Ideas for the proposal:

Big idea:

Have a robot climb over varied, difficult terrain such as the trail up to Half Dome in Yosemite.  The robot would be able to successfully navigate obstacles ranging from flat ground to boulder fields to vertical walls.  The robot will be able to walk/climb reasonably well at first, but it will improve with real-world experience.  The robot would include sensors to estimate the geometry and features of the terrain around it, and would be designed in such a way that the mechanical properties (compliances, DOF, actuation scheme, etc.) of the robot would facilitate its being able to climb/run/walk.  This proposal builds on the strengths of Mark Cutkosky’s lab in overall robot design, and foot design to enable robots to climb vertical or steep surfaces; and Andrew Ng’s lab in machine learning.
Mission scenario:

A small quadrupedal robot trots up a dirt trail, following a basic sequence of waypoints and adjusting automatically for minor variations in terrain. When it encounters a steep rock section it stops briefly and then proceeds, taking a diagonal trajectory that roughly follows a ledge, avoiding a patch that is covered with loose gravel and another area that is wet and mossy. Evidently it has encountered something very like this surface before! The robot makes it almost to the top when one of its front legs is tripped by a root, knocking the robot over and sending it tumbling back down. The robot rights itself, checks that there is no damage, and repeats the climb. This time it knows about the root and steps carefully over it before continuing along
the trail.

Approaches/ideas:
First, the following is an attempt to explicitly state the steps that a dog would go through in navigating a path from point A to B, for the purpose of generating discussion and realizing opportunities for learning during a robot’s operation.  The steps I (Alan) think a dog would take would be:
1) High-level planning.  Look at the overall large-scale shape (geometry) of the terrain, and likelihood of finding good footholds (e.g., how slippery/high-friction and smooth/rough the surfaces are).  The dog would know the approximate difficulty of climbing over various classes of terrain.  For example, suppose 0 is very easily traversable (like flat solid ground) and a nearly unclimbable sheer vertical slick wall is a 10.  Then, it can rate the various regions of the terrain: going over a large rock ahead may be a 5, going around the rock to the left may be a 1.5, a sandy region to the right may be a 3, a narrow bridge over a stream may be a 4, and so on.  In this manner the region can be approximately discretized into connected sub-regions that have various values.  Then a global search can be done to find the path with minimum difficulty.  Probably in a dog this computation is all done in parallel somehow in a part of the brain related to the visual system.  
2) Since the path-planning in (1) only goes so far ahead of the dog (the dog can only see so far, and its perception of the detail of the ground gets worse the farther away it is from the dog), sometimes the dog will come upon regions that it thought might be easy to cross/climb, but in reality they are actually difficult to climb.  The dog then has to re-plan a route.  It makes use of the information it has seen already (what it saw as it approached the current spot, including the possible alternate routes it did not take) and also the information it can see from the current location.  Based on this, it does another global high-level search for another possible route, and does the best thing.  In the future, it (hopefully) will remember that a certain route was not so good and will avoid going down paths where it has to retrace its steps.  It also has better estimates of the traversability of the different regions it encountered before, so it can do a better global search the next time and take a possibly even better path.
3) The next level in the hierarchy is how the dog should move on a several-bodylength scale.  This includes the dog’s dynamics and detailed information about where the feet should be placed.  For example, suppose the dog has to climb up onto a rock.  To do this most efficiently, this requires that the dog do a dynamic maneuver—it has to give its body momentum via a little jump a the bottom of the rock, then carry that momentum up the rock by executing footsteps within a certain amount of time.  It could probably climb up the rock if it didn’t do this little jump at the bottom, but the peak loads on the muscles would be far higher than if it had momentum as it climbed.  To accomplish this maneuver, the dog has to determine where it can place its feet so that it can move its body up the rock and not slip.  There may be many potential footholds, but it also has to consider its body dynamics and stability—it must choose footholds that give it a solid support base so it doesn’t fall backwards, enable it to push off strongly and apply relatively large forces without slipping, keep from falling over sideways (can’t have all of your feet on the same side of the body or directly under your body), be reachable without its legs over-extending (which would require higher peak muscular forces), and be close enough together that it can perform many foot-plants within a short period of time and keep its momentum going.  
4) In this case, too, the dog updates its knowledge and chooses different actions based on what the world is actually like, rather than just on its estimate of what the world is really like.  For example, if a particular foothold is sloped poorly or is slippery or otherwise unusable, the dog may have to re-plan a significant portion of its path to accommodate the deviations in its body trajectory that resulted from it trying to use that foothold and failing.  It may have to use other footholds for the remainder of the path or just a few extra foot-plants to correct for the problem.  Or, it may do a reflexive action and try plant the foot on the originally-intended foothold again, hoping to be barely within the friction characteristics of the foot/rock contact by transferring more weight onto other feet.  Throughout the motion, the dog’s weight is distributed between the feet to balance, maintain its desired trajectory, avoid violating the foot/rock contact characteristics, and possibly other things.  

5) The dog can also learn from its experiences in trying to climb/cross various terrain features at the several-body-lengths length scale.  It can update its estimates of various parameters (i.e., learn) as a result of the motions it tried.  For example, it can better estimate the coefficient of friction of dusty rocks, which may be different in Yosemite than in southern California based on differing rock types.  It can also better get an idea of what to do, how it should best move, if it encounters terrain of various geometries.  For example, a rock with a large bump at the bottom and then a flatter region on top may be (harder/easier) to climb than a rock with a flatter region on the bottom and a bump on top.  Or, if it comes back to this same rock again later, it can figure out a better path up to the top or spend less time planning.  I think, however, that on this length scale that the dog’s actions are pretty hard-wired in and it does not learn significantly on a daily basis about how to move, how its body dynamics work and thus where it must place its feet, etc.  Occasionally a person may learn a new rock-climbing maneuver which enables them to climb more difficult obstacles or simpler obstacles more efficiently, but this is relatively rare.  More common is the experience where one person is just ahead of another and tells them that a particular obstacle can be easily climbed if you put your hands here and feet here or something like that.  Or if someone is crossing a stream, the people behind observe which rocks were tippy and which were slippery and how the person crossed.  They update their model of the environment as well as receive knowledge that this particular solution (sequence of footstep locations==result of path planning) was in fact effective for this other person, so it would most likely be effective for them as well.
Overview of learning in the proposal:
Two types of learning will primarily occur in this proposal.  One, path-planning on various length scales will be learned: robots can learn or teach each other what routes and footholds are good or bad to use.  In this manner a more complete 3-D map of the environment will be learned over time, leading to the robots’ route-planning calculations becoming faster over time and the robots’ travel time between points A and B decreasing over time because of improved routes generated.  Two, robots will learn improved low-level controllers about how they should move and what actions are appropriate for a given situation (i.e., for a current configuration of the robot plus local terrain geometry and characteristics).  In this second type of learning, the final goal would be to have a robot that can climb/run/walk as well as an animal such as a dog, squirrel, or insect.  The robot would learn through interacting with a real-world environment.  It is not possible to train a robot perfectly solely through simulations—the robot’s actual dynamics, contacts with the environment, and environment complexity cannot be perfectly modeled in simulation.  Thus, the robot will be trained reasonably well at first in simulation, but then its performance would improve over time as it gained experience with the real world.

Learning will occur at different levels: high-level long-range (10-100m) path planning, medium-level short-range (0.5-1m) path planning, and low-level robot control.  For the high-level path planning, robots can determine what paths are good to take if traversing an area repeatedly or with multiple robots, on a 10-100m scale.  For example, the robots should take the path up the hill first then across the top rather than following the bottom of the hill and then climbing up at the end. For the medium-level planning, the robot can look at the terrain several steps ahead and learn over time what particular foot-plant locations are good in a particular region.  For example, a big rock at GPS coordinates (x1,y1) is good to step on, but there is a crack between the rocks at (x2,y2) should be avoided even though it can’t be seen until you are directly over it.  Learning can also occur at the medium level for general short-range path planning: if the robot sees a general terrain geometry (with certain surface characteristics), it will learn better over time what the appropriate sequence of actions to take is to traverse it.  Finally, learning will occur with low-level robot control as described above, where the robot improves its ability to do immediate actions based on interactions with the environment.  The robot will better interpret the immediate terrain and be able to take the next step appropriately, including being able to control its body dynamics, balance, energy efficiency, and stability margin.  
Further detailed ideas:

· In particular, we assume the robot has incomplete information about the environment.  Its sensors are able to determine the terrain immediately around it well, but it cannot resolve obstacles in the distance.  It may, however, get a sense of some important properties of the terrain in the distance: the slope of the terrain, how good the footholds might be, and so on.  With this information the robot could do path planning.  

· Parameters that might be useful in estimating how traversable a stretch of terrain is: 3-D voxelization of the environment, slope of the ground, vertical height of rectangular obstacles, estimated coefficient of friction, estimated roughness (or angle of asperities) (in general, probability of finding a foothold), crumbliness of the materials or how likely they are to tip back and forth or move if a foot is placed on them, waviness of the surface at various length scales (reference: haptics; can measure this using the robot somehow), etc.
· To accomplish learning in path-planning, it is important for the robot to recognize when it is in an environment it has seen before, or aspects of a new environment that are similar to something it has seen in the past.  How should this recognition be accomplished?  Recognition of an environment and encoding the learning is also important for one robot of a fleet to teach the others about an environment, what paths are good or bad to navigate the environment.  
· In Lee et al 2006 (ICRA), they have a value function dictating where the next footstep should occur.  The value function is based primarily on a low-dimensional representation of the robot body state, which implicitly includes a low-dimensional representation of the environment.  The value function generated was able to effectively navigate the robot through a large number of different obstacles, even those not seen in training.  One approach to RI is to also have a value function about where to put your feet based on the immediate terrain.  The value function will surely be an approximation to the optimal value function, since you cannot train it over all possible terrains, and it is (to start with) a low-dimensional representation.  Learning can occur during the robot’s operation by updating the value function over time to remove errors in it, making it closer to the optimal value function (which could then be used to generate a more optimal policy).  A possibly analogous situation in nature is a child or animal learning to walk.  At first they can walk unsteadily, but they improve their walking ability over time as they gain experience.  I guess I’m not really sure what a child/animal is learning (maybe body dynamics, or how leg compliances should change with terrain) but that seems to be a good model for how our robot should learn.
· I guess learning body dynamics and how leg compliances (in general mechanical properties of the robot) should vary with gaits and maneuvers, etc., is both a strength of our labs (since we have both learning and mechanical people) and could be quite interesting from a RI perspective.

· Another way to improve a value function over time through learning is if the robot does local planning with a search tree that looks into the future several steps.  Such a search tree would likely use a value function as a heuristic for the search.  As the robot encounters new terrain, it can try different maneuvers and see if they work.  The robot can then prune the search tree to speed search in the future.  This practically corresponds to updating the value function to reduce/enhance the probability of visiting certain states.

· There are several possible alternate approaches that could be used instead of a value function based on the local environment.  One option is to compose advanced maneuvers from primitive maneuvers, as was done by [Reference: ICRA’06 galloping simulation].  The approached used by them was somewhat constrained in that they had a very small number of state-based motion primitives to build up their library.  This could be improved upon considerably.  By using combinations of motion primitives you can potentially build up a large library of possible motions in a space-efficient manner.  Also reference the MIT research about how vision also builds things up using primitives.

· Another option is to…  something involving body dynamics, inverse dynamics for control.  Can specify a desired trajectory for the center of mass, for example, and figure out how its legs need to move to accomplish that.  This can be combined with estimates of where good footholds are.  Should be able to deal well with *new* terrain and inputs, which is a big RI program goal.  
· Another possibility is to have the robot estimate the roughness of the terrain, and choose an appropriate control strategy accordingly.  On one end of the spectrum is flat ground, where the robot could execute an open-loop gait with minimal “thinking” involved.  At the other extreme is a boulder field where the robot must do much planning to traverse the terrain.  
· Must figure out the right way to represent/encode the locomotion pattern that will allow you to have these various gaits and allow you to do learning!  

· Integration with sensors.  What happens if your sensor data is funny?  Can we develop a robust way of interpreting sensor data?  (what sensor data should we interpret?)  What do you do if you have no sensor data?  There should be some continuum of optimal actions to take based on the amount of terrain you can see ahead of you.  If you know the entire 3-D terrain ahead, you can do advanced (global) path planning, while if you know nothing about what is ahead of you, you might have to do more conservative motions.  If you have an intermediate amount of sensory data, you could do something in between.
Stuff we have to submit for the proposal:

From the NSF “Grant Proposal Guide” for proposals submitted via FastLane, discussing sections of the proposal starting on p.19:

b. Project Summary

The proposal must contain a summary of the proposed activity suitable for publication, not more than one page in length. It should not be an abstract of the proposal, but rather a self-contained description of the activity that would result if the proposal were funded. The summary should be written in the third person and include a statement of objectives and methods to be employed. It must clearly address in separate statements (within the one-page summary): (1) the intellectual merit of the proposed activity; and (2) the broader impacts resulting from the proposed activity. (See Chapter III for further descriptive information on the NSF merit review criteria.) It should be informative to other persons working in the same or related fields and, insofar as possible, understandable to a scientifically or technically literate lay reader. Proposals that do not separately address both merit review criteria within the one page Project Summary will be returned without review.

d. Project Description (including Results from Prior NSF Support)

(i) Content

All proposals to NSF will be reviewed utilizing the two merit review criteria described in greater length in Chapter III. The Project Description should provide a clear statement of the work to be undertaken and must include: objectives for the period of the proposed work and expected significance; relation to longer-term goals of the PI's project; and relation to the present state of knowledge in the field, to work in progress by the PI under other support and to work in progress elsewhere.  The Project Description should outline the general plan of work, including the broad design of activities to be undertaken, and, where appropriate, provide a clear description of experimental methods and procedures and plans for preservation, documentation, and sharing of data, samples, physical collections, curriculum materials and other related research and education products. It must describe as an integral part of the narrative, the broader impacts resulting from the proposed activities, addressing one or more of the following as appropriate for the project: how the project will integrate research and education by advancing discovery and understanding while at the same time promoting teaching, training, and learning; ways in which the proposed activity will broaden the participation of underrepresented groups (e.g., gender, ethnicity, disability, geographic, etc.); how the project will enhance the infrastructure for research and/or education, such as facilities, instrumentation, networks, and partnerships; how the results of the project will be disseminated broadly to enhance scientific and technological understanding; and potential benefits of the proposed activity to society at large. Examples illustrating activities likely to demonstrate broader impacts are available electronically on the NSF Website18.

g. Budget

Each proposal must contain a budget for each year of support requested, unless a particular program solicitation stipulates otherwise. Completion of the budget does not eliminate the need to document and justify the amounts requested in each category. A budget justification of up to three pages is authorized to provide the necessary justification and documentation specified below. The proposal may request funds under any of the categories listed so long as the item and amount are considered necessary to perform the proposed work and are not precluded by specific program guidelines or applicable cost principles. Specific categories budgeted must be consistent with the organization's cost accounting practices used in accumulating and reporting costs. A full discussion of the budget and the allowability of selected items of cost is contained in the GPG, the GPM, as well as other NSF program solicitations. Cost principles governing the allowability of costs are contained in OMB Circulars A-21, A-87 and A-122 and are available at http://www.whitehouse.gov/omb/circulars/index.html.

Also, from the main RI website:
3. Project Description: Medium- and Large- Class projects must include a Coordination Plan. Up to three additional pages are permitted in the Project Description for this purpose only, allowing a maximum of 18 pages. The Coordination Plan must include: 1) the specific roles of the PI, Co-PIs, other Senior Personnel and paid consultants at all organizations involved; 2) how the project will be managed across institutions and disciplines; 3) identification of the specific coordination mechanisms that will enable cross-institution and/or cross-discipline scientific integration (e.g., yearly workshops, graduate student exchange, project meetings at conferences, use of the grid for videoconferences, software repositories, etc.), and 4) specific references to the budget line items that support these coordination mechanisms.

Proposals that incorporate curriculum development activities within a research project, but do not focus exclusively on them, should summarize the curriculum development activities in a separate section of the Project Description entitled "Curriculum Development Activities."

From the grantsgovguide.pdf file, regarding proposals submitted via grants.gov: the following somewhat duplicates the above things.  Since I think we will want to submit the proposal via FastLane, this information may not be useful:
4.6 Attach Project Summary/Abstract (Field 6 on the Form)

The Project Summary must contain a summary of the proposed activity suitable for dissemination to the public. It should be a self-contained description of the project and should contain a statement of objectives and methods to be employed. It should be informative to other persons working in the same or related fields and insofar as possible, understandable to a scientifically or technically literate lay reader. This Summary must not include any proprietary/confidential information. To attach a Project Summary/Abstract, click “Add Attachment”. The Project Summary must not be more than one page in length and must be suitable for publication. It must clearly address in separate statements (within the one-page summary): (1) the intellectual merit of the

proposed activity; and (2) the broader impacts resulting from the proposed activity. (See Chapter III, Section A of the GPG for further descriptive information on the NSF merit review criteria.) It should be informative to other persons working in the same or related fields and, insofar as possible, understandable to a scientifically or technically literate lay reader. Applications that do not separately address both merit review criteria within the one page Project Summary will be returned without review.

4.7 Attach Project Narrative (Field 7 on the Form)

Provide Project Narrative in accordance with the announcement and/or agency-specific instructions. To attach a Project Narrative, click “Add Attachment”. The Project Narrative (referred to as the Project Description in the GPG) including the Results from Prior NSF Support must not exceed 15 pages, and must be prepared in accordance with the guidelines specified in GPG Chapter II, Section C.2.d.

4.8 Attach Bibliography & References Cited (Field 8 on the Form)

Provide a bibliography of any references cited in the Project Narrative. Each reference must include the names of all authors (in the same sequence in which they appear in the publication), the article and journal title, book title, volume number, page numbers, and year of publication. Include only bibliographic citations. Proposers should be especially careful to follow scholarly practices in providing citations for source materials relied upon when preparing any section of the application. Please click the add attachment button to the right of this field to complete this entry. If the applicant has a Website address readily available, that information also should be included in the citation. It is not NSF's intent, however, to place an undue burden on applicants to search for the URL of every referenced publication. Therefore, inclusion of a Website address is optional. An application that includes reference citation(s) that do not specify a URL address is not considered to be in violation of NSF application preparation guidelines and the application will still be reviewed.

4.9 Attach Documentation for Facilities & Other Resources (Field 9 on the Form)

This information is used to assess the capability of the organizational resources available to perform the effort proposed. Identify the facilities to be used (Laboratory, Animal, Computer, Office, Clinical and Other). If appropriate, indicate their capacities, pertinent capabilities, relative proximity, and extent of availability to the project. Describe only those resources that are directly applicable to the proposed work. Provide any information describing the Other Resources available to the project (e.g., machine shop, electronic shop) and the extent to which they would be available to the project. To attach a document for Facilities and Other Resources, click “Add

Attachment”.

4.10 Attach Equipment Documentation (Field 10 on the Form)

List major items of equipment already available for this project and, if appropriate identify location and pertinent capabilities. To attach a document for Equipment, click “Add Attachment”.

4.11 Add Other Attachments (Field 11 on the Form)

Except as specified in GPG Chapter II, Section C.2.j, special information and supplementary documentation must be included as part of the project description (or part of the budget justification), if it is relevant to determining the quality of the proposed work. The categories of information identified in GPG Chapter II, Section C.2.j, are not considered part of the 15-page project description limitation. This Special Information and Supplementary Documentation section also is not considered an appendix. Specific guidance on the need for additional documentation may be obtained from the organization’s sponsored projects office or in the references cited in GPG Chapter II, Section C.2.j.

