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Abstract

Symmetry can simplify the control of dynamic legged sys-
tems. In this paper, the symmetries studied describe motion
of the body and legs in terms of even and odd functions of
time. A single set of equations describes symmetric running
for systems with any number of legs and for a wide range of
gaits. Techniques based on symmetry have been used in
laboratory experiments to control machines that run on one,
two, and four legs. In addition to simplifying the control of
legged machines, symmetry may help us to understand legged
locomotion in animals. Datafrom a cat trotting and galloping
on a treadmill andfrom a human running on a track conform
reasonably well to the predicted symmetries.

1. Introduction

Running is a series of bouncing and ballistic motions
that exert forces on the body during every stride. The
bouncing motions are caused by the vertical rebound
of the body when the legs push on the ground, and the
ballistic motions occur between bounces when the
body is airborne. If a legged system is to keep its for-
ward running speed fixed and its body in a stable
upright posture despite these motions, then the net

. acceleration of the body must be zero over each entire
stride. This requires that the torques and horizontal
forces exerted on the body by the legs must integrate
to zero over each stride and that the vertical forces
must integrate to the body's weight times the duration
of the stride. This is equally true for running machines
and for running animals.

Although there are many patterns of body and leg
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Running With
Symmetry

motion that can satisfythese requirements, a particu-
larly simple solution arises when each variable has an
even or odd symmetry during the time a foot is in
contact with the ground.

{

x(t) = - x(- f),
Body z(t) = z(-t),

Symmetry 1>(t)= -1>(-t),

{
8(t) = -8(--'"t),

r(t) = r(- f).

(1)

Leg
. Symmetry

(2)

x, z, and 1>are the forward position, vertical position,
and pitch angle of the body, and 8 and r are the angle
and length of the leg, all measured in the sagittal
plane* (see Fig. 1). For simplicity, t and x are defined
so that t = b halfway through the stance phase, and
x(O) = O. These symmetry equations specify that for-
ward body position, body pitch angle, and leg angle
are each odd functions of time throughout the stance
phase, and that body elevation and axial leg length are
even functions of time. The symmetry also requires
that the actuators operate with even and odd symmetry:

Actuator

Symmetry {f(t) = f(-t),
r(t) = - r(- f),

(3)

where r is the torque exerted about the hip and f is the
force exerted along the leg axis.

These symmetries are significant because they result
in accelerations of the body that are odd functions of
time throughout a stride. Odd functions integrate to
zero over symmetric limits, leaving the forward run-
ning speed, body elevation, and body pitch angle un-
changed from one stride to the next.

We first recognized the value of symmetry when
exploring control for machines that balance as they
hop on one leg (Raibert and Brown 1984; Raibert,

* The sagittal plane for animals is defined by the fore-aft and
up-down directions.
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Fig. 1. Definition of variables
used in symmetry equations.
Positive! acts about the hip
to accelerate the body in the
positive 1>direction. Positive
f acts along axis of the leg
and pushes the body away
from the ground.
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Brown, and Chepponis 1984).Like an inverted pendu-
lum, a one-leggedsystem tips and accelen,lteswhen its
point of support is not located directly below the
center of mass. Symmetric motion ensures that tipping
and acceleration in one direction is balanced by equal
tipping and acceleration in the opposite direction (see
Fig. 2). The control system we implemented for the
one-legged machines uses a knowledgeof the dynamics
to manipulate the machine's initial configuration on
each step to produce a symmetric motion during the
ensuing support phase. Symmetry simplifiesthe con-
trol because it frees the control system from regulating
the details of the trajectory-the details are deter-
mined passively by the mechanical system. One-legged
hopping machines that run and balance using these
techniques are described in Raibert and Brown (1984)
and Raibert, Brown, and Chepponis (1984). The ap-
proach was recently extended to the control of a run-
ning biped (Hodgins, Koechling, and Raibert, 1986)
and to a trotting quadruped (Raibert, Chepponis, and
Brown 1986).

This paper introduces motion symmetry in the con-
text of one-leggedsystems and then generalizes to
more complicated cases. Symmetry is particularly sim-
ple for one-legged machines because only one leg pro-
vides support at a time, each support interval is iso-
lated in time by periods of ballistic flight, and the hip
is located at the center of mass. After reviewingthe
one-legged case, we consider motions that span several
support intervals and the use of several legs for sup-
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Fig. 2. When the foot is
placed on the neutral point,
there is a symmetric motion
of the body. Thefigure de-
picts running from left to
right. The left-most drawing
shows the configuration just
before the foot touches the
ground. the center drawing

shows the configuration
halfway through stance when
the leg is maximally com-
pressed and vertical. and the
right-most drawing shows
the configuration just after
thefoot loses contact with the
ground.
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port during a single support interval. One set of sym-
metry equations applies for one, two, and four legs,
and for gaits that use legs singly and in combination.

In addition to suggesting simple control for legged
robots, the symmetries developed in this paper may
help us to understand the control mechanisms at work
in running animals. Hildebrand (1965, 1966, 1968,
1976) established the importance of symmetry in ani-
mal locomotion when he observed that the left half of
a horse often uses the same pattern of footfalls as the
right half, but is 180 degrees out of phase. He devised a
simple and elegant characterization of the symmetric
walking and running gaits for a variety of quadrupeds,
using just two parameters: the phase angle between the
front and rear legs and the duty cycle of the legs. By
mapping each observation of symmetric behavior into
a point in phase/duty-cycle space, Hildebrand was
able to classify systematically gaits for over 150 quad-
ruped genera.

Rather than look at relationships between the foot-
falls of the left and right legs as Hildebrand did, I mea-
sured the trajectories of the feet with respect to the
body and the trajectory of the body through space in
the sagittal plane. Data for the trotting and galloping
cat and for the running human show that they some-
times move as the symmetries predict.

2. Mechanics of Symmetry

A number of simplifications ease the analysis of sym-
metry. The analysis is based on a model that is re-
stricted to move in the plane, with masslesslegs and
no lossesanywhere in the system. The body is a rigid
object that moves fore and aft and up and down and
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that pitches in the plane, with position and orientation
given by [x z cf>].Each leg is a single member that
pivots about its hip on a hinge-type joint and that
lengthens and shortens by telescoping. The length of a
leg and its angle with respect to the vertical are given
by [r 0]. A foot at the end of each leg provides a single
point of support. Friction between a foot and the
ground prevents the foot from sliding when there is
contact. A foot in contact with the ground acts me-
chanically like a hinge joint.

Each leg actuator exerts a force f along the leg's axis
between the body and the ground. Positive f acceler-
ates the body away from the ground, and, because the
feet are not sticky,f;3 O. This force is zero when there
is no contact between the foot and the ground. Nor-
mally the leg is springy in the axial direction, in which
case f is a function of leg length. A second actuator
acts at the hip, generating a torque T between the leg
and the body. Positive T accelerates the body in the
positive cf> direction. Equations of motion for this sort
of model are given in Appendix A.

In normal operation, the models follow a regular
pattern of activity, alternating between periods of sup-
port and periods of flight. The transition from flight to
support is called touchdown and the transition from
support to flight is called lift-off. During support, a
foot remains stationary and the leg exerts a combina-
tion of vertical and horizontal forces on the body.
Because legs are springy, the body's vertical motion is
an elastic rebound that returns the system to the flight
phase after each collision with the ground. Once air-
borne, the body follows a ballistic trajectory. The body
may derive support from one or more legs during a
single support interval depending on the number of
legs in the system and the gait. Because the legs have
no mass and the entire system is lossless, bouncing
motions continue undiminished without an external
source of energy.

2.1. SYMMETRIC MOTION WITH ONE LEG

Imagine that at time t = 0 the foot of a one-legged
system is located directly below the center of mass, the
body is upright, and the velocity of the body is purely
horizontal: 0 = 0, cf>= 0, and Z = O.Figure 3 shows
this configuration. Because it has left-right symmetry

Fig. 3. Symmetric configura-
tion of a one-legged system
halfway through stance,
when it has fore-aft sym-
metry (left-right as shown in
diagram) as well as sym-
metry moving forward and

backward in time. The verti-

cal velocity is zero, the sup-
port point is located directly
under the center of mass,
and the body is upright:
8(0) = Xf(O)= cp(O)= O.

~

and there are no losses, the system's expected behavior
proceeding forward in time is precisely the same as its
past behavior receding backward in time, but with a
reflection about the line x = O.This behavior is de-
scribed by the body symmetry equations, which state
that xCI)and cf>(t)are odd functions of time and z(t) is
an even function. Because the body moves along a
symmetric trajectory with respect to the origin and be-
cause the foot is located at the origin during support,
the body symmetry equations imply that the foot's
motion is symmetric with respect to the body, which
gives the leg symmetry equations, Eq. (2).

Symmetric motion of the body and legs requires
symmetric actuation, as given in Eq. (3). From the
equatiQns of motion (see Appendix A), we see that hip
torque is the only influence on body pitch angle, so
odd cf>implies odd T. With the evenness and oddness
of the other variables specified,f must be even to sat-
isfy the equations of motion.

A locomotion system operates in steady state when
the state variables, measured at the same time during
each stride cycle, do not vary from stride to stride.
The state variables of interest are the body's forward
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velocity, vertical position, vertical velocity, pitch angle,
and pitch rate. With the state vector S representing
these variables, S = [x z Zcp (p], steady state is defined
by

S(t) = S(t + T),

where T is the duration of one stride,
Symmetric body and leg motion results in steady-

state locomotion.* For the forward speed to remain
unchanged from stride to stride, the horizontal forceIx
acting on the body must integrate to zero over a stride:

1 Ix dt = O.
stride

Assume that Ix = 0 during flight and that the forward
speed does not change. From the equations of Irotion

we get Ix = f sin f) - (~) cos f) during stance, which is
an odd function becausef and r are even and Tand f)
are odd. Therefore

f
tlo

X(tlo) - x(ttd) = Ix dt = O.
t'd

I

:1

This confirms that symmetric motion provides no net
horizontal force on the body, and running speed pro-
ceeds in steady state from stride to stride.

The vertical position and velocityalso proceed in
steady state for a symmetric motion. The elevation of
the body is an even function of time during stance, so
Z(tlo,i)= Z(ttd,i) and Z(tlo,i)= - Z(ttd.i)'During flight,
the body travels a parabolic trajectory that is also even,
if we specify t = 0 halfway through flight:Z(ttd,i+I)=
Z(tlo,i) and Z(ttd,i+I) = - Z(tlo,i)' Consequently,
Z(ttd) = Z(ttd,i+l)or Z(ttd)= Z(ttd+T),which is the
steady-state condition on z, and Z(ttd)= Z(ttd+T),
which is the steady-state condition on Z.

The torque acting on the body is zero during flight

t
* A trajectory that provides steady-state locomotion is one that
provides a nominal motion that would repeat from cycle to cycle if
there were no disturbances. It does not mean that there are restoring
forces that will return the system to the trajectory if it deviates as the
result of a disturbance. Restoring forces are also required for stabil-
ity once the nominal trajectory has been determined. Asymmetry in
the motion is a Source of such restoring forces.

6

(4)

and an odd function during stance, so the body pitch
rate undergoes zero net acceleration during stance,
(P(tlo)= (P(ttd)'This satisfies the steady-state condi-
tion on (poFor the pitch angle of the body to proceed
in steady state, its value at the end of flight must be
equal and opposite to its value at the beginning of the
flight phase. Assuming that symmetry holds during
stance so that cP10= - CPtdand that no torques act on
the body during flight, a repeating pattern requires that

z(t) = cp(t). ,
- g cp(t)

(7)

(5) where g is the acceleration of gravity. This constraint
prescribes the relationship among pitch angle, pitch
rate, and vertical velocity needed for steady-state run-
ning. It is trivially satisfied when there is no pitching
motion, cp(t) = 0 and (p(t) = O.Equation (7) results in
a second symmetric configuration that occurs during
flight.This configuration, given byf = 0, z= 0, and
cP= 0, ensures that the body's behavior is symmetric
during flight.

For a one-leggedsystem, symmetric body motion
can be obtained only from symmetric leg motion.
That is, if x, z, and cpobey the symmetries ofEq, (1),
then r must be even and f) must be odd. The proof is
given in Appendix B.

The symmetry equations given in Eqs. (1-3) are
consistent with the equations of motion given in Ap-
pendix A. This is shown by labeling the symmetry for
each term in the'bquations of motion according to the
behavior of the body, the behavior of the legs,and the
required actuation. Each variable is labeled with a
precedi~g superscript indicating that it is either even
'e' or odd '0'. Substituting these labeled variables in
the equations of motion and further labeling each
term, we get:

(6)

odd
odd odd , . ,

~ , " , °T
m Ox= e.JSin of) - - cos of)er '

(8)

even
even ev~n , 0' , even~, , T ~

m eji = e.Jcos O()+ er sin O()- mg, (9)

odd odd
~~
Iocp= °T 0 (10)
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Fig. 4. Asymmetric trajec-
tories. Displacement of the
foot from the neutral point
accelerates the body by
skewing its trajectory. When
the foot is placed behind the
neutral point. the body acce/-

erates forward during stance
(left). When the foot is
placed forward of the neutral
point, the body accelerates
backward during stance'
(right). Da:jhed lines indicate
the path of the body and

~

II I

A similar procedure shows that the symmetries are
consistent with the equations of motion for multi-
legged systems as well.

3. Generating Symmetric Motions

The discussion has focused on the nature and value of
symmetric motion without addressing the generation
of symmetric motion. What action must a control
system take to produce symmetric behavior? Recall
that a legged system moves with symmetry if (), z, and
1>all equal zero at the same time during support, but
the control system must commit the foot to a position
on the ground before touchdown when neither Z nor
1>is zero. The task of orchestrating such a rendezvous
is to predict where the center of mass will be when the
body's vertical velocity and pitch angle are both zero.

General solutions to this problem are not known.
The difficulty in accomplishing this task is that place-
ment of the foot influences the path of the body. Ifwe
had an expression for the body's trajectory during
support as a function of X(ttd), Z(ttd), and O(ttd)-a
solution to the equations of motion - then we could
solve for the desired foot placement. We have not
found a closed-form expression for the path of the
body during support,- even for simple models.

Despite the lack of a general solution, approximate
solutions exist for gaits that use just one leg for sup-

solid horizontal lines under

each figure indicate the
CG-print.

~
--

II I

port at a time, the one-foot gaits. The simplest approx-
imate solution assumes that forward speed is constant
during support and that the period of support Ts is
constant, depending on only the spring mass charac-
teristics of the leg and body. These approximations
estimate the length of the CG-print, the forward dis-
tance traveled by the center of mass during support, as
xTs:

- xTs - kj;(x - Xd),xf- 2 (11)

where

is the forward displacement of the foot with
respect to the projection of the center of mass,

x is the forward velocity of the body,
Xd is the desired forward velocities of the body,
Ts is the duration of a support period, and
kj; is a gain.

The. first term in Eq. (11) is the neutral foot position
that provides symmetry. The second term introduces
asymmetry that accelerates the system to correct for
errors in running speed, as shown in Fig. 4. It displaces
the foot from the neutral point to skew the pattern of
body motion. A set of systematically skewed motions
is shown in Fig. 5. These displacements accelerate the
body to stabilize its motion against disturbances and
to change running speed. Control systems for one-,

Xf
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Fig. 5. Path of the body
during stancefor severalfor-
ward foot positions. Only the
neutral foot position results
in a symmetric body trajec-
tory (bold), whereas those to
either side are skewed, either

forward or backward. The
initial forward speed is the

sameforeachtrajedor~
The circles indicate the loca-

tion of the body at touch-
down, and the origin is the
foot position. These data are
from simulations of a model
with a linear leg spring.
Adaptedfrom Stentz (1983).

..

two-, and four-leggedmachines use this approximation
to choose a forward displacement for the foot during
flight (Raibert 1986b).

Our experience with this approximation is that it
provides good symmetry at low and moderate running
speeds. The data shown in Fig. 6 were recorded from a
three-dimensional one-leggedmachine as it traveled at
constant speed (Raibert, Brown, and Chepponis,
1984). The leg and body moved with good symmetry.

Another approach to the problem of predicting
behavior during support might be to use a tabulated
solution to the equations of motion. A table could be
indexed by forward, vertical, and desired velocities,
and it would provide the necessaryleg touchdown
angle. Depending on the size of the table, this ap-
proach could provide any desired degree of accuracy.
Tabular solutions to this problem are discussed in
Raibert (1986b).

3.1. PAIRS OF ANTI SYMMETRIC STEPS

I

Motion symmetry need not be confined to just one
step. Although we have concentrated on symmetry
that applies on a step-by-step basis, the symmetries
apply equally well when pairs of steps produce com-
plementary accelerations, with the symmetry distrib-
uted over more than one support interval. This case is
discussed next.

I.
r

t
~ 8

J

Fig. 6. Symmetry data re-
corded from a physical, 3-D,
one-legged, hopping ma-
chine. The behavior of the
machine obeys the symmetry
equations when the foot is
placed on the neutral point.
Datafor three consecutive
support intervals are super-
imposed. The leg is longer at
lift-off than at touchdown
because it lengthens during

support to provide thrust that
compensates for various
mechanical losses in the sys-
tem. The time axes were

adjusted so that t = 0 half-
way through the support
interval, and the x-origin was
adjusted so that
x(t = 0) = O. Running speed
is about 1.6 mls. Dashed
vertical lines indicate touch-
down and lift-off.

en 15
~
-..;;.

q:,
0

-15
0.6

-S
..

0.5

z 0.4
-0.10 0.05 0.10

Time (5)

-0.05 0.00

Suppose that single support periods deviate from
symmetry but that two sequential support periods
each deviate from symmetry in a complementary fash-
ion. Figure 7 shows a sequence of such antisymmetric
steps. The trajectory of the body during each step is
asymmetric, and the system acceleratesbecause the
foot is displaced from the neutral point. If the foot
position on the next step compensates, however, then
the body motions on successivesteps balance with
equal and opposite accelerations. Equations (1-3) still
describe the behavior of the body and leg, provided
that we define t = 0 at the point halfwaybetween the
two steps.

So far we have assumed that the forward running
speed is nonzero, but it need not be. Antisymmetric
pairs of steps can apply to running in place with no
forward speed. For instance, if the foot were placed so
that the horizontal component of the body velocity is
just reversed during support, and this were done on
each step, then the average forward running speed
would be zero and the system would bounce back and
forth on each step. This is just the sort of behavior
observed in the frontal plane of the human and the
pacing quadruped.

Figure 8 presents data from a physical demonstra-
tion of symmetry distributed over a pair of steps for
which the forward running speed is zero. To generate
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Fig. 7. Pairs of antisymmet-
ric steps. If the footis posi-
tioned behind the neutral
point on one step, and in
front of it on the next step,

/
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then the pair of steps may
have symmetry that stabi-
lizes the forward running
speed, even though the mo-
tion during each step is no

longer symmetric, We rede-
fine the stridetQ include the
symmetric pair of steps. The
body and legare drawn once

for each~ouchdown and

lift-off The vertical dashed
lines indicate the planes of
symmetry, which occur
halfway through the strides
and between the strides.

\..

these data, we modified the control algorithm for a
physical one-legged hopping machine to add an offset
Llx to the desired foot placement on every even-num-
bered hop and to subtract Llx on every odd-numbered
hop. For small values of Llx, the system hopped from
side to side with no net forward acceleration. The
system maintained its balance, provided that the offset
of the foot was small enough so that the system did
not tip over entirely before the next step.

I

1)--'-.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.2. SYMMETRY WITH SEVERAL LEGS

A system with two legs can run with a variety of gaits.
The two legs can operate precisely in phase, precisely
out of phase, or with intermediate phase. Figure 9
shows several examples that differ with regard to the
amount of body pitching, the variation in forward
running speed within a stride, and the degree of tem-
poral overlap in the support provided by the two legs.
In each case, however, symmetric body and leg mo-
tion results in steady-state locomotion.

The body symmetries for a system with several legs
are the same as for one leg, but the leg and actuator
symmetries are m9~pifiedslightly. Each leg and actua-
tor variable, 0, r, T, and/, have the same meanings as
before but with subscripts to distinguish among the

\..

individual legs:

Oil) = -(M-t), ( 12)

Tit) = rk(- f), (13)

Tit) = -Tk(-t), (14)

jj(t) = 1ic(-t). (15)

For a system with two legs,j = 1and k = 2. For four
legs, two pairings are possible:j = [1, 4] and k = [2, 3]
or j = [1, 4] and k = [3, 2], depending on the gait,
where 1 is left front, 2 is left rear, 3 is right rear, and 4
is right front.

Symmetric body motion no longer requires an indi-
vidual leg to move with a symmetry of its own. In-
stead, the behavior of one leg is linked to the behavior
of another leg, so that they operate with reciprocating
symmetry. This frees the variables describinganyone
leg to take on arbitrary functions of time while pre-
servingthe symmetric forces and moments impinging
on the body during support. These motion symmetries
apply when legs operate in unison, when legs have
different but overlapping support pe"riods,and when
the legsprovide support separately. As before, the
equations that describe leg motion apply only when
f> 0, so it does not matter how the legsmove when
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Fig. 8. Symmetric pairs of
steps. The curves show the
recorded path of the body for
a physical, one-legged hop-
ping machine hopping in
place. The control algorithms
were those described by
Raibert, Brown, and Chep-
ponis (1984), but an offset,
Ax, was added to the foot

"E°.65
......
~

position on even-numbered
hops and subtracted on
odd-numbered hops. The
magnitude of Llx was set to
two different values, shown
separately in the two curves.
The plot shows the motion of
the body in a vertical plane
that contains the foot offset.

t>.x = .04 m
t>.x = .01 m

0.60

0.55

0.50

0.45
-0.1 0.0 0.1

z (m)

they are not touching the ground. Equations (12-15)
reduce to the one-legged case when j = k = 1.

For a system with two legs,the conditions for sym-
metric behavior are nearly the same as for one leg, but
it is no longer required that an individual foot be lo-
cated under the center of mass. For instance, Fig. 10
shows two symmetric configurations that place no feet
directly under the center of mass. In both cases, the
center of support is located under the center of mass. It
is also possible to have no support in the symmetric
configuration, as the bottom gait in Fig. 9 suggests.
The antisymmetric activity ofthe two legs operating as
a pair produces symmetric motion of the body when
measured over the stride. This is very much like the
behavior of the one-leggedsystem when it uses pairs of
steps to achieve symmetry.

A characteristic of locomotion when pairs of legs
work in reciprocation is that the individual feet need
not be placed on the neutral point to achieve steady-
state behavior. This is important because it may be
difficult for a leggedsystem to reach far enough under
the center of mass when the hips and shoulders are
located at the extremes of a long body. This situation
arises in the sagittal plane for the quadruped bound
and gallop and to a lesserextent in the frontal plane for
the quadruped pace.

10

Fig. 9. Running with two
legs separated by a long
body. Symmetry can be
achieved when both feet pro-
vide support simultaneously,
when there is partial overlap
in the support periods, and
when the legs provide sup-
port in sequence. These three
cases are distinguished by

the phasing" of the legs. It
may be difficult to place the
feet on the neutral points
when the hips are widely
separated. Displacements of
the feet from the neutral
points influence pitching of
the body and the duration of
each flight phase.
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4. Symmetry in AnimalRunning

The importance of symmetry in the control of legged
robots raises the question of what role it might play in
the behavior of running animals. Can the symmetries
developed for legged robots help us to describe and
understand the running behavior of leggedanimals?

I analyzed data for a cat trotting and galloping on a
treadmill and for a human running on an outdoor
cinder track. The cat data were obtained by digitizing
16 mm, 100 fps film provided by Wetzel,Atwater,
and Stuart (1976). Each frame showed a side viewof
the cat on the treadmill and a I-ms counter used to
calibrate the film speed. Treadmill markers spaced at
0.25-m intervals provided a scale of reference and
permitted registration of each frame. Small circular
markers attached to the cat's skin made the digitizing
easier. Running speeds with respect to the treadmill
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Fig. 10. Symmetric configu-
ration during support for two
legs. Configuration of two-
legged systems halfway
through the support interval.
The center of support is
located under the center of
mass, vertical velocity is
zero, and the body is upright:

Oi+ OJ= Z = 1>= o.

Fig. 11. Body motion of the
galloping cat. Data are
shown for one stride of a cat
running on a treadmill with
a rotary gallop. According to
symmetry theory, forward

~

body position x and body
pitch angle 1>should each
have odd symmetry, and
body height z should have
even symmetry. The sym-
metry displayed in these
plots is good. Dashed vertical
lines indicate the beginning
and end of the stance phase.
Solid vertical line indicates

the symmetry point, when
t= O.

Fig. 12. Leg motion for the
galloping cat. Leg angle 0
should have odd symmetry
and leg length r should have

even symmetry. Symmetry
in behavior of the legs is
found when they are consid-
ered in reciprocating pairs,

e.g., °RR(t) = -ORF(-t) and
rRR(t) = rRF(-t). Symbols
indicate pairs of points that
should have symmetric posi-
tions with respect to the

origin (for odd symmetry), or
the z-axis (for even sym-
metry). Both leg angle and
leg length show very good
symmetry. Data for each leg
are shown only when its foot
touches the support surface.
Dashed vertical lines indi-
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" h°

-50- -----
--°.3
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cate the beginning and end of
the stance phase. Solid vert i-
calline indicates the sym-

metry point, when t = O. The
data are from the same
stride as in Fig. 11.

Fig. 13. Datafor the cat
trotting on a treadmill. The
left front and hind legs form
one pair of legs that operate
in reciprocating symmetry,
and the right front and rear
legsform the other recipro-
cating pair. Running speed
was 2.2 mls.
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surface were about 2.2 mls for trotting and 3.1 mls for' .,: . -:-.0: '~.::'::C!

gallop;ng. -"[ I - ....

The human measurements were made hy digitizing ~ .~ >-~-~... ~
16 mm film of a runner on the semicircular section of 0_2 - - - -
an outdoor cinder track. The camera was mounted on
a tripod located at the center of the semicircle and °:0_2' .
panned to track the runner. Ground markers spaced
at I.O-m intervals provided scale and registration as
before. Running speed was about 3.8 m/s.

In digitizing both the cat and the human data, the
point of support provided by each foot was estimated
visually. A straight line from this point to the hip, or
shoulder for the cat's front legs, was used to find the leg

length r and the leg angle 8. The center of mass of the
cat was taken as the midpoint between the shoulder
and the hip. The pitch angle of the body was the angle
between the horizontal and the line connecting
shoulder to hip, offsetso that cp(O)= O.These mea-
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Fig. 14. Data for one stride
of a human running on an
outdoor cinder track. Data
for the right (stippled) and
leftlegsare superimposed.
Running speedwas 3.8 mls.
SubjectMHR.
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surements provided three parameters of the body's
motion: its forward position, vertical position, and
pitch angle [x Z cP].The measurements also gave two
parameters of each leg's motion: its length and angle
with respect to the vertical [r e]. In addition to infor-
mation about the timing of footfalls,these measure-
ments provided information about where on the
ground the feet were placed with respect to the body
and how the body itself moved.

Data for one stride of the cat gallop, trot, and
human run are plotted in Figs. 11-14. In each case,

. the data are in agreementwiththe evenand oddsyin-
<':rnetries predicted by the symmetry equations. The cat

'it
.
a
.... ta for galloping show a remarkable degree of sym-.:,

nittry.
J'4<:serunning symmetries can be visualizedgraphi-

cally-Yfhesymmetry equations imply that if we re-
verse ooth the direction of forward travel and the di-

rectionB;"~time,x = - x, t = - t, then the pattern of
forward bogy movement and of footfalls should not be

""
12 :;-

Fig. 15. Pattern of foot con-
tacts in the rotary gallop of a
cat. Horizontal bars indicate
that the foot is in contact
with the support surface. The

duration 'of an entire stride is
350 ms. Vertical dotted lines
indicate the seven frames
used in Fig. 16.

affected: x(t) = -x(-t). This invariance is illustrated
in Fig. 16. Of particular interest is the precise overlap
of the footfalls for the forward and reverse running
sequences. This overlap was predicted by the sym-
metry equations.

Some of the data examined reveal a bias in foot
position toward the rear of the animal. The timing
diagram of Fig. 15 illustrates such a bias. For each leg,
leU/o)l>leU/d)!,and the last leg providing support to
the body stayed in contact with the ground longer
than the first leg providing support. According to the
principles outlined in this paper, such bias or skew
might mean that a net forward force was generated on
the body. Such a force could accelerate the system'
forward, compensate for an external disturbance, or
compensate for losses occurring elsewhere in the system.

Another explanation, however, might be that the
axial leg force does not obey Eq. (15). For instance,
because the legs are not massless, their collisions with
the ground on each step result in asymmetric forces.
One might also expect the legs to deliver thrust actively
during support, in order to make up for losses and to
maintain the vertical bouncing motion. This active
thrusting would result in a violation ofEq. (15). With-
out knowing the actual force that each leg exerts on
the ground, it is difficult to draw definite conclusions
regarding the implication of the observed asymmetry
in foot position.

Animals do not run with a pattern of motion that is
precisely repeatable from one stride to the next, even
for a single gait. This variability has been reported in
studies of interlimb coordination in the cat: for exam-
ple see (Stuart et al. 1973; Miller, van der Burg, and
van der Meche 1975; English 1979; and Vilensky and
Patrick 1984). In principle, variability need not influ-
ence symmetry, and the two may be orthogonal. A
legged system can switch from one symmetric pattern
of motion on one stride to a different symmetric pat-
tern on the next stride. A legged system can maintain
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Fig. 16. Graphical interpre-
tation of symmetry in the
galloping cat. (left) Photo-
graphs of (1galloping cat
taken at 50-ms intervals.
(right) The shadedfigures
show the forward translation
and the configuration of the
cat during normal running,
and the outlines show reverse
running. The outlines were

made from the same photo-
graphs as the shadedfigures,
but were reflected about the
vertical axis and are pre-
sented in reverse sequential
order, x(t) = -x(-t). There-
fore the outline at the top
was made from the photo-
graph at the bottom after re-
versing its orientation. The
positions of supporting feet

and the rightward motion of
the body correspond quite
well in the two sequences, as
predicted by symmetry.
(diagram construction) The
relative placement of the
figures for each sequence-
the photographs, the shaded
silhouettes, and the outlines
- accurately reflects the

forward progress of the cat
with respect to the surface of
the treadmill. After each set
offigures was assembled
according to the forward
travel, the three sets were po-
sitioned relative to one an-

other. Photographs are from
film provided by Wetzel,
Atwater, and Stuart (1976).
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symmetry despite variations, because the symmetry
equations describea class of body and leg motions
rather than a particular motion. On the other hand,
variations may have asymmetric components. Such
asymmetric components are expected when a system
accelerates as described earlier, but asymmetric steady-
state variation is also possible. The variability reported
in the literature has not been analyzed to reveal the
relative contributions of symmetric and asymmetric
components.

5. Scissor Symmetry

\..

When a human runs, the two legs form roughly sym-
metric angles with respect to a vertical axis passing
through the hip. The angle formed between the hip
and foot of the forward leg and the vertical axis is
about equal and opposite to the corresponding angle
for the rearward leg. This symmetry is.largelyindepen-
dent of the speed, bounce, stride, and other parame-
ters of the gait. This behavior reminds one of the way
one orients the blades of a scissorsto the paper they cut.

A consequence of scissorsymmetry is that the angle
of the leg to be placed is about equal to the angle of
the leg that wasjust lifted. Can this symmetry be used
to formulate an algorithm that correctly places the
foot on each step, eliminating the need for a calcula-
tion that depends on forward running speed and the.
duration of support? A scissoralgorithm would specify
that

O(ttd,i+J) = -O(t/o,i)' (16)

where

O(t/o,i) is the angle of the lift-offleg on step i, and
O(ttd,i+J) is the angle of the landing leg on step

(i + I).

t
~[
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~

'

;
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The scissor algorithm ofEq. (16) could be used to
specify foot placement for systems with any number
of legs, provided that the gait used only one leg for
support at a time. What sort of behavior would result?

When running with constant forward speedx and
uniform stance duration Ts, the foot moves a distance
xTs backward with respect to the hip during the sup-
port interval. For a given landing angle of the leg

14

O(ttd,i),the lift-off angle is

O( )
- . (XTs + r sin Otd'i

)
tto i-arCSIn .

,. r (17)

Combining Eqs. (16) and (17), we obtain

0(ttd,i+2) = arcsin

( jeT, + r sin (-arcsin ~ jeT, + r ~n 8(1"',») ))
= O(ttd,i)' (18)

During running at constant speed, the algorithm
generates pairs of steps that have symmetry, like those
discussed earlier. A pattern of paired antisymmetric
steps givesbalance, provided that the degree of asym-
metry is relatively small and the step rate is large.
When O(t/o,i)= arcsin(xTs/2), the scissoralgorithm
generates the same foot placement on every step, and
the placements are the same as those produced by
using the CG-print calculation for the neutral point.

The scissoralgorithm can also work properly during
forward accelerations. Suppose that during the support
interval an external disturbance acceleratesthe system
forward. The result is that the stance leg sweepsfarther
back and the lift-offangle of the stance leg is larger
than it would have been without the disturbance. The
other leg is placed correspondingly further forward,
compensating for the increased velocity.A decelerating
disturbance works in a corresponding manner. The
acceleration need not be due to an external distur-
bance but could be caused by actions of the hip actua-
tor that are intended to stabilize the body attitude.
They might be caused by the driving or swingingac-
tions of other legs in a more complicated system.

One way to look at the scissoralgorithm is that it
provides an alternative method for estimating the
length of the CG-print. The lift-offangle of the leg
serves to indicate both the forward velocityand ground
time. The faster the body moves forward relativeto
the ground, the further backward the foot moves dur-
ing stance. The foot also moves backward further
when the system spends more time on the ground.
Therefore the angle of the leg at lift-offis determined
by the product of the average forward velocityand the
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duration of stance. The scissor algorithm is attractive
because it is difficult to estimate the length of the CG-
print accurately. It avoids the need to measure explic-
itly the forward velocity of the body and the duration
of stance.

There are several difficulties with the scissor algo-
rithm. First, the leg angle at touchdown is also in-
fluenced by the leg angle at lift-off. The product of
average velocity and ground time relates only the
change in leg angle, so the starting angle of the leg at
touchdown determines where it is at lift-off. In princi-
ple, the algorithm can generate a sequence of uniform
symmetric steps. In practice, there is no mechanism to
keep from drifting to antisymmetric pairs of skewed
steps with diverging skew.

This problem might be overcome by somehow
damping the foot placement excursions or by using
information from previous steps to filter the two-step
oscillations. Another alternative might be to take both
the touchdown and lift-off angles into account when
calculating the next foot placement:

O(ttd,i+l) = O(ttd,i) -O(t/o,i)2

Another problem with the scissor algorithm is that it
may not be responsive to sudden changes in the for-
ward speed of the body. The forward speed that deter-
mines the next foot placement is the average from the
entire previous support interval. The latency inherent
in this indirect measurement could result in sluggish
response to disturbances.

5.1. ASYMMETRY IN RUNNING

Despite the value of symmetry, there are several rea-
sons why one should not expect to see perfect sym-
metry in the behavior of legged machines and animals.
One reason for asymmetry is that legs are not lossless.
The arguments used to motivate the relationship be-
tween symmetric motion and steady-state behavior do
not apply in the presence of friction. In particular, the
behavior of the system moving forward in time is no
longer symmetric to its behavior moving backward in
time. The details of the discrepancy depend on the

(19)

details of the losses and on the geometry of the system.
Another energy loss contributing to asymmetric mo-
tion is due to unsprung mass in the legs. Each time a
foot strikes or leaves the ground, the system loses a
fraction of its kinetic energy. In order to maintain
stable locomotion, the control system must resupply
energy on each cycle to compensate for these losses.
For instance, the leg lengthens during the support
interval and shortens during flight to maintain a stable
hopping height. This can be done only by delivering
asymmetric forces and torques through the actuators.

Another reason for asymmetric behavior is asym-
metry in the mechanical system. Most animals have
large heavy heads at one end of their bodies that are
not cbunterbalanced"bylarge'heavy tailS at the other
end. Front and rear legs often vary in size, and the
hips and shoulders may not be equally spaced about
the center of mass. Each of these factors may induce
asymmetry in the motions that can provide balanced,
steady-state behavior. This is less of a problem for
laboratory machines because they can be designed to
conform to whatever mechanical symmetry is required.

Naturally, we shouldn't expect to see symmetric
motion when the control system purposely skews the
motion to change running speed. In this case, asym-
metry in the motion provides the forces that accelerate
the body. An external load, such as that produced by
wind resistance or a dra%bar load, would also require
a component of asymmetry in the motion of the body
and legs. A runner at the start of a footrace and the
driver of a jinrikisha demonstrate these sorts of asym-
metric behavior.

Perhaps a better view is to think of locomotion in
terms of the sum of a symmetric part and an asym-
metric part. The symmetric part of the motion during
each stride maintains steady-state behavior. Devia-
tions from symmetry compensate for losses and pro-
vide acceleration.

The symmetry discussed in this paper postulates
that each body variable, each leg variable, and each
actuator variable has an even or odd symmetry. The
net result of their interaction is to constrain the forces
acting on the body throughout a stride so that they
preserve the body's forward speed, elevation, and pitch
angle. One might imagine a less complete symmetry
that does not require symmetry of the basic variables
individually but requires symmetry only in the net
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forces and torques acting on the body:

fx(t) = - fx(- f),
J;,(t)= J;,(-t),
T",(t)= -T",(-t).

Stated alternatively, the body moves with symmetry
while the legs do not. We have proved that this cannot
be the case when only one leg is used for support at a
time. The proof is given in Appendix B. However such
solutions may be workable with additional legs.

6. What Does Symmetry Mean?

We can interpret symmetry in several ways. First, it is
useful in the control of legged machines. The strategy
used to control running machines was built around
symmetry, and symmetry may play it role in achieving
more complicated running behavior in the future. For
instance, reciprocating leg symmetry is important in
making a quadruped gallop.

Symmetry also helps us to characterize and under-
stand the behavior we observe in animals. The analysis
of symmetry in the cat and human shows that it de-
scribes how animals move when they trot, gallop, and
run, and we expect to find that the same symmetries
describe the motions of other animals running with.
other gaits. Perhaps most important is the idea that
symmetry and balance give us tools for dealing with a
dynamic system without requiring detailed solutions
to complex formulations. Symmetry implies that each
motion has two parts with opposing effects,just as
balance requires equal and compensating forces and
torques.

In certain respects, these symmetries are limited.
They do not specifythe details of a particular body
motion that provides locomotion but merely give a
broad classificationthat embodies several interesting
features of the motion. The symmetries provide only
sufficient conditions for successfullocomotion, not
necessary conditions (see Fig. 17). As far as we have
been able to determine, the behavior of a leggedsystem
may violate the motion symmetries we have described
with impunity, without limiting its ability to run and
balance. Finally, these symmetries do not yield a spe-
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Fig. 17. Two functions that
integrate to zero. One is
symmetric and one is not.
Symmetry provides a suffi-
cient condition but not a
necessary condition for zero
net forward acceleration.

(20)

4- +
cificprescription for control. They suggestonly how
the system should ultimately move and hint at possible
avenues of attack.

In other respects, the symmetries described here are
quite powerful. Three simple equations outline plausi-
ble body motions for systems with any number oflegs
engaged in a wide variety of gaits. Another small set of
equations describeshow the legs move. Although the
symmetries do not specify individual motions or how
to produce them, they provide rules that govern a
large class of successfulmotions and suggesta wide
variety of experiments.

This work on symmetry falls into a broader context
that splits responsibility for control between the con-
trol system and the mechanical system being con-
trolled. In this context, the control of locomotion is a
low bandwidth activity that takes advantage of the
intrinsic properties of the mechanical system. Rather
than use a high bandwidth servo to move each joint of
the leggedsystem along a prescribed trajectory at high
rate, the control system makes adjustments just once
per stride. Once the foot has been positioned on each
step, the mechanical system passivelydetermines the
details of the motion for the remainder of the stride.
This approach depends on having a passive nominal
motion that is close to the desired behavior. In the
present context, symmetry is the means of achieving
the nominal motion. This sort of approach may have
value only for systems that perform repetitive behav-
iors. For instance, aside from juggling and handwriting
(Hollerbach 1980),robot manipulation may be un-
suited to this approach.

7. Summary

Symmetric motions of the body in space and of the
feet with respect to the body provide nominal motions
for steady-state locomotion. A control system for run-
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ning can produce steady-state behavior by choosing
motions of the legs that give x(t) and 1>(t)odd sym-
metry and z(t) even symmetry. The leg motions cho-
sen are themselves described by odd and even symme-
tries. This method applies to a number of legged
configurations and helps to describe the behavior of
running animals. .

The significance of these symmetric motions is that
they permit a control system to manipulate the sym-
metry and skewness of the motion, rather than the
detailed shape of the motion. When the system's be-
havior conforms tb Eqs (I - 3), all forces acting on the
body integrate to zero throughout one stride, so the
body experiences no net acceleration. When behavior
deviates from symmetry, the net acceleration of the
system deviates from zero in a manageable way. The
control task becomes one of manipulating these devia-
tions.

The conditions for symmetric body motion can be
stated simply: at a single point in time during the sup-
port period, the center of support must be located
under the center of mass, the pitch angle of the body
must be zero, and the vertical velocity of the body
must be zero, i.e., BiO) + 8k(0)= 0, 1>(0)= 0, and
}:(O)= O. The body follows a symmetric trajectory
during stance when these conditions are satisfied.

Symmetric running motions may have great gener-
ality. In principle, a wide variety of natural running
gaits can be achieved using body and leg motions that
exhibit the symmetries described. These include the
trot, the pace, the canter, the gallop, the bound, and
the pronk, as well as the intermediate forms of these
gaits. Although we have plotted symmetry data only
for the cat and the human, we expect to find a wide
variety of natural legged systems using nearly symmet-
ric motions when they run.
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Fig: AI. Model of planar,
one-legged system with a
massless leg.
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Appendix A. Equations of Motion for Planar
Systems

AI. EQUATIONS OF MOTION FOR A PLANAR, ONE-
LEGGED SYSTEM

The equations of motion for a planar one-legged
model, with a massless leg and the hip located at the
center of mass (as shown in Fig. AI), are:

T
mx = fsin B- - cosB,r (AI)

T
mz = f cos B+ - sin B - mg,r (A2)

J1>= T, (A3)

where

x, z, 1> are the horizontal, vertical, and angular
positions of the body,
are the length and orientation of the leg,
is the hip torque (positive T accelerates
body in the positive 1>direction),
is the axial leg force (positive f accelerates
the body away from the ground),
is the body mass,
is the body moment of inertia, and
is the acceleration of gravity.

r, B
T

f

m
J
g
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Fig. A2. Model of planar,
two-legged system with
separated hips. It can repre-
sent the lateral half of a
quadruped projected onto the
sagittal plane or a biped
projected onto the frontal
plane.
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A.2. EQUATIONS OF MOTION FOR A PLANAR, Two-
LEGGED SYSTEM

The equations of motion for planar model with two
massless legs and hips located a distance d from the
body's center of mass (as shown in Fig. A2) are:

mX = f.. sin (}I + h sin (}2

'1 '2
- - cos (}I- - cos e2,

rl r2

mz = f.. cos (}I + h cos e2

+ '1 sin el + '2 sin e2- mg,
rl r2

.. . d
Jcp= f..dcos(el - cp)- ~ sin (cp- e,)+'1

rl
- hd COS«(}2- cp) (A6)

+ '2d sin (cp- (}2)+ '2'
r2

Appendix B. Proof of Symmetric Leg Motion

In this appendix we prove that symmetric body mo-
tion requires symmetric leg motion for the one-legged
case. Body and leg motions are symmetric when x(t),
cp(t), and e(t) are odd and z(t) andf(t) are even.

. The equations of motion can be rewritten expressing
each element of the leg motion as the sum of an even
and odd part. For instance, the angle of the leg with
respect to the vertical is e = ee+ °e, where ee repre-

1.8

sents the even part and O(}represents the odd part.
Also, r can be replaced with l/(ez + °z):

mX = (1'+ '1) sin (e()+ O(})
- .(ez + °z) cos (e()+ °e),

(Bl)

mz = (1'+ '1) cos (ee + O(})
+ .(ez + °z) sin (e()+ °e) - mg,

(B2)

J(fi = °. + e.. (B3)

From Eq. (B3),. mustbe odd, and becausecp is odd,
we assume that (fi is odd. To specify that the body
moves with the desired symmetry, the even part of the
right-hand side ofEq. (Bl) is set to zero, and the odd
part of the right-hand side ofEq. (B2) is also set to zero:

° = 1'sin e()cos O(}+ '1cos eesin °e
+ . ez sineesinO(}- . °z coseecosO(}.(B4)

(A4)

° = -1' sin e(}sin O(}+ '1 cos e(}cos °e,
+ . ez sin e(}cos O(}+ . °z cos ee sin °e. (B5)

Solutions to Eqs. (B4) and (B5) require that

(A5)
tan ee= . °z

l'
tan ee= - '1. (B6)

. ez
and

During the support interval, the foot remains sta-
tionary with respect to the ground, so motion of the
pody with respect to the ground determines motion of

"~thefoot with respect to the body. Therefore the sym-
metries ofEq. (1) and the solutions to Eq. (B6) also
govern the trajectory of the foot with respect to the
body. They require that xit) - xiO) = - xi-i) +
xiO) and zit) = zi-t). The leg motion is symmetric
if xiO) = 0.

Because odd functions equal zero when t = 0, Eq.
(B6) requires that ee(t = 0) = 0, implying that
xiO) = 0. Hence e(}= Or= '1= 0, leaving e odd and r
and/even. They obey the leg symmetries given by Eq.
(2).

Goldberg (1985) simplified the proof as follows.The
foot remains stationary with respect to the ground
during the support interval, so motion of the body with
respect to the ground determines the motion of the
foot with respect to the body. Therefore the symme-
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tries of Eq. (2) govern the trajectory of the foot with
respect to the body:

x/t) - x/a) = - x/- t) + x/a),

Zf(t) = Zf(-t).

(B7)

(B8)

The leg motion is symmetric if x/a) = 0.
Letfx andfz be the horizontal and vertical forces

between the foot and the ground. The torque at the hip
can be written as

. = - fxZf+ fzxf.

From the equations of motion, we know that. andfx
are odd and thatfz is even, so Eq. (B9) requires that xf
be odd. Therefore leg angle ()= arctan(xf/Zf) is odd
and leg length r = ..jx} + z} is even. Axial leg force f =
(fxxf+ IzZf)/r, which is even.
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