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ABSTRACT

This paper presents a general framework for optimization of hap-
tic interfaces, in particular for haptic interfaces with closed kine-
matic chains, with respect to multiple design objectives, namely
kinematic and dynamic criteria. Both performance measures are
discussed and optimization problems for a haptic interface with
best worst-case kinematic and dynamic performance are formu-
lated. Non-convex single objective optimization problems are
solved with a branch-and-bound type (modified culling) algorithm.
Pareto methods characterizing the trade-off between multiple de-
sign criteria are advocated for multi-criteria optimization over
widely used scalarization approaches and Normal Boundary In-
tersection method is applied to efficiently obtain the Pareto-front
hyper-surface. The framework is applied to a sample parallel mech-
anism (five-bar mechanism) and the results are compared with the
results of previously published methods in the literature. Finally,
dimensional synthesis of a high performance haptic interface utiliz-
ing its Pareto-front curve is demonstrated.

Keywords: Multi-criteria design optimization, dimensional syn-
thesis of parallel mechanisms, optimal design of haptic interfaces,
kinematic and dynamic performance of manipulators.

Index Terms: B.8.2 [Hardware]: Performance and Reliability—
Performance Analysis and Design Aids; C.4 [Performance of
Systems]: Design studies; H.1.2 [Models and Principles]:
User/Machine Systems; H.5.2 [Information Interfaces and Presen-
tation]: User Interfaces—Haptic I/O; J.6 [Computer-Aided Engi-
neering]: Computer-aided design.

1 INTRODUCTION

A haptic interface is a computer-controlled motorized device that
physically interacts with a human operator to render presence of
computationally mediated environments. An ideal haptic device is
desired to withstand human applied forces with very high stiffness
and be capable of displaying a full range of impedances down to
the minimum value human can perceive. The performance of a
haptic interface under closed loop control is measured by thetrans-
parency of the display, that is, by quantifying the match between the
desired and actually rendered impedance values. During haptic ren-
dering, the haptic interface is coupled to the control system and its
existence results in parasitic effects on the displayed impedances,
deteriorating the perfect transparency. Therefore, independent of
the control algorithm used, both the kinematic and dynamic perfor-
mance of the haptic device have an impact on the overall perfor-
mance of the haptic display.

Robotic manipulators with parallel kinematic chains are popular
among haptic interfaces due to their inherent advantages in satisfy-
ing requirements of haptic applications with respect to their serial
counterparts. Parallel mechanisms offer compact designs with high
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stiffness and have low effective inertia since their actuators can be
grounded in many cases. In terms of dynamic performance, high
position and force bandwidths are achievable with parallel mech-
anisms thanks to their light but stiff structure. Besides, parallel
mechanisms do not superimpose position errors at joints, hence can
achieve high precision.

Despite these favorable characteristics of parallel mechanisms,
optimal design of such mechanisms with closed kinematic chains is
significantly more challenging. Parallel mechanisms have smaller
workspace with possible singularities within the workspace and
their analysis is considerably harder than the analysis of manipu-
lators with serial kinematic chains. Due to the additional complex-
ities involved, the dimensional synthesis of parallel mechanisms is
still an active area of research.

Optimum design of parallel mechanisms even for a single ob-
jective function is challenging due to the nonlinear, large scale na-
ture of such mechanisms [19] and non-convex properties of perfor-
mance indices with respect to the design variables [26]. Many dif-
ferent optimization approaches applicable to nonlinear, non-convex
optimization problems such as genetic algorithms [18, 19, 33, 38],
simulated annealing [28], Bayesian techniques [33, 34], Monte-
Carlo simulations [33, 38], controlled randomized searches [22],
performance charts [20], workspace atlases [21], and branch and
bound methods [31] have been applied to design optimization of
parallel mechanisms. In general, deterministic methods can get
stuck at a local optimum, heuristic methods cannot guarantee op-
timality of the converged solution, while branch and bound type
methods are only as accurate as the discretization selected.

While designing the geometry of a haptic interface, various
performance criteria such as kinematic and dynamic isotropy,
singularity-free workspace, sensitivity, and transmission capabil-
ity have to be consideredsimultaneously. The performance with
respect to any of these criteria cannot be improved without deterio-
rating another; hence, design trade-offs are inevitable. Determina-
tion of optimal dimensions with respect to many design criteria is a
difficult problem and should be handled with multi-objective opti-
mization methods so that trade-offs can be assigned in a systematic
manner.

As emphasized earlier, an optimal design of a haptic interface
can only be achieved by considering many competing objectives.
There exists several studies in which multiple design criteria have
been addressed for this purpose. Haywardet al. define the relation-
ship between multiple criteria and utilize sensitivities of these crite-
ria to conduct a hierarchical optimization study [11]. Multiple ob-
jectives are considered sequentially in [1, 15, 28, 31] by searching
for parameter sets resulting in near optimal kinematic performance
and then selecting the design exhibiting the best dynamic perfor-
mance from this reduced parameter space. Task-priority [3], prob-
abilistic weighting [24], composite index [18], and tabular meth-
ods [35] are among the other approaches that consider multiple cri-
teria.

Even though these studies can account for multiple design cri-
teria, they can be broadly classified underscalarization methods in
which the multi-criteria optimization problem is addressed in an in-
direct manner, by first transforming it into a (or a series of) single
objective (scalar) problem(s). These approaches either aggregate
multiple criteria into a single objective function through some form



of weighting or prioritize one objective and select others to serve as
constraints to form a single objective optimization model. Scalar-
ization methods possess the inherent disadvantage of their aggre-
gate objective functions requiring preferences or weights to be de-
termined apriori,ie. before the results of the optimization process
are actually known [6]. Since assigning proper weights or prioritiz-
ing different criteria is a problem dependent, non-trivial task, these
techniques fall short of providing a general framework to the design
of the parallel mechanisms.

Pareto methods, on the other hand, incorporate all optimization
criteria within the optimization process and address them simulta-
neously to find a set of efficient solutions. Each design alternative
in the solution set corresponds to a non-dominated design in the
objective space. In other words, these methods aim to construct
the Pareto-front hyper-surface representing the design trade-offs be-
tween multiple criteria. Once such a hyper-surface resolving the
design trade-offs is obtained, an appropriate design on this hyper-
surface can be selected taking into account other design require-
ments of the particular application in consideration. Pareto meth-
ods allow the designer to make an informed decision by studying
a wide range of options, since they contain the solutions that are
optimum from anoverall standpoint; unlike aggregate optimiza-
tion techniques that may ignore this trade-off viewpoint. Thanks
to this feature, Pareto methods are better suited as a general so-
lution framework for design optimization of parallel mechanisms,
since they provide a better understanding of optimization problem
allowing all the consequences of a decision with respect to all the
objectives be explored.

As regards to employing Pareto methods for design of parallel
mechanisms, Krefftet al. recently applied a modified genetic algo-
rithm (GA) to the problem for multiple objective functions, solv-
ing for the Patero-front hyper-surface [17, 16]. Similarly in [30]
GA is applied to multi criteria optimization of a 2-DoF parallel
robot. Despite their inherent advantage of resulting in multiple non-
dominated design solutions within a single optimization search, GA
approaches suffer from several disadvantages. Specifically, the con-
vergence performance of GA is highly dependent on user-specified
parameters such as sharing factor, and the results are very sensi-
tive to these user specified parameters. Moreover, GA methods de-
mand inferior computational cost with increasing number of objec-
tive functions, hence cannot be easily adopted or scaled for use of
more than two objective functions [4]. More importantly, GA might
prematurely converge to sub-optimal solutions [12]. Finally, use of
GAs to obtain Pareto front hyper-surface has the disadvantages of
large computational expense as well as a tendency for clumping of
solutions in objective space resulting in under-represented regions
of the Pareto front [6].

In this paper, a multi-objective design framework for optimiza-
tion of parallel mechanisms is presented. Global kinematic and
dynamic performance of parallel mechanisms over a pre-defined
singularity free workspace are maximized simultaneously and the
Pareto-front curve for these two criteria is obtained. Firstly, the
global solutions of non-convex min-max performance criteria are
solved independently from each other using a modified branch and
bound algorithm, called culling algorithm [31]. Once optimal so-
lutions of each single criteria optimization problem are obtained,
Normal Boundary Intersection (NBI) method [5], which performs
a deterministic geometric search within the objective space, is uti-
lized to efficiently compute uniformly distributed design solutions
on the Pareto-front curve. The proposed framework is applicable to
other performance indices and is easily extendable to include fur-
ther design criteria that may be required by the application.

The paper is organized as follows: Section 2 discusses several
kinematic and dynamic performance measures while Section 3 in-
troduces the sample mechanism used for the analysis, a 2-DoF par-
allel five-bar linkage. Section 4 formulates the multi-criteria op-
timization problem. Section 5 explains the optimization methods

used to address the single and multi-criteria optimization problems
and is followed by results and their discussion in Section 6. Sec-
tion 7 presents conclusions and future work. Finally, kinematic and
dynamic analyses of a five-bar linkage are detailed in the Appendix.

2 MEASURING KINEMATIC AND DYNAMIC PERFORMANCE

As elaborated in the introduction, both kinematic and dynamic per-
formance of parallel mechanisms are to be optimized to achieve
haptic devices with low parasitic effects. To quantify performance,
several design matrices, including Jacobian and mass matrices, are
studied and to date, many scalar performance indices have been
proposed. These indices either represent a distance to a singular
configuration or quantify the directional independence (uniformity)
of configuration dependent design matrices. Since singular values
of a matrix provide a versatile metric to quantify its properties, most
of the indices are derived as a function of these values.

To measure kinematic performance, properties of the Jacobian
matrix (J) are studied thoroughly. Condition number, proposed by
Salisbury and Craig [29], describing the worst-case behavior at a
given configuration is one of the most commonly used kinematic
performance measures. Given as the ratio of the minimum and
maximum singular values of the Jacobian matrix, this measure lo-
cally characterizes directional isotropy for both force/motion trans-
mission accuracy and actuator utilization of a manipulator. An-
other popular index, manipulability, measures the ease of arbitrarily
changing the position and orientation of the end effector and is cal-
culated by taking the product of singular values of the Jacobian ma-
trix [37]. Sensitivity characterizes the precision of a manipulator by
measuring the change in end-effector configuration with respect to
small perturbations of joint angles and is given by the sum of abso-
lute values of Jacobian matrix elements in a single row [9]. Finally,
minimum singular value of the Jacobian matrix is also proposed as
a kinematic performance measure [14] as a value quantifying the
skewness of the velocity response.

All of the above mentioned indices arelocal measures of kine-
matic performance; therefore, are not constant over the entire
workspace. Extensions of these indices have been proposed to
characterize the performance of a manipulator over the entire
workspace. Gosselin and Angeles proposedglobal condition in-
dices based on integral of local kinematic performance measures
over the workspace [8]. However, being average values, this in-
dices fail to capture possible low performance configurations (near
singular points) within the workspace. Moreover, integrating a lo-
cal measure can be computationally expensive. Mean of the min-
imum singular value has also been proposed as global measure in
order to characterize the path velocity of parallel robots [15]. Since
mean values are not sufficient to guarantee homogeneity of perfor-
mance, standard deviation of the minimum singular value has also
been introduced as a measure in [15]. Other global indices include
global payload index that measures the force transmission capa-
bility [25]. Finally, the global isotropy index (GII), introduced
in [31] by Stoccoet al., is a workspace inclusive worst-case kine-
matic performance measure that is intolerant of poor performance
over the entire workspace.GII is calculated as the ratio of the min-
imum of smallest singular value and maximum of largest singular
value of the Jacobian matrix over the workspace.

In this paper, a global performance index is chosen to quantify
the kinematic isotropy of the five-bar mechanism since the objective
of the design problem is to minimize the parasitic effects of the ma-
nipulator over the workspace. Even though any global index can be
utilized within the framework presented, to allow comparisons with
earlier published resultsGII is preferred. As a global worst case
performance measure, maximizingGII corresponds to designing
a mechanism with best worst-case kinematic performance. More-
over, an optimalGII results in a uniform Jacobian matrix for the
sake of precision, while also increasing the efficiency of utilization



of the actuators.GII can be mathematically expressed as

GII = minγ0,γ1∈W

σ(J(α, γ
0
))

σ(J(α, γ
1
))

(1)

whereJ represents Jacobian of the manipulator,σ andσ are the
minimum and maximum singular values of the Jacobian matrix,γ0

andγ1 are the configurations in the workspace that result in the
extreme singular values,α is the column matrix of design variables,
andW represents the workspace.

Dynamic performance is measured in a similar manner to the
kinematic performance, but this time properties of the mass ma-
trix (M ) capturing the relation between actuator force/torque and
end-effector acceleration, are studied. The goal for improving dy-
namic performance is to minimize inertia effects that conflict with
high acceleration demands. To characterizelocal dynamic perfor-
mance Asada defined the effective inertia matrix expressing the
homogeneity of the moment of inertia of the non-redundant ma-
nipulators and introduced the concept of generalized inertia el-
lipsoid [2]. Yoshikawa proposed a dynamic manipulability mea-
sure [36], which is an extension of manipulability concept and mea-
sures the degree of arbitrariness in changing end-effector accelera-
tions. Dynamic manipulability is calculated as the product of sin-
gular values ofJM−1 matrix. Angeleset al. defined the dynamical
conditioning index which measures dynamical coupling and numer-
ical stability of the generalized inertia matrix of manipulators [23].
Finally, swiftness, a measure to characterize the attitude of the ma-
nipulator to produce high end-effector accelarations, is proposed by
Di Gregorioet al. which can also be applied to planar manipulators
with non-homogeneous generalized coordinates [10].

Similar to the case of local kinematic performance indices, ex-
tensions to local dynamic indices have been proposed to charac-
terize the performance of a manipulator over the entire workspace.
Calculating the mean value and standard deviation of the local dy-
namic indices are among the most commonly used approaches to
achieve a global dynamic performance index. A global dynamic
index (GDI) is introduced in [31] to quantify the global worst-case
performance of a manipulator.GDI measures the largest effect
of mass on the dynamic performance by calculating the maximum
largest singular value over the workspace of the effective mass ma-
trix at the end-effector and is computed as inverse of this maximum
of largest singular value.

To be consistent with the metric chosen for the kinematic perfor-
mance, the workspace inclusive best worst-case performance mea-
sure (GDI) is used to quantify dynamic performance. As men-
tioned earlier, any dynamic index could be utilized in the frame-
work introduced, but this decision also allows for comparisons with
earlier published results. As a global worst-case performance mea-
sure, maximizingGDI results in reduced maximum largest singu-
lar value of the effective mass matrix, decreasing the inertial inter-
ference by the system.GDI can be mathematically expressed as

GDI = minγ∈W

1

1 + σ(M(α, β, γ))
(2)

whereM represents effective mass matrix of the manipulator as
seen at the end effector,σ is the maximum singular value of the
effective mass matrix,γ is the configuration in the workspace that
results in the maximum singular value,α is the column matrix of
design variables, andW represents the workspace.

In general, since entries of Jacobian and mass matrices may not
be homogenous in units, proper normalization is necessary such
that the measures defined on these matrices are meaningful. Among
several approaches proposed in literature, normalization with a
characteristic length [13, 15] or a nominal link length [18], and par-
titioning the matrices into translational and rotational parts [15, 19]
are the most popular choices. Normalization is not necessary for
the sample problem presented in this paper, as it possesses only a
translational workspace.

3 FIVE-BAR LINKAGE

The optimization framework presented in this paper is applied to a
2-DoF five-bar parallel mechanism due its sufficient richness with
relative simplicity allowing better interpretation of the optimization
problem at hand. Moreover, scalarization/aggregrate methods have
been applied to the multi-criteria optimization of this mechanism in
the literature, rendering comparisons of different approaches possi-
ble. The methods discussed in this paper constitute a general frame-
work for design optimization of parallel mechanisms and is by no
means limited to the sample mechanism studied.

A five-bar mechanism can be characterized by lengthsl0, l1 , l2,
l3 and l4 of its five links and three variablesr, γ andν defining
the position and orientation of its workspace as shown in Figure 1.
To quantify the orientation of each link, joint anglesqi (i = 1..4)
measured from thex-axis are introduced. A five-bar mechanism
with symmetric link lengths (l1 = l4, l2 = l3) and a symmetric
workspace that is located parallel to thex andy-axes of the global
coordinate system (γ = π/2, ν = π/2) is selected in this study.
Moreover, out of four possible assembly configurations, only the
elbow-out posture, as depicted in Figure 1, is studied. Optimality of
the above listed decisions in terms of both kinematic and dynamic
performance have already been shown in the literature [31].

l0/2

l1

l2

l3

l4

r

w

q1

q2

q3

q4

ν

γ

Figure 1: Five-bar mechanism in the elbow-out posture

Assuming that the dimension of the symmetric workspacew is
pre-determined, the optimization problem can be formulated using
four design variables:l0, l1, l2 andr. Table 1 presents the design
variablesα and design parametersβ (parameters that do not change
during the design process) for the symmetric five-bar mechanism.

Table 1: Design variables α and parameters β

Symbol Definition Unit
α1 l0 Distance between actuated jointsmm
α2 l1, l2 Length of actuated links mm
α3 l2, l3 Length of free links mm
α4 r Workspace center position mm
β1 w = 200 Workspace side length mm
β2 γ = 90◦ Angle betweenr andx-axis ◦

β3 ν = 90◦ Angle betweenW andy-axis ◦

Kinematic and dynamic models of the symmetric parallel five-
bar mechanism are detailed in the Appendix, along with the Jaco-
bian and mass matrices to be used during the design optimization.

4 OPTIMIZATION PROBLEM

As discusses in Section 2, two objective functions characterizing
the kinematic and dynamic performances of the mechanism are
considered in this paper. The objective of optimization is to max-
imize the worst kinematic isotropy of the mechanism (GII) while
simultaneously minimizing the effective mass (max singular value
of the effective mass matrix orGDI). The negative null form of the



multi-objective optimization problem can be stated as

max F(α, β, γ)
G(α, β) ≤ 0
αa < α < αu

(3)

whereF represents the column matrix of objective functions that
depend on the design variablesα, parametersβ, and workspace
positionsγ. SymbolG represents the inequality constraint func-
tions that also depend on design variables and parameters. Finally,
αl andαu correspond to the lower and upper bounds of the design
variables, respectively.

For the symmetric five-bar mechanism in elbow out posture, the
column matricesF andG can be explicitly derived as

F =

�
GII

GDI

�
, G =

"
(l0/2 + w/2)2 + (r + w/2)2 − (l1 + l2)

2

−q2

q2 − q1

#
In these expressions, the first element of theG matrix constrains
the design space to ensure a closed kinematic chain throughout the
reachable workspace while last two elements stand for the elbow-
out posture.

5 METHODS

In the previous section, the formulation for the multi-criteria opti-
mization problem for best worst-case performance of a haptic inter-
face is described. Before addressing the multi-criteria optimization
problem, the nature of the problem with respect to the selected per-
formance criteria is to be studied. Inspecting the performance crite-
ria, one can conclude that bothGII andGDI are non-convex with
respect to the design variables. Moreover, as workspace inclusive
measures, their calculation requires searches over the workspace.
As discussed in the introduction, several methods have been pro-
posed to solve for the single criteria optimization problem of par-
allel manipulators. In general, descent methods suffer from getting
trapped at local optima while heuristic methods cannot guarantee
optimality of their solution. Feasibility and efficiency of a branch-
and-bound type method, calledculling algorithm, is advocated in
the literature to address single objective min-max problems [31].

In this study, a modified version of the culling algorithm is used
to independently solve for the optimum designs with respect to
GII andGDI. The culling algorithm improves the computational
efficiency of a brute-force method by reducing (culling) the amount
of searches required through effective performance comparisons.
The algorithm capitalizes on the fact that as a worst-case measure,
once the global performance index for certain reference parame-
ters is calculated conducting a search over the entire workspace,
reduction of the feasible parameter set can be performed without
performing any other searches over the workspace. Specifically, af-
ter a global index value is calculated for the reference parameters,
comparisons with local indices atonly a single configuration in the
workspace can be overtaken. Hence, searches over workspace is
significantly reduced as they are conducted only when it is neces-
sary to calculate new reference global index values. Comparing all
set of design variables to find the best worst-case index, the algo-
rithm will converge to an optimum solution within the discretization
accuracy. As the culling method substantially reduces the amount
of workspace searches required by a brute-force method, it is a fast
and efficient algorithm to address min-max type problems.

Since the performance of the culling algorithm is highly depen-
dent on the initial reference values assigned, a fast gradient-based
optimization method, sequential quadratic programming (SQP), is
used to solve for a local extrema that will serve as a good initial-
ization value. This modification increases the efficiency of the al-
gorithm by resulting in a higher culling rate at the first iteration.
Once a solution is obtained, another SQP is invoked to converge to
a guaranteed optima within the discretization region.

If the multi-criteria optimization problem is treated as multiple
single objective problems where objective functions are handled in-
dependently, optimal solution for one criteria may result in an un-
acceptable design for the other. To achieve a “best” solution with
respect to multiple criteria, the trade-off between objectives needs
to be quantified. Scalarization approaches assumes apriori knowl-
edge of this trade-off and converts the multi-criteria problem into
a single objective one by assigning proper weights or priorities to
each performance index. On the other hand, Pareto methods do
not require any apriori knowledge about the design trade-offs and
solve for the locus of all dominant solutions with respect to mul-
tiple objective functions, constituting the so-called the Pareto-front
hyper-surface. Hence, designers can make a more realistic choice
between multiple “best” solutions and avoid the challenge of syn-
thetically ranking their preferences.

There exists several methods to obtain the Pareto-front hyper-
surface, among which Normal Boundary Intersection (NBI) method
is one of the most featured. As the Pareto-front hyper-surface is a
geometric entity in the objective space forming the boundary of fea-
sible region, NBI approach attacks thegeometric problem directly
by solving for single-objective constrained subproblems to obtain
uniformly distributed points on the hyper-surface. NBI solves for
subproblems which only depend on the defined optimization model,
that is, chosen objective functions and design constraints since these
equations map the feasible design space onto the attainable objec-
tive space. Given independent optimal solutions for each objec-
tive function (solutions of each single objective problem), called
shadow points, NBI first constructs an hyper-plane in the objective
space by connecting these shadow points with straight lines. Then,
this hyper-plane is divided into grids that control the resolution of
solutions on the Pareto-front hyper-surface. For each point on the
grid, a geometric subproblem is solved to find thefurthest point
on the line that extends along the surface normal passing through
the grid point and is in the feasible domain of the objective space.
Hence, NBI obtains the Pareto-front with reducing the problem to
many single-objective constrained subproblems. Number of sub-
problems can be adjusted by defining resolution of the grid that
maps to the number of points on the Pareto-front hyper-surface. As
the number of points increases, the computational time increases
linearly, but since the method assumes spatial coherence and uses
solution of a subproblem to initialize the next subproblem, conver-
gence time for each subproblem may decrease resulting in further
computational efficiency.

NBI methods results in exceptionally uniform distributed points
on the Pareto-front hyper-surface without requiring any tuning of
the core algorithm. Moreover, once shadow points are obtained,
NBI solves for the geometric problem directly utilizing a fast con-
verging gradient-based method, evading the computationally de-
manding aggregate optimization problems required in for most of
the scalarization methods. Therefore, NBI method promises to be
much faster and efficient than other methods to obtain a well rep-
resented Pareto-front hyper-surface including aggregate methods
such as weighted sums and evolutionary optimization approaches
such as GAs.

It should also be noted that the NBI method can solve for points
on the non-convex regions of Pareto-front hyper-surfaces, a fea-
ture that is missing from the weighted sum methods. Compared to
weighted sum techniques, NBI achieves higher solution efficiency
as it does not suffer from clumping of solution in the objective
space. NBI is also advantageous over other methods as it triv-
ially extends to handle any number of objective functions. Com-
pared to Multi-Objective Genetic Algorithm (MOGA) [7] that re-
quires problem dependent fitness and search related tuning and sev-
eral steps to reach convergence, a standard NBI approach can map
the Pareto-front hyper-surface with higher accuracy and uniformity,
while also inheriting the efficiency of gradient-based methods.

Relying on gradient techniques, NBI assumes sufficient smooth-



ness of the geometric problem at hand, but it has also been demon-
strated that the method performs remarkably well even for non-
smooth geometries [27]. In the presence of non-continuous regions,
multiple initializations of the NBI method may be required for ef-
ficiently generating the Pareto-front hyper-surface. For the case of
strongly discontinuous geometries, hybridization with MOGA-II to
supply feasible initialization points at each continuous sub-region
can be employed, as proposed in [27]. It is noted that since NBI
relies on equality constraints, it is possible for NBI not to find a
solution on the true Pareto-front hyper-surface, converging to a lo-
cal optima. In such a case, post processing on the solutions of NBI
subproblems can be employed to filter out undesired dominated so-
lutions.

6 RESULTS AND DISCUSSION

Table 2 presents the results of the modified culling algorithm for the
single objective problems, for best kinematic and dynamic isotropy,
respectively. These results are obtained conducting a global search
over the entire parameter space with discretization step sizes of
2mm and 1mm for the parameter and workspace, respectively, and
performs several local searches with finer discretizations at the
neighborhood of the results suggested by the global search.

Table 2: Results of independent optimizations with respect to
GII and GDI.

Best Design for Best Design for Unit
Kinematic Isotropy Dynamic Isotropy

GII 0.783 0.407 –
GDI 0.622 0.766 –

l0 0.4 0.1 mm
l1 299.7 89.9 mm
l2 300.0 115.2 mm
r 419.6 123.6 mm

Figure 2 presents the change of singular values over the
workspace for the optima of single objective problems. Subfig-
ures 2(a) and 2(c) pertain to the best kinematic design while Sub-
figures 2(b) and 2(d) belong to best dynamic design. Results in-
dicate that best design with respect to solelyGII suffers from
poor dynamic performance, while best design with respect to only
GDI possesses poor kinematic performance.
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Figure 2: Change of singular values over the workspace for the op-
tima of single objective problems. Subfigures (a) and (c) pertain to
the best kinematic design, while (b) and (d) belong to the best dy-
namic design.

To characterize the trade-off between the single objective so-
lutions, Pareto-front curve for the bi-objective optimization prob-

lem is constructed in Figure 3. Two different techniques are em-
ployed to form the Pareto-front curve, namely NBI method and
aggregated performance index method. For the NBI method, a
grid size of ten points are selected. In Figure 3 the distribution
of points on the Pareto-front curve is marked by dots. For the sec-
ond method, an aggregated performance index (API) is defined as
the weighted linear combination ofGII andGDI. In particular,
API = λ GII + (1 − λ) GDI, where0 ≤ λ ≤ 1 denotes
the weighting factor. Ten aggregated optimization problems are
solved for ten equally spaced weighting factors utilizing the modi-
fied culling algorithm with discretization step sizes of 5mm for the
parameter space and 1mm for the workspace. Circles in the Figure 3
denote the distribution of aggregate solutions on the Pareto-front
curve and are marked with their corresponding weighting factor.
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Figure 3: Comparison of NBI and aggregated performance index
methods. Symbol λ is the weighting factor.

As expected, NBI method generates a very uniform distribution
of points on the Pareto-front curve while the solutions of the ag-
gregate problem are clumped at certain locations of the curve. To
obtain a uniform distribution using the aggregated index approach,
proper weights should be assigned to ensure uniform distribution.
However, the characteristics of the weight distribution is not known
before the problem is solved. Moreover, since the aggregate per-
formance index relies on the relatively costly culling algorithm to
solve for each point on the Pareto-front curve, its accuracy is lim-
ited by the discretization step size chosen. In the Figure 3, the same
solutions are obtained for different weighting factors, particulary
for weighting factorsλ = 0.4 to λ = 0.5, λ = 0.6 to λ = 0.7,
andλ = 0.8 to λ = 0.9, respectively, due to the course discretiza-
tion used. Unfortunately, solving for each aggregate performance
index at each weighting is a computationally demanding task, lim-
iting the density of feasible discretization. NBI method possesses
an inherent advantage in terms of computational cost, as it attacks
the direct geometric problem to obtain the Pareto-front curve and
utilizes continuous, computationally efficient gradient methods for
the solution.

In addition to the efficiency offered via the uniform distribution
of solutions on the Pareto-front curve, NBI approach results inor-
ders of magnitude improvement in the computation time, especially
for the design problem at hand, as depicted in Figure 4. All of the
simulations presented in Figure 4 are performed using a 32 bit Win-
dows XP workstation that is equipped with a 3.40GHz Intel Xeon
processor with 1MB L2 cache and 4GB DDR-2 400MHz SDRAM.

As can be observed from Figure 4, the aggregate problem scales
geometrically with the discretization step size, rendering an accu-
rate solution of even ten points on the Pareto-curve almost impos-
sible for the simple sample problem at hand. On the other hand,
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NBI method solves for points on the Pareto-front curve very effec-
tively, in about 1/3 time of the weighted-sum approach with 5mm
step size. Even though the accuracy of solutions obtained by the
NBI method is dependent on the constraint tolerance set for the
algorithm, convergence for NBI with all reasonable tolerance val-
ues are shown to be acceptable in Figure 5. Particularly, Figure 5
presents solutions obtained using the NBI approach with three dif-
ferent tolerance values:10−7, 10−8, and10−9. Since NBI employs
a local search algorithm that is dependent on the initial conditions,
convergence can be poor at certain trials as can be observed for two
points in Figure 5. However, poor convergence of certain points is
not an uncorrectable drawback, as solution for those points can be
repeated with different initializations and tighter tolerances. The
computational time for NBI method scales linearly with tolerance
values as it does with number of points selected for the grid.
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To allow for further comparisons of the Pareto methods with
other scalarization approaches proposed in the literature, a sequen-
tial optimization is implemented for the sample problem as sug-
gested in [32]. In this method, firstly parameter sets resulting in
the bestGII values for each discrete value of the parameterr are
calculated using the culling algorithm. The change inGII values
and the link lengths are plotted in Figure 6 with respect to the inde-
pendent parameterr. In this plot, one can observe thatGII value
increases monotonically with increasingr until the link lengthl1
reaches its allowable upper limit (300mm) while link lengthsl0 and
l2 also increase with increasingr until l2 reaches its allowable up-
per limit (300mm). Oncel2 reaches its upper limit, monotonic de-
crease inl0 values can be observed untill1 reaches its upper limit.

Assigningr as the independent variable, the sequential method
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Figure 6: The parameter sets with best GII values for each discrete
value of r.

uses the set of “optimal” solutions with respect toGII as the fea-
sible search domain to conduct another single criteria optimization,
this time with respect toGDI. In other words, the parameter set
resulting in the bestGDI value is selected from the Figure 6, uti-
lizing the culling algorithm. The result of the sequential optimiza-
tion approach is plotted in Figure 7 with respect to a dense Pareto-
curve obtained using the NBI approach. Inspecting the plot, one
can conclude that the “best” solution obtained using the sequen-
tial optimization approach isdominated – is a point not lying on
the pareto front, meaning there exists solutions for which one can
improveGII while keepingGDI constant or vice versa. In fact,
improvements up to 20% in theGII value and up to 3% in the
GDI value are possible by choosing one of the designs that lies on
the Pareto-front boundary found by the intersection of the Pareto
curve and vertical and horizontal line, respectively, passing through
that point.

As emphasized earlier, any point on the Pareto-front curve is a
non-dominated solution. Hence it is up to the designer to chose the
“best” design for the application at hand, considering the charac-
teristic of the trade-off mapped out by the Pareto-front boundary.
The Pareto methods not only allow additional constraints be con-
sidered for the final decision but also let the designer adjust these
constraints while simultaneously monitoring their effect on the set
of non-dominated solutions. For the sample problem analyzed, a
design is selected by imposing two additional physical constraints
on the Pareto-front curve: a limit on the allowable workspace and
a limit on the actuator size. Assuming that DC motors with 40mm
diameter (Maxon RE40) will be used as the actuators, a new lower
limit can be imposed on the link lengths asl0 > 40mm, rendering
the last 11 points on the Pareto-front curve as infeasible designs. As
for the second constraint, the footprint of the mechanism is to be re-
stricted. The designer can impose constraints of different footprint
areas to observe their effect on the non-dominated solution set. In
Figure 7 infeasible solutions for footprint areas of 300mm x 300mm
and 400mm x 400mm are marked. Noticing that there are still fea-
sible solutions on the current Pareto-front curve for a footprint area
of 300mm x 300mm, a design is selected to satisfy both of these
constraints as marked by the star in Figure 7. The link lengths cor-
responding to this design choice is also represented in Figure 7.

7 CONCLUSIONS AND FUTURE WORK

A general framework suitable for optimization of haptic interfaces,
in particular haptic interfaces with closed kinematic chains, with
respect to the multiple design criteria is presented. Optimization
problems for haptic interfaces with best worst-case kinematic and
dynamic performance are formulated. Non-convex single objective
optimization problems are solved with the modified culling algo-
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rithm, while NBI method is used to obtain the Pareto-front curve
to present the designer with a wide range of alternative solutions.
Computational efficiency of NBI method is demonstrated over ag-
gregating approaches such as weighted sums. The optimality of
the design using Pareto methods is shown over prioritization ap-
proaches. Dimensional synthesis of a high performance haptic in-
terface utilizing the Pareto-front curve is demonstrated.

The method is extensible to work with various performance in-
dices and to include any number of criteria. Application of the pro-
posed framework to the design of more complex haptic interfaces
incorporating increased number of multi-objectives and their solu-
tion via hybrid techniques will be addressed in the future.
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APPENDIX

The aim of this appendix is to provide the necessary steps for
derivation of the Jacobian and mass matrices of a symmetric five-
bar mechanism. To set the notation, let a symbol in standard
typeface represent the norm or length of the corresponding vector
marked by an arrow.

The Jacobian matrix of the mechanism is required to determine
its kinematics performance. To construct the Jacobian, the end-
effector velocities are to be expressed in terms of the angular ve-
locities of the actuators through a forward kinematics analysis. Let
each rigid link of the mechanism be defined as a body and assign
a vector basis to each body with the first basis vector extending
along the link length. BodiesA, B, C, andD along with their vec-
tor bases are shown in Figure 8. The end-effector point is denoted
by E while symbolN is used to signify the Newtonian reference
frame. PointO represents a fixed point that is selected as the origin.

Symbolsx andy denote the end-effector positions in the New-
tonian frameN , while the distance between actuators and the link
lengths are calledl0 and li (i = 1..4), respectively. Finally, the
orientation of the links are measured with respect to the basis vec-
tor ~n1 and are calledqi (i = 1..4). Note that the mechanism is
assumed to be symmetric; hence, the equalitiesl2 = l3, l1 = l4 are
in effect.

The vector loop equation enforcing the closed kinematic chain
for the symmetric five bar mechanism can be formulated as

l1~a1 + l2~b1 − l2~c1 − l1 ~d1 − l0~n1 = ~0. (4)

A
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C
E
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D

~n1
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~b1
~b 2

~c1
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~d1

~d2 q1

q2

q3

q4

Figure 8: Symmetric five-bar mechanism with the variables used in
the kinematic and dynamic analyses.

Taking time derivative of Eqn. (4) in the Newtonian frame, one
can solve for the time derivatives of dependent variablesq2 andq3,
in terms of the angular speeds of the actuatorsq̇1 andq̇4 as�

q̇2

q̇3

�
= A

�
q̇1

q̇4

�
(5)

whereA =

�
−l1 sin(q1−q3)

l2 sin(q2−q3)

−l1 sin(q3−q4)

l2 sin(q2−q3)
−l1 sin(q1−q2)

l2 sin(q2−q3)

−l1 sin(q2−q4)

l2 sin(q2−q3)

�
·

The position of the end-effectorE with respect to the fixed point
O can be expressed as

~p
OE

= l1~a1 + l2~a2 (6)

while the same position vector can also be expressed in the Newto-
nian frame as

~p
OE

= x~n1 + y~n2. (7)

Equating Eqn. (6) to Eqn. (7), taking their time derivative in the
Newtonian frame, and substituting in Eqn. (5), one can solve for
the velocity level forward kinematics of the five-bar mechanism as�

ẋ

ẏ

�
= J

�
q̇1

q̇4

�
(8)

where the Jacobian matrix

J =

�
−l1 sin(q1)−sin(q2) sin(q1−q3)

sin(q2−q3)

l1 sin(q2) sin(q3−q4)

sin(q2−q3)
l1 cos(q1)−cos(q2) sin(q1−q3)

sin(q2−q3)

−l1 cos(q2) sin(q3−q4)

sin(q2−q3)

�
·

To solve for the effective mass matrix of the system as seen at the
end-effector, dynamic analysis is performed employing Lagrange’s
method. The kinetic co-energyT ∗ of the five-bar linkage is calcu-
lated as

T ∗ = 1
24 m1(k

2 + 4l21)q̇
2
1 + 1

24 (3m1l21 + m4(k
2 + l21))q̇

2
4

+ 1
24 m2(k

2q̇2
2 + 4l22q̇2

2 + 12l21q̇2
1 + 12l1l2 cos(q1 − q2)q̇1q̇2)

+ 1
24 m3(k

2q̇2
3 + 4l22q̇2

3 + 12l21q̇2
4 + 12l1l2 cos(q3 − q4)q̇3q̇4).

(9)

Since the gravity acts out of the plane of the mechanism, the
kinetic co-energy of the system is equal to the LagrangianL of the
system. Invoking Lagrange’s equation, the elements of the mass
matrixD can be derived as

D11 = 1
12 m1(k

2 + 4l21) + 1
12 m3l21 sin(q1 − q2)

2(4/ sin(q2 − q3)
2 +

k2/l22/ sin(q2−q3)
2)+ 1

12 m2l21(12+k2 sin(q1−q3)
2/l22/ sin(q2−q3)

2+

4 sin(q1 − q3)(sin(q1 − q3)− 3 sin(q2 − q3) cos(q1 − q2))/ sin(q2 − q3)
2)

D12 = 1
12 l21(m2 sin(q3 − q4)(k

2 sin(q1 − q3)/l22/ sin(q2 − q3)
2 +

(4 sin(q1−q3)−6 sin(q2−q3) cos(q1−q2))/ sin(q2−q3)
2)+m3 sin(q1−

q2)(k
2 sin(q2 − q4)/l22/ sin(q2 − q3)

2 + (4 sin(q2 − q4) − 6 sin(q2 −

q3) cos(q3 − q4))/ sin(q2 − q3)
2))

D22 = 1
4 m1l21+ 1

12 m4(k
2+l21)+

1
12 m2l21 sin(q3−q4)

2(4/ sin(q2−q3)
2+

k2/l22/ sin(q2−q3)
2)+ 1

12 m3l21(12+k2 sin(q2−q4)
2/l22/ sin(q2−q3)

2+

4 sin(q2 − q4)(sin(q2 − q4)−3 sin(q2 − q3) cos(q3 − q4))/ sin(q2 − q3)
2).

Finally, the effective mass matrix of the system as seen at the end-
effector can then be calculated using

M = J
−T

D J
−1

. (10)


