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Abstract

Legged robots can sustain stable dynamic locomotion
without sensors or feedback. It is possible to construct
a running robot that is inherently stable and needs no
sensing to reject minor perturbations; it is therefore
self-stabilizing. In contrast, most previous attempts to
make robots run have used active, high bandwidth feed-
back control systems. We use a simplified monopod to
give an understandable reason why self-stabilizing run-
ning should be possible. Physically reahstic simulations
running with one, two, or four legs demonstrate self-
stabilizing running, as does a physical monopod robot.

Introduct ion
Running motions can be self-stabilizing. That is, with
proper design the structure and motion of a robot can au-
tomatically cause it to recover from minor disturbances
even if it cannot detect them. Many items in common
use, such as tables, automobiles, and airplanes are stable
about their standard operating conditions. Tables re-
main standing, automobiles drive forward, and airplanes
fly straight and level [5]. This reliable default behavior
makes them easier to control. In contrast, most current
legged robots rely on high bandwidth sensing and feed-
back for stability. Self-stabilizing running could elimi-
nate most of the bandwidth normally required to control
running. This paper demonstrates some of the possi-
bilities of self-stabilizing running by using it to control
simulated one, two, and four legged robots in a variety
of gaits, including a gallop. AS a test of the simulations’
validity, we built a mechanical self-stabilizing monopod.

Controlling most legged robots is like trying to balance
a ball on top of a mountain: you must continuously check
which way the ball is rolling and push it back to the top.
Self-stabilizing running is like trying to balance a ball at
the bottom of a valley. Unless the ball is completely out
of the valley it will roll back to the bottom, where you
want it. There is no need to actively sense which way it
is rolling or push it back to the desired position.

In the self-stabilizing running robots we have studied,
each joint haa a perfect actuator in series with a spring.
Over the running cycle, these actuators go through a
predetermined pattern. There are no sensors, there is
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no conditional logic, and the actuator pattern does not
change. With properly chosen actuator patterns and
physical structure, the robot runs stably as a conse-
quence of its design and the laws of physics. For the
self-stabilizing quadruped in this paper, the phases be-
tween the legs are arbitrary. Therefore, it is capable
of more gaits, including transverse and rotary gallops,
than most other controllers such as the virtual leg con-
troller [6]. Previous dynamic legged robots, such as those
presented in [7] [8] [4], did not take advantage of self-
stabilizing running because the conditions required for
stable running were not known.

Other related work includes McGeer’s passive dynamic
walking and running machines [3] [2]. McGeer’s devices
locomote downhill by a simple interaction of gravity and
inertia, with no actuators, no sensing, and no computers.
In some respects, McGeer’s work distills walking to its
essence: a set of motions generated by a simple mech-
anism interacting with gravity, although his mechanism
has some stability problems.

Juggling is much like walking except that the actuator
(paddle) is on the ground, rather than part of the leg.
Researchers have accomplished stable juggling with feed-
back [1] and without feedback [10]. Schaal and Atkeson’s
work indicates that juggling can also be self-stabilizing.

Simplified Monopod

We have simulations of self-stabilizing quadrupeds,
bipeds, and monopods. Numerical methods show that
these simulations are stable, but do not give a good in-
tuitive understanding of why the self-stabilizing robots
work. Our self-stabilizing quadrupeds are stable because
they are formed by pairs of self-stabilizing bipeds, with
the back counteracting disturbances and stabilizing the
quadruped fore and aft. The bipeds are stable for simi-
lar reasons: each biped is two self-stabilizing monopods,
with the pelvis and hips counteracting the limited off-
set between the two monopod’s heights. Because the
multi-legged robots depends on the monopod’s stability,
we first present an explanation of why the monopod is
self-stabilizing.

The monopod consists of a mass, attached to a foot
by a perfect linear actuator in series with a spring (Fig-
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Figure 1: Monopod with curved foot. The model is
planar, but can pitch. There is no joint at the hip.

ure 1). There is a damper in parallel with the actuator
and spring, representing friction in the vertical leg mo-
tion. The actuator is driven through a periodic motion
with a fixed cycle time A. The monopod can hop ver-
tically, move horizontally, and pitch side to side. The
actual monopod’s foot has a mass which is small com-
pared to the body. For this explanation only, we simplify
the model by having a massless foot. We also approxi-
mate the leg actuator’s motions with a single impulsive
extension at time tez~end, of distance Ax, and a single
retraction at some later point when the monopod is in
the air. Experimentally, a large number of actuator mo-
tions, including sine waves, triangle waves, and square
waves, will result in stable hopping motions.

The monopod’s motions split into hopping height,
touchdown phase, and pitch. First, we show that if the
touchdown phase is constant and the monopod can only
move vertically there is a stable hopping height. The
stable hopping height is the point at which the actuator
adds the same amount of energy as the damper removes
over the course of a single cycle.

Second, we show that the phase is stable. The stable
touchdown phase is such that when the height stabilizes
the time on the ground plus the time in the air is one
complete actuator cycle. If the monopod touches down
late, it will lose a little energy and remain in the air less,
bringing the next touchdown closer to the stable touch-
down phase (vice versa for an early touchdown time).

Finally, we allow the monopod to pitch side to side
and move horizontally, and demonstrate that a properly
shaped foot can stabilize the additional degrees of mo-
tion. The pitch stabilization relies on an extension of the
restoring forces you get from a wheel with an off-center
mass.

Height Stabilization

The hopping height reaches equilibrium when the energy
added to the hop by the actuator is balanced by the
energy removed by the damper, and the total time in
488
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Figure 2: Energy removed by damping (solid) and
added by the actuator (dashed) as a function of the
touchdown velocity. The point where the two en-
ergies cross is the stable touchdown velocity. The
total system energy (Et~t = ~mV~) is related to
the touchdown velocity.

the air and on the ground is the same as the actuator’s
cycle time. We will address the relationship between
hopping frequency and actuator frequency later; for now
assume that the time of touchdown ttd preceeds t~~t~~d
by a constant amount of time, and that t.Ztend occurs
before maximum spring compression.

For the hopping height to be in a stable equilibrium, if
the total energy is greater than the equilibrium value the
energy removed must be greater than the energy added,
and vice versa when the total energy is lower. Addition-
ally, the total energy removed or added must be small
enough that the hopper will approach the equilibrium
value without overshooting too badly. The energy intro-
duced by the actuator motion is linear with respect to
the touchdown velocity, while the energy removed from
the damping effects is a quadratic function of the touch-
down velocity. Where these functions cross, the hopping
height is stable (Figure 2).

The remainder of this section is a mathematical justi-
fication of the existence of a stable hopping height. We
find the approximate energy changes due to damping and
leg extension, and find conditions which will allow them
to be equal. We then calculate the total energy change
due to an error in touchdown velocity, and show that this
energy error decreases over successive hops.

/

t,.
AEd = – bV2(t) (1)

t~d

v(t) % ~(t)wd (2)

AEd = –Kv~ (3)

Equation 1 is the formula for damping, in terms of ve-
locity and a damping coefficient. For a lightly damped



spring, the velocity over time approximate y scales lin-
early with the touchdown velocity as in equation 2.
K is constant with respect to the touchdown velocity

(K = b ~~,” Vz(t)) and makes the formulation for the
energy loss in equation 3 have an obvious form.

The energy change due to the leg extension is a bit
more complex. Define the height at touchdown as zero,
so the total energy upon touchdown &d with veloc-
ity Vtd is completely kinetic. Let x(t) be the spring
compression, with Zma= being the compression at time
t~az, the time of maximum compression if the actuator
were not to extend. At the time the actuator extends,
Zer,end = ~xmax, with f E [0..1].

(5)

(6)

Equation 4 comes from setting the energy at time tmaz
(without actuator extension) equal to the touchdown en-
ergy and solving for Zma=. Under most useful circum-
stances, the mzgz within the square root in the equation
for x~ar can be approximated away (Equation 5). Sub-
tracting the total energy before and after the leg actuator
extends gives the energy change, AE~. The energy AE~
added by the act uator’s extension is therefore express-
ible in terms of ~ and Vtd.

AE. = Axf (mg + Hdfi) + ~Ax2 (7)

Setting AEa = AEd (equations 3 and 7) and solving
for the touchdown velocity vtd gives the reentrant touch-
down velocity V. in terms off.

& ~mlcAx2 fz + 4KmgfAx + 2KkAx2 (8)

Because all the values in the square roots are positive,
~d is guaranteed to exist for any given ~ and Ax. Ad-
ditionally, to have a positive velocity at touchdown, we
must use the positive square root. Therefore, given ~
there is a touchdown velocity V. which corresponds to
no energy change over a complete hop.

Showing that this energy level is stable requires two
parts. Given a touchdown velocity VO+ V., the energy
change must have sign opposite the energy error caused
by V. and must result in an energy change of less than
twice the energy error caused by V,. The sign change
is necessary to ensure that over time the velocity error
disappears, and the maximum velocity change prevents
an overall energy error increase from overshooting VO.

Given a touchdown velocity VO+U, the energy changes
due to damping and the actuator can be added to get the
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energy change over a cycle AE.

AE = AxfmV. – 2KVOV. – W? (9)

For AE to have a sign opposite V,, you need 2K V. +
KV, > Ax f&. Substituting the right side of equa-
tion 8 for V., a lower bound on V. is V. > – V., and
there is no upper bound.

To guarantee that the change in energy is not too
great, consider the energy error AE, resulting from a
velocity error Ve, set the change in energy over the step
to be enough that the energy error magnitude increases,
and do some algebra to get a necessary condition for the
energy to oscillate unstably.

Axffi > (K – m)(2V0 + V,) (lo)

If K < m, the fact that Axfm z O results in
O < 2V0 + V., an inequality which is true. In the case
where K > m, the hopping motion is only stable if

V. < * – 2V0. As the damping effects increase,
the maximum allowable error steadily decreases.

Therefore, as long as the damping is small (K < m)
and the touchdown velocity error is less than the touch-
down velocity, given f and Ax there exists a touchdown
velocity V. which is stable.

Phase Stabilization

If the phase of the monopod is stable, it should hop with
a touchdown time t~d~ fixed relative to the actuator mo-
tion and a period A which is the same as the actuator
motion’s period. Just as with the hopping height, we
will show that the phase has a fixed point, and that this
fixed point is locally stable.

The existence and stability of the fixed point comes
from the relationship between phase and the velocity at
takeoff. Earlier touchdowns result in larger vertical ve-
locities, while later touchdowns result in smaller vertical
velocities. The time in the air is directly proportional
to the vertical velocity, and the time on the ground is a
constant determined by the spring and mass (neglecting
damping and leg extension). Given an actuator oscilla-
tion period ~, there is a touchdown time such that the
time in the air plus the time on the ground is ~ (there
are some limits on A, which we will discuss later). If
the monopod should touch down late, the smaller verti-
cal velocity would decrease flight time, making the next
touchdown closer to the fixed point, and vice versa for
early touch down times.

To justify this explanation of hopping phase stability,
we calculate the amount of time and in the air, as a
function of when the monopod touches down, assuming
a stable hopping height for that touchdown time. This
information gives a function from the touchdown time of
one cycle to the touchdown time for the next cycle. The
function has a fixed point, and perturbations from the
fixed point will be pushed back toward the fixed point.

To show that it will achieve a stable phase, assume
that the actuator has a single time f-eztmd at which
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Figure 3: Fraction of maximum compression changes
with time of touchdown.

it extends, as before. Equation 8 relates the fraction
~ of maximum compression at which the actuator ex-
tends to a touchdown velocity VO which is stable rr.s-
suming ~ does not change from hop to hop. While the
monopod is on the ground, it follows the sinusoidal path

(z(t) = A sin W(t – t~~)) with A determined by the

touchdown v~locity (this equ’ation neglects damping and
leg extension). Therefore, as long as the leg extension
occurs before the sinusoid reaches maximum compres-
sion, the fraction of maximum compression at which the
actuator extends (Figure 3) is:

(n 0)f=COS ; t,d– teztend+ ; ; (11)

As a consequence, any t~d has a touchdown velocity
VOwhich would be stable, assuming that the next touch-
down also occurred at ttd. If ttd increases to ttdm.r =
t,zt,~d, where ~ approaches zero, the appropriate touch-
down velocity decreases to Vtdm.c. At the other end~f

dthe spectrum, if ttd decreases to ttdmin = ie.tend– ~ &,

so that $ approaches 1, the stable touchdown velocity in-
creases.

We need a relationship between the time of touchdown
and the time until the next touchdown. Simplify the
problem by assuming that upon touchdown, the velocity
immediately changes to the touchdown velocity V. which
corresponds to the f value associated with ttdl with no
further energy changes. The monopod bounces on the
ground in a sinusoidal manner until the time ttd + r@,
when it takes off. By symmetry, at takeoff It has veloclty
V. upwards. It will remain in the air until gravity has

( Vo),completely reversed the veloclty. At time t~~~tGd,
the monopod will touch down again.

T
tner,(ttd,VO)= tt~ + ?I : + :VO (12)

If itd is as late as possible, the next touchdown
wdl be at tnezt(ttd~~x, Vtdrrw). similarly, if ttd is
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Figure 4: Wheel with an off-center mass. If the
wheel rolls to one side, the mass is no longer above
the contact point and applies a restoring torque.

as early as possible the next touchdown will be at
tne=t(t~dmin,~dm~n). These give a bound on J within
which a fixed point ttd$ exists.

T

2
~ ;+; Vtdmaz < ~<m

T
; + ;fidmin (13)

r
r f+:vtd, = ~ (14)

If A is within the given bounds, a fixed point ttd, ex-
ists. If the monopod touches down at time ttd~, the
next touchdown will occur at time ttd, + A. If monopod
touches down at time ttd~ + t.rror,the next touchdown
will occur at time ttd~ + t~~~~~ + ~ fl + ;~ds+error.

However, velocity is a decreasing function of of touch-
down time. Rewriting in terms of wds and VL,~,, the
velocity at touchdown and the velocity change due to
the touchdown time error, the next touchdown time is
ttd~+ ~ + terror– ;V&.ror . Therefore, if the touchdown

time is wrong it will be forced back towards the fixed
point. This does not necessarily indicate that the fixed
point is stable. A perturbation about ttd$ could be over-
corrected if ~ VeTvo, > ter,o,. We have not witnessed this

behavior in any of our simulations, or in our monopod
robot.

Pitch Stabilization

Given a monopod which hops stably vertically, with a
constant phase, the remaining unstable degree of freedom
is pitch. We base the pitch control on the curvature of
the foot. It works much the same way as a wheel with
an off-center center of mass: the wheel will roll side to
side, until the damping of its rolling motion places the
center of mass at its lowest point (Figure 4).

For the monopod, though, the “wheel” is only on the
ground part of the time. Moving a wheel’s center of
mass further off-center makes it more stable, but if the
wheel is periodically off the ground moving the center of
mass too far could have the opposite effect. If the pitch
is strongly corrected while the wheel is on the ground,
it may take off with a high angular momentum. While
the wheel is in the air, it will continue to rotate, and
may land with a much greater pitch offset than when
it took off (Figure 5). Therefore, there is a limited set
of foot radii which will stabilize hopping motion, but if
the parameters of the monopod are chosen properly the
0
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Figure 5: Monopod hopping, overcorrecting. If the
foot is too flat, when the monopod comes down with
a slight pitch (upper left) it will receive a large
torque pitching it towards vertical (upper right).
However, if it takes off too soon it may continue ro-
tating in the air (lower left) and land with an even
greater pitch error than it had on the previous step
(lower right).

set is nonempty. The mathematics are covered in more
detail in [9].

Results
For space, this paper contains only results from a hop-
ping monopod, trotting quadruped, and a galloping
quadruped. Further examples are available in [9]. All
of the simulations are physically realistic and locally sta-
ble. Earlier approximations, such as an impulsive ac-
tuator and a massless foot, were solely to simplify the
explanation of the self-stabilizing properties and are not
present in the simulations. We have accomplished self-
stabilizing running with a monopod, biped (in phase, out
of phase, and various stages in between), and quadruped.
The quadruped can trot, pace, bound, rotary gallop, and
transverse gallop.

None of these robots and simulations have any sensing
or feedback. In accordance with the principles of self-
stabilizing running, they have a cycle timer and a fixed
translation from timer values to actuator positions.

All of these self-stabilizing robots and simulations are
locally stable. Given the entire state of the robot, po-
sitions and velocities, one can calculate the state of the
robot one cycle later (for complex robots, this simply in-
volves running the simulation for a single cycle). This
fact allows one to turn the robot into a discrete-time
system, with stable running paths turning into stable
fixed points of the discrete-time system. The eigenval-
ues of a linear approximation about the fixed point of
the discrete-time system indicate the local stability. In
all cases presented here, the eigenvalue magnitudes were
49
Simulated monopod instability
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Fieure 6: Instability of the monoDod simulation
as”the foot radius c~anges. This ~ a plot of the
eigenvalue magnitudes of the linearized discrete-
time monopod equivalent, as a function of the foot’s
radius of curvature. If any eigenvalue has magnitude
greater than one, the monopod is unstable for that
foot radius and will tip over.

less than one, indicating local stability.

Monopedal Hopping

The monopod simulation consists of a single telescoping
leg, with a spring and actuator in series as described ear-
lier (Figure 1). The actuator motion is a pieced-together
polynomial chosen for a stable, visually appealing hop.
The leg actuator length l(t), given an oscillation period
~ and an oscillation magnitude C, is:

l(t)=
{

C((2 *;/A)z – 1) if t < ~/2
_C 05 ‘t~~fcti~)’ otherwise (15)

The monopod’s foot is a circle with a fixed radius.
As the foot radius decreases, the monopod becomes un-
stable. Similarly, as it increases the monopod begins
to overcorrect for pitch errors and, again, becomes un-
stable. Figure 6 graphs the eigenvalue magnitudes of the
discrete-time monopod equivalent and illustrates this be-
havior. If any of the eigenvalues are greater than one, the
monopod is unstable for that foot radius.

For a properly chosen foot radius, the monopod recov-
ers quite well. As a test, we ran a physical monopod
(Figure 7) and compared it to the simulation results.’
Its actuator path is approximately a sinusoid, a path
which the simulations predict will be stable. The physi-
cal monopod’s recovery, using a foot radius predicted by
simulation, is consistent with the simulated results.

lThanks to David Robinson, MIT Leg Lab, who built the
actual robot.
1
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Figure 7: The self-stabilizing monopod hopper. The boom prevents motion towards the camera, but allows motion
side-t o-side and pitching motion. These frames are taken left to right in succession from videotape, 0.133 seconds
apart (four frames).
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Figure 8: Biped with curved feet. The model is
planar. There are pin joints at the hips, and linear
joints along the legs. The stability of the monopods
helps st abdize the biped locomotion.

Quadrupedal Trotting

The self-stabilizing quadruped (Figure 9) consists of two
self-stabilizing bipeds (Figure 8) connected by a back.
The back can rotate along the nose-to-tail axis, allowing
the two bipeds to rotate independently. The back is long
enough that the two bipeds stabilize each other along
the back and do not tip over. Each biped is a pair of
monopods connected by rotating hips to the ends of a
pelvis, running stably in a plane without feedback. The

quadruped itself is fully three dimensional and can move
in any direction.

Trotting is a gait which has diagonal pairs of legs on
the ground together. Figure 10 has data from a stable
trotting quadruped recovering from a disturbance.

Quadrupedal Galloping

A bound has the front and back pairs of legs on the
ground alternately. A gallop is similar to a bound, except
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Figure 9: Quadruped with a twisting back. Note the
two pins connecting the back to the hips; these pins
are rotational joints. The front and back bipeds are
stabilized by each other and the spine.

Simulated trotling quadruped recovering from a disturbance
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Figure 10: Trotting quadruped recovering from a
disturbance in both roll and vertical position. The
disturbance occurs at time t = 0. The foot radius is
0.75m.



simulated galloping quadruped (transverse) recovering from a distwbance
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Figure 11: Galloping quadruped (transverse) recov-
ering from a disturbance in both roll and vertical
position. The disturbance occurs at time t = O.
The foot radius is 0.75m.

that the legs do not touch down at the same time. In
a transverse gallop, the legs on one side always come
down before the legs on the other side. For example,
the foot order could be front left touches down, front
right touches down, front left and then right lift into the
air, back left touches down, back right touches down.
Figure 11 has data from a stable transverse galloping
quadruped recovering from a disturbance.

Conclusion

We found that running can be self-stabilizing. It is pos-
sible to trot, pace, bound, and gallop without any sen-
sors. We believe that the technology for creating running
robots exists, but the control and sensing has a long way
to go. A self-stabilizing runner should make a useful
base upon which one could layer more complex control
systems, expanding the range in which the quadruped
runs robustly. Should the more complex control systems
fail, the self-stabilizing robot has a reasonably competent
default behavior.

Self-stabilizing running, as we have implemented it, is
only valid on flat surfaces. Depending on the nature of
the terrain, the variances in height could be considered
either disturbances to the running motion or problems
which must be addressed by a higher level control system.
If the ground has little variation, it can be considered a
disturbance to the running motion and no modification
to the control is necessary. If the ground is irregular
enough that further control is necessary, the extra control
could be as simple as predicting the touchdown altitude
and modifying the leg length and leg angle appropriately.

In the nearer future, we believe that the next gener-
ation of active robots will have a self-stabilizing base,
49
with feedback control modifying or overriding the ba-
sic stable motion as necessary. This combination could
combine the best of feedback control and self-stabilizing
running. The self-stability would simplify the feedback
control, and the feedback control would give the robot
the versatility necessary to make a running robot practi-
cal.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

References
M. Buhler. Robotic Tasks with Intermittent Dynam-
ics. PhD thesis, Yale University, May 1990.

T. McGeer. Passive bipedal running. Technical Re-
port CCS-IS TR 89-02, Simon Fraser University,
1989.

T. McGeer. Passive dynamic walking. Interna-
tional Journal of Robotics Research, 9(2):62-82,
April 1990.

S. S. Murthy and M. H. Raibert. 3d balance in
legged locomotion: Modelling and simulation for
the one-legged case. In Inter-Disciplinary Workshop
on Motion: Representation and Perception. ACM,
1983.

Pan American Navigation Service, 12021 Ventura
Boulevard, North Hollywood, California. The New
Private Pilot, 9th edition, Jan 1972.

M. H. Raibert, M. Chepponis, and B. Brown, Jr.
Running on four legs as though they were one. IEEE
Journal of Robotics and Automation, RA-2(2), June
1986.

M. H. Raibert, J. K. Hodgins, R. R. Playter, and
R. P. Ringrose. Animation of maneuvers: Jumps,
somersaults, and gait transitions. In lmagina, Jan
1992.

R. Ringrose. Simulated creatures: Adapting control
for variations in model or desired behavior. Master’s
thesis, Massachusetts Institute of Technology, Dec.
1992.

R. Ringrose. Seif-Stabikring Running. PhD thesis,
Massachusetts Institute of Technology, 1996.

S. Schaal and C. G. Atkeson. Open loop stable con-
trol strategies for robot juggling. In IEEE Inter-
national Conference on Robotics and Automation,
volume 3, pages 913–918, Atlanta, Georgia, 1993.
3


