RiSE Power Analysis

Jaeyun Jun

March 23nd 2007

Outline

Note: Some of the *Matlab* scripts that I used are courtesy of **G. Clark Haynes**.

- 1. Objective
- 2. Notations and models
- 3. Data Validation
- 4. Problems
- 5. Test Conditions
- 6. Results and Analysis
- 7. Results Summary
- 8. Future work

1. Question I

- Why can't RiSE climb faster?
 - 1. We have reached the limit of capability of the motors (torque, speed or power)
 - 2. Something else (for example, attachment at high climbing velocity not well understood)

Since the second point is hard to answer, let us make the hypothesis that RiSE motors reach their limits with the present operating conditions: gaits, gains and body.

Question II

In which case/s, among the three possible regions in the figure to the right, are RiSE motors limited and, if they are, in which stride phase* does this occur?

Figure 1. Torque-Speed plot for RiSE DC Motor (Order #: 118730)

A stride under analysis is divided into four phases: stance, detach, attach and flight.
 This notion will be explained in detail later.

Possible Motor Limitations

I. Speed Limitation

If speed limitation happens, most likely it will occur in the flight retraction because of quick recovery motion of the leg to the initial stance position and because there is no load during this phase.

II. Torque Limitation

Torque limitation will occur when the legs are on the ground, if it really happens,

III. Power Limitation

Theoretically it could be in any phase (For example, large tracking error during flight)

Figure 2. A 2-D leg trajectory of RiSE. The color black indicates when the leg is in the air, green, when it is on the ground, and blue and red when the leg is between them.

2. Notation and model: PD Controller and Motor Model

PD Controller

3. Data Validation: Lateral, Normal, Traction Force Data (1/2)

Test at UPenn (March 2007) with April 2006 .rc files

"GOOD" RUN

- Observation for test at UPenn:
 - Overall force data is smooth for all 6 legs
 - Attachment and detachment problem with leg #2
 - Significant negative lateral force at leg #5

Data Validation: Lateral, Normal, Traction Force Data (2/2)

- Overall force data is smooth for all 6 legs
- Bad performance of leg #2

4. Problem : Bad force data from the leg #2

Force: Green: lateral, Blue: traction, Red: Normal, Leg #1

Problem:

Bad attachment and detachment of leg #2.

Tested:

Changed dactyls, carpet and wing offset but, the problem is still not solved.

-20 L

Force: Green: lateral, Blue: traction, Red: Normal, Leg #

Force: Green lateral Blue traction Red Normal Len #

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Gait Clark(module 1) Force: Green: Interal, Blue: traction, Red: Normal, Len #

0.8 0.9

0.2 0.3 0.4 0.5 0.6 0.7 Gait Clock/module 1)

5. Test Conditions

- Test bed: Carpet with small loops
- Behavior & gait: Carpet Mode Tripod gait
- Leg trajectories & clock maps: April 2006 & Sept.2006
- Stride speeds: 0.5Hz & 0.8Hz
- Other considerations: two washers in the tail joint, short dactyls suitable for carpet climbing

Assumption I: Gait Section Labeling for 0.5Hz

- Stance: 0.00 0.68
- Detach: 0.68 0.77
- Flight: 0.77 0.96
- Attach: 0.96 1.00

Flight

Attach

From several force data plots,

- Stance: 0.15 0.65
- Detach: 0.65 0.74
- Flight: 0.74 1.00
- Attach: 0.00 0.15

*. April 2006 .rc files

6. Results I: Raw Torque-Speed Samples

0.5Hz

Results II: Torque-Speed Ellipses

Experiment id: exp_070312_174035 at 0.5hz

Specification for RiSE motors

No Load Speed (rad/s)		17.2	68	
Nominal Speed (rad/s)		14.	9	
Stall Torque (Nm)		2.42	77	
Nominal Torque (Nm)		0.332	296	
(after gearbox) Results: Average of means)
	ſ	Mean	Меа	an
	т	orque	Spe	ed
		(Nm)	(rad	/s)
Attach	0.	0887	4.931	2
Stance	0.	3892	1.844	9
Detach	0.	0409	2.739	91
Fliaht	0.	0785	5.834	8

3

3

3

Assumption II: Gait Section Labeling

From carpet_tripod1_90.rc(new*),

- Stance: 0.00 0.68
- Detach: 0.68 0.77
- Flight: 0.77 0.90
- Attach: 0.90 1.00

From several force data plots,

- Stance: 0.15 0.70
- Detach: 0.70 0.80
- Flight: 0.80 1.00
- Attach: 0.00 0.15

*. September 2006 .rc files

Results III: Raw Torque-Speed Samples

0.8Hz

Results IV: Torque-Speed Ellipses

Experiment id: exp_070314_074808 at 0.8hz Specification for RiSE motors

No Load Speed (rad/s)	17.268
Nominal Speed (rad/s)	14.9
Stall Torque (Nm)	2.4277
Nominal Torque (Nm)	0.33296
	()

(after gearbox)

Results: Average of means

	Mean	Mean
	Torque	Speed
	(Nm)	(rad/s)
Attach	0.1092	7.4092
Stance	0.3541	2.6882
Detach	0.0881	6.9021
Flight	0.1064	11.4080

Results V: Comparison 0.5Hz & 0.8Hz (I)

M #2

Gait Sections Stance Detach Flight Attach

20

Experiment id: exp_070312_174035 at 0.5hz

20

15

10

5

0

-5 \ -1

0

1

speed(rad/s)

Experiment id: exp_070314_074808 at 0.8hz (First 6 motors)

З

Results V: Comparison 0.5Hz & 0.8Hz (II)

Specification for RiSE motors

No Load Speed (rad/s)	17.268
Nominal Speed (rad/s)	14.9
Stall Torque (Nm)	2.4277
Nominal Torque(Nm)	0.33296

Results: Average of means

	Mean Torque (Nm)	Mean Speed (rad/s)
Attach	0.0887	4.9312
Stance	0.3892	1.8449
Detach	0.0409	2.7391
Flight	0.0785	5.8348

0.5Hz

	Mean Torque (Nm)	Mean Speed (rad/s)
Attach	0.1092	7.4092
Stance	0.3541	2.6882
Detach	0.0881	6.9021
Flight	0.1064	11.4080
0.8Hz		

7. Results Summary

- 1. For both stride speeds 0.5Hz and 0.8Hz, the largest value of torque is achieved during stance.
- 2. For both stride speeds 0.5Hz and 0.8Hz, the largest value of speed is achieved during flight.
- 3. Increasing stride speed from 0.5Hz to 0.8Hz, the motor speed during flight phase is approximately doubled from its initial mean value.
- 4. This increment of stride speed does not seem to increase stance torque in general.
- 5. Among the three possible motor limitations, so far, we only could see the motor speed limitation case.

8. Future work

- 1. Verify the obtained results increasing the stride speed.
- 2. Find out a way, if there is any, to provoke all three possible motor limitations.

Questions ?

Back up

Knowledge II: Current measurement calibration

Calibration Procedure

Model: $i_m = s_m - o_m$

i_m: calibrated measured current
s_m: measured current

- Before each run, for each of the twelve motors, measure current with all motors disabled (s_m).
- Using the model on the right, compensate the current offset (o_m = s_m, under this condition)

Importance of calibration

- 1. Current offset ~10% of peak current
- 2. Calibration affects torque values

where τ_m is measured (computed) torque, K_T is torque constant.

Typical current data when RiSE climbs carpet wall

o_m: current offset

	Before	After	Avg.
M #1	0.2130	0.2074	0.2102
M #2	0.2406	0.2363	0.2384
M #3	- 0.0346	- 0 0409	- 0.0377
M #4	0.1422	0.1370	0.1396
M #5	- 0 0149	- 0 0209	- 0.0179
M #6	0.1333	0.1248	0.1290
M #7	0.1700	0.1641	0.1670
M #8	0.2261	0.2202	0.2231
M #9	0.0564	0.0514	0.0539
М	0.1867	0.1814	0.1841
#10 M	0.0069	0.0025	0.0047
#11 M	0.1513	0.1439	0.1476

Typical current offsets when the motors are disabled

Comparison between a multimeter reading and built-in current sensor

	scaling	offset
Motor #1	0.8452	-0.2089
Motor #2	0.9765	-0.2412
Motor #3	0.8775	0.0202
Motor #4	0.9222	-0.2071
Motor #5	0.8705	-0.0104
Motor #6	0.9069	-0.1744
Motor #7	0.9705	-0.2290
Motor #8	1.0930	-0.3789
Motor #9	1.0937	-0.2350
Motor #10	0.9151	-0.2407
Motor #11	0.8691	-0.0642
Motor #12	1.1229	-0.3272

Introduction to torque – speed analysis

0.5Hz Justification for negative work Experiment id: exp_070312_174035 at 0.5hz 0 motor speed(rad/s), torque(Nm) Legend **Torque (Nm)** Red -6 Motor Speed (rad/s) Blue -10 **Negative Work (flight)** -12 -14 L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **Torque-Speed Samples** gait clock M# 20 M#6 10 20 speed(rad/s) speed(rad/s) Π 15 motor speed(rad/s), torque(Nm) -10 -10 -20 ∟ -4 -20 L -4 -2 -2 0 0 2 torque(N.m) torque(N.m) Detach Gait Sections Stance Flight Attach **Gait Clock definition** -10 • Stance: 0.15 - 0.65 -15 L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Negative work during flight due to deceleration of motors

gait clock

- Detach: 0.65 0.74
- Flight: 0.74 1.00
- Attach: 0.00 0.15

How do I get ellipses for statistical analysis?

Procedures

Given motor torque and motor speed,

- 1. Compute the means of torque and speed
- 2. Compute the covariance matrix
- 3. Compute eigenvectors and eigenvalues
- 4. Find angle between the positive x-axis (torque) and the direction of the eigenvector of the largest eigenvalue counter-clockwisely.
- 5. Draw ellipses with largest and smallest eigenvectors (we have only two) as semimajor and semi-minor axes, respectively with radii as the square root of corresponding eigenvalues.

Differences between 0.5Hz & 0.8Hz gaits

SwRI carpet remains different from any carpet used at our institutions

Minor tweaks made to gait (according to CVS, during BDI/CMU transition box work in Sept 2006, but only minor tweaks ... probably worth reverting, however)

To be fair, U-Penn data was extracted from runs with extensive pitch-back data, but is still mostly representative of recent force data.

This slide is from *G.C. Haynes* comments on the leg trajectories differences

Consideration II: Noisy Required Torque

Model:
$$\tau_{req} = k_p \left(\theta_{des} - \theta_m \right) + k_d \left(\omega_{des} - \omega_m \right)$$

where τ_{req} is the required torque, k_p and k_d are proportional and derivative gain, respectively, θ_{des} and θ_m are desired and actual motor positions, respectively, and, finally, ω_{des} and ω_m are desired and actual motor speed, respectively.

Notion: The required torque is noisy because of the actual motor speed.

Consideration III: Large error between required current and measured current

Problem: Motor model does not predict the real motor well.

Figure. Required voltage (v_{req}) and measured voltage (V_m)

Results III: Raw Speed-Gait_Clock Samples

B9

Results IV: Raw Torque-Gait_Clock Samples

Motor speed and Legtrajectory

motor(1) = hip(1) + hip(2)motor(2) = hip(1) - hip(2)

hip(1) = 0.5(motor(1) + motor(2))hip(2) = 0.5(motor(1) - motor(2))