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Gecko and many insects have adopted nanoscale fibrillar structures
on their feet as adhesion devices. Here, we consider adhesion
between a single fiber and a substrate by van der Waals or
electrostatic interactions. For a given contact area A, the theoret-
ical pull-off force of the fiber is �thA where �th is the theoretical
strength of adhesion. We show that it is possible to design an
optimal shape of the tip of the fiber to achieve the theoretical
pull-off force. However, such design tends to be unreliable at the
macroscopic scale because the pull-off force is sensitive to small
variations in the tip shape. We find that a robust design of
shape-insensitive optimal adhesion becomes possible only when
the diameter of the fiber is reduced to length scales on the order
of 100 nm. In general, optimal adhesion could be achieved by a
combination of size reduction and shape optimization. The smaller
the size, the less important the shape. At large contact sizes,
optimal adhesion could still be achieved if the shape can be
manufactured to a sufficiently high precision. The robust design of
optimal adhesion at nanoscale provides a plausible explanation for
the convergent evolution of hairy attachment systems in biology.

Gecko and many insects (Fig. 1) have evolved fibrillar structures
on their feet to achieve extraordinary adhesion on vertical

walls and ceilings. These ‘‘hairy’’ biological attachment systems
consist of finely structured protruding hairs with size ranging from
a few hundred nanometers to a few micrometers, depending on the
animal species. The density of surface hairs increases with the body
weight of the animal, and gecko has the highest density among all
animal species that have been studied (1). Different mechanisms (2,
3) have been proposed in the past for biological attachment
structures, but only until recently has strong evidence been pre-
sented (4, 5) that molecular adhesion by van der Waals interaction
plays a dominant role in the attachment by fibrillar structures in
biology. This discovery may appear somewhat surprising because it
takes a much greater force to pull a gecko away from a ceiling than
removing a human hand from a table, even though the same van der
Waals force is expected to exist in both situations. A question thus
arises: What determines the adhesion strength of a fiber in adhesive
contact with a substrate? The chemical nature of materials cannot
explain why the same van der Waals force results in strong adhesion
in geckos but not in humans. Apparently, nature has evolved
mechanisms to use weak van der Waals forces in animal species for
which adhesion is crucial for survival.

Dry adhesion between solid objects has been an active topic of
research in contact mechanics. The Johnson–Kendal–Robert
(JKR) (6) and Derjaguin–Muller–Toporov models (7) are partic-
ularly useful in modeling adhesive contact at two opposite extremes
of a dimensionless parameter representing the ratio between the
elastic deformation of the contacting surfaces and the effective
range of surface interaction forces. The transition between JKR and
Derjaguin–Muller–Toporov theories is described by the Maugis–
Dugdale model (8) based on a cohesive description of the surface
forces. More recent studies have expanded these theories to coupled
normal and shear loading (9, 10) and to viscoelastic materials (11).

Various mechanical models have been developed to model
specific fiber-array structures (12, 13), and significant progress has
been made in using the JKR model to show that the hairy
attachment systems, in which a macroscopic contact area is split into

many smaller contact patches, could greatly enhance the adhesive
strength (5, 14). However, little is known about why the character-
istic size of the fibrillar ultrastructure of bioattachment systems falls
in a narrow range between a few hundred nanometers and a few
micrometers. In addition, no effort has been made to address the
optimal conditions under which the theoretical pull-off force �thA,
where �th is the theoretical strength of molecular interaction and A
is the cross-sectional area of the fiber, can be achieved. A thorough
understanding of these issues could also be of value to structural
engineering and artificial materials design (15).

In conventional engineering, if two elastic bodies (Fig. 2a) are
joined together by adhesion and then subject to an externally
applied load, stress concentration is expected to occur near the edge
of the joint (Fig. 2b). As the load increases, the intensity of stress
concentration ultimately reaches a critical level to drive a crack to
propagate and break the joint. Under this circumstance, the ma-
terial in the joint is not being used most efficiently because only a
small fraction of material is highly stressed at any instant of time,
and failure occurs by incremental crack propagation. On the other
hand, it is theoretically always possible to design the shape of the
contact bodies so that at the instant of pull-off, the stress is
uniformly distributed† over the contact region with magnitude
equal to the theoretical adhesion strength �th (Fig. 2c).

Assuming that the molecular adhesion force between two con-
tacting bodies is determined by the separation between them, a
uniform stress field at pull-off requires a uniform separation of the
two contacting bodies over the entire contact region. In other
words, the optimal adhesion occurs if the contacting surfaces
perfectly conform to each other at the critical moment of pull-off.
The tip geometry of the fiber, which gives rise to a uniform stress

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: JKR, Johnson–Kendal–Robert.

*To whom correspondence should be addressed. E-mail: hjgao@mf.mpg.de.

†Stress concentration can still exist near the edge of the contact region before pull-off
occurs.

© 2004 by The National Academy of Sciences of the USA

Fig. 1. The nanoscale fibrillar structures in animals with hairy attachment
pads. The density of surface hairs increases with the body weight of animal,
and gecko has the highest density among all animal species. (Photograph cour-
tesy of S. Gorb, Max Planck Institute for Metals Research. Adapted from ref. 14.)
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field at pull-off from a substrate, can thus be calculated by the
theory of elasticity (see Appendix). Why hasn’t such an optimal
shape been evolved in nature or used in engineering? One problem
is that the optimal shape described here is sensitive to small
variations in the shape of the tip of the fiber. In fact, only a small
variation in geometry is needed to alter the tip shape to induce a
singular stress field like that near a crack. Here, in contrast to the
optimal shape, we also introduce a definition for the ‘‘singular
shape’’ such that the stress distribution is equivalent to the singular
stress distribution associated with a crack external to the connecting
area A at pull-off. The difference between the optimal shape and
the singular shape is often very small. This can be illustrated by
considering the case of a rigid fiber in contact with an elastic
substrate. If friction is neglected, the singular shape is just a
flat-ended fiber that can be described by the shape function

fcrack�r� � 0. �r � R� [1]

In contrast, the optimal shape giving rise to the theoretical pull-off
force is (see Appendix)

fth�r� �
�thR
E* � 4

�
E(r�R)�2�, (r � R) [2]

where E� is the complete elliptic integral of the second kind, R is
the radius of the fiber, and E* is defined as E* � E�(1 � �2), E being
Young’s modulus and � Poisson’s ratio of the substrate. Normally,
the ratio �th�E* is quite small (1–2%) and so is the difference
between fcrack(r) and fth(r). If friction is included with no slip along
the interface between the fiber and substrate, the optimal shape of
Eq. 2 would be modified by an additional term of

�1 � 2�

1 � �
� 2 �thR

�2E*
��1 � r2�R2 � 1� .

A derivation of these solutions is given in Appendix. The optimal
shape for the case of nonslip contact differs only slightly from that

for the frictionless case, as plotted in Fig. 2d. More general friction
cases are found to lie in between these two limits. These results show
that the effect of shear plays only a minor role in the optimal shape
problem.

The pull-off force associated with the singular shape can be
calculated according to the Griffith condition for crack initiation
(16) as

Pcrack
f � �R2�8

�
�E*��

R �1�2

, [3]

and that associated with the optimal shape is

Pth
f � �R2�th, [4]

where �� is the work of adhesion. For van der Waals interaction,
�� usually ranges between 10 and 50 mJ�m2. We shall assume �� �
10 mJ�m2 in this article. Taking the effective interaction range of
van der Waals force to be 0.5 nm, we estimate �th to be �20 MPa.

In general, it is difficult to determine the singular and optimal
shapes in closed form solutions, although they can be calculated by
numerical methods such as the finite element method. In the case
of an elastic fiber in contact with a rigid substrate (a more realistic
model of bioattachment systems), the flat-ended fiber becomes the
optimal shape. In this case, the singular shape cannot be determined
in closed form.

Fortunately, detailed solutions of the singular and optimal shapes
are not necessary to calculate the associated pull-off forces. In fact,
it can be shown that the same results in Eqs. 3 and 4 apply to an
elastic fiber on a rigid substrate when E* is interpreted as the
modulus of the fiber. More generally, for an elastic fiber with
Young’s modulus Ef and Poisson’s ratio �f in contact with an elastic
substrate with Young’s modulus Es and Poisson’s ratio �s, the
pull-off force associated with the singular shape would still be given
by Eq. 3 if E* is properly generalized according to

Fig. 2. Shape sensitivity of the pull-off force.
(a) Two structures are bonded together and
subject to an external load. (b) Stress concen-
tration occurs at the edge and could initiate a
crack to propagate and break the joint. The
springs represent the molecular interaction
forces between the contacting surfaces. (c) The
optimum distribution of stress at pull-off is a
uniform tensile stress equal to the theoretical
strength of adhesion �th. (d) The optimal
shape profiles of a rigid fiber in frictionless or
nonslip contact with an elastic substrate. The
solid line curve is the optimal shape profile for
frictionless contact, and the dotted line curve
is the optimal shape profile for the nonslip
contact. Here the Poisson ratio is taken to be
� � 0.3.
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1
E*

�
1 � �f

2

Ef
�

1 � �s
2

Es
. [5]

The pull-off force associated with the optimal shape is always
defined by Eq. 4.

Fig. 3a plots the normalized adhesive strength Pf�(�R2�th) as a
function of the nondimensional parameter (E*���R�th

2 )1/2. The
predictions from Eqs. 3 and 4 are plotted as two straight solid lines.
We have also developed a numerical method to determine the
pull-off force associated with the singular shape of a rigid fiber on
an elastic substrate with molecular interaction characterized by the
Lennard–Jones potential (17)

��h� �
8��

3	
��	

h�
3

� �	

h�
9� , [6]

where 	 is the equilibrium distance at zero interaction and h is the
separation between two interactive surfaces.

The numerically calculated values of the pull-off force for the
singular shape, shown as filled squares in Fig. 3a, agree with the
prediction of Eq. 3 based on Griffith condition for large fiber sizes
but asymptotically approach the theoretical adhesion strength as
the fiber size decreases. This trend occurs because the theoretical
strength is the upper limit of adhesion. The Griffith condition
assumes that failure always occurs by crack propagation, i.e., a crack
is assumed to nucleate at the edge of the contact and propagates to
break the joint. This assumption breaks down for very small fibers.
The results of Fig. 3a show that the theoretical adhesion strength
can be achieved in two ways; the first is by accurately adopting the
optimal shape of the tip of the fiber, and the second is by reducing
the diameter of the fiber. If theoretical strength is achieved, failure
occurs no longer by crack propagation but rather by a uniform
detachment over the entire contact region. For very small sizes, the
condition for crack propagation cannot be satisfied before the
theoretical strength is reached. The calculated pull-off force asso-
ciated with the singular shape based on the Lennard–Jones poten-
tial shows a smooth transition between two failure modes, crack
propagation at large sizes and uniform detachment at small sizes.
Fig. 3b shows the distribution of adhesive traction at pull-off for the
singular shape with different fiber sizes. Note that the adhesive
traction becomes more and more uniform as the fiber size de-
creases, eventually becoming uniform at a critical size.

At macroscopic sizes, a small variation in the tip shape of the fiber
results in large changes in pull-off force. For example, taking �� �
10 mJ�m2, �th � 20 MPa, and E* � 1 GPa (the case of a keratinous
fiber in contact with a rigid substrate) and fiber radius equal to 1

mm, the pull-off force for the optimal shape is estimated to be 62.8
N and that for the singular shape is only 0.5 N. In other words, small
variations in geometry result in large changes in pull-off force. The
design of optimal shape, although theoretically feasible, is unreal-
izable in practice at the macroscopic scale. Fig. 3c shows that the
difference between the adhesive strength of the optimal shape and
that of the singular shape decreases as the size of the fiber is
reduced. At the critical size

Rcr �
8
�

E*��

�th
2 , [7]

the strength of the singular shape predicted by Eq. 3 becomes equal
to that of the optimal shape predicted by Eq. 4. Taking �� � 10
mJ�m2, �th � 20 MPa, and E* � 1 GPa, we estimate Rcr � 64 nm.
From these results we can conclude that the sensitivity of adhesion
strength to tip geometry of the fiber decreases as the fiber diameter
is reduced, and a robust design of optimal adhesion becomes
possible around a critical size at which the pull-off force is no longer
sensitive to variations in tip geometry. This length scale is �100 nm
and indicates that the nanometer size of the fibrillar ultrastructure
(spatula) of gecko and many insects may be the result of optimi-
zation for reliable and optimal adhesion. It has recently been shown
(18, 19) that the nanometer size of mineral particles in bone-like
biological materials may have been selected to ensure optimum
fracture strength and maximum tolerance of crack-like flaws. The
present study shows that the nanoscale dimension may play a crucial
role in achieving reliable adhesion in a fibrillar structure.

The optimal adhesion strength described here can be compared
with the JKR solution for a fiber having radius of curvature R at the
tip in contact with a flat surface. The ratio of the optimal solution
to that of JKR is

Pth
f

PJKR
f �

2
3

R�th

��
. [8]

For �� � 10 mJ�m2, �th � 20 MPa, this ratio is calculated to be
as large as 106 for a fiber with a radius of �1 mm and 103 for that
�1 
m. Therefore, a huge magnification of pull-off force can be
achieved by modification of the tip shape (shape optimization).
Depending on animal species and convenience, optimal adhesion
could be achieved by a combination of size reduction and shape
optimization. The smaller the size, the less important the shape. At
large sizes, the optimal adhesion could still be achieved if the shape
could be manufactured to sufficiently high precision.

Fig. 3. Saturation of adhesion strength for the singular shape of a fiber. (a) The variation of the normalized pull-off force with the nondimensional parameter
(E*���R�th

2 )1/2. (b) The distribution of the adhesive stress along the contact radius for different fiber radii. (c) The shape sensitivity of adhesion strength. As
E*���R�th

2 increases, or the fiber radius decreases, the difference between the adhesive strength of the singular shape and that of the optimal shape decreases,
eventually vanishing at a critical length on the order of 100 nm.
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The discussion so far has been focused on how to achieve the
theoretical pull-off force by size reduction or shape optimization. It
is also interesting to investigate the variation in adhesive force as a
fiber approaches or withdraws from a substrate. For this purpose,
we have calculated the quasi-static process of an optimally shaped
(Eq. 2) rigid fiber approaches an elastic substrate (Fig. 4a). Of
special interest is how the interaction force changes as the fiber size
decreases toward the critical size for shape insensitivity.

Figs. 4 b–e display the variation of the normalized adhesive force
P��R2�th as a function of ��	, where � is the separation between the
substrate and the center of the tip surface of the fiber. Fibers of
different sizes approaching and withdrawing from a substrate are
considered. Fig. 4b shows the behavior of a fiber with radius R �
0.13 E*����th

2 (3.2 nm for �� � 10 mJ�m2, �th � 20 MPa and E*
� 1 GPa). For this fiber, the approach and withdrawal follow the
same path with no hysteresis. As the fiber approaches the substrate,
the adhesive force is always attractive and the fiber is drawn to the
substrate until an equilibrium contact position is reached with zero
interactive force. As the fiber is withdrawn from the equilibrium
position, a maximum adhesive force exists equal to the theoretical
pull-off force, confirming that the tip shape is indeed optimized.

Fig. 4c shows the behavior of a larger fiber with R � 1.3E*����th
2

(32.5 nm for �� � 10 mJ�m2, �th � 20 MPa, and E* � 1 GPa). Now
the approach and withdrawal follow different paths, giving rise to
a hysteresis. During approaching, the adhesive force is always
positive and the fiber is drawn toward the substrate until equilib-
rium. The approaching process is unstable. At a critical distance
from substrate, there is a sudden increase in adhesive force and the

fiber jerks toward the substrate. During withdrawal, the adhesive
force increases until reaching the theoretical pull-off force and then
abruptly drops to a small value.

For a even larger fiber with R � 13.7E*����th
2 (342.5 nm for

�� � 10 mJ�m2, �th � 20 MPa, and E* � 1 GPa) shown in Fig. 4e,
the theoretical adhesive strength cannot be achieved spontaneously.
As the fiber approaches the substrate, the adhesive force vanishes
at two equilibrium positions. Only after the second equilibrium
position can the fiber achieve the theoretical pull-off force on
withdrawal. If the fiber is pulled back near the first equilibrium
position, full contact between the fiber and substrate has not been
achieved and the withdrawal goes back along the approaching path
BA with a tiny hysteresis and small pull-off force. Between the two
equilibrium positions, the adhesive force is actually negative, im-
plying that an externally applied pressure is needed to reach full
contact. In this case, the theoretical pull-off force cannot be
achieved unless full contact is achieved by pressing the fiber hard
enough against the substrate before withdrawal.

The preceding analysis indicates that a threshold radius exists for
the spontaneous approaching of substrate, which is calculated to be
Rspon � 11.3E*����th

2 for a rigid fiber interacting with an elastic
substrate. The behavior of such a fiber at threshold radius is shown
in Fig. 4d. Taking �� � 10 mJ�m2, E* � 1 GPa, and �th � 20 MPa,
Rspon is estimated to be �282.5 nm. Fibers with radius smaller than
Rspon can spontaneously achieve full contact without externally
applied pressure and attain the theoretical pull-off force. The same
concept is expected to hold for the more general case of an
optimally shaped elastic fiber approaching an elastic substrate.

Fig. 4. Variation of adhesive force as the optimally shaped rigid fiber approaches and withdraws from an elastic substrate. (a) Schematic illustration of the
problem. (b–e) Different behaviors of fibers with radius equal to R � 0.13E*����th

2 (b), R � 1.3E*����th
2 (c), R � 11.3E*����th

2 (d), and R � 13.7E*����th
2 (e). �

is the separation between the substrate and the center of the tip surface of the fiber, and 	 is the equilibrium distance at zero interaction.
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The concepts described in this article are not just limited to
adhesion of fibrillar structures. The concept of a critical length for
robust optimal adhesion can be generalized to a pair of arbitrary
contacting bodies through the following definitions and theorems.

Definition 1. The optimal shape of two objects in adhesive contact over
a surface area A is defined as such that the stress distribution is uniform
and equal to the theoretical strength �th of adhesion at pull-off. The
optimal shape can be calculated from the configuration at pull-off by
elasticity. If desired, the optimal shape can be determined by numerical
methods such as the fine element method.

Definition 2. The singular shape of two contacting objects over a
surface area A is defined as such that the stress distribution is
equivalent to the singular stress distribution associated with a crack
external to the connecting area A at pull-off. The singular shape can
be calculated from the configuration at pull-off by elasticity.

Theorem 1. As the size of the contact area decreases, the adhesive
strength associated with the singular shape increases until it reaches the
theoretical strength of adhesion near the critical size defined by Eq. 7.
At the critical size, the strength of adhesion is no longer sensitive to the
local geometry of the contacting objects. The optimal shape and the
singular shape give rise to the same pull-off force.

Theorem 2. Optimal adhesion at theoretical strength could be achieved
by a combination of size reduction and shape optimization. The
smaller the size, the less important the shape optimization becomes. At
large contact sizes, optimal adhesion could still be achieved if the shape
can be manufactured to a sufficiently high precision.

Because these concepts are based on the classical subjects of
elasticity and linear elastic fracture mechanics, for which the basic
existence and uniqueness theorems have long been proven (20), we
do not find it necessary to go beyond setting up the boundary value
problems for the singular and optimal shapes. Fig. 5 a–c shows
schematically the linear elastic boundary value problems for the

optimal shape and Fig. 5 d–f shows those for the singular shape. The
conclusions of this article are generally applicable as long as the
elastic boundary problems depicted in Fig. 5 can be solved to obtain
the optimal and singular shapes. Further discussions are made in
Appendix, where we also show how to obtain the analytical solution
for the optimal shape in the special case of a rigid fiber in contact
with an elastic substrate.

The concepts developed in this article should be of general value
in the understanding of biological attachment systems and the
design of engineering systems. In the present study, we have
implicitly assumed that the fibrillar structure is soft enough to
achieve conformal contact with a rough surface. The effect of
surface roughness should be more systematically investigated in the
future. Also, we have not considered many important aspects of
optimal design for dry adhesion. Open questions still exist that
should be subjected to further investigation. For example, the more
general cases involving coupled tension, shear, and bending loads
on a fibrillar structure can be investigated under similar questions
with respect to optimized adhesion or friction. It will be especially
interesting to consider these issues in conjunction with the effects
of the aspect ratio, distribution, and collective behaviors of a
fibrillar structure.

Appendix
Fig. 5a shows that the optimal shape of a fiber is defined as such that
a uniform distribution of normal stress equal to the theoretical
adhesion strength �th is achieved at pull-off. Fig. 5c shows that the
substrate is assumed to be flat in its undeformed configuration. We
can use these conditions to calculate the undeformed configuration
of the optimal shape of the fiber.

To determine the optimal shape, a uniform pressure with mag-
nitude equal to �th is separately applied over the contact region of
the two objects which will deform as depicted in Fig. 5b. Super-
posing Fig. 5a and Fig. 5b should yield the optimal shape of the fiber
and the undisturbed flat surface of the substrate (Fig. 5c). Here, in
Fig. 5, one of the contacting objects (substrate) has been assumed
to be a flat surface, and we focus on finding the optimal shape of

Fig. 5. Methodology for determining the opti-
mal and singular shapes for dry adhesion between
two solid objects. (a) Deformed configuration of
the optimal shape at pull-off. At this state, a uni-
form stress equal to the theoretical adhesion
strength �th is distributed over the contact region.
(b) Reverse of the pull-off configuration by super-
position of a uniform pressure equal to �th over the
contact region, which results in the undeformed
configuration of the optimal shape depicted in c.
(d) Deformed configuration of the singular shape
at pull-off. At this state, a singular stress equivalent
to that associated with a crack external to the
contact region is assumed to be distributed over
the contact interface. (e) Reverse of the pull-off
configuration by superposition of a singular pres-
sure distribution over the contact region, giving
the undeformed configuration of the singular
shape depicted in f.
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the fiber. This limitation can be easily removed by generalizing the
methodology to two arbitrary contacting objects. We can always use
two conforming surfaces with a uniform distribution of theoretical
adhesion strength �th to determine the undeformed configurations
of the two objects by reverse elasticity. The solution is unique only
when the deformed configuration of the contact interface is pre-
scribed or known. If the deformed configuration of the conforming
interface is not known, we can in principle find an infinite number
of solutions for the optimally shaped contacting surfaces which give
rise to the theoretical pull-off force. In the problem depicted in Fig.
5, the deformed configuration of the substrate is assumed to be a
flat surface and this condition should lead to a unique solution for
the deformed configuration of the conforming contact interface
and the optimal shape of the fiber.

Figs. 5 d–f describes similar relationships that can be used to
determine the singular shapes for the contacting objects. We
emphasize again that the pull-off forces associated with the optimal
and singular shapes given by Eqs. 3–5 do not require solutions to
these shapes.

A critical step in the methodology to determine the optimal and
singular shapes for general adhesive joints is the boundary value
problem defined in Fig. 5 b and e which involves compressive
loading on the two objects. Assuming the deformation of the objects
is small (linear elastic) at pull-off, the existence and uniqueness
theorems of elasticity (20) guarantee that the solution can be
uniquely determined. For very compliant structures, the condition
of small deformation at pull-off may be violated and the method-
ology may breakdown. In those cases, the two theorems given in the
article may cease to be valid.

As illustration, in the following text, we show how the optimal
shape of a rigid cylindrical fiber in contact with an elastic
half-space is determined. In the case of frictionless contact, the
normal surface displacement caused by a uniform normal trac-
tion �th applied over a circular region of an initially perfectly f lat
half-space is given by (21)

w�r� �
4�thR
�E*

E�r�R�, �r � R� [A1]

where E� is the complete elliptic integral of the second kind, E*
is defined as E* � E�(1 � �2), E being Young’s modulus and � being

Poisson’s ratio of the half-space. According to Fig. 5a, the optimal
adhesion occurs if the contacting surfaces should perfectly conform
to each other at the critical moment of pull-off. Therefore, the
optimal shape for the rigid fiber tip is simply given by

fth�r� �
�thR
E* � 4

�
E�r�R� � 2�, �r � R� [A2]

where a constant has been added such that fth (0) � 0.
Similarly, the optimal shape of a rigid cylindrical fiber in nonslip

contact with an elastic half-space can be determined. In this case,
the relative tangential displacements along the contact interface are
fully constrained and the effects of radial shear tractions over the
contact region must be taken into account. The normal surface
displacement caused by a uniform normal traction �th with fully
constrained tangential displacement over a circular region of an
initially perfectly flat half-space is given by

w�r� �
�thR
E*

4
�

E�r�R� � �1 � 2�

1 � �
�2 �thR

�2E*
�1 � r2�R2. �r � R�

[A3]

Letting the tip shape of the rigid fiber conform to this function
yields the optimal shape

fth
NS�r� �

�thR
E* � 4

�
E�r�R� � 2�

� �1 � 2�

1 � �
�2 �thR

�2E*
��1 � r2�R2 � 1�. �r � R� [A4]

where a constant has been added to make f th
NS (0) � 0. Here, NS

stands for ‘‘no slip.’’
Eqs. A2–A4 also apply to the case of an elastic cylindrical fiber

within the approximation of linear elasticity.
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