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We study the influence of surface roughness on the adhesion of elastic plates. Most real surfaces
have roughness on many different length scales, and this fact is taken into account in our analysis.
We consider in detail the case when the surface roughness can be described as a self affine fractal,
and study the plate-substrate pull-off force as a function of the surface roughness. Based on the
theoretical results we discuss adhesion in biological systems, focusing on the adhesive pads of lizards.
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1. Introduction
In this paper we discuss adhesion of an elastic plate

to a hard randomly rough surface, which has many im-
portant applications, e.g., in biological systems [1]. We
calculate the plate-substrate pull-off force under the as-
sumption that there is complete contact in the nominal
contact area. We assume that the substrate surface has
roughness on many different length scales, and consider
in detail the case of self affine fractal surfaces.

Adhesion of an elastic solid to a rough substrate in-
volves the competition between the (negative) attractive
adhesion energy, which result mainly from the regions
where the two solids are in atomic contact at the inter-
face, and the (positive) repulsive elastic energy associ-
ated with the bending of the surface of the elastic solid
so that it comes in direct atomic contact with the sub-
strate. Thus, if A0 is the nominal contact area between
the solids and A the true atomic contact area, then we
define the effective interfacial energy

γeffA0 = ∆γA − Uel

Here ∆γ = γ1 + γ2 − γ12 is the change in the interfacial
energy (per unit area) when perfectly flat surfaces of the
two solids are brought into contact, and Ueff is the elas-
tic (bending) energy necessary in order to make atomic
contact at the interface. In this paper we will assume
complete contact between the solids in the nominal con-
tact area so that A = A0. The more general problem of
partial contact was studied in Ref. [2] for semi infinite
solids. We plan to extend the study in Ref. [2] to the
thin-plate case considered in this paper.

The theory we develop in this paper can be applied to
biological adhesion systems, e.g., to the adhesion pads of
flies, beetles, spiders or lizards. In particular, we focus
on the adhesion of the gecko foot pad to surfaces with
random roughness. This seams to be a case of “dry” ad-
hesion, where no fluid is injected in the contact area, and
is hence a particularly simple and well-defined system [3].
The skin of on the gecko foot pad is made from keratin-
like protein with an elastic modulus of order E ≈ 109 Pa.
This is much higher than the elastic modulus of rubber,

where typically E ≈ 106 Pa. However, even for rubber a
relative small surface roughness (of order a few microm-
eter root-mean-square amplitude) is able to completely
eliminate the adhesion, resulting in zero pull-off force [4].
How, then, is it possible for the lizard to adhere even to
a very rough stone wall when the elastic modulus of the
pad skin is much higher than that of rubber?
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FIG. 1. Schematic picture of the lizard adhesive system.
The skin of the lizard is covered by a dense layer of thin fibers
or hair (setae) (length ≈ 100 µm and width of fiber of order
∼ 1 µm). Each of these fibers branch out into about 1000
thinner fibers (length ∼ 10 µm and width of order ∼ 0.1 µm).
Each of the thin fiber ends with a thin (5 − 10 nm) leaf-like
plate (spatula).
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FIG. 2. Details of attachment system of the tokay gecko
(Gekko gecko). A. Scanning electron microscopy (SEM) mi-
crograph of setae (st) located on thin keratin film. B. Mag-
nification (SEM micrograph) of the area surrounded by the
white rectangle in A, showing terminal branches (tb) of setae
with the spatulae (sp). C. Transmission electron microscopy
micrograph of ultrathin section of two terminal branches (tb)
with spatulae (sp).

During millions of years of evolution, driven by natu-

ral selection, an extremely soft elastic layer has appeared
on the lizard pad surface. This layer is built in a hier-
archic manner from fibers and plates, see Figs. 1 and 2.
The hierarchic nature of the adhesive system reflect the
hierarchic nature of most natural surfaces (to which the
lizard must be able to adhere), which have roughness on
all length scales, from the macroscopic scale (e.g., size of
the lizard toe pad) down to the atomic scale. Thus, the
skin of the lizard pad is covered by a dense layer of fibers
or hair (satea) (length ≈ 100 µm and width ∼ 1 µm).
Each of these fibers branch out into about 1000 thinner
fibers (length ∼ 10 µm and width ∼ 0.1 µm). Each of
these thin terminal fibers ends with a thin (5 − 10 nm)
leaf-like plate (spatula). This hierarchical construction
makes the lizard adhesive system elastically very soft on
all relevant length scales (from mm to nm).

In an earlier paper one of us has studied how the elas-
tic bending energy stored in the setae fiber array systems
influence the pull-off force [5]. The force necessary to re-
move an individual setae (or spatula) was assumed known
(e.g., obtained from experiments). In this paper we focus
instead on the binding between the spatula leaf-like plate
and the substrate.

2. Pull-off force
Consider an elastic plate (thickness d) in contact with

a rough but nominal flat substrate. The plate is able to
bend to follow the substrate roughness wavelength com-
ponents λ which are much larger than the thickness d of
the plate. Let us first estimate the pull-off force F when
the plate is in contact with a smooth (flat) substrate, and
the with l of the detached region is large compared to the
thickness d of the plate, see Fig. 3(a). The total energy

U = −∆γB(L0 − x) + Fx(1 − cosα),

where B is the width of the plate-like structure and L0

the length, and ∆γ = γ1 + γ2 − γ12 the change in sur-
face energy when the plate makes contact with the sub-
strate. The pull-off force is determined by the condition
∂U/∂x = 0 which gives

F =
∆γB

1 − cosα

The perpendicular force

F⊥ = F sinα =
∆γBsinα

1 − cosα
(1)

Eqs. (1) and (2) are also valid for rough substrates if we
replace the interfacial surface energy difference ∆γ with
the effective surface energy γeff defined in Sec. 1. In Fig.
4 we show the (perpendicular) pull-off force as a func-
tion of the angle α. Note that F⊥ → ∞ as α → 0. The
reader can immediately verify this equation by pulling off
a Scotch tape from a flat substrate at different pulling an-
gles α. Eq. (1) also explain one reason for why the legs



of the lizard point outwards, away from the body; this
makes α small and the vertical pull-off force large.

(a)

.
.
.
.

.
.

. . . ....
.

F
α

L   - x0

. . . . . . . .

F

.
.

.
.

.
.

.
.

.
.

.

. .
. .

.
.

..
. .

.
.

.
.
.

.

.
.

.
..

..
. .

.

.
. . . ..... . . . . ...

terminal branch

terminal plate
(spatula)

(c)

crack

γ
eff

(b)

crack . ..
. .

.. .
.

. .
.. .

. .
.
.. .

.
.

.
.. .

. . .
.. .

.
.

.
.. .

..
.
.. .

.
. .

.. .
.

. . .. . . .. .

.

..

. .

.

.

σ

d

smooth substrate

rough

σ

L

FIG. 3. (a) A thin plate pulled off a substrate (pull-off force
F ). (b) The initial force, when the length l of the crack is
much shorter than the thickness d of the plate, is much higher
than the force in (a) where l >> d. (c) A thin fiber in con-
tact with a relatively smooth substrate. The fiber ends with
a thin plate-like structure (spatula) (thickness of order 5-20
nm) which is able to deform to follow the substrate roughness
profile. The effective interfacial surface energy, γeff , depends
on the thickness of the terminal plate, and we expect γeff to
vary with the location along the spatulae as indicated by the
solid line in the bottom part of the figure.

The initial force to “nucleate” the crack at the plate

edge [see Fig. 3(b)] is higher than the “steady-state”
pull-off force F shown in Fig. 3(a). Thus, if the crack
length l << d and if the perpendicular stress σ act over
a region of length L > d we have the standard result

σ ≈

(

E∆γ

l

)1/2

and the pull-off force

F = BLσ ≈ BL

(

E∆γ

l

)1/2

(2)

The spatula ends with an elastic leaf-like plate with
the lateral dimensions of order 200-300 nm, and with a
thickness which varies from d ≈ 20 nm at the base to
d ≈ 5 nm at the tip, see Fig. 3(c). For a smooth sub-
strate the spatulae is likely to adhere along its full length
as indicated in the figure. In this case the force neces-
sary in order to initiate pull-off is given by a formula
similar to Eq. (2) with B ≈ L ≈ D of order the thick-
ness D ≈ 0.1 µm of the terminal branch, and with an
initial crack length equal to some small fraction of the
diameter of the terminal branch, e.g., l ≈ 0.1D. Using
∆γ ≈ 2 meV/Å2 and E ≈ 109 Pa, this gives the pull-
off force of order 1 µN, which is close to the observed
value for smooth substrates. On a rough substrate the
interfacial free energy difference ∆γ must be replaced by
the effective free energy γeff which includes the elastic
energy stored at the interface. The latter depends on
the thickness of the terminal plate, and we expect γeff to
vary with the location along the spatulae as indicated in
Fig. 3(c)(bottom, solid line). Thus, in this case effective
adhesion may only occur to the tip of the terminal plate,
and the pull-off force will be determined by this contact
region by a formula of the type given by Eq. (1), but
with ∆γ replaced by γeff .
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FIG. 4. The perpendicular pull-off force as a function of
the angle α defined in Fig. 3.



3. Interfacial elastic and adhesion energies for
rough surfaces

Assume that a thin elastic slab (thickness d) is in con-
tact with the rough surface of a hard solid. Assume that
because of the slab-substrate adhesion interaction, the
slab deforms elastically and makes contact with the sub-
strate everywhere, see Fig. 5.
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FIG. 5. The adhesion interaction pull the elastic slab into
complete contact with the rough substrate surface.

Let us calculate the difference in the free energy be-
tween the slab in contact with the substrate and the
non-contact case. Let z = h(x) denote the height of
the rough surface above a flat reference plane (chosen so
that 〈h〉 = 0). Assume first that the elastic slab is in
direct contact with the substrate over the whole nominal
contact area. Let us calculate the elastic energy stored
in the deformation field in the elastic slab. We first as-
sume that the thickness d of the slab is much smaller
than the shortest wavelength λ associated with the sub-
strate roughness profile. In this case we can use the the-
ory of elastic plates to calculate the elastic energy. Let
z = u(x) denote the vertical displacement field of a thin
plate, which originally (in the undeformed state) occupy
the xy-plane. The elastic energy in the plate is given by
[6]:

Uel =
Ed3

24(1 − ν2)

∫

d2x
[

(

∇2u
)2

− 2(1 − ν)|uij |
]

(3)

where the determinant

|uij | =
∂2u

∂x2

∂2u

∂y2
−

(

∂2u

∂x∂y

)2

Let us write

u(x) =

∫

d2q u(q)eiq·x

We get
∫

d2x
(

∇2u
)2

= (2π)2
∫

d2q q4|u(q)|2 (4)

and
∫

d2x |uij | = 0. (5)

For complete contact u(x) = h(x) and hence u(q) =
h(q). Now, let us define the surface roughness power
spectrum

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x, (6)

where 〈...〉 stands for ensemble average. Note that

〈|h(q)|2〉 =
A0

(2π)2
C(q) (7)

where A0 is the (one side) surface area of the slab. Using
(7) and that u(q) = h(q), and substituting (4) and (5)
in (3) gives

Uel =
A0E

24(1 − ν2)

∫

d2q (qd)3qC(q) (8)

Assume now instead that λ << d. In this case we can
treat the elastic slab as infinitely thick when deriving the
elastic energy stored in the slab, see Fig. 6 If we again
assume that complete contact occurs between the solids,
then uz = h(x), and as shown in Ref. [2,7],

Uel =
A0E

4(1 − ν2)

∫

d2q qC(q) (9)

We can interpolate smoothly between the results (8) and
(9) using the following expression for the elastic energy

Uel =
A0E

4(1 − ν2)

∫

d2q qC(q)
(qd)3

6 + (qd)3
(10)
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FIG. 6. (a) When the wavelength λ0 of the surface rough-
ness is much longer than the thickness d of the elastic slab,
λ0 >> d, the elastic slab deform so that the upper surface of
the slab takes the same form as the substrate roughness pro-
file. (b) When λ0 < d the upper surface of the slab is nearly
flat (the displacement field decay as u ∼ exp(−2πz/λ0) with
the distance z away from the substrate surface).



The adhesion energy is assumed proportional to the
contact area so that assuming complete contact

Uad = −∆γA0 (11)

The change in the free energy when the elastic slab moves
in contact with the substrate is given by the sum of (10)
and (11):

Uel + Uad = −γeffA0 (12)

where

γeff = ∆γ

[

1 −
2π

δ

∫

dq q2C(q)
(qd)3

6 + (qd)3

]

(13)

where we have introduced the adhesion length δ = 4(1 −
ν2)∆γ/E. The theory above is valid for surfaces with ar-
bitrary random roughness, but will now be applied to (a)
surfaces with roughness on a single length scale, (b) self-
affine fractal surfaces, and (c) a sand paper surface for
which the power spectra C(q) has been calculated from
the measured height profile h(x).

(a). Assume surface roughness on a single length scale
λ0. This limiting case is not very realistic, but is very
useful in order to understand some aspect of adhesion.
We take

C(q) = C0δ(q − q0) (14)

where q0 = 2π/λ0. We can relate C0 to the root mean
square roughness amplitude using (6):

〈h2〉 =

∫

d2q C(q) = 2πC0q0

Following earlier studies we define h2
0 = 2〈h2〉 so that

C0 = h2
0/(4πq0) (15)

Substituting (14) in (13) and using (15) gives

γeff = ∆γ

[

1 − (q0h0)
2 1

2q0δ

(q0d)3

6 + (q0d)3

]

(16)
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FIG. 7. The variation of the (normalized) effective interfa-

cial free energy γeff with the thickness d of the plate. Results
are shown for q1 = 109 (dashed lines) and q1 = 1010 m−1

(solid lines) for H = 0.5, 0.6, ..., 1, where the magnitude of
γeff monotonically increases with increasing H . In the calcu-
lation δ = 1 Å.

(b). It has been found that many “natural” surfaces,
e.g., surfaces of many materials generated by fracture,
can be approximately described as self-affine surfaces
over a rather wide roughness size region. A self-affine
fractal surface has the property that if we make a scale
change that is appropriately different along the two direc-
tions, parallel and perpendicular, then the surface does
not change its morphology [8]. Recent studies have shown
that even asphalt road tracks (of interest for rubber fric-
tion) are (approximately) self-affine fractal, with a long-
distance cut-off length λ0 = 2π/q0 of order a few mm.
For a self affine fractal surface [8] for q > q0:

C(q) =
H

2π

(

h0

q0

)2 (

q

q0

)−2(H+1)

, (17)

where H = 3−Df (where the fractal dimension 2 < Df <
3), and where q0 is the lower cut-off wavevector. For
q < q0 we take for simplicity C(q) = 0. The parameter
h0 determine the rms roughness amplitude, 〈h2〉 = h2

0/2.
We note that C(q) can be measured directly, using many
different methods, e.g., using stylus instruments or opti-
cal instruments.

Substituting (17) in (13) gives

γeff

∆γ
= 1 − (q0h0)

2 1

q0δ
f(H) (18)

where

f(H) = H

∫ q1/q0

1

dx
(q0d)3x3−2H

6 + (q0d)3x3
(19)

The short distance cut wave vector cut off q1 depends
on the system under study. If it is assumed that the
substrate is self affine fractal on all length scales, then
q1 ≈ 2π/a, where a is of order a substrate lattice spac-
ing, e.g., of order a few Angstrom. Thus the largest
possible q1 is ≈ 1010 m−1. However, if the elastic solid
has a thin very soft (say liquid-like) layer at its surface,
as one of us has speculated before may be the case for
the the lizard foot pad, then the effective cut off wave
vector q1 will be smaller. For example, if a D ∼ 60 Å
high mobility (liquid-like) layer occur then one expect
q1 ≈ 2π/D ≈ 109 m−1. Similar if a thin (thickness D)
(typically organic) contamination layer occur on the sur-
face, which is able to rearrange itself at the interface and
fill out nanoscale cavities, then again q1 ≈ 2π/D. In



some cases (e.g., for flies, beetles and other insects) a liq-
uid substance is injecting in the contact area which will
have a similar effect of acting as a large wave vector cut
off in the q-integration in Eq. (19).

Let us apply Eq. (18) to the adhesion of a lizard toe
to a rough substrate. The elastic modulus of keratin is
in the range 1− 4 GPa and assuming the typical van der
Waals surface energy difference [10] ∆γ ≈ 1− 3 meV/Å2

gives δ ≈ 1 Å. In Fig. 7 we show the calculated [from
(18) and (19)] effective surface energy for a typical case.
We have used h0 = 20 nm, which was obtained from
the measured height profile of a sand paper (the mea-
surement refer to a linear dimension λ0 of order a few
hundred nanometers, i.e., to the lateral size of the leaf-
like structure at the end of the spatula). We also used
q0 = 2π/λ0 ≈ 107 m−1 and q1 = 109 (dashed lines)
and 1010 m−1 (solid lines). Since the spatula-end con-
sist of a plate-like structure with an average thickness
of d ≈ 5 − 10 nm it is clear that in the typical case of
H = 0.8 the adhesion will be strongly suppressed (see
also below). However, there is considerable uncertain in
the value of δ (we have used δ = 1 Å) since the elastic
modulus E and the interfacial energy difference ∆γ have
not been accurately measured until now. Similarly, the
thickness of the leaf-plate will vary from a maximum at
the basis, to a smaller value close to the periphery of the
plate.

(c). Finally, let us present some numerical results for
a sand paper surface for which we plan to study gecko-
adhesion in the near future. We have measured the
height distribution h(x) using an Atomic Force Micro-
scope. The measurement was performed over a rectan-
gular area Lx×Ly. Using a recently developed computer
program [9] we have obtained the surface height distri-
bution Ph and the surface roughness power spectra C(q)
from the height data.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

-4e-07 -3e-07 -2e-07 -1e-07 0 1e-07 2e-07 3e-07 4e-070 0.2 0.4-0.2-0.4

height h (µm)

0

P
   

(1
/µ

m
)

h

2

4

FIG. 8. The height probability distribution Ph for a
sand paper (particle diameter ≈ 0.3 µm) surface with a
root-mean-square roughness of about 93 nm.

In Fig. 8 we show the height probability distribution
Ph for the sand paper surface with particle size of or-
der 0.3 µm. The root-mean-square roughness 93 nm
was measured over a surface area of the linear size
λ0 ≈ 30 µm. Note that Ph is a near perfect Gaussian; one
can show that randomly rough surfaces have Gaussian
height distributions. Fig. 9 shows the surface roughness
power spectra C(q) for the same surface. The height pro-
file was measured with a lateral resolution a = 29.3 nm,
corresponding to the wave vector q ≈ π/a ≈ 108 m−1;
in Fig. 9 we have made a linear extrapolation to larger
q vectors. Note that C(q) has a power law region (i.e.,
a linear region between logC and logq), characterized by
the exponent H ≈ 1.1.
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FIG. 9. Surface roughness power spectra C(q) as a func-
tion of the wave vector q for the same sand paper surface as
in Fig. 8.

Fig. 10 shows the variation of the (normalized) effec-
tive interfacial free energy γeff with the thickness d of the
plate. Curves a-d correspond to different short distance
cut off wavevector q1, namely a: 107, b: 108, c: 109 and
d: 1010 m−1. In the calculation we have used the power
spectra C(q) shown in Fig. 9, and δ = 1 Å. It is in-
teresting to note that using the large wave vector cut off
q1 = 109 or 1010 m−1 gives nearly the same result. This
implies, e.g., that at least in the present case a very soft
thin (nanometers) layer at the interface will not increase
the adhesion to any appreciate extent, i.e., such a layer
may not be necessary in order for the lizard to adhere to
rough substrates.
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FIG. 10. The variation of the (normalized) effective inter-
facial free energy γeff with the thickness d of the plate. Curves
a-d correspond to different short distance cut off wavevector
q1, namely a: 107, b: 108, c: 109 and d: 1010 m−1. For the
power spectra C(q) shown in Fig. 9 and with δ = 1 Å.

The curves in Fig. 10 was calculated using Eq. (13)
with the power spectra C(q) shown in Fig. 9, which
start at q0 ≈ 2.1 × 105 m−1. However, when study-
ing the adhesion between the lizard leaf-like plate and
the substrate we should only include roughness com-
ponents with wavelength shorter than the lateral size
of the leaf-plate, which is of order λ0 ≈ 300 nm. In
Fig. 11 we compare the results from Fig. 10 (curves
b-d) with the effective surface energy obtained when
we only include roughness wavevector components with
q > q0 = 2π/λ0 ≈ 2×107 m−1 (dashed lines). The thick-
ness of the plate-like structure at the end of the spatula
is in the range of d ≈ 5 − 10 nm so based on Fig. 11
(curve d) one would expect to observe a strong decrease
in the adhesion on this surface as compared to a perfectly
smooth substrate (see also Sec. 4). Experiments to check
the predictions above is currently underway. An accurate
comparison between theory and experiment would, how-
ever, require that the height profile h(x) is measured with
higher resolution (∼ 3 nm) so that C(q) can be calculated
at least up to q ∼ 109 m−1, rather than extrapolated to
large q as in the present case (see Fig. 9).
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FIG. 11. The variation of the (normalized) effective inter-
facial free energy γeff with the thickness d of the plate. Curves
b-d correspond to different short distance cut off wavevector
q1, namely b: 108, c: 109 and d: 1010 m−1. For the power
spectra C(q) shown in Fig. 9 and with δ = 1 Å. The solid
curves are the same as in Fig. 10 while the dashed curves are
obtained by only including roughness wavelength components
q > q0 = 2 × 107 m−1.

4. Comments

In this section we make two comments related to the
theory presented above. First, note that when detached
regions are included, the effective interfacial energy as
function of the thickness d of the slab will have a tail
toward larger d. This is shown schematically in Fig.
12(dashed line) for case b in Fig. 10. We plan to study
this effect in detail in the future by generalizing the the-
ory presented in Ref. [2], which is valid for semi-infinite
solids rather than plates.
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FIG. 12. When detached regions are included, the effective
interfacial energy as function of the thickness d of the slab
will have a tail toward larger d. For the case b in Fig. 10
(schematic).

However, even when the minimum free energy state
correspond to complete contact, the elastic plate may
(because of friction) be trapped in a metastable state as
illustrated in Fig. 13. In this case, because the kinetic
friction is smaller than the static friction, sliding or vi-
brating the plate may increase the contact area. This
effect is known experimentally: by sliding the lizard toe
pad for a short distance the adhesion force can be in-
creased [3].
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FIG. 13. The free energy is minimal for the complete con-
tact state but because of friction the plate is not able to de-
form to follow the substrate.

Measurements have shown that the friction between
a beetle (Gastrophysa viridula) adhesive pad, and the
sand paper surface discussed in Sec. 3(c), is about 5
times smaller than on the smooth substrate (of the same
material). One interpretation of this result is that the
area of real contact may be ∼ 5 times smaller on the
rough substrate compared to the smooth substrate. The
theory presented in this paper assume complete contact,
but when the theory predict γeff/∆γ << 1 (as in Sec. 3)
one may, in fact, expect only partial contact (see above);
this would be consistent with the beetle friction data.
When sand paper with larger particles was used (> 1 µm)
the friction was nearly the same as on the smooth sub-
strate, indicating complete contact in these cases. Unfor-
tunately, no AFM data of the height profile was reported
for these cases.

It has been pointed out that on a smooth surface only
0.03% of the gecko’s setae are necessary in order to sup-
port its body weight, and the question has been raised
why the geckos are so over-built [3]. However, it is clear
from the calculations presented in Sec. 3 and from Fig.
12 that on a rough substrate the spatulae-substrate ad-
hesion may be strongly reduced, and we believe that this
may be the main reason for why the gecko’s adhesive
system is so apparent over-built.

5. Discussion
How can a fly or a cricket walk on a glass window,

or a lizard move on a stone or concrete wall? In order
to explain the observed adhesion, these questions can be
reformulated as follows: how is the extremely soft sur-
face layer, which must exist on the adhesion pads, de-
signed. This fundamental question has interested scien-
tists for many years, and recently very important work
has been performed in order to gain a deeper insight into
this problem [1]. Thus it is now known that the adhesive
systems, adapted to attachment to a variety of surfaces,
are build in a hierarchic manner from fibers and plates
with very small bending elasticities, making it possible
for the molecular attraction at the interface to pull the
two surfaces into nearly complete contact without storing
up a large elastic deformation energy at the interface.

In this paper we have focus on dry adhesion which
seams to be relevant for lizards [3]. In Ref. [5] one of us
has presented a simple model study of fiber adhesion on
surfaces with roughness on many length scales, and ap-
plied it to the adhesion between a lizard toe and a smooth
or rough hard substrate. In this paper we have extended
that study, and considered the spatula-plate adhesion.

Naturally occurring surfaces (e.g., a stone wall) have
surface roughness on all length scales, from macroscopic
to atomic. Adhesion between two bodies is only possible
if the surfaces are able to deform (elastically or plasti-
cally) to make direct (atomic) contact at a non-negligible
fraction of the nominal contact area. For “hard” solids
this is nearly impossible and as a result adhesion is usu-
ally negligible between hard rough surfaces [11].

The skin of the gecko toe-pad is able to deform and fol-
low the substrate roughness profile on length scales much
longer than the thickness d ≈ 100 µm of the elastic ker-
atin film, say beyond ∼ 1000 µm. At shorter length scales
the keratin film, because of its high elastic modulus (of
order 1 GPa), can be considered as rigid and flat. Elastic
deformation of the pad surface on length scales shorter
than ∼ 1000 µm, involves the compliant setae fiber ar-
ray system, with fibers of thickness ∼ 4 µm. In Ref. [5]
we have shown that if the surface roughness root-mean-
square amplitude, measured over a patch D × D with
D ≈ 1000 µm, is smaller than a characteristic length (the
adhesion length) (see Ref. [5]), then the fiber array sys-
tem is able to deform (without storing in it a lot of elastic
energy) to follow the surface roughness in the wavelength
range 10 < λ < 1000 µm. However, if the setae fiber tips
would be blunt and compact they would not be able to
penetrate into surface “cavities” with diameter less than
a few µm. Thus, negligible atomic contact would occur
between the surfaces, and the adhesion would be negligi-
ble. For this reason, at the tip of each long (thick) fiber
occur an array of ∼ 1000 thinner fibers (diameter of order
∼ 0.1 µm). These fibers are able to penetrate into sur-
face roughness cavities down to a length scales of a few
tenth of a micrometer. However, if the thin fibers would
have blunt and compact tips made from the same “hard”
keratin as the rest of the fiber, then one would still obtain
a very small adhesion, since a lot of elastic energy would
be necessary to deform the surfaces of the thin fibers to
make atomic contact with the substrate. Therefore the
top of the thin fibers end with thin leaf-like plates, which
can be easily bent (without storing a lot of elastic en-
ergy) to follow the surface roughness profile. In Ref. [5]
one of us speculated that the spatula tips are covered
with a very soft compliant layer, e.g., a liquid-like (high
mobility) layer of polymer chains grafted to the tip of the
thin fibers. This liquid-like layer, if thick enough, would
be able to adjust to the substrate roughness profile over
lateral distances below ∼ 10 nm. However, the calcula-
tion presented above (Fig. 10 and 11), indicate that such
a layer may not always be necessary in order for strong



adhesion to occur. However, the calculations presented
in Fig. 6 shows that for rough surfaces with the fractal
dimension Df = 3 − H > 2.2 very small adhesion may
occur in most cases.

FIG. 14. The adhesive system beetle and lizards.

Finally, let us notice that lizards are the most heavy
living objects on this planet that are able to adhere to,
e.g., a rough vertical stone wall. Since the surface area of
a body increases slower than the volume (or mass) with
the increase of the linear size of the body, it is clear that
the adhesive system in large living bodies such as lizards,
must be more effective (per unit attachment area) than
in smaller living objects such as flies or beetles [1]. This
most likely implies that lizards have the most effective
adhesive systems appeared in the biological evolution for
the purpose of locomotion. This is confirmed by elec-
tron microscopy studies. Let us compare the spatulae of
the adhesive systems of beetles with lizards (Fig. 14).
Note that the spatulae are thinner in lizards than in bee-
tles. Also the diameter of terminal branches is smaller.
This implies that less elastic energy per unit surface area
will be stored in the lizard adhesive system, and that the
effective interfacial energy γeff will be larger for lizards
than for beetles.

6. Summary and conclusion
We have studied the adhesion of elastic plates to rough

substrates, which is relevant to biological systems, e.g.,
flies, crickets and lizards, where the adhesive microstruc-
tures consist of a hierarchical arrays of thin fibers and
plates. The effective elastic modulus of the fiber–plate
arrays is very small on all relevant length scales (from
mm to nm), which is of fundamental importance for ad-
hesion on rough substrates. We have shown how the ad-
hesion depend on the nature of the substrate roughness,
and applied the theoretical results to the adhesion pads
of lizards. Experiments to test the theoretical results are

underway. Finally, we note that the construction of man-
made adhesives based on fiber and plate arrays may be
an attractive alternative to the usual adhesives based on
thin polymer films. Some pioneering experiments have
indeed shown enhanced adhesion for fiber array systems,
but no man-made system of the hierarchic nature used
in biological systems have so far been produced [12,13].
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