced to the
unsafe condition G despite all efforts by the control, and the
optimal Hamiltonian, H∗

E , is zero. The interconnected set of
Hamilton–Jacobi equations is given below.

−∂J∗G(x, t)
∂t

=

{
H∗

G(x,
∂J∗G
∂x ) for J∗G(x, t) = 0

min{0,H∗
G(x,

∂J∗G
∂x )}, otherwise

(13)

−∂J∗E(x, t)
∂t

=

{
H∗

E(x,
∂J∗E
∂x ) for J∗E(x, t) = 0

min{0,H∗
E(x,

∂J∗E
∂x )}, otherwise

(14)

Our approach instead is to consider the JG and JE optimiza-
tions separately. This is feasible provided that x(t) /∈ G for
any time prior to the mode transition at time tf . Assume that
the boundary of the unsafe states, ∂G is smooth and convex
(or can be approximated by a finite set of possibly intersecting
convex surfaces). If we assume some optimal trajectory so that
at time t the state vector x∗(t) is on the surface of ∂G but
does not enter (or emerge) from G over a positive or negative
differential time step, then it must be that fq(x∗, u∗, d∗) is
perpendicular to the surface normal, ∂G

∂x . Also at this point
J∗G(x∗, t) = 0, and the gradient, ∂J∗G

∂x , is parallel to the surface
normal, ∂G

∂x . From equations 11 and 13 the gradient, ∂J∗G
∂x , must

remain perpendicular to fq(x∗, u∗, d∗) since the value function
is not an explicit function of time and ∂J∗G

∂t = 0.
Thus, our approach is to first consider the JG op-

timization by determining those points along ∂G where
fq(x∗, u∗, d∗) is perpendicular to the surface normal. When
u∗ ∈ {umax, umin} or d∗ ∈ {dmax, dmin} we have reached an
extremum point and must propagate in time. Going backwards
in time we pick u∗ or d∗ to respectively maximize or minimize
H∗

G ignoring the JE < 0 condition in equation 11. Since ∂J∗G
∂x

remains perpendicular to fq(x, u∗, d∗) we need not calculate
JG but rather determine ∂J∗G

∂x as the normal to the propagated
trajectory of x∗(t) in state space. For problems of dimension
N, we require the constraint boundary to be dimension N-1
and the set of extrema points to form an N-2 dimensional
curve on that surface. The propagated trajectory of over that
entire curve forms an N-1 dimensional surface so the surface
normal, ∂J∗G

∂x , is easy to determine.
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We follow a similar approach for the JE optimization
except that the propagation begins along the border of the
desired escape set, ∂E and we use the terminal constraint
ψ(x(tf )) = 0 to force a mode transition at time tf . The
time propagation is backwards time only and we disregard the
JG < 0 condition in equation 12. The combined solution is the
intersection of the JE and JG optimizations. The approach has
the advantage that the JG optimization need be done only once
at initialization and only the JE optimization is performed
during the backwards iteration.

An example solution for the hopper problem is described
in the following section. However, the example exposes two
issues that the controlled invariant algorithm must accommo-
date. One issue arises when phase transitions are a function of
the continuous time control or disturbance input. Since these
inputs are allowed to vary at any instant in time, they can
cause thrashing between modes preventing the divergence of
time [11]. This problem can be avoided by properly structuring
the hybrid dynamics. Another issue arises when the control
or disturbance inputs can force continuous time dynamics
to a singular point, e.g. ẋ = f(x, u, d) = 0. At a singular
point propagation in backwards time is undefined. Again the
problem must be structured to avoid this condition, but the
best means of doing so is problem specific.

B. Leg Thrust and Transition to ascent

The transition from contact to ascent occurs when
either the leg loses contact with the ground (ŷ = 0) or when
the ground reaction force, given in equation 2, goes to zero.
However, the ground reaction force is a function of the control
input, u. Thus, it is possible over some regime to switch back
and forth from contact phase motion (a spring-mass-damper
system) to ascent phase (ballistic motion).

The situation is illustrated in the phase plane diagram in
Figure 4. Since 0 ≤ u ≤ umax the transition is bound by the
lines at k̂ŷ + b̂ŷ′ = 0, k̂ŷ + b̂ŷ′ = umax, and ŷ = 0. The
width of this transition region is determined by the strength
of the normalized damping coefficient, b̂, with respect to
the leg’s stiffness, k̂. Assume we are going forward in time
starting from point A1. If u = 0 the system switches from
contact to ascent and follows the lower bound trajectory
to point A2. If, however, u = umax the system remains in
contact and follows the upper bound trajectory to point
A2’. Intermediate trajectories, depicted by the cross–hatched
area, can be achieved by modulating the control. The situation
going backward in time is shown starting in ascent at point
B1. If u = 0 the system remains in ascent and follows the
upper bound trajectory to point B2. If u = umax the system
switches to contact and follows the lower bound trajectory
to B2’. It is clear from the figure that the bounding behavior
is at either u = 0 or u = umax so that intermediate or varying
values for for u need not be considered.

It is useful to define a transitional mode, liftoff, to
eliminate dependence on the control variable, u. The tran-
sitional mode “locks” the value of the control to u , 0 or
u , umax. The liftoff mode transitions are illustrated in
Figure ??. The transition from contact to liftoff occurs

y'^

ŷ
contact

ascent

boundary at
u = 0

boundary at
u = umax

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx

A1
A2

A2'

B1
B2

B2'

liftoff
region

Fig. 4. The transition between contact and ascent phases is influenced by the
control, u. Going forward in time from point A1 the system will enter ascent
at a point between A2 and A2’. Going backwards in time from point B1 the
system will enter contact between point B2 and B2’. The bounding behavior
for the contact/ascent transition is obtained at either u = 0 or u = umax.

at the k̂ŷ + b̂ŷ′ = 0 manifold. The transition from liftoff
to ascent occurs at the k̂ŷ + b̂ŷ′ = umax for ŷ < 0 and at
ŷ = 0 otherwise. For u , 0 in liftoff, the state trajectory
follows the parabolic path of a ballistic system. For u , umax

in liftoff, the state trajectory follows the logarithmic spiral
of a damped second order system.

The appropriate value for u during liftoff depends on
context. Referring again to Figure 4, suppose point B1 is the
initial velocity required to achieve a minimum height during
ascent. Then, u = umax maximizes the safe range of exit
conditions from contact since along the boundary at u = 0
all points above B2’ will meet this constraint. On the other
hand, if B1 is the maximum safe velocity upon entering ascent,
then u = 0 maximizes the safe range of contact exit conditions
since along the boundary at u = 0 all points below B2 will
meet the maximum height constraint.

C. Singularity Avoidance

The second difficulty in applying the maximal safe invariant
algorithm to the hopper problem is associated with the stable
point in the contact region. At u = 0 the hopper equilibrium in
contact is ŷ = −1/k̂ and ŷ′ = 0. If the initial descent velocity
is low enough and the thrust remains at zero, the system will
settle to equilibrium without ever leaving the contact phase.
Technically, the system is safe, but it is also inert.

A more fundamental problem is that at the stable point
backwards time propagation is undefined. All points in the
neighborhood of the stable point eventually reach the stable
point so starting from the stable point and propagating back-
wards in time yields infinite solutions. For this reason, the
algorithm for the maximal invariant safe set must take steps
to avoid the singularity at fq(x, u, v) = 0.

Figure 5 shows the range of equilibrium points for 0 ≤ u ≤
umax and a position and velocity trajectory for a hopper in
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Fig. 5. Singularity Avoidance (SA). The range of singular points from u = 0
to u = umax is given by the horizontal bold line. To avoid these points
during backward propagation a boundary is defined at (0, 0) with u = 0
and projecting forward in time until maximum deflection. The control for the
return trajectory, urtn, is set so that the hopper just reaches the transition
from contact to ascent.

contact. In this example the hopper has a normalized spring
constant, k̂ = 4 and a damping coefficient b̂ = 1, which yields
a non-dimensional damping ratio of 0.25. Starting from rest
at ŷ = 0 and ŷ′ = 0, the hopper falls under the influence of
gravity with zero thrust and follows the solid line trajectory
marked with circles. Without any thrust, the state trajectory
would spiral in to the equilibrium position at u = 0 marked
on the figure. In fact, without any thrust the system will
eventually settle to this equilibrium from any initial condition.
If, however, a thrust is applied at maximum deflection the
equilibrium changes and the hopper follows the solid line
trajectory marked with diamonds. The minimum level thrust
that will return the hopper back to the starting position, urtn,
is a function of the non-dimensional damping ratio, ζ, and is
given in equation 15 below.

urtn =
1− e−2πζ/

√
1−ζ2

1 + e−πζ/
√

1−ζ2
, where ζ = 0.5b̂/

√
k̂ (15)

There are an infinite number of ways of applying thrust
to avoid the singular point. The way we take to be ‘least
restrictive’ is to follow the u = {0, urtn} trajectory in Figure
5 once that boundary is reached. The path is least restrictive
in the sense that it does not restrict the initial entrance or
exit velocity for the contact mode (we have not considered
liftoff mode in this discussion but its effect is assumed
to be minor). In effect the boundary in Figure 5 defines a
phase transition which constrains the control to follow the
boundary path. It is worth emphasizing, however, that many
other schemes are possible and perhaps more desirable in
practice. For example, rather than follow the boundary path,
the control logic could be to use maximum thrust while inside
the singularity avoidance zone. This would certainly eliminate
singularities but might redefine the singularity avoidance zone
boundary.

TABLE I
VERTICAL HOPPER NON-DIMENSIONAL PARAMETERS IN FIGURE 6

Parameter Value
stiffness, k̂ 4.0
damping coefficient, b̂ 1.0
damping ratio, ζ 0.25
max thrust, ûmax 2.0
joint constraint, ŷmin -0.5
max step, ∆̂hmax 0.3
min step, ∆̂hmin -0.3
max initial height, ŷinit−max 2.0
min initial velocity, ŷ′init−min -3.0
max initial velocity, ŷ′init−max 3.0

IV. RESULTS

Figure 6 is a plot of the maximal controlled invariant set for
a vertical hopper. The hopper has a maximum thrust capability
equal to twice its weight, and a leg with normalized spring
stiffness of 4 and a damping coefficient of 1.0. The hopper
does not have a continuous disturbance input, but does have
a discrete disturbance input, ∆̂h, during the Step phase. The
non-dimensional parameters are summarized in Table I. The
damping coefficient is equivalent to a damping ratio, ζ, of
0.25. The joint constraint limit is at -0.5 and the maximum
and minimum initial height and velocity constraints form a
closed boundary for the initial safe set.

The horizontal and vertical axes of the plot in Figure 6 are
the normalized height, ŷ, and the normalized vertical veloc-
ity, ŷ′, respectively. The state space is divided into regions
corresponding to the hopper phases of motion. Liftoff is
the region between the diagonal broken lines in the upper
left and bound on the right hand side by the line at ŷ = 0.
The boundaries of the Liftoff phase are determined from
equation 2 for the ground reaction force at u = umin and at
u = umax. The Ascent phase of motion covers the upper
right portion of the state space from the Liftoff boundary
and bound below by the line at ŷ′ = 0. The Descent phase
of motion covers the lower right quadrant of the state space
bound by ŷ ≥ 0 and ŷ′ < 0. The Contact phase of motion
covers the lower and center left portion of the state space
bound by ŷ ≤ 0 and the broken line at Liftoff. Finally,
the Step phase is not shown explicitly since it is a discrete
(instantaneous) phase, but occurs along the line ŷ′ = 0 for
ŷ > 0. In this example, the subsets of the continuous state
space for the different phases of motion are disjoint (i.e. do
not overlap), but that is not a general requirement.

A. Initialization

The first step to the algorithm is to determine the initial
safe set, W 0, or conversely the unsafe states, G. The safety
constraints are that the hopper clear any obstacle during the
Step phase and that the hopper avoid the ŷmin joint constraint
limit. Thus, W 0 is the set of states ŷ ≥ −0.5 in Contact
and Liftoff phases, the set of states ŷ > 0 in Step phase
and all legal states within Ascent and Descent phases.
The border of the unsafe states, ∂G, is the vertical line at
ŷ = −0.5.
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Fig. 6. Maximal safe invariant set for a hopper with k̂ = 4, ζ = 0.25, and ∆̂hmax = 0.3. The diagram shows the Contact, Descent, Ascent, and
Liftoff phases of motion as well as the singularity avoidance boundary of the Contact phase and the maximum compression constraint at ŷ = −0.5.
In this example the algorithm for finding the maximum invariant safe set terminates after a single iteration through the phases of motion.

1) Contact Phase: Figure 6 marks the extremum point
along ∂G (ŷ = −0.5, ŷ′ = 0) with a star. At this point
the derivative vector f(x, u) = [0u]T is perpendicular to the
outward normal frac∂G∂x = [10]T for any non-zero value
of u. The desired escape set, E, is the transition to Liftoff
mode at k̂ŷ + b̂ŷ′ = 0. The initial conditions for Contact
are along the dotted line at ŷ = 0 and ŷ′ ≤ 0. The singularity
avoidance region (SA) is denoted by a broken line, with the
point Q, the point of maximum compression starting from rest,
marked by a hexagram symbol.

Starting at the extremum point (the star) we determine
the optimal thrust, u∗ that maximizes the Hamiltonian
∂JG

∂x f(x, u). Over a finite time step we obtain u∗ = umax.
Propagating backwards in time generates the heavy curve from
the star at “max leg compression” and terminating at square
symbol for “max descent speed” on the Contact phase set of
initial conditions. The Contactstates below this curve will
propagate to violate the maximum leg compression constraint
and therefore belong to Reach(G,E). The contact states on
and above this curve remain safe. The set of safe states is
maximized if the backwards time propagation is at u = umax.

For forward time propagation the sense of the optimization
in equation 13 changes and again the optimal control over
a finite time step is u∗ = umax. Propagating forwards in
time generates the heavy curve from the star at “max leg

compression” to the square symbol at the Liftoff boundary.
The square denotes the maximum safe velocity entering the
Liftoff phase. The Contactstates above this curve can
only be reached by passing through G and therefore belong to
Reach(G,E). The contact states on and below this curve remain
safe. The set of safe states is maximized if the forwards time
propagation is at u = umax.

The forward and backwards time propagations redefine
the safe initial and exit conditions for the Contactphase.
Contact phase safe initial conditions for are those
states along the Contact–Descent boundary above
the“maximum descent speed” point shown in Figure 6. The
Contact phase safe exit conditions, E, are those states along
the Contact–Liftoff boundary below the square square
symbol also shown in Figure 6.

Control, u, is unrestricted except at the boundaries of the
Contact and singularity avoidance regions. For example,
if the initial contact velocity is somewhere between 0 and
maximum descent speed, the control, u, can assume any legal
value unless and until the state trajectory intersects the safety
or singularity avoidance boundary. At the safety boundary the
control is set to u = umax at least until hopper velocity is
positive. If the state trajectory intersects the SA boundary then
control is set to u = 0 or u ≥ urtn depending on where the
intersect occurs.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 8

B. Backwards Chaining

The Contact phase is the only continuous time phase with
a safety constraint. Completing the Reach(G,E) operation on
Contactcompletes the initialization phase of the algorithm.
However, the Reach operation redefined the range of safe
initial and exit conditions for Contact. These changes prop-
agate through to other modes during the backward chaining
portion of the algorithm.

1) Descent Phase: Since the Descent phase immedi-
ately precedes the Contact phase, the maximum and min-
imum safe initial velocities for Contact define the desired
escape set, E, for Descent. Here we propagate backwards
in time from “max descent speed” to the Descent–Step
phase boundary. Since Descent is purely ballistic, there is
no control and the backwards propagation is straightforward.
Figure 6, only shows the propagation from “max descent
speed” because the minimum safe exit speed is zero which
immediately transitions to Step. Safe initial conditions for
Descent are bound by the circle markers on the ŷ′ = 0 line
in Figure 6.

2) Step Phase: The safe exit conditions for Step are
the safe initial conditions from Descent. Step is a discrete
mode with no continuous time propagation. However, the
environment acts to effect an instantaneous change, ŷ+ =
ŷ−+∆̂h. If ∆̂h is negative, the height above ground decreases
and the environment causes a “step up” change in terrain
height. To avoid collision (ŷ+ < 0) the hopper must be above
the maximum step up height prior to Step. Conversely, if
∆̂h is positive the environments causes a step down change in
terrain height. A step down increases landing speed potentially
over stressing the leg. The maximum height just prior to the
Step is the height from which the hopper can safely fall
assuming a step down change of ∆̂hmax. In Figure 6, the safe
range for ŷ prior to the Step phase is between the asterisks
on the ŷ′ = 0 line.

3) Ascent Phase: The Ascent exit conditions are equal
to the Step phase initial conditions. The Ascent phase
initial conditions are the are found by propagating a ballistic
trajectory backwards in time. In Figure 6, both upper and
lower bound ascent phase trajectories terminate at the
Liftoffboundary along ŷ = 0.

4) Liftoff Phase: The Liftoff exit conditions are
between the maximum and minimum liftoff velocities at ŷ = 0
and marked by diamond symbols in Figure 6. From the
minimum liftoff velocity, we propagate backwards in time
assuming u = umax. The intersection at the initial condition
boundary of the Liftoff region (lower triangle symbol)
marks the minimum velocity in Contact that could safely
clear a step up of ∆̂hmax. From the maximum liftoff velocity,
we propagate backwards in time assuming u = 0. The
intersection at the initial condition boundary of the Liftoff
region (upper triangle symbol) marks the maximum safe
velocity in Contact that will avoid the leg compression
constraint upon returning to Contact with a worse case drop
in the terrain. Since the maximum safe initial velocity for
Liftoffis greater than the maximum contact phase velocity
(square symbol at the Contact–Liftoff boundary, the

maximum Liftoffvelocity is not a constraint on the system
and the system has a feasible solution.

C. Algorithm Termination

We have now taken the algorithm for determining the max-
imal controlled invariant set through one complete iteration to
W−1 which is shown in Figure 6. The algorithm continues
with a second iteration through the discrete modes again
starting with the Contact phase.

Starting at the Contact–Liftoff boundary, the maxi-
mum contact velocity, marked by a square symbol along the
boundary, remains unchanged. The time propagation from this
point is along the heavy solid curve and need not be repeated.

The minimum safe exit velocity for the Contact phase
is the left facing triangle associated with the minimum liftoff
velocity. Propagating backwards in time from this point the
optimal value for u is u∗ = umax but the curve intersects the
singularity avoidance (SA) boundary (intersection not shown).
At the intersection point, the control is set at u = urtn and
the at u = 0 to follow the SA boundary backwards in time to
Contact phase initial conditions at point ŷ = 0, ŷ′ = 0.

Thus, the Contact phase initial conditions are unchanged
between the first and second iterations of the maximal safe in-
variant algorithm. Since the Contact phase initial conditions
are the same between iterations, the Descent phase exit and
initial conditions are the same. Likewise the Step, Ascent,
and Liftoff phases remain unchanged. In this example,
the algorithm reaches steady state after a single iteration and
terminates.

In general, however, the algorithm will require more than
two iterations through the phases of motion prior to termina-
tion. Figure 7 is a phase diagram of the same hopper in 6, but
with ∆̂hmax = 0.4 and ∆̂hmin = −0.4 rather than ±0.3. The
first iteration through the phases of motion follows the previ-
ous discussion except that the higher step up requires a higher
minimum liftoff velocity at the start of the Ascent phase.
After the first iteration through Liftoff, the Contact
phase minimum safe exit velocity is marked by the lower
most triangle on the Contact–Liftoff border. Propagating
backwards in time from this point to start the second iteration
of the algorithm, one finds that state trajectory just misses the
singularity avoidance region. The backwards propagation is at
u∗ = umax for positive Contact velocities, and at u∗ = 0 for
negative Contact velocities. This control history minimizes
the initial contact velocity and maximizes the range between
minimum and maximum descent speeds. However, after the
second iteration through the Contact phase, the minimum
initial contact speed, marked by the topmost right facing
triangle along ŷ = 0 is non-zero. The change in Contact
phase initial conditions requires subsequent iteration through
the phases of motion.

Continuing backwards in time, the minimum initial height
for the Descent phase, marked by a circle in figure 7, moves
out to the right from ŷ = 0. The higher minimum initial
Descent height, the higher the minimum initial height at
the Step phase and the higher the minimum liftoff velocity.
The iterations generate an outward spiral shown in the figure.
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Finally, the minimum initial Liftoff velocity, marked by
left facing triangles at the Contact–Liftoff border, ex-
ceeds the maximum contact exit velocity, marked by a square
in the figure. The algorithm terminates because the invariant
safe set is empty.

The iteration illustrated in Figure 7 can be interpreted in
forward time as a hopper trying to climb stairs. Assume the
hopper starts at the bottom of the stair case in Descent at
the maximum safe height above ground. The hopper lands
at maximum descent speed and immediately applies full
thrust (following the bold solid curve) to avoid violating the
maximum leg compression constraint. The hopper continues
maximum thrust through Contact and Liftoff phases
and enters Ascent just below the ‘minimum liftoff velocity’
marked on the figure. At the apex of flight the hopper’s height
above ground is indicated by the right most asterisk in the
figure. Then the step up causes the hopper’s height relative to
ground to drop by 0.4 to the point marked by an open circle
next to ‘Step up’ on the figure. At the top of the first step,
the hopper lands at a speed just below the ‘minimum descent
speed’. Back in Contact, the hopper waits for maximum
leg deflection (ŷ′ = 0) before applying thrust at u = umax.
However, the liftoff velocity is lower than after initial contact
and the hopper lands on the second step with even less velocity
than the first. The state space trajectory spirals inward (in
forward time) until the hopper fails to clear the fourth step.

Each iteration through the phases of motion reduces the set
of safe states. However, the ultimate outcome is not necessarily
null. Figure 8 shows a result where the maximal safe invariant
converges to a non-empty set. In this example the hopper leg
has a non-dimensional stiffness of 10 and a non-dimensional
damping ratio of 0.05. The leg is stiffer and less damped than
in the previous examples but has the same thrust capability.
As in Figure 7, the maximum terrain variation between steps
is 40% of the uncompressed leg length (∆̂hmax = 0.4). The
hopper must land with sufficient speed to compress the leg
so that it can apply thrust long enough to get the minimum
required liftoff velocity. The minimum contact speed for the
initial safe set of states is zero. However, by iterating through
the phases of motion the initial minimum contact speed is
increased until the difference between iterations is acceptably
small. Starting with a contact speed greater than or equal to
the minimum value, the hopper can safely climb an arbitrarily
long stair case.

V. RUGGEDNESS

The term ‘ruggedness’ is used to describe the maximum
environmental disturbance our system can tolerate under worst
case conditions and still operate safely. We use ‘Ruggedness’
rather than ‘robustness’ to avoid confusion with the many
robust control techniques that consider both external and
internal disturbances but do not consider worst case conditions
in a game theoretic way. The ruggedness of the single legged
hopper is a function of leg thrust, stiffness, and damping.

This study assumes ∆̂hmin = −∆̂hmax so that the terrain
is generally level. Note that if the terrain was generally
descending then ∆̂hmin < −∆̂hmax and conversely if terrain

is generally ascending then ∆̂hmin > −∆̂hmax. To determine
ruggedness, the algorithm for the maximal controlled safe
invariant is repeatedly applied but at different values for
∆̂hmax. If the safe set is non-empty, ∆̂hmaxis increased by
an increment. If the safe set is empty, ∆̂hmaxis decreased
until a non-empty safe set solution is found. In this study,
the ultimate resolution for ∆̂hmaxis 0.01 or one percent of the
uncompressed leg length.

Hopper ruggedness for different leg thrust, stiffness, and
damping is shown in Figure 9. The figure shows four subplots
each with a different level for maximum leg thrust. The axes
for each subplot are maximum terrain variability (that is,
ruggedness) versus the non-dimensional damping coefficient
and the curves in each subplot are for normalized spring
stiffnesses of 2, 4, 6, 10, 14, and 20.

The results in Figure 9 show several general trends. First,
ruggedness always increases with increasing leg thrust capa-
bility. Second, for a given leg thrust capability ruggedness
increases with leg stiffness at low damping. Maximum rugged-
ness is achieved at high stiffness and near zero damping.
But, at high stiffness ruggedness drops off very quickly with
damping. Since all mechanical systems have some form of
energy loss, this suggests that better performance will be
achieved with moderate stiffness. In the hopper example we
capture the energy loss with only viscous friction but real
systems will have non-zero mass legs and also incur energy
loss at ground contact.

An interesting trend in Figure 9 is that for systems with
low to moderate stiffness, increasing damping up to an op-
timum value increases ruggedness. The lower the stiffness,
the higher the optimum value for damping. The damping
dissipates energy from landing allowing the hopper to tolerate
a step down change in terrain height without violating the
leg compression constraint. However, as damping increases
beyond the optimum value ruggedness is limited by the energy
dissipated during thrust when the hopper tries to achieve a
minimum liftoff velocity. A final trend observed in Figure 9
is that at higher thrust levels the difference between optimal
ruggedness for hoppers with different leg stiffness diminishes.
Hopper capabilities become more and more dominated by
control rather than passive dynamics.

To further understand the effect of damping, Figure 10 plots
hopper ruggedness versus damping for different leg stiffnesses
at umax = 4. Ruggedness is compared against “obstacle lim-
ited” and “compression limited” behaviors which are shown to
be limiting values for hopper ruggedness. The “compression
limited” curve, shown as a dashed line in the figure, is
determined from the maximum height from which the hopper
can safely fall. It limits hopper ruggedness at low to moderate
leg stiffness and low damping. The “obstacle limited” curve,
shown as a dotted line in the figure, is determined from the
maximum obstacle height the hopper can clear. It limits hopper
ruggedness at moderate to higher levels of damping. Figure 11
shows the maximal safe set in state space for hoppers with a
dimensionless spring constant k̂ = 4 but different damping for
maximum ruggedness at the “obstacle limited”, “compression
limited”, and intermediate behaviors.

For compression limited behavior, ruggedness is one half the
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Fig. 7. Maximal safe invariant set for a hopper with umax = 2, k̂ = 4, ζ = 0.25, and ∆̂hmax = 0.4. In this example the algorithm for finding the
maximum safe invariant set requires multiple iterations through the phases of motion. After four steps up the hopper fails to clear the obstacle and the safe
invariant set is empty.

maximum height which the hopper can fall without violating
the leg compression constraint. The compression limit is
determined for a given set of leg parameters by assuming
the leg at maximum compression is at rest and propagating
the contact equations of motion backwards in time at u =
umax. This determines the maximum descent speed shown
in Figure 11 (a). The maximum height above ground after
the step phase is determined from the maximum descent
speed. ∆̂hmaxis one half the maximum safe height so a step
up reduces height above ground to zero and a step down
increases height above ground to the safe limit. Therefore,
the maximum and minimum height prior to the step are
equal. Likewise, the maximum and minimum liftoff velocities
prior to ascent are equal. Extrapolating backwards in time
from liftoff with u = umax (dotted curve between the triangle
and hexagram), the state trajectory intersects the singularity
avoidance boundary. Following along the singularity avoidance
boundary in backwards time, the minimum velocity at contact
is zero and the iteration for the maximal safe set terminates.
Note that if the step down height were reduced in Figure
11 (a), the hopper could safely handle a larger step up so
ruggedness is step down or compression limited.

For obstacle limited behavior, ruggedness is the maximum
height the hopper can clear from initial contact at zero velocity,
as shown in Figure 11 (c). Starting at ŷ = 0 and ŷ′ = 0 and
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Fig. 10. Hopper ruggedness and “step up” and “step down” limits. The
“step down” limit is the maximum drop in height between successive steps.
When step down limited the hopper applies maximum thrust at first contact to
avoid joint limits and increasing damping increases ruggedness. The “step up”
limit is the maximum rise the hopper can sustain over a succession of steps.
When step up limited, the hopper applies maximum thrust at full compression
to jump as high as possible and decreasing damping increases ruggedness.
Optimal damping occurs near where the maximum step height for “step down”
and “step up” limited behaviors intersect.
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Fig. 8. Maximal safe invariant set for a hopper with umax = 2, k̂ = 10, ζ = 0.05, and ∆̂hmax = 0.4. The algorithm for the maximum safe invariant set
requires multiple iterations but converges to a non-empty solution space. In this example the hopper requires non-zero landing speeds to compress the leg so
that the thrust can act over a long enough distance to achieve the required liftoff velocity.

propagating forward in time with u = 0, the hopper falls under
gravity and follows the singularity avoidance boundary until
maximum compression (ŷ′ = 0). At this point full thrust is
applied to achieve the minimum safe liftoff velocity which
determines ∆̂hmax. After a step up, the hopper contacts the
ground at zero velocity and the iteration for the maximal safe
set terminates. For larger ∆̂h the hopper must land with non-
zero velocity, but the hopper cannot provide enough thrust
to overcome the energy lost to damping so that the hopper
lands with lower velocity on subsequent steps and the state
space trajectory spirals inward as shown in Figure 7. Note the
large distance between maximum and minimum safe height
in ascent in Figure 11(c). The hopper can safely handle a
larger step down so ruggedness is step up or obstacle limited.

Figure 10 shows that at moderate levels of damping rugged-
ness falls somewhere between the obstacle and compression
limited behaviors. State space boundaries for the maximal safe
set under these conditions are shown in Figure 11 (b). Here,
the damping is such that the hopper can sustain stair climbing
with a non-zero landing velocity so ruggedness is greater than
the step up or “obstacle” limit. However, the gap between
maximum and minimum safe height in ascent shows that the
hopper could safely handle a larger step down so ruggedness
is less than the step down or “compression” limited level.
For moderate leg stiffness, ruggedness is maximized at this

intermediate behavior.

VI. EXTENSION TO PLANAR RUNNING

The approach demonstrated for the single legged hopper can
be extended to more complicated problems. While detailed
discussion is beyond the scope of this paper, the intent in
this section is to show how the maximal safe invariant algo-
rithm could be applied to planar running and to multi–legged
systems. Solutions to these problems requires numerical tools
rather than the semi-analytic approach taken here [7].

Extension from simple hopping to planar running compli-
cates the hopper dynamics and the problem formulation for
the maximal controlled safe invariant in several ways. First,
additional states are required for horizontal and rotational
motion and leg angle. If running with multiple legs, additional
states are required not only for the angular position of each leg,
but also to track the difference in terrain height between legs.
Secondly, additional safety constraints are required to satisfy
hopper orientation, hip joint limits, and non-slip contact.
Finally, the change in terrain cannot be constrained to the
apex of flight complicating the hybrid mode dynamics of the
problem.
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Fig. 9. Hopper ruggedness as a function of leg thrust, stiffness, and damping. Ruggedness is a measure of the maximum variation in terrain height between
steps that the system can safely handle. For zero and very low damping then high leg stiffness is optimal. For moderate and higher levels of damping moderate
to low leg stiffness is best. Ruggedness increases uniformly with leg thrust capability and sensitivity to mechanical properties decreases with increasing leg
thrust.
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(a) compression limited (b) intermediate (c) obstacle limited

Fig. 11. Maximal safe invariant for compression limited, obstacle limited and intermediate behaviors. For compression limited behavior (a) the “step up”
plus “step down” height is equal to the height from which the hopper can fall without damage. For obstacle limited behavior (c) the maximum step up is the
height which the hopper can clear and land at zero velocity and still compress the leg enough to clear the next step up. Intermediate behavior (b) requires
a non–zero landing velocity to provide sufficient leg compression for the next step up. The intermediate behavior requires multiple iterations through the
maximal safe invariant algorithm to find the minimum safe landing speed.
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A. Running with a Single Leg

The problem of running over variable terrain with a single
legged hopper is diagrammed in Figure 12. The figure shows
a sequence of positions and orientations over a single hop.
As before the hopper leg has stiffness and damping and can
provide a thrust. Additionally the hopper body has a rotational
degree of freedom and associated inertia and can generate
torque about the hip joint. The body is at an angle θ with
respect to horizontal and the hopper leg is at an angle φ
with respect to the body. The terrain is stepped with variable
changes in terrain height, ∆h, separated by a fixed distance,
∆x. Changes in terrain height are bound between ∆hmax and
∆hmin. Alternative models of the terrain are possible but the
stepped terrain is most analogous to the vertical hopper studied
previously.

During the flight phase the hopper positions the leg to a
desired angle for contact. Once in contact, and assuming no
slipping, the toe remains fixed to the surface while the leg
compresses and rotates about the hip. Prior to liftoff the leg
extends from the combination of spring and any thrusting
forces. After liftoff the hopper resumes a ballistic trajectory
and repositions the leg for the next contact.

The position of the hopper mass center can be tracked rela-
tive to the relevant terrain features by adjusting the reference
or origin with a discrete phase transition. Figure 12 marks
changes in terrain height with the letters ‘A’ and ‘B’. These
features are separated by a set distance, ∆x. During flight,
the hopper toe may cross over one or more terrain features
as indicated by the broken vertical lines in the figure. The
cross over triggers a discrete phase transition that shifts the
origin of the reference coordinate system. For example, when
the toe crosses feature A, the origin of the reference system
becomes point A and the horizontal and vertical location of the
mass center with respect to point A is xfA, which is negative,
and yfA. At the time of contact mass center position has
changed to xcA and ycA, and at the time of lift off mass center
position has changed to xlA and ylA. The hopper resumes
flight and when the toe crosses feature B the origin abruptly
shifts to point B and the mass center location becomes xfB and
yfB . The relationship between points A and B is the distance
between features, ∆x, and the change in terrain height, ∆h.

The phases of motion for planar running over variable
terrain are shown in Figure 13. The Contact and Liftoff
phases are directly analogous to the vertical hopper phases.
The flight phases of motion are divided into Ascent, and
Descent. The Reposition and Cross phases capture
discrete events. The Cross phase resets the origin of the
coordinate system when the abscissa of the hopper toe reaches
∆x. At this instant terrain height changes and collision may
occur. Because the distance traveled in flight varies from hop
to hop, the phasing between terrain changes and the flight
phase is also variable. Thus, a Cross may occur one or more
times during a hop, or not at all. Also during flight the hopper
must reposition the leg from the angle at liftoff to the angle
for landing. Since the leg is massless the reposition can occur
instantaneously and has no affect on hopper dynamics in flight
unless a collision occurs. For simplicity the leg reposition

xfA

yfA
ycA

xcA
xlA

ylA

xfB

yfB

A B

θ

φ φ
φ

∆h

∆x

Toe
Point A

Point B

Fig. 12. Diagram of planar running with a single leg. The environment
is stepped with variable changes in terrain height, ∆h, separated by a fixed
distance, ∆x. To track hopper position relative to terrain features a discrete
phase transition shifts the origin of the coordinate system when the hopper
toe crosses over feature locations. The planar problem also includes rotational
degrees of freedom for the body attitude, θ, and the hopper leg angle, φ, which
is measured relative to the hopper body.

is modeled as an instantaneous slew at the apex of flight.
However, it should be noted that the leg angle at contact
is an important control variable. The Reposition phase
should allow a range of feasible leg angles and results obtained
during the backward chaining sequence of the algorithm will
determine the safe subset of reposition angles. Also during
Reposition checks are made for any Cross event or
possible collision.

If feature distance, ∆x, is small compared to the length of a
hop then more than one Cross event may occur in flight. The
phase diagram on the left side of Figure 13 indicates multiple
Cross events during Ascent and Descent with the two
way arrow between mode transitions. The two way transitions
create internal loops which must be iterated through during the
backward chaining sequence. However, if feature distance is
large compared to the length of a hop, then no more than one
Cross event will occur per hopping cycle. This constraint
can be enforced by adding modes and modifying predecessor,
successor relationships as shown in the right side of Figure 13.
Despite the additional modes and more complex looking phase
diagram, execution through the backward chaining sequence
is simplified.

The collision during a Cross event is a safety constraint on
the system. Additional safety constraints include the minimum
leg length constraint and constraints on the hip angle. To avoid
singularities it is useful and reasonable to impose constraints
on the body angle, θ, so that the hopper doesn’t perform
cartwheels.

A final constraint on the system is non-slip contact at
the toe. It can be shown that slipping constraints are linear
functions of the control variables u1 and u2 [7]. The constraint
boundary is a function of the control which is problematic.
However, since the constraints are linear functions, we know
that the bounding constraint conditions must be at the extreme
values of the control variables. Thus, the constraint for positive
slipping is bound by 4 constraint surfaces: one each for
the combination of maximum or minimum leg thrust and
maximum or minimum hip torque.
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Fig. 13. Phases of motion for planar running with a single leg. The Ascent,
Descent, Contact, and Liftoff phases are analogous to the like named
vertical hopper modes. The Step phase is replaced by Cross which moves
the origin of the coordinate system to accommodate a change in terrain height.
Reposition slews the leg to a new angle to prepare for landing and may
also trigger a Cross. If feature distance, ∆x, is small then more than one
Cross event may occur in flight and the hopper returns to Ascent or
Descent as indicated by the two-way transition to the right. If feature length
is large compared to the length of a hop then no more than one Crossevent
will occur per hop which can be enforced by creating new modes with one
way predecessor/successor relationships.

B. Running with Multiple Legs

Applying the maximal controlled safe invariant algorithm
to the problem of running with multiple legs approaches a
practical application. Interesting applications include the the
effect that different robot configurations have on ruggedness.
For example, robot legs may be telescoping, such as the Sprawl
family of robots [3], rigid with flexible hip joints, such as
the RHex robot [13], or multi-link such as Tekken [16]).
Robot posture maybe upright or sprawl. Robot control maybe
clock driven or closed loop and include measurements of the
environment [7]. Multiple legs also allow multiple gaits. Some
of these gaits, such as the alternating tripod adopted by Sprawl
and RHex, keep one or more legs on the ground at all times
and could eliminate the collision safety constraint imposed on
a single legged hopper.

Figure 14 shows two instances of a two-legged hopper
negotiating a step in the terrain. On the left side of the figure
the rear leg of the hopper is in contact while the front leg is
free. On the right side of the figure the front leg is in contact
while the rear leg is free. Other phases of motion include non-
contact and dual leg contact.

Figure 15 is a simplified diagram of the phase transitions
for two-leg running. Alternating between phases of motions
generates different gaits. For example, a running gait may start
with Leg 1 in contact then transition to a non-contact phase,
then transition to Leg 2 in contact, then transition to another
non-contact phase, and repeat. The transition diagram uses two
distinct non-contact phases between Leg 1 and Leg 2 contact
to force alternating steps between legs. For running, air-borne
‘No contact’ phases are followed between leg contacts. For
walking, both legs are in contact between the ‘Leg 1 contact’
and ‘Leg 2 contact’ phases. Note that skipping is permitted
in this transition diagram. Single legged hopping could be
permitted by adding a transition from ‘No contact 1’ back
to ‘Leg 1 contact’ and from ‘No contact 2’ to ‘Leg 2 contact’.

θ

θφ1

φ1φ2

φ2

∆hA ∆hB
∆hA ∆hB

∆x ∆x

Leg 2 Leg 1

Leg 1

Leg 2

Point B

Point A

Leg 1 crosses Point B threshold
with Leg 2 in contact.

Leg 2 crosses Point A threshold
with Leg 1 in contact.

b1
b2

b1 b2

Fig. 14. Planar running with two legs. An additional variable, φ2, is
required to track the position of the second leg relative to the body.
Multiple legs also require retaining a “moving window” picture of
the environment. When the toe of the front leg reaches a distance
∆x, the environment injects a disturbance,∆hB , to change terrain
height and the origin of the coordinate systems shifts to the new
reference point. When the toe of the back leg reaches −∆x the new
disturbance replaces the old terrain change, ∆hA, as a buffered value
in the continuous state vector.

Leg 1
contact

Leg 2
contact

Leg 1&2
contact Leg 2&1

contact

No contact 1 No contact 2

Fig. 15. Simplified phase diagram for running with two legs. Phases
between Leg 1 only contact and Leg 2 only contact can be separated
by a no contact phase (running gait), or by phases with both legs
in contact (walking gait), or some combination of both. Separate no
contact and dual leg contact phases enforce alternating legs between
steps.

Multiple legs complicate the injection of environmental
disturbances. Returning to Figure 14, the left hand diagram
shows the toe of the front leg of the hopper crossing a change
in terrain height, ∆hB at Point B. As for the single legged
hopper, this change in terrain is assumed to be a worst case
disturbance input over a bound range. The right hand side
of the figure shows the toe of the rear leg of the hopper
cross a change in terrain height at Point A. This feature has
already been encountered and the change in height, ∆hA, was
established previously. A change in terrain height at the front
leg is fundamentally different then a change in terrain height
for the rear leg. Therefore, the system must add dynamic states
to track the terrain.

Figure 16 is a more detailed diagram of the phase transitions
for two legged running with the addition of discrete modes
for front and rear leg crossing events. The number of phases
explodes to account for the number of different precedent
relationships considered. The figure indicates discrete phases
by broken boundaries and front leg crossing events are shaded.
For example when leg 2 is in contact and leg 1 is not in
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contact (phase B), a front leg crossing event may occur (phase
C1), upon which the system transitions back to a continuous
phase (phase C2). The transition is to a new phase (C2) rather
than the previous phase (B) to avoid an inner loop during
backward chaining. From motion with leg 2 in contact (phase
B or C2) the system can transition to a phase with both legs
in contact (phase D) or with neither leg in contact (phase E).
While neither leg is in contact a front leg crossing may occur
(phase G1) or a rear leg crossing may occur (phase H1) or
both may occur. If both front and rear leg crossings occur
with neither leg in contact, the front leg crossing may occur
first (G1 Â G2 Â H3 Â G4) or the rear leg crossing may
occur first (H1 Â H2 Â G3 Â G4). A similar set of possible
mode transitions occurs during the non-contact following leg
1 only contact (phases J, K1-K4, L1-L3).

Figure 16 does not include liftoff type transition phases
or any explicit reposition type phases for the out of
contact leg. These phases are omitted to avoid additional
clutter. Reposition of the out of contact leg can occur during or
upon transition into the single leg contact phases. For example,
leg 1 out of contact reposition can occur during phase B and
leg 2 out of contact reposition can occur during phase F. Note
that any cyclic phase sequence must include phases B and F
so that leg repositioning cannot be skipped over.

VII. CONCLUSION

This paper describes an analysis approach for determining
safe control of a hopping robot operating in uneven and
unknown terrain. The approach is based on determining the
maximal controlled safe invariant as described by Tomlin,
et. al. [14], but simplifies the optimization by assuming that
the constraint boundaries are convex (or more generally can
be approximated by a finite set of possibly intersecting con-
vex surfaces) and the phase dynamics are non-singular (i.e.
f(x, u, d) 6= 0) so that boundary of the set of safe states is
tangent to and cannot re-enter constraint boundaries. These
assumptions apply to a broad class of hybrid systems and
permit a geometric solution to the optimization problem.

Results for several robot leg configurations and different
environmental variations are provided. The effect of robot
thrust and mechanical properties is examined in detail. A
metric for “ruggedness” is defined which is the maximum
change in terrain height the system can tolerate between hops
and guarantee safe operation. For given thrust, maximum
ruggedness is achieved at low spring stiffness and at an optimal
damping which is high enough to absorb excess energy given
a negative change in terrain height, but low enough to permit
sustained climbing given positive changes in terrain height.

Extension of the analysis approach to planar running with
single or multiple legs is discussed and is feasible but detailed
study is considered future work. High dimensional non-linear
problems require a numerical tool such as described in [10] or
[7]. A numerical solution to a single legged hopper operating
under timer based control will be described in a future paper.
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K4: No contact after (K3, L3)
L1: Leg 2 cross after (J)
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Fig. 16. Detailed phase diagram for two legged running. The number of modes explodes to track the number of possible predecessor/successor
relationships.
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