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Abstract

Climbing rough vertical surfaces can be useful for applications such as search-and-

rescue, surveillance, and the inspection of hard-to-reach locations. In nature, several

methods of adhering to vertical surfaces can be observed. Small non-penetrating

spines are used effectively by many insects to attach to rough surfaces such as rock,

concrete, and similar materials. These structures hook onto surface asperities to

provide adhesion.

In this thesis, we discuss synthetic arrays of microspines that can be used by

robots or humans to attach to rough vertical surfaces. Microspine arrays have the

advantages of requiring low preloads, functioning in wet and dusty environments, and

supporting loads for extended periods of time without consuming power. Moreover,

they can attach to surfaces that are too rough for current synthetic dry adhesives.

We discuss the properties of surfaces that make them suitable for use with spines,

and present a spine/surface interaction model. We then discuss properties of the

spine suspensions necessary for them to be used effectively. The suspensions must

permit the spines to conform to the surface, share loads between them, and engage

and disengage from the surface. We present spine suspensions that were constructed,

and show that they have good measured performance in comparison to ideal designs.

We show examples of how spines have been used on climbing robots and in human

climbing aids.

We also show that the requirements for directional adhesive materials to work on

any surfaces are similar to those of spines, and that the principles developed for large

spine arrays can be adapted to directional dry adhesives for climbing. We discuss
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requirements on suspensions for large patches of spines or dry adhesives to enable

load-sharing over large areas.
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Chapter 1

Introduction

1.1 Overview

In recent years, there has been considerable progress in small, legged robots that can

run rapidly and stably over rough terrain [92, 16, 85, 30]. Climbing and maneuver-

ing on vertical surfaces presents a more difficult challenge, one that robots are just

beginning to address. Small robots that can climb a variety of hard and soft surfaces

unobtrusively and cling for extended periods of time without high power consump-

tion would be beneficial for applications such as surveillance or the inspection of

hard-to-reach locations.

Previously developed climbing robots have generally employed suction [59, 60,

113], magnets [11, 109, 45, 108, 50, 95, 39, 40, 43] or adhesives [70, 21, 22, 24, 73,

103, 102] to cling to smooth vertical surfaces such as windows and interior walls.

None of these approaches is suitable for porous or dusty exterior surfaces such as

brick, concrete, stucco or stone. Other climbing robots employ hand and foot holds

in the manner of a human climber [12, 14]. A controlled vortex to create negative

aerodynamic lift has been demonstrated on brick and concrete walls with considerable

success [104, 106, 107]. However, this approach consumes significant power (including

when the robot is stationary), unavoidably generates noise and is more difficult to

adapt to non-flat surfaces such as window ledges and corners. A recent development,

1



CHAPTER 1. INTRODUCTION 2

electroadhesion, uses high voltage to cause a flexible film to electrostatically cling to

a variety of surfaces [83].

When we look at animals that exhibit agility on vertical surfaces, we find a variety

of methods employed [15]. Larger animals such as cats and raccoons have strong claws

that can penetrate wood and bark surfaces. Tree frogs and many insects employ sticky

pads [27, 28]. Geckos and some spiders utilize large numbers of very fine hairs that

achieve adhesion via van der Waals forces on almost any kind of surface [9, 53, 1].

Insects and arthropods that climb well on vertical surfaces often have legs equipped

with large numbers of small, sharp spines [19]. At a larger scale, geckos that frequent

rock surfaces such as cliffs and caves have small claws on each toe in addition to their

dry adhesive structures [111]. Unlike the larger claws of a cat, spines do not need to

penetrate surfaces. Instead, they engage small surface asperities.

Spines and dry adhesives are both of particular interest because, together, they

work on a wide range of surfaces and they permit attachment and detachment rapidly

and with low energy expenditure. Dry adhesives work best on relatively smooth

surfaces, while spines can be used for adhesion on rough surfaces.

1.2 Dry adhesives

1.2.1 The gecko adhesive system

A discussion of the gecko adhesive system is warranted because it shares many simi-

larities with the microspine arrays developed in this thesis. Geckos can cling to a wide

range of surfaces, from smooth glass to sandstone. They accomplish this through a

dry adhesive and hierarchical structures in their feet that accomplish load-sharing.

The feet contain lamellae, flaps of skin covered with small hair-like structures called

setae. The setae branch into a tree-like structure at their ends, with the smallest fea-

tures around 150-175nm in diameter [86, 5]. These branched ends stick to surfaces via

van der Waals forces, which may be supplemented by capillary forces in the presence

of humidity [7, 10, 44, 101, 76].
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Aside from clinging extremely well to a very wide range of surfaces, the gecko

adhesive system has a number of useful properties:

• It is directional. The amount of adhesive force in the direction normal to the

surface is proportional to the amount of applied shear force parallel to the sur-

face. This is useful for control, because the amount of stickiness can be changed

by applying different amounts of shear force. Figure 1.1 shows a plot of the

force generated by gecko setae [6], in comparison with two other models which

express forces between two elastic spheres (B, the Johnson-Kendall-Roberts

(JKR) model [49]) and an adhesive tape (C, the Kendall Peel model [52]). The

directional property can be seen with the straight line from the origin through

force-space. These plots show a shaded “safe” region, in which contact will be

maintained, as long as forces are kept within that region of force-space.

• It requires zero pull-off force. If the shear force on the setae is reduced to

zero, or the setae are moved along the surface in their non-preferred direction,

the setae lose their adhesion. In contrast, for example, most adhesive tapes

require a peeling force to disengage from surfaces. When these adhesives detach

completely, there will be a sudden jump in force as the adhesive comes un-stuck.

Having zero pull-off force is extremely useful in climbing applications, because

detachment can then be done smoothly, without shaking the robot from sudden

force impulses. Furthermore, any force required to peel the adhesive is wasted

energy.

• It requires low preloads and can generate large forces. A single setal stalk can

hold 194 µN in adhesion, or 48 kPa (= 4.8 kg/cm2) [8, 36]. To achieve these

large forces, the setae only must be preloaded lightly into the surface: the ratio

of adhesion:preload force, known as µ′, is 8-16 for a single seta [8].

• It is reusable and self-cleaning. The gecko’s setae can be used for thousands of

steps before degrading, at which point the gecko must molt to expose a fresh

layer of adhesive [35]. The structure of the setae is such that dirt particles

naturally fall off after a few steps, because it is energetically more favorable for
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them to stick to the substrate than the setae [41]. In contrast, most adhesive

tapes get dirty after only a single use.

Many of these properties are also true of the microspine arrays developed in this

thesis: microspines are directional, require zero or near-zero pull-off force, can gener-

ate large forces after only small preloads, and are reusable and resistant to fouling.

Figure 1.1: (A), the frictional adhesion model of gecko setae. Gecko setae provide
adhesion normal to the surface in proportion to the applied shear force, up to a
limit Fmax. The forces pass through the origin, providing easy detachment. (B),
the Johnson-Kendall-Roberts model is for contact between two elastic spheres, and
includes the effects of van der Waals forces. (C), the Kendall Peel model describes
adhesion due to peeling, e.g. adhesive tape. Both of these other models require a
jump in force when detaching because the limit curves do not intersect the origin.
(Fig. from Autumn et al. [6].)

1.2.2 Synthetic dry adhesives

Due to the many useful properties of the gecko setae, synthetic dry adhesives imitating

gecko setae are being developed by several laboratories and there is a rapidly growing

literature on the subject. Dry adhesives have been made from polyimide hairs [32],

polystyrene shaped with a mold [46, 110], carbon nanotubes [112, 31, 84], polypropy-

lene molded into hairs [67, 63, 47], polyvinylsiloxane [20, 23, 33], or polyurethane

rubber [91, 54, 56, 57, 74]. These are made as patches of hairs or stalks attached to a
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backing layer, with the terminal features ranging in size from sub-micron to hundreds

of microns. Some groups have made hierarchical adhesives, with small hairs or stalks

on the ends of larger stalks or suspensions [77, 72, 2, 62].

In general, different synthetic dry adhesives excel in different respects, though

none excels in all of the ways the gecko adhesive system does [81]. Some sythetic dry

adhesives have been demonstrated to hold large adhesive pressures: [72, 84, 33] have

adhesive pressures of >35 kPa (compare to the gecko’s 48 kPa), though with patch

sizes of only 0.16 cm2 or less. Some adhesives have a large value of µ′, the ratio of

adhesive pressure to preload: [33, 91, 93] have values comparable to the gecko’s. A

few can be used in large patch sizes [81, 2, 91, 47, 93], and these also happen to be

directional.

Currently, all synthetic dry adhesives lack the self-cleaning property that allows

geckos to climb dusty walls, meaning that they can only be used in environments

with little dust or dirt. They also currently work only on relatively smooth surfaces,

such as painted metal or interior drywall, though progress is continuing. In general,

few of the synthetic adhesives are currently suitable for robotic climbing (as discussed

in [81]), and, as is discussed in this thesis, none of them can be used for climbing

without a properly designed suspension for distributing loads.

1.3 Spines

1.3.1 Spines in nature

A wide variety of animals use non-penetrating spines or claws to adhere to surfaces or

provide increased traction. These range in size from small insects to large mammals.

Many insect species such as ants, bees, and beetles use small claws at the end of

each leg to generate adhesion [75, 34, 65].

Roth and Willis [89] note that P. americana cockroaches can walk vertically and

even inverted on rough filter paper and rough emery paper surfaces, using only the

tarsal claws at the ends of their feet after their arolia (which stick to smooth surfaces
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on P. americana) were removed. The cockroaches were not able to adhere to smoother

grades of emery paper, however. Larsen et al. show how cockroaches actively engage

and disengage their claws with each step while walking upright and while walking

inverted on meshes [61, 29]. Dai et al. studied the increased frictional forces generated

by beetles on rough surfaces due to the interaction of their claws with the substrate

[19].

Cockroaches and spiders also use spines along the length of their legs to generate

increased traction on surfaces, particularly on their rear legs [98, 89]. These spines

function somewhat differently than claws for adhesion in that positive normal forces

are applied during their use. Spagna et al. studied how spines on the legs significantly

improve locomotion on surfaces like meshes, where footholds are sparse [98]. The

study also discussed how control is simpler if the feet are not sensitive to precise

placement on the surface.

Lizards also use their claws to attach to asperities on non-penetrable surfaces.

Zani found that the ability of lizards to cling to rough surfaces was correlated with

increased claw height and shorter toe length [111]. Mahendra found that geckos,

which have both dry adhesives and claws on the end of each toe, depend on their

claws to cling to very rough surfaces [66]; if the claws were removed, it was very

difficult or impossible for the geckos to stay attached.

Squirrels can also climb a range of impenetrable surfaces such as brick, stucco,

and surfaces with embedded rocks, as can be seen in figure 1.2(right) ([26], personal

observations). Even large animals such as bears are aided by the roughness of tree

bark to gain a grip. Black bear cubs have a much easier time climbing white pines

than other trees, due to the white pines’ furrowed and strong bark [87].

Of note, many animals have only a small number of claws on each foot. Insects

generally have two on the end of each leg, while mammals have four or five. Birds

may have two claws pointing in each direction, and Dendrocopos minor woodpeckers

can rotate their toes so three of them face upwards and one to the side. The feet are

used to grip a tree while the tail prevents pitchback [13]. We expect that with the

relatively constant number of claws or spines per foot, that claw or spine size should
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Figure 1.2: Pictures of a cockroach (left) and a squirrel (right) using spines to climb
vertical surfaces (Left picture used with permission from Robert Full).

increase with the animal’s mass, to withstand forces that will be proportional to the

animal’s body weight. (A further discussion of spine scaling is in section 2.3). In

contrast, our synthetic microspine arrays decouple the spine size from the total load

carried by having large numbers of small spines.

1.3.2 Synthetic spine arrays

Synthetic spine arrays for climbing are a new development by the author and col-

leagues [3, 4, 55]. Although spines are limited to being used on relatively rough sur-

faces, they are particularly attractive for hard, dusty, exterior surfaces because they

are relatively unaffected by dirt and only moderately affected by moisture. They have

a very low energy of attachment and negligible energy of detachment.

Spines have been used by the author and colleagues on robots to climb vertical

surfaces including cinder block, concrete, brick, stucco, and surfaces with small em-

bedded rocks. Furthermore, spines function well on penetrable surfaces such as felt

and cloth.

Others, in recent work, have had some success with spines, with robots able to
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climb surfaces at 60◦ angles [24]. Other robots have used penetrating claws [42],

but these function differently than microspines, which typically do not penetrate the

surface.

While limited to rough surfaces, synthetic microspine arrays are extremely useful

for robotic climbing, human climbing, and airplane perching. Their analysis further

aids development of dry adhesive patches to be used on smooth surfaces. In the

same way that geckos need claws to engage on rough surfaces [66], spines used in

conjunction with dry adhesives show great promise for attaching to a wide range of

surfaces.

1.4 Thesis outline

Chapter 2 presents a model of how spines engage on surfaces. Analysis is performed

on measured surfaces, determining the frequency of asperities and how the number

of asperities and spine/asperity contact strength scale with spine size.

Chapter 3 presents stages of use for the spines, from engagement to disengagement.

In each stage, constraints on the spine suspension stiffness matrix are presented so

that spines can be practically usable. The ideal spine suspension for load-sharing is

presented, subject to certain assumptions.

Chapter 4 presents several spine suspensions that have been manufactured and

used in robot and human climbing applications. The spine suspensions are charac-

terized and compared, and the performance of spines on a tarpaper (roofing paper)

surface is measured. A model of a typical spine suspension is used to evaluate the

effects of varying parameters in the suspension.

Chapter 5 discusses constraints on supporting structures for large patches of spines

or dry adhesives.

Chapter 6 concludes the thesis and offers suggestions for future work.
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1.5 Contributions

The main contributions of this thesis are as follows:

• a spine/surface interaction model that predicts when spines will find asperities

and when contacts will fail,

• a formulation of constraints on spine suspensions, including ideal behavior under

certain assumptions,

• analysis and empirical validation of arrays of microspines used for robot and

human climbing,

• definition of requirements on dry adhesive patches to enable conformation and

load-sharing.



Chapter 2

Spine-surface interactions

2.1 Overview

A few studies in the biology literature have considered the problem of spine/surface

interaction. Dai et al. [19] present a planar model of spine/asperity contact and

compute the maximum load per spine as a function of spine strength, relative size of

the spine tip versus that of an asperity, and coefficient of friction. As expected, for

rough surfaces the mechanical strengths of the spine and asperity become the limiting

factors; for smoother surfaces friction is more important, and the ability to pull along

the surface is much reduced.

Given the general correlation in nature between spine or claw size and animal size,

we ask: for a climbing robot of a certain size, how large should the spines be? For a

0.4 Kg robot we might expect spines or claws similar to those seen in squirrels or large

climbing lizards. However, this argument ignores the point that spines of hardened

steel are much stronger and stiffer than their natural counterparts. If the strength

of the spine/asperity contact were not a constraint, the spines should be as small as

possible. This is because many natural surfaces, and some man-made surfaces such

as concrete and stucco, have an approximately fractal surface topography [17, 37, 38]

so that characteristic surface features (asperities) can be found over a wide range of

length scales.

10
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In the following sections we first investigate the question of spine/asperity scaling

using surface profiles obtained for various materials. The results show that while

surfaces do, in general, present more asperities per unit area as spine size shrinks, the

details of the spine approach angle and the surface topography play an important role.

We next consider the question of spine/asperity contact strength. There are several

possible failure modes. In general, however, the expected maximum load increases as

the square of overall spine size. We conclude with a model in force-space of the forces

a spine-asperity contact can sustain.

2.2 Spine/surface modeling and scaling

Numerical simulations were performed to model the behavior of spines interacting

with surfaces. In general, the simulations fitted 2-D spine cross-sections to 2-D surface

profiles and determined the locations where the simulated spine could perch on the

profile. This analysis gives insight into what size spines are needed to climb various

surfaces and the properties of a surface that make it climbable. This is a geometric

analysis, indicating trends in the number of asperities (perchable regions) per unit

length of surface. Spine and surface strength are also important considerations and

are addressed in section 2.3 and Appendix A.1.

Two-dimensional profiles of several stone and sandpaper surfaces were obtained

using a profilometer (Taylor Hobson Talysurf Series 2), with a conical stylus (15◦

cone angle) terminating in a spherical tip of radius 2 µm. Profiles of rougher con-

crete surfaces were measured using a laser micrometer (Omron Z4M-N30V), since

the profilometer could not measure very rough surfaces. The measured profiles were

5 cm long. The profilometer had a vertical resolution 0.426 µm and samples were

taken every 1 µm; the laser micrometer had a spot size 64 µm, a vertical resolution

of 0.977 µm, and samples were taken every 2.4 µm.

In analyzing these profiles we consider a typical spine as shown in the photograph

in figure 2.1. The spine is a gently curved beam with a circular cross section that

tapers to a rounded tip of radius rs. The spine is attached to a robot limb that



CHAPTER 2. SPINE-SURFACE INTERACTIONS 12

Figure 2.1: Profile photograph of typical spine, with shaft dia., d = 270µm and tip
radius rs = 10µm, engaging a profile of a rough concrete surface.

drives it toward the surface and subsequently strokes it downward (left to right in the

figure) along the surface, hoping to engage an asperity. In the simulation, we model

the spine tip as a circle of radius rs approaching the surface at an angle θa.

In figure 2.2, a diagram of our model, a circle of radius rs has approached the

surface in a direction indicated by the approach vector. The surface shown in the

figure is an actual profile of a rough-cut granite surface.

We create a spine swept volume from the spine tip circle, bounded at the upper

edge by the angle θa and at the lower edge by a ray perpendicular to the surface face.

A traced surface [79, 88] is formed by moving the spine swept volume over the profile

and recording the position of the center of the spine tip circle. We assume that the

details of the spine, including a conical spine end and the spine curvature, fall within

the swept volume. Thus, the spine swept volume accounts for the fact that an actual

spine is not be able to reach all parts of the surface (e.g. the bottoms of deep pits)

if it moves towards the surface at an angle or if it is oriented at an angle as it slides

over the surface.

To find regions of the surface that a spine could perch on (i.e., asperities), we
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Figure 2.2: Diagram of the spine/surface interaction model. The spine is modeled by
a circle of radius rs approaching in a direction indicated by the approach vector, which
creates a swept volume. The intersection of the swept volume and the original profile
is found and the center of the spine tip circle is recorded to create a traced surface.
Contiguous shelf-like regions, starting when θ, the normal vector to the traced surface,
is larger than some critical angle θmin, are available for sustaining loads.

proceed along the traced surface from right to left in figure 2.2. We search for locations

in which the angle θ of the normal vector to the traced surface is above a minimum

useable angle, θmin, which depends on the angle at which the spines are loaded, θload,

and coefficient of friction, µ, as seen in equations 2.1 and 2.2:

θmax = θmin − arctan(1/µ) where (2.1)

θload ≤ θmax. (2.2)

We consider regions between these locations and the subsequent minimum in the

traced surface to be “useable asperities,” as shown in figure 2.2. In essence, we find

“shelves” that are terminated by an angle θmin near regions of maximum projection

from the wall surface. We assume that the spine slides quasi-statically along the

surface from the top down. If the spine tip falls into any of the “useable asperity”
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regions, it will continue to move along the surface until it reaches the point at which

the normal vector to the traced surface is at the angle θmin, and at that location the

spine will stop and catch on the surface. The spine can then be loaded away from

the wall (i.e., used to generate adhesion) at an angle up to θmax before it begins to

slip off the asperity. For a given Root-Mean-Square (RMS) surface roughness, Rq,

the useable asperity regions can vary greatly, depending on the details of the profile.

This purely geometric analysis does not account for spine bouncing or other dynamic

effects; however, as discussed in the next section, it provides useful predictions of the

comparative ease with which surfaces of varying roughness and asperity sharpness

can be climbed.

We use the number of asperities per centimeter as a metric rather than other

measures such as the effective length of the asperities because the former is a better

indication of the probability that a spine will encounter an asperity during a stroke

of a given length. (For example, a single long asperity would be equivalent to many

short asperities in terms of effective asperity length.) A more accurate assessment

would include complete information about the probability distribution of asperities

and asperity lengths on the wall.

This analysis is somewhat limited, being strictly two-dimensional in the direction

of motion along a surface. In practice, a spine will have the ability to move slightly

sideways as it is dragged down a surface, and asperties are three dimensional features.

Asperities will, in general, have a slope in the out-of-plane direction, which may cause

a spine to slide off in that direction. Thus, the actual number of asperities per unit

length will be somewhat less than indicated by this analysis.

A conservative estimate of the magnitude of this effect occurs if we analyze a

surface with protruding right rectangular cylinders. On such a surface, the entire

width of each cylinder will appear to support spines in a 2-D analysis, but in 3-D,

spines landing on the edges of the cylinders will just slip off to the side. With a

coefficient of friction of 0.2, only 20% of the cylinder’s top face has a normal vector

that can support a spine loaded vertically down the surface. This is a conservative

estimate because first, the profilometer itself was able to move out-of-plane to a small
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extent, so it could slide off similarly sharp features. The laser micrometer underwent

some low-pass filtering due to the finite spot size, which would also reduce the effect.

Second, surfaces in nature will rarely have such sharp features, and smoother surfaces

will have a larger correlation between the slopes in the two directions. Finally, some

surfaces will have pits instead of protrusions, and pits will tend to steer the spines

into more favorable resting places.

2.2.1 Simulation results

Table 2.1: Table of Surfaces and Roughness Parameters

Surf. Surface Average RMS Fractal

No. Roughness Ra Roughness Rq Dimension

(µm) (µm) D

1 cobblestone 56.9 78.1 1.2

2 machined granite 6.6 10.3 1.4

3 rough cut granite 42.7 56.1 1.4

4 polished granite 13.2 21.0 1.3

5 paving stone 73.0 92.2 1.2

6 concrete cinderblock 93.0 131.9 1.1

7 concrete 2 70.1 88.4 1.0

8 Al-oxide 80 42.1 57.0 1.1

9 Al-oxide 100 35.8 49.9 1.1

10 Al-oxide 120 20.3 26.0 1.1

11 Al-oxide 150 21.7 27.8 1.1

12 Painter’s 100 30.5 38.9 1.0

Profiles were taken for several stone surfaces and several types of sandpaper, listed

in table 2.1. The table also shows the linear and RMS roughness measures Ra and

Rq (see Appendix A.3) for these surfaces, as well as the fractal dimension measured

using the power spectral density [82]. Figure 2.3 shows typical results for the number

of asperities per centimeter for selected stone and sandpaper surfaces, with constant
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Figure 2.3: Number of asperities per centimeter versus spine tip radius for various
surfaces, with θa = 45◦ and θmin = 75◦. The numbers in the legend correspond to the
surfaces in table 2.1. Solid lines indicate stone and concrete surfaces, and dashed lines
indicate sandpaper surfaces. A band corresponding to the 1/r trend that would be
expected for a self-similar fractal surface has been added for reference. The surfaces
not plotted had curves very similar to those shown.

values of θmin and θa. For the stone surfaces (solid lines) the number of asperities per

centimeter varies at a rate close to 1/r for smaller tip radii.

This is to be somewhat expected, since many surfaces are approximately fractal

over a range of length scales [17, 37, 38], so the surface properties should be similar

at different length scales. Several other authors found natural rock surfaces to have

fractal dimensions between 1.1-1.5 [78, 82], in the same range as our surfaces (see

table 2.1). It should be noted that these surfaces are not truly self-similar, but only

self-affine. Self-similar surfaces will have similar properties if the x- and y-directions

are scaled equally, while self-affine surfaces will require a different scale factor in the

x- and y-directions as the surface is viewed with a different scope [68]. In particular,

self-affine surfaces will appear smoother at larger length scales. Truly self-similar
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surfaces will have a fractal dimension of 1, while self-affine surfaces will have fractal

dimensions between 1 and 2 [82].

If a surface was perfectly self-similar, the number of asperities per centimeter

should vary as 1/r: as the tip radius decreases, the spine tip should find proportionally

more places to rest on the surface in proportion to the amount the tip radius was

decreased. With the fractal dimension of our surfaces slightly larger than 1, we expect

slight additional roughness at smaller length scales. However, the details of the normal

vectors were such that this did not always correlate to additional asperities beyond

1/r at small radii in figure 2.3 (though it did sometimes).

At larger spine tip radii, however, the number of available asperities drops rapidly,

implying that the surfaces do not behave fractally at large length scales. This is an

effect of the cutting, polishing and wearing processes that have partially smoothed the

stone surfaces so that large asperities are rare; at low frequencies, the power spectral

densities of machined surfaces frequently fall below the fractal trend seen at higher

frequencies [68].

In figure 2.3, the curves for the sandpaper surfaces have a shallow slope of less than

1/r for small tip radii. This occurs because the sandpaper surfaces have a relatively

uniform particle size, so the number of asperities is closer to being a constant for

small tip radii.

Figure 2.4 shows the number of asperities per centimeter versus spine tip radius

for several values of θmin and constant θa. As θmin increases, corresponding to the

need for asperities that are more shelf-like, the simulation is less likely to find useable

asperities, as expected. This corresponds to a downward shift of the lines in the

figure. All of the lines can be seen to follow the expected 1/r trend.

Figure 2.5 shows the number of asperities per centimeter versus θmin and a con-

stant spine tip radius. There are many asperities for low values of θmin, which corre-

spond to regions of the surface that are nearly vertical. Making use of these asperities

would require extremely high friction between the spines and surface as well as the

spines being loaded nearly parallel to the surface or towards the surface, for enhanced

friction. There are relatively few asperities for high values of θmin, which correspond
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Figure 2.4: Number of asperities per centimeter versus spine tip radius for several
values of θmin, for a stone surface (values of θmin are marked on the graph). θa is held
constant at 65◦. A band corresponding to the 1/r curve expected for a perfect fractal
surface is shown for comparison.

to shelf-like regions.

If θa is varied while holding θmin constant, the number of asperities/cm changes

relatively little, decreasing significantly only for large approach angles where the spine

is nearly parallel to the wall. For small approach angles, the spine’s ability to reach

the regions of the surface it hooks on to is only slightly affected. In our analysis, we

examined θa = 0◦, 45◦, 65◦, and 80◦. There was essentially no difference between any

of the approach angles for 65◦ or less, while the 80◦ case showed a reduction in the

number of asperities.

The distribution of lengths between asperities is approximately described by a

gamma distribution, with probability density function

fX(x; k, θ) = xk−1 exp(−x/θ)
Γ(k)θk

, for x ≥ 0 and k, θ ≥ 0, (2.3)
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Figure 2.5: Number of asperities per centimeter versus θmin for various surfaces, for
a constant spine tip radius of 30µm. θa is held constant at 45◦. The numbers in the
legend correspond to the surfaces in Table 2.1. The number of asperities/cm can be
seen to drop drastically as θmin approaches 90◦, showing that there are many fewer
ledge-like regions that are perpendicular to the surface face than sloped regions more
parallel to the surface face.

where x is the distance between asperities, k, θ are parameters for the distribution,

and Γ is the Gamma function. Histograms of the distances between asperities are

plotted for several surfaces in figure 2.6, along with the gamma distribution that

was the maximum-likelihood fit. The mean distance between asperities is kθ and the

variance is kθ2. The asperity lengths are approximately exponential random variables.

2.2.2 Correlation with climbing robot performance

In this section we compare the results of the foregoing analysis to the empirical results

obtained with our climbing robot. The parameters θmin and θa used by our climbing

robot, SpinybotII (see figure 2.7), were measured and used in the simulation. Based

on the geometry of SpinybotII, the feet are loaded at angles 3.5◦ < θload < 8◦ degrees

from the wall. The coefficient of friction between stainless steel spine tips and rock
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Figure 2.6: Histograms of distances between asperities for several surfaces, along
with a plot of the best-fit gamma distribution. Numbers shown for k and θ are
the parameters for the gamma distribution for each plot, found using a maximum-
likelihood estimator. Data was found using parameters θmin = 75◦, spine tip radius
= 10µm, θa = 45◦.

is generally between 0.15 and 0.25, which corresponds to θmin between 86.5◦ and 81◦

for an average θload of 5◦ using equation 2.1. The approach angle, θa, is from 45◦-65◦,

based on the angle of the spines themselves and the motion of the tip over the surface.

The tip radii, rs, of the spines are 10-15 µm for new spines and 25-35 µm for spines

dulled due to heavy use.

The results using these values qualitatively correspond to the actual performance

of SpinybotII on the corresponding surfaces. SpinybotII can adhere extremely well

to the Al-oxide 100 and 80 grit sandpapers, indicating that there is a high density

of asperities with ledge angles of at least 81-86.5◦. SpinybotII adheres less well to

the Al-oxide 150 and 120 grit sandpapers, with the feet slipping down these surfaces
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for a longer distance before solidly engaging, indicating a lower asperity density. It

adheres poorly to the painter’s 100 grit sandpaper, only rarely finding asperities. On

the natural surfaces, SpinybotII adheres very well to the rough concretes, moderately

well (i.e., barely well enough to climb) to the rough cut granite surface, and not at

all to the ground and polished surfaces. In the simulation, if θmin is 82◦-85◦ and θa is

45◦ or 65◦, at radii of 10-40 µm the ordering of the surfaces in terms of asperities/cm

corresponds to the ordering of the same surfaces in terms of how well SpinybotII can

adhere to them.

SpinybotII’s spines do not scrape quasi-statically over surfaces. However, the

effects of spine bouncing and reduced dynamic friction are mainly a reduction in the

apparent asperity density. Also, asperity failure was not frequently observed for light

loads on these surfaces. Thus, the relative ordering of how well SpinybotII’s feet

perform on different surfaces generally matches the predicted ordering in terms of

asperities per unit length in the simulation.

The concrete profiles show somewhat fewer asperities than would be expected for

small tip radii and very large values of θmin. This is because they were recorded using

a laser micrometer with a 64 µm spot size that produced some low-pass filtering. Con-

sequently the concrete profiles appear to have few asperities in the simulation using

these parameters, although in reality they have many. Also, all of the surfaces show

many fewer asperities than would be expected if θmin is increased above around 82◦.

This discrepancy is likely due to the reduced ability of the measurement instruments

to accurately record abrupt changes in surface height.

2.2.3 Discussion

Dai et al. [19] present a planar model of spine/asperity contact that includes the

relative size of the spine tip versus that of an asperity and coefficient of friction.

Our analysis is similar, except that we use actual surface contours and compute the

corresponding traced surface for the swept volume produced by a spine. Dai et al.

state that the angle of spine/surface contact is key to obtaining traction between

beetle claws and surfaces. However, they also discuss their results in terms of surface
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Figure 2.7: Picture of upper section of SpinybotII on concrete wall and detailed view
of several spines independently engaging asperities on the concrete surface.

roughness, a different parameter entirely (though it is usually correlated with the

spine/surface contact angles). Our analysis indicates that the normal angle, θ, is the

critical parameter, and that the linear and RMS roughness measures Ra and Rq are

not always correlated with actual spine performance. As an example, the Ra and

Rq of the painter’s 100 grit sandpaper are larger than the corresponding values for

120 and 150 grit Al-oxide, but it has many fewer useable asperities for large assumed

values of θmin, due to its more rounded features.

Our present analysis is limited in that it cannot detect the presence of angles

more than 90 degrees (upward-leaning ledges). Even at angles close to 90 degrees it

is less accurate due to the non-zero cone angle of the profilometer stylus. For some

surfaces, SpinybotII’s spines may attach to many asperities with angles greater than

90 degrees.

The observed behavior of spines interacting with surfaces also differs slightly from

that assumed by the model. As a foot is brought into contact with a surface and

begins its downward stroke, we observe that many spines briefly catch on “unusable

asperities” and then break away as the load is ramped up. There are several reasons
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why the spines probably detach from these unusable asperities. The spines can deflect

slightly or undergo rotations, which will lead to their slipping. This can be due to

non-idealities in the toe linkage design as well as spine bending. Another possibility

is that these unusable asperities are quite weak and break off the wall once the load

increases past a certain point (see Appendix A.1 for analysis). Indeed, on some

surfaces small particles can be observed breaking off the wall as a foot slides over it.

One final possibility is that the unusable asperities are regions where there is a

ledge with a very shallow angle. In these regions, initially a spine can get stuck if

there is a small but positive normal force being applied to the spine and a small shear

force. However, as the shear force is increased (and normal force possibly decreased),

eventually the friction force between the spine and the ledge is not large enough to

overcome the applied load, and the spine slips. These asperities would be useable if

the friction force between the spine and surface was higher or the loading angle was

kept more towards the wall (or into the wall).

The spines also tend to skip over the surface (i.e., to become briefly airborne) after

slipping off the unusable asperities and they undergo alternating regimes of static and

dynamic friction. The effective coefficient of friction while this occurs is probably quite

low. Finally, there is a chance that as a spine on a compliant suspension drags down

the wall it may tend to follow a local groove or valley and thereby be steered away

from protruding asperities. Conversely, negative asperities (pits) will tend to steer

the spine into a favorable location for obtaining a grip. Hence, actual spine/surface

dynamics vary depending on the surface type as well as how much the spine is able

to move in the direction perpendicular to its travel.

2.3 Spine/Asperity Contact Strength

While smaller spines are more effective at engaging asperities on smooth surfaces,

they also carry smaller loads. When steel spines catch on asperities, the contact

typically fails in one of three ways:

• the spine fails plastically at its base due to tensile stress from bending,
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• the spine tip rotates elastically such that it slips off the asperity,

• the asperity fails, typically as a particle becomes unbonded from the surrounding

matrix.

In each of these cases, if we take a dimension such as the spine tip radius, rs, as a

characteristic length and scale everything uniformly, then the maximum load of the

spine/asperity contact increases as r2
s (see Appendix A.1 for details).

Figure 2.8: Log/log plot showing the expected r2 trend of spine/asperity contact
strength versus the expected 1/r2 trend for asperities per unit area of the wall. The
number of asperities per unit area for surfaces of rough cut granite and concrete are
plotted for comparison with the expected asperity density trend. Individual tests of
spine/asperity failures are plotted for concrete and sandpaper surfaces, showing the
force required to break the spine/asperity contact. Failures occurred either through
asperity brittle failure or spine bending (either elastically or plastically).

Figure 2.8 shows graphically how the maximum load of the spine/asperity contact

increases as r2, while the expected number of asperities per unit area decreases as

1/r2. As spines become smaller we can ascend smoother surfaces because the density
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of useable spine/asperity contacts increases rapidly. However, to support a given load

we need proportionally larger numbers of spines because each contact can sustain less

force. Thus, in order to make use of large numbers of spines, the two key design

principles are:

• ensure that as many spines as possible will independently attach to asperities,

• ensure the total load is distributed among the spines as uniformly as possible.

Figure 2.8 also shows data that supports the r2 and 1/r2 trends for spine/asperity

contact strength and asperity density per unit area, respectively. Measurements of

contact strength were done using spines of various sizes on concrete and sandpaper

samples attached to a load cell. We note that the sandpaper consisted primarily of

male features (which had a small bonding cross-section). Therefore, asperity failure

tended to occur before spine failure on that surface. In contrast, the cast concrete

primarily consisted of female features that were much stronger; so spine failure, either

by excessive end rotation or plastic bending, tended to dominate. For other surfaces,

all three failure modes tended to occur simultaneously. The figure also shows the

asperity density data for a concrete and machined granite surface as compared to the

expected 1/r2 for fractal surfaces. At the bottom of the figure, the representative

asperity length scales for a few different surfaces are indicated. These indicate, for

example, that rough concrete surfaces will present useable asperities of up to 300 µm

in radius whereas smooth concrete or stone panels will present asperities of up to

20 µm. These values essentially impose an upper limit to the spine size that can be

used with these surfaces.

For our first climbing robot, SpinybotI, we employed 4 spines per foot, each with

a tip radius of approximately 30-50 µm. This machine was able to climb stucco and

rough concrete reliably. The spine/asperity contacts could sustain loads of several

Newtons (N), usually limited by brittle failure of the asperity rather than of the spine.

However, for surfaces such as smooth concrete and dressed stone, the probability of a

spine encountering a useful asperity during a vertical stroke length of approximately

2 cm was too low for reliable climbing. SpinybotII employs two rows of spines on each
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foot, each spine having a tip radius of approximately 15-20 µm. The maximum force

per spine/asperity contact is 1-2 N, and the probability of finding useable asperities

per centimeter of stroke length is high. On most surfaces that SpinybotII can climb,

30-40% of the spines engage.

2.4 Spine-surface limit curve

By combining the model of how spines engage on surface asperities and the spine/

asperity contact strength, we can model the forces the spines will sustain when en-

gaged on asperities. Figure 2.9(left) illustrates an asperity with an engaged spine,

corresponding again to the spine/asperity model described by equations 2.1 and 2.2.
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Fnormal

Fshear

Normal vector 
to offset surface

μ

θload

θmax

Fload Fshear

Fnormal

|F| = F*

θmax

Safe region

Unsafe region

1/μ

Figure 2.9: Left, diagram of spine on asperity showing angles of forces. Right, theo-
retical limit curve based on spine/asperity contact model.

In force-space, shown in figure 2.9(right), permitting θload ≤ θmax corresponds to

Fload within a region bounded by a straight line at an angle θmax from the Fshear axis:

Fnormal/Fshear ≤ tan(θmax) where
√
F 2
normal + F 2

shear = |Fload| ≤ F ∗. (2.4)

The F ∗ limit comes from the spine/asperity contact strength. The contact can

fail due to plastic failure of the base of the spine in bending, excessive elastic rotation

of the spine tip causing it to slip off the asperity, or brittle failure of the asperity
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itself, as discussed previously. Each of these constraints individually will correspond

to a different curve in force-space. We roughly approximate the combination of these

constraints with the line |Fload| ≤ F ∗, which is assumed to be the force at which

a typical spine/asperity contact fails (whether limited by spine strength or asperity

strength).

The last constraint occurs if the spines are scraped against the surface in their

non-preferred direction, up the wall in figure 2.9(left). In this case, Coulomb friction

will apply, giving a slope in force-space of 1/µ. This can be seen with Fnormal > 0

and Fshear < 0 in figure 2.9(right).

Together, all of these boundaries comprise a limit curve which designates a “safe”

area. If the forces on the spine tip are within this area, the spine and surface will

maintain contact.

It is important to note that this is the limit curve for a single spine/asperity

contact. In a group of spines, each spine will typically catch on an asperity with a

different maximum loading angle θmax,i if i is the spine index. The maximum loading

force magnitude F ∗ will likely be more consistent across spine/asperity contacts,

because the spines are assumed to be the same and the material will have similar

properties.

2.4.1 Limit curve testing

Testing of the spine-surface interaction was performed on a mechanized stage and force

plate previously used for directional adhesion tests [90]. The stage has a positioning

accuracy of ±20µm and force measurement accuracy of 25mN.

Ten spines designed for the RiSE climbing robot [99], described in section 4.2.2,

were mounted on the stage above a tarpaper (roofing paper) surface (Royal Sovereign

Shingles brand), with roughness similar to stucco, attached to the force plate. The

spines were dragged across the surface at different angles after being preloaded into

the surface at several depths. The spines hooked onto asperities as they encountered

them.
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During testing, the spines disengaged due to one of the following mechanisms: they

slid off asperities because the loading angle was too large; the asperities came dis-

lodged from the surface; or the spines hit their overload-protection bars after stretch-

ing around 11mm and were pulled off the surface. The resulting limit curve, and the

maximum adhesive force magnitudes for each trial, are shown in figure 2.10.
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Figure 2.10: Limit curve as ten RiSE spines were dragged over tar paper.

As seen in this figure, higher preloads generally resulted in larger resulting forces

before failure, although the angle of the drag had an effect as well. Dragging the

spines parallel to the surface (an angle of 90◦ in the figure) produced larger forces

than pulling the spines away from the surface (angles near 30◦ in the figure). With

ten spines, dragged 16mm across the surface, there is a high probability that at least

one spine will catch on an asperity able to support a significant load at a steep angle.

In practice, generally several spines caught on asperities, and the force was typically

limited by the asperity failure in these tests.
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The maximum forces were generally between two angles, 20◦-45◦ as indicated by

dashed lines on the plot. The spines encounter asperities in a probabilistic manner,

and the asperities themselves have maximum loading angles also in a probabilistic

manner. Each of the spines can sustain different forces, since the θmax and F ∗ limits

are different for each asperity.

In theory, then, the maximum force able to be sustained by the group of spines

should vary between zero degrees and some maximum angle (e.g. 45◦ in this case),

although not all asperities will support loads up to the largest possible angle. However,

even if the spines slip off asperities with smaller θmax angles, they can continue sliding

along the surface and catch other asperities further on with possibly larger angles. So,

the limit curve for a group of spines will be similar to that of a single spine/asperity

contact. As the number of spines increases, the variance of the limit curve will

decrease, due to the central limit theorem.

We expect the limit curve to have larger magnitudes at smaller angles because

there are more asperities with θmax angles that are smaller (see figure 2.5). If the

spines are exhibiting load-sharing, we expect the maximum force that can be exhibited

by a population of spines to occur when the maximum number of spines have engaged

on a surface. For a given loading angle, θload, the number of engaged spines should

be proportional to the number of asperities with θmax angles greater or equal to θload.

Furthermore, the limit curve will have larger magnitudes at smaller angles be-

cause the asperities are stronger when loaded more parallel to the wall. The effective

asperity cross-section (in the direction of the applied force) will vary with the loading

angle, and on average, will be maximum if the spine is pulling in the −x-direction.

As a spine pulls further away from the wall, the asperity cross-section will shrink.

The effect of asperity strength on the resulting limit curve is shown in figure 2.11.

The tarpaper used to generate the limit curve in figure 2.10 was composed of small

rocks embedded into the tarpaper substrate. The bond between the rocks and the

substrate was relatively weak, so rocks would come off the surface frequently. To test

the effect of increased asperity strength, a thin layer of cyanoacrylate glue was spread

over the tarpaper, and the test repeated. The glue flowed into the cracks between
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the rocks and did not significantly affect the surface profile, while securing the rocks

to the surface much better. In figure 2.11, the points corresponding to the glued

tarpaper (blue dots) show increased maximum force levels while the failure points fall

within the same angular ranges as without the glue (red plus signs).
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Figure 2.11: Limit curve as ten RiSE spines were dragged over regular tarpaper
roofing paper and tarpaper in which the rocks had been secured better to the surface
by covering the entire surface with a thin coat of cyanoacrylate glue.

Finally, like the gecko adhesive system, the limit curve of a spine/asperity contact

passes through the origin in force-space. Physically, this corresponds to the spines

lifting off their asperities in a direction approximately opposite to the direction in

which they approached the surface. This means that the spines can detach from

the surface with zero force, making control easier and minimizing energy loss from

detachment.



Chapter 3

Spine suspension constraints

3.1 Introduction

Following the arguments about spine scaling in the previous chapter, to support large

adhesive loads on smooth surfaces, many spines are necessary. This chapter presents

constraints on spine suspensions to enable them to share the load.

3.1.1 Coordinate System and Characteristic Lengths

We first define the problem. Figure 3.1 shows a spine touching a surface. Let us

embed a coordinate system at the tip of a spine with x normal to the wall and y

along the wall; θ is taken anticlockwise. Forces on the spine tip are positive in the

directions of the x- and y-axes. The spine tip is assumed to act as a pin joint at the

wall’s surface.

Following a tradition of modeling elastic mechanisms with a stiffness matrix that

represents the rate of change of force with respect to displacement:

K(x = x0) = dF/dX|x=x0 ,

31
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Figure 3.1: Spine suspension and coordinate system for suspension analysis. The
coordinate system is centered at the spine tip, and the suspension is modeled by a
stiffness matrix K. The suspension is supported by a structure defined as the “base,”
and the spine has a mass m.

K =



kxx kxy kxθ

kxy kyy kyθ

kxθ kyθ kθθ




where K is the stiffness of the suspension supporting the spine, observed from the

spine tip.

Consistent with arguments in [58, 64, 18, 51] about conservative systems, we

assume K is symmetric. It is also understood that K represents the instantaneous re-

lationship between forces and displacements; K may therefore vary as the mechanism

configuration changes.

The stiffness matrix K representing the spine’s force-displacement characteristic

corresponds to a physical linkage being attached at the proximal end to a structure

that has controlled displacements in the x- and y-directions, and undergoes negligible

translations and rotations.1 In practice such a structure might be a robot leg or a

1In practice a robot leg does undergo some deflections as the spines are loaded. However, these are
typically small compared to the elastic motion of the spine suspensions. Moreover, a modified spine
stiffness matrix can be obtained as K ′ = (K−1

spine +K−1
leg )−1, where Kleg is a fixed stiffness matrix for

the leg. Computing the stiffness matrix for such an appendage as a function of passive mechanical
properties and servo gains is covered in Kao and Cutkosky [18]. An alternative to modifying the
spine suspension is to add an ankle above the spine base to compensate for the leg stiffness.
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mechanical stage for testing. In the rest of this chapter we refer to this structure as

the “base” of the spine.

In a group of spines, the spines are assumed to be connected together only through

the base, a rigid structure, so their suspensions are otherwise independent.

|F| = F*
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Fnormal

Safe region

asperities

λ = avg. 
asperity 

spacing in 
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centersh

Figure 3.2: Left, λ is the average y-spacing between asperities, and h is the range of
asperity locations in the x-direction. Right, in force-space, the spine-asperity contact
limit curve is assumed to be bounded by a line at an angle θmax from the origin and
a radius of F ∗.

We then define some other characteristic lengths: let λ be a characteristic length,

equal to the average spacing between perchable asperities while traveling along a

randomly chosen line in the -y direction. h is defined as the range of asperity locations

in the x-direction, and we assume h << λ (see figure 3.2(left)).

As discussed in chapter 2, F ∗ is a characteristic scalar force, defined as the average

maximum force that a spine/asperity contact can sustain, and θmax is an angular

constraint on the loading angle. The variables F ∗ and θmax are labeled on figure

3.2(right).

We further assume that the spine has a certain range of motion within which it
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can move, due to limits on the suspension travel of a physically realizable mechanism.

We define the range of motion in the x-direction to be ∆xmax and in the y-direction

to be ∆ymax. We also define the preload (normal) force in the x−direction required to

cause the spine to move through an x−displacement of ∆xmax as Fx,max. Typically,

as discussed later, spines will have Fx,max << F ∗.

3.1.2 General considerations

To use many spines in parallel, each supporting a small load, each spine’s suspension

must have two properties:

1. Normal compliance – to have as many spines as possible come into contact with

the surface when preloads into the wall are applied, the spine suspensions must

be compliant in the normal direction. To permit all of the spines to reach the

surface, the suspension should have ∆xmax ≥ h.

2. Shear compliance – the spines must have a suspension that permits them to

move in the direction parallel to the wall, because if one spine has caught on

an asperity, the other unengaged spines must be able to travel down the wall so

they can encounter their own asperities. To permit a suitable number of spines

to reach asperities, the suspension should have ∆ymax ≥ λ.

Putting these together we have a compliant linkage that permits motions in two

dimensions for the spine. However, there are several other constraints to make the

linkage practically useful.

The fundamental constraint on the suspension and how the spiny toe is controlled

is that the forces on the spine tip must remain within the spine-surface limit curve.

Because the spine suspension is a compliant structure, this means that we must apply

appropriate forces to the base of the spine, or equivalently move the base through

appropriate motions that correspond to the spine tip having an allowable force. For

each possible spine suspension, there will be some forces/motions that the base can

be moved through that correspond to the spine staying on the wall.
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We model the contact between the spine tip and the wall as a pin joint, unable

to transmit moments. From force balancing, it must be the case that
∑
Fx = 0 and

∑
Fy = 0. Because the forces applied to the spine tip are the same as those at the

base, at first glance it seems like a simple matter to keep the forces on the spine tip

within the safe region: just control the forces at the base of the structure, and all will

be well. This is true, but there are several constraints that make certain spine designs

better or worse. We must move the base of the spine through certain trajectories in

(x, y, θ) space to achieve those forces.

Section 3.2 gives an example of a group of spines engaging on asperities on a

surface, and shows the corresponding forces. This is useful in understanding the

typical load-unload cycle used with spines, and understanding the forces experienced

by the spines as a result of a particular linkage and base trajectory.

3.2 Spine engagement overview

Figures 3.3-3.6 show a series of drawings illustrating an example of how spines can be

loaded, with their associated forces. In each figure, there are three subfigures, with a

drawing of the spines on the left and a plot of the forces on the right.

In the drawings of the spines, forces on the spine tips are shown with arrows. The

spines are connected together at a brown box, which is the spine base. The trajectory

the spine base will follow is shown with three black arrows. Four numbered asperities

are shown on the surface to the left of the spines. For illustration, it is assumed that

each spine in the group will catch on an asperity, and the remainder of the spines will

slide by that asperity.

In the drawings of the forces plotted in force-space on the right, the forces on the

spine tips are shown with colored dots. The colors match the colors of the corre-

sponding spines in the left diagram.

Figure 3.3 shows the spines being preloaded into the surface in a direction per-

pendicular to the surface. Initially, the spine tips have no forces on them because

they are not touching the surface. In general, as the spine base moves to different
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x-locations, indicated by vertical dotted and dashed lines at x = {x1, x2, x3}, the

forces on the spine tips will move to the corresponding line in force-space. Because

the spines are connected together at their bases, all the spines in the group will have

the same x-displacement. The y-displacements of the individual spines will determine

where they will lie along the line in force-space. In this figure, the spine bases start

between x2 and x3, so the forces move to the x2 and then x1 lines as the spines are

preloaded into the wall.

Figure 3.4 shows the base of the spines being dragged parallel to the wall (at

x = x1) and the spines catching on the asperities. As the engaged spines extend in the

y-direction, their corresponding forces can be seen to move along the corresponding

curve in force-space. The unengaged spines experience a positive normal force, since

they are still being pushed into the wall.

Figure 3.5 shows the base of the spines being pulled away from the wall, from

initially x = x1 to x = x2 and then x = x3 at a constant y-value. As this occurs, the

forces on the spines change to lie on the different lines in force-space corresponding

to the different x-values. In the bottom figure, if the base is pulled far enough away

from the wall that portions of the lines fall outside the “safe region,” then the spines

lying on those portions of the lines will disengage. In this example, only the top

spine remains engaged. The spines that disengage will return to their original resting

position, shown in figure 3.6. In this example, the base position is such that the

spines are not able to touch the wall and thus re-engage. Different linkages would

behave differently.

To disengage spines smoothly, typically the loading trajectory is reversed, so the

forces on the spines decrease to zero. This permits the spines to disengage without

experiencing large, sudden changes in force, which can lead to vibration and cause

disturbances while climbing.
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Figure 3.3: Spine loading example, preload phase
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Figure 3.4: Spine loading example, shear phase
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Figure 3.5: Spine loading example, pulloff phase
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Figure 3.6: Spine loading example, final state

3.3 Constraints

In the following discussion, we assume a group of spines attached together in a row at

the bases of their suspensions. Furthermore, we assume the following characteristic

loading/unloading cycle:

1. Positive normal force (Fx > 0) is applied to the spine tip to bring it into contact

with the surface.

2. The spine is dragged down (−y) the wall while maintaining positive normal

force, until several spines have engaged on asperities. Once a spine has engaged,

the shear (+Fy) force on it increases as the base is dragged down the surface

further.

3. Adhesive loads in the normal direction (Fx < 0) are then applied, and possibly

additional shear forces (Fy).

4. To disengage the spines, approximately the reverse trajectory is applied. The

adhesive forces are either kept constant or reduced, and the shear force (Fy) is
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reduced to zero, at which point the spines can be lifted off the wall and moved

to another location.

There are several states within a single cycle of loading and unloading a group of

spines for which constraints on the spine suspension in each state can be identified.

The states are:

• Unattached – spines are tracing over the surface in order to engage on asperities.

Forces are small (≈ Fx,max) and positive normal force is applied, pushing the

spines against the surface.

• Loaded – spines have engaged on asperities and are supporting loads. Shear

forces are typically large (Fshear ≈ F ∗), with moderate adhesive forces in normal

direction (|Fnormal| ≈ 0.1 − 1 F ∗). Constraints in the Loaded state can be

divided into two categories we will consider separately: Load-sharing, which

deals with the forces on different spines in a group, and Geometric, which deals

with physical interactions between the parts of the suspension structure and

the wall.

• Re-engaging – spines have slipped off asperities or are otherwise not engaged

while loads are still being supported by other spines. Forces on the group of

spines as a whole are still in the same region as the Loaded state, because many

spines are engaged. The spines that have slipped off their asperities have small

forces, similar to the Unattached state (|Fnormal| ≈ Fx,max. Or, the spines that

slipped off may quickly re-attach on new asperities and bear loads again.

• Disengaging – spines are in the process of being lifted off the surface. Initially

moderate adhesive and shear loads are present (|Fnormal|, Fshear ≈ 0.1 − 1 F ∗),

and then these forces decrease, ideally moving to zero, at which point the spines

lift off the surface.
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3.4 Unattached state

When the spines are not yet attached, as many spines as possible should stay as close

to the surface as possible. It is particularly important that spines be able to reach into

deep pockets or crevices on the surface, because these regions may contain asperities

with favorable surface normal vectors. To accomplish this, there are two conflicting

constraints on the spine suspension that must be traded off against each other.

First, if the spine is preloaded into the surface (Fx > 0) and dragged down the

surface with a velocity vy < 0, the spine may become airborne if it is dragged quickly

over steep drop-offs on the surface. The times the spine is airborne will affect the

swept spine volume as discussed in chaper 2. It is beneficial to minimize the time the

spine is airborne.

The spine and any material attached to it can be modeled as a small mass m

supported by the suspension. To a first approximation, this is a mass-spring-damper

system with spring stiffness kxx and mass m. This system will have a natural fre-

quency of f = 1/2π
√
kxx/m, or period T = 1/f . The spine will need roughly a half

period or less to return to the surface after slipping off an asperity. If τ is the time to

re-engage, then we should have τ ≤ 1/2T . For the spine to re-contact the wall before

it reaches the next asperity, we must have τ vy < λ. In general, to minimize the time

the spine is airborne,
√
kxx/m should be maximized, either by making the mass m

as small as possible or making kxx large. A slower vy velocity will also decrease the

distance the spine travels vertically before it re-contacts the wall.

A conflicting constraint is to make kxx as small as possible when Fshear ≈ 0 to

enable as many spines as possible to touch the surface. If kxx is too large, for very

rough surfaces, some spines will not be able to reach deep pits because compressed

suspensions of other spines will provide a sufficiently large force to resist the preload.

More precisely, if half of the spines in a group are compressed a distance ∆xmax due

to their resting on protrusions, and the other half of the spines are not compressed

at all due to their reaching into deep pits, then for a maximum preload force Fx,max

we must have kxx ≤ 2Fx,max/∆xmax. Furthermore, kxx should be minimized because

in climbing applications it is desirable to minimize the preload force Fx,max since any
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applied preload must be compensated for by increased adhesion at the other elements

attached to the wall, either other attached spines or other limbs. This is one reason

to have Fx,max << F ∗.

3.5 Loaded state

3.5.1 Load-sharing

An important performance metric of a group of spines is their ability to share the

load evenly between them. It is only effective to use many spines each bearing a small

amount of force if the force can be evenly distributed between them. In particular,

two properties are desirable: minimizing the maximum force on any individual spine,

and keeping the loading vectors on all of the attached spines parallel. Constraints on

the spine suspensions to achieve these properties refer to the load-sharing ability of

the spines in the Loaded state.

Minimize the maximum force

First, the spines must share the force: the actual forces on the spines should be as

similar as possible in magnitude so that the loads are shared. The constraint on any

single spine is that the magnitude of the force must be less than F ∗. In a group of

spines, then, we wish to minimize the maximum force on any single spine. A useful

metric for a group of spines is the maximum force magnitude on a single spine divided

by average force on all of the engaged spines.

To minimize the maximum force on the spines, the kyy and to a lesser extent kxx

stiffnesses should be non-linear. If the suspension is stiff at first, and then soft for large

deflections, the load on each spine will increase quickly and then stay approximately

constant as more spines engage.
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Keep the loading vectors parallel

The second load-sharing constraint involves the θmax boundary of the spine-surface

limit curve. To enable a group of spines to remain attached up to the largest possible

θmax angle, all of the individual spines should have loading vectors at θmax at the

same time.

For an idealized surface where all asperities have the same θmax angle, if any spine

has a loading vector at an angle greater than the others, it will slip off its asperity

before the others. The case where all spines have equal loading angles is the optimum

where all will fail simultaneously.

In practice a surface will have asperities at various different angles, but the max-

imum loading angle is unknown for each spine. We can pick a conservative angle to

use as the maximum loading angle θmax, and then the above reasoning applies.

An alternate rationale is as follows: suppose a group of spines is initially loaded

at a certain angle θ and that angle is maintained while adhesive loads on the base are

increased. If the spines all sustain forces at that same angle θ, they will all remain

attached (until they reach the force magnitude limit). Since each spine has been

previously loaded at θ, each spine’s asperity is known to sustain loads at that angle.

Suppose, however, that each spine’s loading angle changes as the adhesive load

increases, due to the spine linkage, even though the forces on the entire group are

maintained in the same direction θ. In this case, different spines within the group

must be loaded at different angles for force balancing to be correct. Then, some spines

will be loaded at larger angles θ+∆θ while others will be at smaller angles θ+∆θ. It

is random which asperities can support angles larger than θ, so there is an increased

probability of spines slipping off their asperities.

Furthermore, the value of θmax will vary between surfaces. If the spines are to

be used on a wide range of surfaces, then, the forces on the individual spines in a

group should all be parallel. In this case, all of the spines will fail simultaneously

independent of the particular value of θmax. This is illustrated in figure 3.7. Both

diagrams in this figure show the limit curves for two example surfaces, A (red) and

B (blue), with different θmax limits. Black dots in groups 1 and 2 show forces on two
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Figure 3.7: Diagrams showing how a nonlinear spine linkage stiffness, corresponding
to radial lines, is best at load sharing across different surfaces. Limit curves are shown
for two example surfaces, A and B. Black dots in groups 1 and 2 show forces on two
different groups of three spines. On the left, a constant-stiffness linkage will cause
the three spines to fail simultaneously at surface B, but on surface A they will fail at
different times, shown by how some of the dots in group 2 are outside the limit curve
for surface A. On the right, a nonlinear stiffness with radial linkage lines will cause
the spines to fail simultaneously on both surfaces A and B.

different groups of three spines. The left diagram shows a set of lines corresponding

to spines with a constant stiffness matrix as they are loaded. These spines would work

well on surface B, because all engaged spines would fail simultaneously. However, on

surface A the most-loaded spines will fail before the least-loaded spines, indicating

that the load is not evenly shared. The right diagram in figure 3.7 shows a spine

linkage with a nonlinear stiffness that corresponds to radial lines. In this case, the

spines will fail simultaneously on both surface A and surface B.

Figure 3.8 shows the forces experienced by a group of spines with an ideal linkage,

and the corresponding positions of the spines. The left side shows a diagram of a

group of spines connected together at one point to the base, shown as a brown box.

These spines are attached at various locations in the y-direction on a flat wall surface.

The base of the spines is permitted to move within a specified region in xy-space,

due to the spine linkage not being able to extend infinitely. For a given value of

x, the spines can deflect a maximum of ∆ymax in the y-direction. The right side of
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the figure shows the forces experienced by those spines, as well as a diagram of the

limit curve for each spine-asperity contact, with the safe region colored in green. In

this diagram, spine N is deflected this maximum amount, and has the corresponding

maximum possible force, |F | = F ∗, indicated by the N next to the point in force-

space. Spine 0 is not deflected at all in the y-direction, and has no force on it. The

forces on the spines are in a radial line from the origin, corresponding to the ideal

suspension.

K

K

K

K
K

K

x=0 x

|F| = F*
θmax
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N
N-1

N-2

2
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Spine 2
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Spine N
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Figure 3.8: Positions and forces on different spines in a row with ideal load-sharing
such that the loading vectors are all parallel. The diagram on the left illustrates
the forces on individual spine tips engaged at various locations along a flat surface,
while the plot on the right shows the forces corresponding to those spines. Spine N is
extended the maximum possible distance, ∆ymax, determined by the spine suspension.

The ideal suspension requires a set of spine base positions with varying x-deflec-

tions but with zero force on them. For these points, the kxx stiffness must be zero.

This ideal situation would not be possible with a real spine suspension, where the

stiffnesses must always be non-zero, though possibly very small. In practice, to get

close to ideal load-sharing, the suspension should have Fx,max << F ∗ (note that F ∗

is determined by the surface or spine strength, while Fx,max can be chosen as part of
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the suspension design).

Mathematically, the ideal suspension corresponds to the following: If the base of

the spines moves purely in the y-direction, in the equation

[
dFx

dFy

]
=

[
∂Fx/∂x ∂Fx/∂y

∂Fy/∂x ∂Fy/∂y

][
dx

dy

]

we have dx = 0. Also, for a constant loading angle θconst, we must have

dFx = dF sin θconst

dFy = dF cos θconst

for a given value of x, with θconst = f(x) where f(x) is some function. This leads to

[
dFx

dFy

]
=

[
? ∂Fx/∂y

? ∂Fy/∂y

][
0

dy

]

where ? can be any value because it is multiplied by zero, and

dFx = dF sin θconst = ∂Fx/∂y dy = kxy dy

dFy = dF cos θconst = ∂Fy/∂y dy = kyy dy

so

kxy
kyy

=
sin θconst
cos θconst

= tan θconst

which must hold true for a given value of x.

Furthermore, for a stiffness matrix to be physically realizable, the stiffness matrix

must be symmetric [58], so kxy = kyx. Practically, this corresponds to the region of

valid base positions being non-rectangular, as shown in figures 3.9 and 3.10.

A derivation of the region of valid base deflections for the ideal linkage is as

follows, and uses the notation in figure 3.9. We assume a uniform x-spacing of the

base positions, between xshear and x0, corresponding to a uniform θ-spacing of the
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Figure 3.9: Diagram of forces (right) and base positions (left) for the ideal suspension.
The base of the spines can move horizontally between x = xshear and x = x0, and
vertically between the curves y(r = 0, x) and y(r = F ∗, x). At x = x0, the maximum
spine displacement is ∆ymax,0.

lines in force-space, between θ = 0 and θ = θmax, respectively. This results in the

following equations for the spine tip forces as a function of the base position (x, y):

Fx = −r(x, y)sin(A(x− xshear))
Fy = r(x, y)cos(A(x− xshear))

where xshear is the position of the base closest to the wall, x0 is the position of the

base furthest from the wall, r(x, y) is the magnitude of the applied force, and

A = θmax
x0 − xshear

Using the initial conditions

r(x0, y0) = 0

r(x0, y0 −∆ymax,0) = F ∗

and setting

∂Fx
∂y

=
∂Fy
∂x

so that the stiffness matrix is constrained to be symmetric, we get:
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∂Fx
∂y

= −∂r(x, y)
∂y

sin(A(x− xshear))
∂Fy
∂x

=
∂r(x, y)
∂x

cos(A(x− xshear))− r(x, y)A sin(A(x− xshear))

⇒ r(x, y)A tan(A(x− xshear)) =
∂r(x, y)
∂x

+
∂r(x, y)
∂y

tan(A(x− xshear))
which we solve with Mathematica [105]. This results in:

r(x, y) = sec(A(x− xshear)) f(y + 1/A ln(cos(A(x− xshear))))
where f() is any arbitrary function of the argument. Choosing f(u) = αu + β

which gives us enough free variables for the initial conditions, and plugging in the

r(x0, y0) = 0 initial condition, we get:

β = −α(y0 + 1/A ln(cos(A(x0 − xshear))))
Plugging this back into the original equation for r(x, y), we get:

r(x, y) = α sec(A(x− xshear)) [(y + 1/A ln(cos(A(x− xshear))))
−(y0 + 1/A ln(cos(A(x0 − xshear))))]

Next plugging in the second initial condition, r(x0, y0 −∆ymax,0) = F ∗, we solve for

α:

α = − F ∗

∆ymax,0
cos(A(x0 − xshear))

which results in

r(x, y) = − F ∗

∆ymax,0
cos(A(x0 − xshear))
cos(A(x− xshear)) [y + 1/A ln(cos(A(x− xshear)))

−(y0 + 1/A ln(cos(A(x0 − xshear))))] .

Rearranging this, we find lines of constant radius r(x, y) == r satisfy the equation

y|r=const = −r ∆ymax,0
F ∗

cos(A(x− xshear))
cos(A(x0 − xshear)) + y0

+1/A ln(cos(A(x0 − xshear))))− 1/A ln(cos(A(x− xshear))) .

A plot of an example valid region of the base deflections, and a plot of the corre-

sponding forces plotted in force-space, are shown in figures 3.10 and 3.11, respectively.

In these figures, (x0, y0) = (2,−2)[cm] and ∆ymax,0 = 1 cm.
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3.5.2 Constraints due to the wall

During the Loaded state, there are also geometric constraints on the suspension be-

cause the wall itself presents a physical constraint in two ways.

First, if the suspension requires us to move the base of the spine towards the wall

significantly in order to maintain appropriate forces on the spine tip, the wall may

prevent this motion. For example, in figure 3.12(left), the spine base will not be able

to move towards the wall. Furthermore, in some cases the wall may actually protrude

under the spine base (this may be common with a rough surface), and so the spine

base may not be able to move towards the wall as much as in the nominal case.

Requiring the base of the spines to move towards the wall during loading is com-

mon for many linkages. All spines will need to move towards the wall to some extent

to achieve a preload force. Furthermore, if the spines have kxy < 0 to achieve self-re-

engagement (see section 3.6), the base must move closer to the wall when the spines

are loaded. This is the case for the ideal suspension for load-sharing discussed in

section 3.5.1.

For suspensions with kxy < 0, moving the base of the spine closer to the wall

will achieve loads at smaller loading angles. However, for some linkage geometries,

the base of the spines can run into the wall at large preloads, limiting the range

of motion and reducing the nominal distance of ∆xmax. With this reduced range

of motion caused by the wall, the spine linkage characteristics are then poor. An

example of this can be seen in figure 3.13: the bottom set of figures corresponds to a

linkage that must move a large distance toward the wall (past the lines for preloads

that are drawn on the figure) to have a good linkage behavior. If it is limited to

the preloads shown in the figure (6mm) because the wall would interfere at larger

preloads, then it can only sustain very small forces.

In these cases, the fundamental geometry of the spine should be changed, to have

better linkage characteristics without requiring such large displacements towards the

wall.

Second, the spine suspensions may have internal structures which may come into



CHAPTER 3. SPINE SUSPENSION CONSTRAINTS 52

contact with the wall as the spine is loaded. For example, typically in our implemen-

tations a spine is embedded in a region of hard polyurethane which is supported by a

compliant linkage. If that compliant linkage permits the hard polyurethane to rotate

until it touches the wall, this will cause a positive normal force at that contact point.

Because the structure needs to remain in static equilibrium, this will then cause a

force at the spine tip which is in the opposite direction, which pulls the spine tip away

from the wall. An example of this can be seen in figure 3.12(right).

This effect can also occur with just the metal spine itself, if the spine rotates far

enough that the shank of the spine pushes against the surface. To prevent rotation of

the spine as it is loaded, the stiffness matrix for the spine suspension must have large

kyθ and kxθ terms. It was found in practice that spine angles between 45-60 degrees

are generally preferable for attaching to the surface. If the spine is limited to rotating

15◦ (=0.262 radians), then the stiffness matrix must have kyθ > F ∗/0.262 to prevent

excessive rotation during loading, and kxθ > Fx,max/0.262 during preload.

Figure 3.12: Left, the wall can prevent the base of the spine from moving through a
desired trajectory. Right, part of the spine suspension can run into the wall.
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3.5.3 Other constraints while loaded

Another major constraint on the spine suspensions is that the spines should be able

to attach to asperities with small θmax angles. For the spines to be able to be used

on a wide range of surfaces, they should be able to both attach to asperities with

large and small θmax angles. Alternatively, spines may need to attach with small θmax

angles if, for example, they are used on the rear feet of a robot, where less adhesion

is required but large levels of shear force are required.

To attach to asperities with small θmax angles, the linkage lines in force-space

must fall within the safe region bordered by that small θmax angle. Two examples

of different linkages are shown in figure 3.13. In this figure, the right diagrams show

linkages and the regions that the base of the spines are permitted to move through.

The linkages used are the “stalk model,” explained further in section 4.2.3, here with

parameters kext = 150N/m, kθ = 0.01Nm/radian, θpreload = 0, l0 = 0.03m. The top

two diagrams have θ0 = 20◦ and the bottom diagrams have θ0 = 50◦. The left

diagrams show the forces experienced by the spine tip, with linkage lines overlaid. In

all of the diagrams, the spine is assumed to be attached to an asperity with θmax = 20◦.

The top two figures show an example of a spine with a linkage that permits the

spine tip to experience forces throughout a significant portion of the safe region (while

the spine is in adhesion). In the left figure, the upper-most linkage line, corresponding

to a preload of 6.0mm, will permit the spine to experience adhesive loads at angles

of < 4◦ at a magnitude of |F | ≈ F ∗. This spine will be able to attach to asperities

with θmax angles as little as 4◦.

For comparison, the lower figures show an example of a spine that cannot attach

well to asperities with small θmax angles. The left figure shows that the linkage lines

go out of the safe region at magnitudes of 0-0.5N. In the right figure, this corresponds

to the base only being able to move through less than half of their possible base

deflections before the spine disengages.

In summary, this means that the spine will only be able to support very small loads

on asperities with θmax < 20◦. Applying larger forces will cause the spine to leave

the safe region, or exceed the region of valid base deflections. If the latter occurs, the
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Figure 3.13: Two examples of linkages with different performance when attaching to
asperities. The left plots show the normal and shear forces experienced by the spine
tip when the spine base is moved through different trajectories, and the “safe region”
where the spine will stay attached to an example asperity with θmax = 20◦. The
diagrams on the right show the deflections of the spine base that cause those forces:
these deflections fall within the linkage’s “region of valid base deflections.” The right
diagrams also show the safe region from the left plot, transformed into x-y space via
the linkage kinematics.
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behavior is unknown, but generally load-sharing will decrease markedly and one spine

will support much larger loads than the others. So, in practice, this spine suspension

will work poorly on asperities with θmax < 20◦. If this spine suspension was used on

a surface with many asperities with 50◦ < θmax < 20◦, however, it would work very

well because the suspension linkage lines on the force diagram would fall within the

safe region. This behavior might be useful if the spines were only intended to attach

to asperities with large θmax angles. Likewise, the spine suspension in the top two

diagrams in figure 3.13 will not work well if forces are applied between 20 − 50◦. In

that case, load-sharing will be poor and one spine will take the majority of the load.

In this particular example, the design can be optimized for small θmax angles

simply by lowering θ0, as illustrated in the top diagrams. Further discussion of this

particular linkage design and the effects of varying θ0 can be found in section 4.8. But

in general, many linkage designs are unable to attach well to asperities with low θmax

angles. To work, the linkage must have linkage lines at shallow angles. As discussed

in section 3.5.1, if the linkage lines are perfectly radial, this corresponds to having a

stiffness matrix with

kxy/kyy = tan θconst

where θconst is the angle of the linkage line. In practice, it will be difficult to achieve

perfectly radial linkage lines, but if a linkage has a stiffnesses close to this, for small

values of θconst within the range of valid base positions, it should have good behavior.

Finally, it is important to be able to move the base of the spines downwards

parallel to the wall, because the spines can slip. In practice, on a climbing robot

spines are frequently slipping, due to surface failure or spines being overloaded and

hitting their overload protection or having forces outside the limit surface. So these

spines will then come off, and the foot will slip down the wall a little and the spines

will (ideally) re-engage (the ability of the spines to re-engage will be discussed at

length in section 3.6). The only steady-state trajectory that will enable constant

sliding is a path parallel to the surface.
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3.6 Re-engaging state

Another highly desirable but not fundamentally necessary property of spine suspen-

sions is the ability of the spines to re-engage the wall if they slip off of an asperity.

In practice, on climbing robots spines frequently disengage, due to vibrations in the

robot or spines slipping off of asperities with low θmin angles. If these spines do not

engage the wall again after they slip off, this can lead to the foot detaching entirely.

To have the spines be able to self-re-engage, the base of the spines must be close

enough to the wall that detached spines will press back against the wall with enough

preload to re-engage. This is illustrated in figure 3.14. On the left, a spine has come

off the wall but the engaged spines have extended far enough away from the wall that

the spine does not even touch the wall. On the right, a spine has come off and now

is pressed against the wall with preload force Fspringback in the normal direction. To

re-engage, this force must be sufficiently large (≈ Fx,max).

In the stiffness matrix, the base of the spines moving towards the wall when

positive shear loads are applied corresponds to the kxy term being negative, and

large enough that Fspringback is sufficiently large under moderate shear (Fy) loads.

If Fy ≈ F ∗, to have the base move towards the wall a distance ∆xmax, we must

have kxy ≈ F ∗/∆xmax. At this point, the unattached spine’s kxx stiffness must be

kxx ≤ 2Fx,max/∆xmax as discussed in section 3.4 about the Unattached state.

If a spine comes off an asperity, usually the base of the group of spines will displace

down the surface (−y) so that the remaining engaged spines will stretch enough to

accomodate the extra load that was formerly carried by the spine that just disengaged.

If the detached spine can re-engage very quickly, it may be able to catch on an asperity

and take some of that load. If it does not catch on an asperity immediately, it will

be ready to catch on one if a different spine comes detached.
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d
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Figure 3.14: Requirements for spines to self-re-engage. Left, the purple spine has
detached and returned to its original unloaded configuration, but is too far away
from the wall to re-attach. Right, the spine is touching the wall again, and will
experience a normal force of Fspringback.

3.7 Disengaging state

When the spines are disengaging, the forces in the x- and y-directions on each spine

are ideally reduced to zero, and then the foot can be lifted off the wall. In practice,

the spines usually slide up the wall a little, inducing forces in the −y direction. This

occurs because spines engage at different y-locations along the wall, and so the spines

that engage later may slide up the wall to the point where other spines first engaged.

Furthermore, the robot or human controlling the base of the spines may not perfectly

detect that the force has gone to zero, and may continue to drag the spines up along

the wall in a disengagement trajectory.

Forces on spines dragging up the wall (+y) will be Fy < 0. In this case, the sus-

pension must prevent the spine from rotating, which may lead to jamming in small

crevices in the surface. We assume the maximum forces to disengage are comparable

to the maximum preload force, Fx,max. If the spine is limited to rotating 15◦ (=0.262
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radians), then the stiffness matrix must have kyθ, kxθ > Fx,max/0.262 to prevent ex-

cessive rotation during disengagement.

3.8 Summary

A summary of the constraints on the spine suspension stiffness matrix is shown in

table 3.1. Because a single suspension must accomodate all of these constraints in

different portions of the spine’s load/unload cycle, and ideally accomplish effective

load-sharing, the suspension must have nonlinear stiffnesses.

Table 3.1: Spine suspension stiffness matrix constraints

State kxx kyy kxy kxθ kyθ kθθ

Unattached tradeoff - - - - -

Loaded– non- non- non-linear
- - -

load-sharing linear linear and < 0

Loaded–
- - - >

Fx,max
0.262

> F ∗

0.262
-

geometric

Re-engaging ≤ 2Fx,max
∆xmax

- < 0 - - -

Disengaging - - - >
Fx,max
0.262 >

Fx,max
0.262 -

3.9 Effects of an ankle

The foregoing analysis assumed that the spines were individually connected to an

object, such as a robot leg, that had very small rotations even if significant forces and

moments were applied. In practice, however, it is sometimes useful to have an “ankle”

or secondary suspension above a group of spines. This ankle suspension typically is

chosen to permit rotational movements (i.e., kxθ and kyθ are relatively small) while

being stiff in the translational directions (kxx, kxy, kyy are large).
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The ankle can be added or modeled for two reasons. First, robot legs sometimes

have unintentional torsional compliance due to forces being applied at the end of a

relatively long structure; this compliance can be modeled by an “ankle” suspension.

Second, sometimes an actual ankle is put in place, for the express purpose of per-

mitting rotational movements of a group of spines. The purpose is to accomodate

greater variations in the height of the surface while still affording robust attachment.

If a robot is running open-loop or is moving at high speed, with no sensor detecting

the distance to the ground, some forgiveness in the alignment of the foot with the

ground is beneficial.

The existence of a compliant ankle has little effect on the preceding principles.

Because spines are used in groups, the individual spine suspensions can be assumed

to be quite soft relative to the ankle, and so the constraints are relatively unaffected

in most cases. The exceptions to this are the load-sharing constraints in the Loaded

state. To share the load between spines, the particular force-displacement character-

istic is very important to keep the loading vectors parallel and permit motions in the

y-direction. In these cases, then, the compliance of the ankle in series with the spine

suspension must be taken into account following the approach given in the extended

footnote in section 3.1.1. The spine suspensions as a whole will rotate as forces are

applied to the spines, and so the net displacements must still satisfy these constraints.



Chapter 4

Real Spine Suspension Behavior

4.1 Introduction

In this chapter we present several spine suspension designs and analytical models of

them. We show how these designs satisfy the criteria on the spine suspensions set

forth in chapter 3. Recall that these criteria were established for different states of

spine loading and unloading:

• Unattached – spines are tracing over the surface in order to engage on asperities.

• Loaded – spines have engaged on asperities and are supporting loads. Con-

straints in the Loaded state are divided into two categories: load-sharing, which

deals with the forces on different spines in a group, and geometric, which deals

with physical interactions between the parts of the suspension structure and

the wall.

• Re-engaging – spines have slipped off asperities or are otherwise not engaged

while loads are still being supported by other spines.

• Disengaging – spines are in the process of being lifted off the surface.

A brief outline of the chapter is as follows:

Section 4.2 describes the real spine suspension designs and analytical models of

them that are useful for analyzing the design performance. The section discusses

60
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design decisions and how the designs avoid some practical pitfalls, and shows how the

designs satisfy the geometric constraints during the Loaded state and constraints in

the Disengaging state.

Section 4.3 shows how these designs satisfy the load-sharing constraints during

the Loaded state and constraints in the Re-engaging state.

Section 4.4 quantifies how well the spines do load-sharing, relative to the ideal

behavior set forth in the previous chapter.

Section 4.5 discusses extensional load-sharing characteristics of the spines.

Section 4.6 shows time-domain results of the spines attaching to a roofing paper

surface.

Section 4.7 discusses how the spines achieve dynamic adhesion—continuous adhe-

sion while sliding over a surface.

Section 4.8 shows how the designs can be modified to better or worse satisfy the

constraints during the Loaded and Re-engaging states, using the analytical models.

4.2 Actual suspension designs

In this section, several suspension designs and analytical models of those designs are

described. The designs are made to satisfy the constraints on the suspension stiffness

matrix during the Loaded state (geometric constraints) and Disengaging state. How

the designs satisfy the constraints during the other states will be discussed during

subsequent sections.

4.2.1 Design methodology

The overall design methodology for spines is as follows. We assume that around 20%

of the spines will attach under worst-case conditions, if the surface has infrequent

asperities and is only marginally climbable. The total force the group of spines (e.g.,

in a foot) must support is estimated, based on e.g. a robot’s total weight. The total

horizontal width of the group of spines is also assumed, based on the practical space
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constraints in the design. For example, on a climbing robot, feet that are too wide

can cause the sides of the foot to run into the ground unintentionally if the feet are

slightly misaligned with the surface. The width of each spine is also known, based on

the available manufacturing methods, so this plus the overall foot width dictates the

total number of spines (here we assume a single row of spines). With the total force

assumed and 20% of the total number of spines assumed to be attached (at half their

maximum deflection, on average), the average kyy stiffness can be computed. Next,

it must be verified that the asperities can support this much load per spine; if they

cannot, the foot must be made to include more spines, and the load per spine reduced.

Following the determination of the stiffness in the y-direction, the kxx stiffness can

be computed based on the overall linkage performance and the minimum stiffness to

overcome friction effects between adjacent spine linkages.

4.2.2 RiSE and ZMan toe designs

The RiSE toe design was made for use on the RiSE climbing robot [99]. A picture

of the RiSE robot climbing a wall can be seen in figure 4.1(left). As shown in figure

4.2(left), the toe consists of a small hardened steel hooks (≈ 10 − 25µm tip radius)

(Tiemco 900BL fish hooks) embedded in a molded structure of hard and soft urethane

(Smooth-On Task 9 and Vytaflex 30, respectively) created using Shape Deposition

Manufacturing [16]. The system can be modeled as a damped, elastic linkage as

shown in fig. 4.2(center).

Figure 4.2(right) shows a ZMan toe, designed for a human climbing application.

A picture of the author supported by a patch of 1200 ZMan toes is shown in figure

4.1(right). This design uses the same overall structure as the RiSE toe, except some

of the dimensions are different, and it uses the Smooth-On Vytaflex 60 polyurethane

for the flexures.

In both designs, the general operation is as follows: rows of these toes are secured

to two plates on each end via pins running through the toes. In figure 4.3, the pins are

labeled 6, 7, and 8, and the top sideplate is labeled 9. In figure 4.2, pins go through

the hole at the bottom of element 2, which acts as a rotational joint, and through the
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Figure 4.1: (left) Picture of the RiSE robot using the microspines developed in this
thesis. (right) Picture of the author hanging from a large patch of ZMan spines.

hole in the rigid material at the end of flexure 5. A third pin, element 6, restricts the

motion of the front of the toe in conjunction with the hole in element 1. Flexure 5 is

quite soft, while flexures 3 and 4 are relatively stiff in both extension and bending.

As the spine is preloaded in the x-direction, element 1 deflects backwards, rotat-

ing about the pin in element 2 (labeled 7 in figure 4.3). Then, as shear loads are

applied, flexures 3 and 4 stretch, and further rotation may occur. The combination of

rotation and stretching gives the linkage a nonlinear characteristic, as well as bringing

the base of the spines towards the wall as it is loaded, for certain combinations of

flexure stiffnesses. With appropriate stiffnesses for the flexures, this makes it a good

suspension for effective load-sharing during the Loaded state and makes it exhibit

appropriate behavior during the Re-engaging state.

When set up between the side plates, flexure 5 is stretched to have a preload

force. This causes the toe to rotate forward, except the pin (element 6) through the

hole in element 1 prevents forward rotation, and the combinations of flexures 3 and

4 does not permit bending. In this manner, there can be a preload on the spine tip

in the x-direction. This overall mechanism can be made to have a very small kxx
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Figure 4.2: (left) Picture of a RiSE toe. (center) Spring/damper model of spine
linkage. The spring elements 3 & 4 contribute to the tangential compliance (k=184
N/m for 3 & 4 in parallel, b=0.42 Ns/m), while element 5 provides compliance
normal to the wall (k=16 N/m). Element 6, a pin going through the entire foot,
acts as an overload protection mechanism in conjunction with the hole in element 1.
The approach volume is mostly a function of the shape and orientation of asperities;
the loading forces volume also depends on the coefficient of friction. (right) Picture
of a ZMan toe, which uses the same general design as a RiSE toe but with different
lengths and stiffnesses.

compliance, because flexure 5 is operating in extension rather than compression.

Flexure geometry

The flexures at the back of the spines (elements 3 and 4 in figure 4.2(center)) are

designed to accomplish two goals. First, we wish to avoid clockwise rotation of the

plastic piece that the spine is embedded in (element 1 in figure 4.2(center)), because if

it rotates too far then it will hit the wall, as discussed in section 3.3 about suspension-

wall constraints. By angling flexure 4 steeply, this motion can be reduced, satisfying

the geometric constraints during the Loaded state. In the ZMan toe, the short-and-

wide aspect ratio of the flexures aids with this effect.

Second, by adjusting the spring constants and locations of flexures 3 and 4, the

rigid element (2) connected to the normal compliance flexure (5) can be made to
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Figure 4.3: View of a group of RiSE toes assembled into a “foot.” Numbering is the
same as in figure 4.2. Pins 6, 7, and 8 go through all of the toes in the group, and are
supported on the ends by sideplates (element 9). The toes rotate around the hole in
element 2, which pin 7 passes through.

rotate about the pin at the base as the spine extends. The flexures are designed so

that when the spine extends, element 2 rotates forward (counterclockwise), reducing

the tension on the normal compliance flexure (element 5). This reduces the effective

kθ spring constant, which makes the spine not push against the wall as much. This

has the desirable effects of improving load-sharing and self-re-engagement, while still

allowing effective tracking over the surface while the spine is not extended and has

not yet found an asperity.

Finally, the steep angle of flexure 4 helps keep the toes aligned properly and from

rotating about the y-axis. The toes are in rows, and can easily become tangled unless

countermeasures are taken.

At the ends of the flexures in both the ZMan and RiSE toes, the soft polyurethane

extends along the edges of the hard material. This was done to reduce stress con-

centrations between the hard-soft material interface and help prevent delamination

at the edges. Furthermore, on the RiSE toe, fingers of soft polyurethane can be seen

extending into the hard material at the ends of flexure 3. If a straight interface was

used at this linkage, the soft polyurethane exhibits delamination in the middle of
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the interface. A fingered geometry was not necessary on the ZMan toe because of

the greater similarity between the hard and soft polyurethane Young’s moduli, as

compared to the RiSE toe.

Overload protection

The spines are equipped with an overload protection system consisting of a hole in

the plastic piece connected to the spine with a pin passing through it (elements 1 and

6 in figure 4.2(center). This system accomplishes several goals.

First, it facilitates disengagement of the spines. When the spines and linkages are

lifted off the wall, sometimes the spine tip can become jammed into a small crevice

on the surface, as discussed in section 3.7. In this case, to remove the spine a force

must be applied that is parallel to the spine, and away from the wall. The pin-in-hole

mechanism accomplishes this by preventing the spines from rotating forward after

the pin hits the top of the enclosing element. At this point, the toe will maintain its

orientation, so forces can be applied at the base of the spine in the appropriate direc-

tion to make the spines disengage. This satisfies the constraints in the Disengaging

state.

Second, it prevents the spines from tangling. Because the spring force pushing the

spine towards the wall is very weak (controlled by element 5 in figure 4.2(center)),

the spines can move in the x-direction relatively easily. Furthermore, the spines can

extend parallel to the wall when they are loaded. Without a mechanism prevent-

ing tangling, toes will frequently become disengaged due to slipping off an asperity,

and then spring back such that their spines get stuck on top of an adjacent spine’s

suspension, so that it is not able to touch the wall any more. In climbing robot

applications, this is very important to prevent because the robots take hundreds of

steps, and tangles can accumulate.

Third, it prevents damage to the extensional flexures (elements 3 and 4 in fig-

ure 4.2(center)). The flexures are made of polyurethane with a tear strength of

13660N/m, and elongation at break of 1000% [97]. If a surface does not have many

asperities, leading to only a few toes attaching, or if excessive force is applied to a
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foot, then without overload protection many spines will extend beyond their maxi-

mum elongation, leading to ripping.

Spine shape

The fishhooks used in the spines are Tiemco brand, model 900BL, size 14, made of

steel covered in a black coating. These fishhooks work well because the tip geometry

and the hardened steel material resist bending. Even with these fishhooks, the very

tips of the spines are still subject to dulling and bending. The dulling is avoided

partially because of the spine trajectory during disengagement: the spines typically

scrape upwards along the wall for a short period of time before disengagement, which

serves to “file down” the tips and resharpen them. Pictures of a new spine tip, one

dulled from heavy use, and a spine with a bent tip are shown in figure 4.4.

(a) (b) (c)

100 μm

Figure 4.4: Pictures of spine tips: (a), a new spine, with tip radius 7.5µm, (b), a
spine extremely dull from use, with tip radius 53µm, (c), a new spine bent at the tip.

The fishhooks are of constant diameter, with a taper near the spine tip. Even

though they are constant diameter, bending at the base (where stress is a maximum,

per Appendix A.1) does not occur because they are of a sufficiently large diameter

for the applied loads. The spines do bend at the very tip, though, because there the

fishhooks become more slender than they should be for the applied loads. The spines’

bending at the very tip can be eliminated by an improved geometry: an optimal shape

for the spines is a logarithmic spiral, which has constant stress along its length when

it is subjected to a load at the end [69]. The claws of bears, tigers, and birds were
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found to follow this shape [69, 25].

Stalk length l0

Let the distance from the rotational hole at the back of the spine in element 2 to the

tip of the spine be defined as l0. On the RiSE toe, this distance is 3.0cm, while on

the ZMan toe it is 4.6cm.

Changing l0 has a practical effect because to avoid the constraint of the base

running into the wall, the base must be a certain distance away from the wall. In

practice, the RiSE spines can displace 8mm in the normal direction, so the base of

the spines needs to start at least this far away from the wall. Also, the spines rotate

about the bar at the base. To make the structure strong, the material around this

bar must extend approximately 1-2mm below the bar. This means the bar must start

approximately 9-10mm away from the surface.

A competing constraint is that the θ0 angle should not be too large, or else the sus-

pension properties suffer, as discussed in section 4.8.1. Together, these requirements

mean there is a practical lower bound on the overall spine length. For a travel in the

normal direction of 8mm, this corresponds to a minimum length of a few centimeters,

or close to the length of the RiSE toes.

4.2.3 Stalk Model

We have developed a simple model that simulates the behavior of the RiSE and ZMan

toe suspensions, and is useful for analyzing what makes a good suspension. The “stalk

model” is shown in figure 4.5. It is composed of a pin joint where the spine tip meets

the wall, an extensional spring kext able to extend parallel to the stalk shaft, and a

torsional spring ktheta at the base of the spine. The base of the spine is connected via

a pin joint to a body whose orientation and position are assumed to be controlled by

a robot or other mechanism.

The stalk has an initial angle of θ0 with respect to the wall, and θfinal is the final

angle after the stalk deflects under a load. The torsional spring can have a preload
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Figure 4.5: Stalk model: pin joints connect a stalk to the wall and the base of the
suspension. An extensional spring kext allows the stalk to stretch, and a torsional
spring kθ causes moments at the base pin joint. The stalk is initially at angle θ0

with respect to the wall, and is length l0. After deflection by ∆x and ∆y, the stalk
is length lfinal at an angle θfinal. The forces on the stalk tip can be described by
(Fext, Fθ) or (Fshear, Fnormal).

of θpreload, which models how the spines push against the overload protection pin in

the resting state.

The stalk, when displaced by ∆x and ∆y to final positions of xfinal and yfinal, has a

length and angle of:

lfinal =
√

(x0 + ∆x)2 + (y0 −∆y)2

θfinal = arctan
(
x0+∆x
y0−∆y

)
.

The torsional spring at the base applies the moment

Mbase = ktheta(θ0 + θpreload − θfinal)
and the extensional spring causes a force along the stalk of:

Fext = kext(lfinal − l0).
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The wall end of the stalk experiences forces due to the wall of:

Fext = kext(lfinal − l0)

Fθ = Mbase/lfinal

which, when put in the (Fshear, Fnormal) coordinate system, equate to:

Fshear = Fext cos θfinal + Fθ sin θfinal

Fnormal = −Fext sin θfinal + Fθ cos θfinal

To determine the forces required to engage the spines and keep them attached to

the surface, an array of 10 spines was tested on a mechanized stage and force plate

described in section 2.4 and [90]. Using the results from the stage testing, we can

compare the behavior of the stalk model to that of the RiSE toe. To compare the

stalk model to the RiSE toes, the following parameters were used:

Table 4.1: Parameters in Stalk Model to match RiSE Toe behavior

l0 3.0 [cm]
kext 184 [N m]
kθ 0.0025 [N m/radian]
θ0 30◦ [degrees]

θpreload 3◦ [degrees]

A diagram of the testing procedure is shown in figure 4.6. In testing, the spine

base was first moved in the direction normal to the surface a specified preload depth,

and then the base is moved parallel to the surface through a specified range of dis-

placements. A rigid bar was mounted on the force plate such that the spines would

catch on it as they were dragged horizontally. The trajectory is reversed to return to

the starting position. Each line in the plot corresponds to a different preload distance.

To test the linkage, the spines were preloaded in the normal direction to the

force plate to various depths. During this time, the spines slid in their non-engaging

direction due to their linkage properties. Next the bases of the spines were dragged

parallel to the surface. A rigid bar was mounted on the force plate such that the

spines would catch on it as they were dragged horizontally across the force plate.

After the spines grabbed on the bar, the shear forces and adhesive forces increased
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as the spines stretched. To unload the spines, the trajectory was reversed.

1

2 3
4
5

Figure 4.6: Diagram of stiffness testing procedure. The spine was positioned so that
the spine was just behind a bar (1) glued to a substrate. Then, the base of the spine
(2) was moved perpendicularly to the surface to various preload depths, and dragged
parallel to the surface. (3) indicates the end of a drag with zero preload, and (5)
indicates the end of a drag with the maximum preload.

Results can be seen in figure 4.7. In this plot, the measured forces from the stage

correspond closely to the simulated model, the primary difference stemming from

hysteresis in the linkage that was measured. Also, the forces from the stalk model

show positive normal forces because the model assumes the spine tip is held in place

by a pin joint, while on the stage the spines were allowed to deflect and slide back so

as to not be in compression. In summary, the model is a good approximation of the

RiSE spine linkage (at least for x- and y-forces, as rotations were not measured on

the stage), and thus can be useful in simulating the effect of varying the parameters

of the RiSE toe.

4.2.4 Parallel four-bar toe design

Another design, shown in figure 4.8, uses nitinol wires embedded in a hard poly-

urethane (Smooth-On Task 9) to form elastic four-bar linkages. The wires at location

3, form a parallel linkage that enables the spine, embedded in element 1, to travel

vertically in the picture. A deflected location is shown, which results from applying

a force F to the spine tip. The wires, from Malin Co., are of diameter 0.381 mm at

location 3, and at location 4 are of diameter 0.254 mm. The toe is supported by pins

going through one hole in each plastic part labeled 5. This forms two pin joints, so

the body of the spine, element 2, can travel horizontally as forces are applied to the
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Figure 4.7: Plot of forces from the RiSE toes on the stage and the simulated forces
from the stalk model, showing very good agreement. The three different pairs of lines
show results for three different preload depths.

spine tip. Wires 4 are very slender, bending easily to allow this motion. Furthermore,

because of the arrangement of the wires (one on the top, one on the bottom), the

wires are always in tension as the spine tip is loaded, preventing buckling.

This design uses an overload protection mechanism similar to that in the RiSE

and ZMan toes. The top part of element 1 is angled, and this runs into a pin in front

of it, 6, after a certain deflection. When this occurs, the angled face hitting the pin

causes a force pulling the spine away from the wall.

4.2.5 Constant stiffness model

It is also useful to compare the previous spine designs to a constant stiffness matrix.

The matrix used in the constant stiffness matrix simulations is following; values were

chosen to give the same general behavior as the RiSE toes:
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Figure 4.8: Picture of parallel four-bar toe design. Nitinol wires 3 permit the spine,
embedded in 1, to move up and down relative to the main body, 2. A deflected
position is also shown, which would result from applying a force F to the spine tip.
One pin goes through each plastic element labeled 5, acting as pin joints so the main
body can move perpendicularly to the surface. Nitinol wires 4 are in tension as the
spine is loaded, avoiding buckling. Pin 6 acts in conjunction with the angled face of
1 to provide overload protection.

K =




15 −30 0

−30 175 0

0 0 1




4.3 Comparison of designs: Load-sharing

In this section, we compare three different designs: the ideal linkage for optimal load-

sharing, the stalk model, and the parallel four-bar design. The stalk model is a good

model of the RiSE and ZMan designs; the parameters used in this comparison were

chosen to mimic the performance of the RiSE toes. With this comparison, we conclude

that the RiSE toe and stalk model achieve good performance relative to the ideal,

although improvements can still be made to more closely match the performance of

an ideal linkage.
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We compare the load-sharing ability of the different spine suspension designs in

the Loaded state by examining plots of the forces on the spine tip as the base position

is varied. Recall from section 3.5.1 that the spines in a group are connected together

at their bases and thus have the same base distance from the wall. On a typical

surface, spines will engage at different y-locations along the surface, but the forces

on the spines will all be along the same curve in force-space. As the base is moved

parallel to the wall, the forces on the different spines will move along this curve.1 In

the ideal case, these curves will be radial, so the loads on all of the spines will be

parallel.

To determine the pattern of curves in force-space for each linkage, the same testing

procedure was followed as shown in figure 4.6: the spines are preloaded to different

depths and then the bases moved parallel to the surface. The resulting forces are

plotted in figures 4.9-4.16, which give the characteristic pattern of curves for each

linkage. We will refer to these curves in force-space as “loading lines.” Each line in

the plots corresponds to a different preload distance. We also calculate the stiffness

matrices of the various designs at different stages of loading for comparison. Multiple

stiffness matrices are shown because many of the linkages have nonlinear stiffness.

As can be seen from these plots, as the spine base is moved parallel to the surface,

different designs have different trajectories through force-space at the spine tip. Figure

4.9 shows the linkage for ideal load-sharing, where the loading lines are radial. The

more closely the lines in force-space match the radial pattern corresponding to the

ideal suspension design, the better the design is at load-sharing.

Figure 4.10 shows the result using the stalk model, and figures 4.12, 4.13, and 4.14

show the linkage characteristics for the RiSE spine suspension with the spine oriented

at different initial angles with respect to the surface. The stalk model matches the

results for the RiSE suspension closely. Figure 4.15 shows the linkage characteristic

for the fourbar spine suspension. Figure 4.16 shows the results of simulations using

a constant stiffness matrix (described in section 4.2.5), for comparison, showing why

1This assumes that the differences in engagement locations in the x-direction are very small
compared to the differences in the y-direction; if the engagement locations in the x-direction vary a
lot, the different spine forces will be on nearby lines.
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Figure 4.9: Stiffness matrices for ideal suspension. Each line in the figure corresponds
to a constant distance between the base of the spines and the surface.

a nonlinear suspension is needed.

4.3.1 Curving up vs. curving down

These different plots show different linkage characteristics. The plots for the RiSE

spines show the loading lines curving up towards the Fshear axis slightly as the loads

are increased, while the fourbar suspension has loading lines that curve down towards

the Fnormal axis. The constant stiffness matrix has straight lines at a constant an-

gle. In general, linkages that curve upwards toward the Fshear axis will have better

performance than linkages that curve downward.

Consider the case where the load on the base of a group of spines is held at a

constant magnitude while the loading angle is increased. This situation can occur if
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Figure 4.10: Stiffness matrices for stalk model with parameters set to match the
behavior of the RiSE toes. Each line in the figure is a constant preload.
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Figure 4.11: Base positions for the stalk model simulation in figure 4.10. The loading
lines in this figure are the positions of the spine base corresponding to the same-
colored lines in that figure. Dots indicate corresponding locations along these lines.
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Figure 4.12: Force-space plot of RiSE spine linkage behavior with an initial angle of
20 degrees, for ten spines in parallel. Preloads from 0-5.5mm were applied perpendic-
ularly to the surface, and then the spine base was moved parallel to the surface for
8mm. Each line in the figure is a constant preload.

Figure 4.13: Force-space plot of RiSE spine linkage behavior, with an initial orien-
tation of 30 degrees, for ten spines in parallel. Preloads from 0-6.5mm were applied
perpendicularly to the surface, and then the spine base was moved parallel to the
surface for 8mm. Each line in the figure is a constant preload.
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Figure 4.14: Force-space plot of RiSE spine linkage behavior with an initial angle of
49 degrees, for ten spines in parallel. Preloads from 0-4.0mm were applied perpendic-
ularly to the surface, and then the spine base was moved parallel to the surface for
8mm. Each line in the figure is a constant preload.

Figure 4.15: Force-space plot of Four-bar linkage behavior, for ten spines in parallel.
Preloads from 0-6.5mm were applied perpendicularly to the surface, and then the
spine base was moved parallel to the surface for 8mm. Each line in the figure is a
constant preload.
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Figure 4.16: Lines in force-space of having a group of spines with the same x-
displacement but varying y-displacements, with a constant stiffness matrix linkage.
The loading lines deviate significantly from a radial pattern from the origin, illustrat-
ing the benefit of nonlinear stiffnesses in the spine suspension.

the spines are pushed into the surface initially, then loaded in shear, and then pulled

away from the wall, such as is illustrated in the diagram sequence in figures 3.3- 3.6.

This case is useful to consider because this is the pattern of loading used on the RiSE

robot [100].

As the loading angle is increased, the spines are loaded increasingly in adhesion.

Eventually, some spines will be loaded at angles in excess of θmax for their individ-

ual asperities, and they will disengage from the surface. At this point, the spines

that remain attached will encounter increased loads as they re-distribute the force

previously supported by the spines that just detached.

If the loading lines curve upward, the spines that disengage will more likely be the

least-loaded spines. The loads on the spines that remain attached will then increase

only a small amount. As long as these spines do not exceed their Fmax limit, they

will stay engaged, an acceptable outcome.

In comparison, if the loading lines curve downward, the spines that disengage will

likely be the most-loaded spines. The loads on the spines that remain attached will

increase by a relatively large amount. Because the lines curve down, as the still-

attached spines re-distribute the load, more spines may be loaded at angles in excess

of θmax, causing them to disengage as well. This may cause a chain reaction, leading

to all of the spines disengaging.
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Furthermore, loading lines curving up toward the Fshear axis are good because

the true limit curve also curves upward, due to the differences in the magnitude at

which asperity failure occurs. This can be seen in the limit curve for roofing paper in

figure 2.11. It is useful for the loading lines to mirror the spine/surface limit curve so

that as many spines can stay attached as possible. With spines experiencing forces

at various locations along a single linkage line, a line parallel to the limit curve will

raise the probability that spines will remain attached at both large and small force

magnitudes.

4.3.2 Re-engaging performance

If a spine slips off an asperity, it is desirable for the spine to re-engage on another

asperity further down the wall. To examine this situation, we consider the force

Fspringback that a spine will experience normal to the wall if it has returned to its

original (non-extended) position, while other spines in the group are still engaged

and extended.

For the spines to re-engage, the base of the group of spines must be close enough

to the wall that an unengaged spine tip can touch the wall again. If the base of the

group moves towards the wall a distance x, then an unengaged spine will experience

a springback force Fspringback that results from being preloaded a distance x towards

the wall.

This force can easily be determined at different states of loading for the group of

spines by examining the foregoing plots of the spine linkage behavior. Because the

plots show the forces exhibited by spines as the spine base is held a constant distance

from the surface, the normal force on an unengaged spine is simply the Fnormal force

on a particular line at the point where Fshear = 0. For example, in the plot of the

stalk linkage behavior in figure 4.10, the top pink-colored line (corresponding to a

preload of 8.0mm) has a preload of 0.04N at Fshear = 0. If the loads on the engaged

spines in the group occur on this line, then any spines that come disengaged will

spring back to their original position and experience a preload of 0.04N.

As can be seen from an examination of this figure, the springback forces are quite
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small. However, these small springback forces are enough to make the spines re-

engage, if they were enough to make the spines engage initially. Larger springback

forces occur if the loads on the spines are largely in shear (the top lines in the figure),

while smaller springback forces occur as the loads on the spines are more away from

the wall.

The plots of the other linkage designs have similar behavior. One additional

interesting situation is illustrated in figure 4.17. In this figure, a number of dashed

lines are plotted as well as solid-colored lines. These dashed lines correspond to base

positions that are far enough away from the surface that unloaded spines will not

touch the surface. Spines could potentially still have forces along these lines, if they

engaged on asperities and then the base was gradually pulled away from the wall. For

these lines, if they were extended all the way to Fshear = 0, they would correspond

to negative values of Fnormal. This indicates that adhesion would be required for an

unloaded spine, and thus the spine would not actually be touching the surface if it were

not engaged. Therefore, these lines correspond to regions where self-re-engagement

cannot occur.

The foregoing behavior can be observed with the RiSE spines, which have a linkage

that curves up. If loads are applied to a group of spines such that unengaged spines

cannot re-engage, then to actually achieve re-engagement the spine base must be

moved closer to the surface, corresponding to making the force on the group more

in shear. In practice, if spines are loaded in this way and some spines disengage, it

may be beneficial to completely detach the foot from the wall and re-place it with a

pawing behavior. In this manner, the spine linkage characteristics partially dictate

the necessary control strategies for engaging the spines.

4.3.3 Accomodating both shear and adhesive loads

In the figures showing the linkage characteristics (figures 4.9 - 4.16), for all of the

linkages except the ideal suspension, the loading lines corresponding to the different

preload values do not extend all the way up to the Fnormal = 0 axis or all the way

down to some regions of force-space at high loading angles close to the θmax limit.
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Figure 4.17: Regions of force-space showing where re-engagement is possible: if the
loading lines intersect the Fnormal-axis at negative Fnormal values, re-engagement will
not be possible because the spines will not touch the surface.

For example, figures 4.12-4.14 show the performance of the RiSE spine linkages at

different initial angles. If the initial angle is set to 20◦, the RiSE spine linkages can

generate loads only in the range of around 4 − 14◦. If the initial angle is set to 49◦,

the linkages can generate loads only around 26− 43◦.

The linkages can only generate small ranges of loads because the overload protec-

tion pin limits the angles to which the spines can rotate. In these graphs, the spines

were loaded so that the overload protection pin did not hit its enclosure. Forces close

to the Fnormal = 0 axis or θmax limit are indeed possible, but to achieve these forces

the overload bar must run into the surrounding plastic. This will cause the forces to

be whatever is necessary to achieve static equilibrium, but the linkage performance
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will be altered.

One example in which the overload protection pin ran into the surrounding plastic

is figure 4.13. In the measurements for this linkage, at high preloads (6.0 and 6.5mm,

corresponding to the top two lines in the figure), the bar ran into the bottom of the

surrounding plastic. This caused the spines to be pushed into the surface, and the

forces on the spine tip to be much more in shear. A similar effect would occur if

the overload protection bar ran into the top of the enclosure while the spines were

pulling at large angles, except this limit would cause increased normal force rather

than shear force.

The overload protection bar running into the surrounding plastic achieves the

desired forces for an individual spine, but at the expense of load-sharing. If a group

of spines is engaged, the positions of the spines will be slightly different in the normal

(x) direction, and very different in the shear (y) direction. Consequently, one spine

will be sticking up or down further than the others. When the overload protection pin

reaches the limit of the enclosure, it will then typically contact one spine suspension

before the others, causing the loads on that one spine to be very different from the

other spines, and probably causing that spine to disengage prematurely.

To solve these problems, an ankle can be included between the group of spines and

the robot body or climber. On the RiSE climbing robots, an ankle that acts like a pin

joint with a torsional spring around it is positioned behind the spines, as shown in

figure 4.18. This ankle permits the spine linkages to change orientations with respect

to the wall as the load is varied; as the orientation changes, the regions of available

displacement change as well. The inclusion of an ankle permits full coverage of the

force-space without the adverse effects of the overload protection bar running into

the enclosing plastic. A plot of the loading lines for ten RiSE toes on the ankle is

shown in figure 4.19. In the range tested, the spines can support loads from 7-23◦ at

maximum extension; larger angles can also be supported, if the spines are engaged

and then the ankle is pulled further away from the wall.
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Figure 4.18: Ankle attached to a group of RiSE toes, showing how it permits deflection
to different angles with respect to the surface.
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Figure 4.19: Linkage performance for ten RiSE toes attached to an ankle, showing
an increased range of possible angles as compared to RiSE toes in isolation.

4.3.4 Strategies for control

The asperities on a given surface will have a wide range of maximum loading angles

θmax. A spine sliding over the surface will encounter different asperities as it slides,

each of which has a different maximum loading angle θmax drawn from this distribu-

tion. While we can generate adhesion by attaching to any of these asperities, if we

are selective about which asperities we attach to, we can increase the capacity of the

spine/asperity contacts to support normal forces. In other words, we would like the

spines to attach to the asperities with maximum loading angles as large as possible.
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This will allow the spines to sustain loads at angles as far away from the wall as

possible: each asperity can support loads at angles up to θ = θmax. If the spines

initially engage on asperities with small θmax angles, they will easily disengage as ad-

hesive loads are applied, and may skip over asperities with larger θmax angles before

re-engaging. Therefore, performance is increased if the spines slide off asperities with

small θmax angles during loading, and only cling to asperities with high θmax angles.

Strategies for accomplishing this involve both the spine linkages and the loading

trajectory. In the case of an ideal linkage with radial loading lines, the group of

spines could be preloaded as little as possible and pulled away from the wall, so

that the forces were initially close to some desired angle θmax,desired. If the forces are

maintained at θmax,desired for small magnitudes, the spines will slip off any asperities

with smaller θmax angles. Thus, the spines will only engage on asperities with large

maximum loading angles θmax ≥ θmax,desired. Later, with larger loads, the direction

of forces could be controlled to be at shallower angles if desired.

In practice, however, a group of spines is preloaded into the wall before being

dragged down the wall, in order to overcome friction between adjacent spines and

conform to the wall. Because positive normal force is applied, spines may attach to

asperities with shallow angles. In this case, it may be appropriate to have a spine

linkage characteristic with loading lines that curve upward. Then, at small loading

magnitudes, the spines will pull away from the surface and slip off low-θmax asperities.

At large loading magnitudes, the spines can be operating in a region of the linkage

where the loading lines are flatter. In this manner, linkages with lines that curve up

may be beneficial.

4.4 Quantifying linkage Load-sharing performance

The focus of this section is quantifying the load-sharing performance of different

linkages. If a linkage is non-ideal, we wish to determine the effects on the resulting

limit curve, and how much adhesion is lost on account of the non-ideality.

For spines i = 1, ..., N , with forces Fi = F1, ..., FN , the total force on the group is
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Ftotal =
N∑

i=1

Fi.

If the ideal linkage corresponds to a radial line at the very edge of a limit curve with

maximum loading angle θmax, the corresponding forces are

Fi = Fshear,i cos θmaxŷ + Fnormal,i sin θmaxx̂,

and the total force on the group will also be at an angle θmax with respect to the

Fshear axis. A non-ideal linkage will have forces

Fi = Fshear,i cos θiŷ + Fnormal,i sin θix̂

where θi ≤ θmax. The total force on the group of spines will be at an angle θnon−ideal

with respect to the Fshear axis. The angular reduction of the limit surface due to the

sub-optimal spine suspension will then be:

θdifference = θmax − θnon−ideal.
This is illustrated in figure 4.20. The top left diagram shows forces on a group

of individual spines, if the spines have an ideal linkage (red arrows) as compared

to an example of a non-ideal linkage (purple arrows). The forces on the individual

spines are plotted in force-space in the diagram in the top right. As shown there,

if the linkage is ideal, the forces are all at the same angle. The angle shown in the

diagram is θmax, corresponding to all of the spines being on the verge of failure for

that particular limit curve.

The purple line shows the forces with the non-ideal linkage. In this case, spines

1 and 2 are on the verge of failure, while spines N and N-1 are relatively far from

failure. Because some of the forces are away from the limit curve, the total force on

all the spines is at an angle θnon−ideal < θmax with respect to the Fshear axis. The

non-ideality in the suspension effectively causes a reduction in the limit curve for the

entire group of spines, because it is not possible to pull on the entire group without

some spines becoming disengaged.

Figure 4.21 shows simulated data using the stalk model as a spine linkage. Ten

spines are assumed to be attached to the wall at spacings of 1mm, with the bottom-

most spine only slightly loaded and the top-most spine loaded 1cm in shear, similar

to what is shown in the top left of figure 4.20. The angular reduction in the limit
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Figure 4.20: Illustration of the reduction in the limit curve caused by a spine linkage
non-ideality. The red lines and forces correspond to a linkage able to perform ideal
load-sharing, assuming asperities all have the same maximum loading angle θmax.
The purple lines and forces correspond to a linkage that is not perfectly radial. In
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Figure 4.21: Results from a simulation showing the reduction in the limit curve angle
due to the linkage non-ideality in the stalk model. Different curves are shown for
different θ0 angles in the model. We assume kθ = 0 N m/radian and kext = 150
N/m.

surface was calculated for this arrangement and plotted as a function of the initial

stalk length. Simulations were done with the stalks at initial angles from 0− 80◦ at

spacings of 10◦, plotted as different lines in the figure.

As the length goes towards infinity, the ratio of (displacement)/(length) goes to

zero, causing the angular change to go to zero as well. Consequently, longer stalks

will perform better, but suffer reduced packing density due to the increased length,

if spines are used in multiple rows. Also, the plot shows that initial angles closer to

zero have a smaller reduction in the limit surface.

The simulation done to produce figure 4.21 is a somewhat conservative estimate

in the reduction in the limit curve. If the spines had all engaged at the same location

instead of being uniformly distributed in the y-direction, then we would not see any
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reduction in the limit curve, because all of the spines would be at the same loading

angle. In general, the reduction in the limit curve will correspond to the distribution

along the wall of where the spines are attached, which will in general be non-uniform.

In reality, if the load is increased to an angle θnon−ideal+ε, some spines may disengage,

but others will stay attached and take an increased load, allowing the cluster of spines

to stay attached. The particular behavior in this regard depends on the force-distance

characteristic.

<1°

<2.5°

Figure 4.22: Actual reduction in limit curve due to linkage non-ideality for the RiSE
toes. The RiSE toes have a loss of less than 1 degree at half the maximum magnitude,
and less than 2.5 degrees at full extension.

An estimate of the actual effect on the limit curve with the RiSE toes is computed

in figure 4.22 using the measured loading lines for the RiSE toes. To compute the

estimate at the maximum magnitude, a similar procedure was done as before. At

smaller magnitudes, it was assumed that, at a given angle θ, the spines that exceeded

this loading angle disengaged, while the spines that remained attached supported

their original loads. Thus, the total load on the group was less than the maximum

possible.
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4.5 Extensional Load-sharing

To evaluate different suspensions with respect to the extensional load-sharing cri-

terium, simulations were performed using the stalk model. A setup of the simulation

is shown in figure 4.23(left). In the simulations, a group of five spines was used on a

surface that had five asperities, at locations [0, -1.25, -2.5, -3.75, -5] mm. The base

position of the group of spines was moved to different locations. Each spine remained

disengaged until the base was moved far enough down the wall that it could attach

to its own asperity. For each location of the spine base in xy-space, the forces on the

spines were computed. The maximum force on any attached spine was found, as well

as the average force among all attached spines, and these were divided to find the

load-sharing metric:

metric =
(maximum force of an attached spine)

(average force of attached spines)
(4.1)

Values greater than 1 indicate that the spine with the maximum force is holding that

factor of additional force more than the average. This indicates how well load-sharing

is accomplished during the Loaded state.

In the simulation, the stalk model with a typical linear extensional stiffness (kext =

const) was compared with a stalk model in which the kext spring had a nonlinear

stiffness. The nonlinear stiffness followed a square root law, shown in comparison to

a linear spring in figure 4.23(right).

Simulation results are shown in figure 4.24. The spine base started at (x0, y0),

shown as a black dot near the top of each plot. As can be seen in both of the plots,

the maximally-loaded spine (which is the first spine to attach) is loaded much more

than the average load while new spines are first attaching. The extreme case is with

the first and second spines: when the second spine just begins to attach, its load is

approximately zero, so the average load drops to half of the load the first spine is

supporting. In this case the load-sharing metric is equal to 2. Once all of the spines

have attached, the average load per spine decreases as all of the spines stretch.

In general, the nonlinear kext stiffness achieves much better load-sharing than the
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Figure 4.23: Left, setup of simulations involving multiple spines in a row. Spines are
assumed to attach at asperities, shown as blue dots. The first spine grabs at (0,0). The
base of the group of spines is originally at (x0, y0), but is moved to different locations
(x, y) in simulation. The load-sharing metric (eq. 4.1) is plotted as a function of the
base position. Right, linear and nonlinear (square root) stiffness curves used with the
stalk model.

constant kext. Because the force increases rapidly for small displacements and then

becomes more constant with the square-root function, at moderate displacements the

forces will be much more equal.

4.6 Measured performance on tarpaper

The spines were tested using a sample of roofing tarpaper, chosen because it has a

similar roughness to stucco and is easy to cut to size. A picture of ten RiSE toes
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Figure 4.24: Load-sharing metric for the stalk model, with a linear spring for kext
(top) and nonlinear spring for kext (bottom). The amount of excess load the most-
loaded spine is carrying relative to the average load is plotted as the base position
is varied. The spine base starts at the position of the large black dot at the top.
The nonlinear spring follows a square root function, as shown in figure 4.23(right).
Parameters used were: l0 = 0.03m, θ0 = 30◦, kext = 184N/m, kθ = 0.0025N m/radian.
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undergoing testing is shown in figure 4.25.

Figure 4.25: Picture of RiSE toes on the tarpaper surface. Several spines are seen
to be engaged; two of them are near their limit of travel, while others have recently
engaged.

4.6.1 RiSE Spines Time Trace

Results of testing of ten RiSE toes are shown in figure 4.26. In this plot, the blue line

(Fnormal) is the normal force, where negative values correspond to adhesion. The red

line (Fshear) is the shear force parallel to the surface.

The trajectory used to drag the toes was as follows: the spines were preloaded to a

depth of 4mm at a 45 degree angle with respect to the surface. (A preload of 4mm is

about half of the working range of the spines.) Next, the spines were dragged parallel

to the surface for 16mm, then retracted perpendicular to the surface for 6.5mm, at

which point all of the spines had disengaged. The horizontal drag distance of 16mm

is further than the extensional range of the spines, around 10mm, so the spines hit

their overload protection, disengaged, and re-engaged over the course of the drag.

Figure 4.26 shows this trajectory and behavior as follows. During the preload

phase, between the first vertical black line and the cyan line on the plot, the spines
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Figure 4.26: Forces over time for ten RiSE toes on tarpaper. The forces increase
slowly as the toes are preloaded into the tarpaper. As additional spines engage, the
forces increase faster than linearly (1). When the spines reach their overload stop,
the forces spike until they disengage (2). During pulloff, the spines again reach a hard
limit, and forces increase sharply until the spines disengage (3).

come into contact with the surface almost immediately and then deflect up as their

base moves closer to the surface. The positive normal force required before the spines

start generating adhesion is almost imperceptible, around 0.04N for a group of 10

spines. The preload force is so low partially because the preload trajectory is angled,

facilitating the spines becoming parallel to the surface and beginning to generate

adhesion, and partially because the normal compliance of the spine suspension is

very low. For comparison, if the spines are preloaded perpendicular to the surface

as was done in figure 4.13, the preload is 0.2N for the same group of spines. At the

end of the preload phase, a few spines are generating a small amount of adhesion

and shear. If we compute the value of µ′ from this preload and the resulting 5N of

adhesion, we get values of 25 and 125, for preloads of 0.2 and 0.04, respectively. Both

of these numbers are larger than the published values for the gecko of 8-16 [8] and

are far higher than any values for synthetic dry adhesives.

This property of a very low required preload is extremely useful for climbing
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applications. The preload force required is proportional to the number of spines,

which can range from between 20-30 spines in a group for robot applications to

thousands of spines for human climbing applications (e.g., ZMan). Thus, if 10 spines

require 0.04N, the preload forces required for larger numbers of spines can range from

0.1-10N. It is important that the preload forces be as small as possible, because any

preload force will require the same magnitude of force in additional adhesion from

the other patches of spines that are already engaged. Because the shear force an

entire robot or person can generate (due to gravity) is fixed, any additional adhesion

required will make the robot or person that much closer to falling because the margin

for the engaged spines will be reduced.

During the drag phase, between the cyan and magenta vertical lines, the base is

moved parallel to the surface. In this phase, more spines engage the surface while

unengaged spines continue to trace over the surface. At the points labeled 1 in the

figure, one can see that the slopes of the normal and shear lines increase over time.

Because each spine generates an approximately linear increase in force as the base

is moved parallel to the surface (see figure 4.7), the slope of a group of spines will

become steeper as additional spines engage asperities. Between approximately 6 and

7.5 seconds in the figure, the slope stays approximately constant, indicating that no

new spines are engaging.

After the spines have been loaded and stretch, they extend as far as their overload

protection permits. At this point, the pin 6 in figure 4.2(left) runs into the hole in

element 1, causing the spine to rotate clockwise in figure 4.2 and undergo forces caus-

ing disengagement. In figure 4.26, this behavior corresponds to the sudden increase

and then decrease in force denoted by 2. The increase in force corresponds to one

spine hitting the overload protection and being forced to release. Then when it re-

leases, the force drops sharply, with the change in force corresponding to the amount

of force that spine was supporting. At the arrows indicated by 2, two spines can be

seen having sudden increases in force then decreasing sharply, at 8 and 8.7 seconds.

During the sudden increases in force, both the normal force and shear force in-

crease, but the normal force can be seen to increase faster than the shear force relative
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to the ratio of these forces during normal loading conditions, such as around 6-7 sec-

onds. The overload protection works by prying the spine away from the surface, which

increases the normal force until the spine is pulled at such a steep angle that it slips

off its asperity.

At 9.3 seconds, another sudden drop in force can be observed, but without a

preceding increase in force. This probably corresponds to the surface failing due to

a rock particle coming off the surface due to high forces. (Surface failures did occur

occasionally in these experiments.) The other possible cause of this spine failure is

that the spine slipped off an asperity that could not support that particular loading

angle. However, this is unlikely because the RiSE spine linkage causes the loading

angle to become more parallel to the surface as the spine base is dragged parallel to

the surface, as can be seen in figure 4.10.

During the pulloff phase, between the magenta vertical line and the following

black vertical line in figure 4.26, the base of the spines is lifted perpendicularly to

the surface. During this motion, the overload protection mechanism again causes the

spines to lift off the surface after a maximum deflection, but in the normal direction.

At this point, indicated with a 3 in figure 4.26, the normal forces increase until the

spines come off the surface. This behavior is similar to that during the end shear

phase, except that in the pulloff phase, the spines do not re-engage, so the forces

on the group eventually drop to zero. Also, at the end of the pulloff phase, several

instances of normal forces increasing with no change in shear forces can be observed,

due to the spine base being pulled perpendicular to the surface.

4.7 Dynamic adhesion and re-engagement

Figure 4.27, another plot of the forces over time as ten RiSE spines are dragged over

tarpaper, illustrates an additional important phenomenon during the shear phase:

dynamic adhesion. Similar to how the gecko can slide across surfaces while maintain-

ing adhesion, as described in [35], the spines also can support adhesion while the base

is continuously moving across a surface. This property is relevant to the Re-engaging
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state as discussed in chapter 3.
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Figure 4.27: Plot showing forces as ten RiSE spines are dragged for four cm across
a tarpaper surface at a constant height above the surface. Dynamic adhesion is
exhibited, as multiple spines disengage then re-engage over the course of the drag.

To generate figure 4.27, the spines were preloaded to a depth of 4mm and then held

at a constant height while being dragged 4cm across the surface. This distance is far

longer than each individual spine can stretch before hitting its overload protection,

at about 1cm. Although spines disengage when they reach their extension limit,

other spines are still engaged and support force. The spines that disengaged can then

re-engage on other asperities and support loads as other spines disengage later.

In this trial, the spines maintained a minimum of 1N of adhesion and 2.5N of

shear during the drag, although peak forces were sometimes much higher than this.

Because adhesion with spines is probabilistic and dependent on the spines encounter-

ing asperities with appropriate surface normal vectors, larger numbers of spines will

exhibit more consistent adhesion even while sliding.

Figure 4.28 shows the results of four trials with spines dragged over the surface for

6cm. In all cases, adhesion never drops completely to zero, although it comes quite

close at times. In these trials, generally 2-5 spines were engaged.
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Figure 4.28: Multiple trials of forces over time for ten RiSE toes on a tarpaper surface
are shown. The spines were preloaded 4mm, then dragged parallel to the surface for
6cm. In all cases, adhesion increases until spines hit their overload protection, at
which point some spines disengage. Dynamic adhesion is exhibited as the spines
continue to support loads even as some spines engage then re-engage, while other
spines are still loaded.

The property of dynamic adhesion is extremely important for climbing applica-

tions, because it prevents slips from being catastrophic failures. On the RiSE robot,

the feet slip continually down surfaces during operation, due to local surface failures

or disengagement due to erroneous forces (personal observation). Dynamic adhesion

permits the robot to stay attached to the wall even as these situations occur.

When the spines disengage, frequently they have been stretched a large distance

parallel to the wall. At this point, the extensional flexures are exerting much higher

forces on the spine tip than the flexures pushing the spine tip towards the wall.

Consequently, the spines typically retract all the way to their original position before

re-engaging, as opposed to re-engaging while they are still partially extended.
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4.8 Effects of varying parameters with stalk model

In this section, we explore the effects of varying different design parameters, using

the stalk model. As shown earlier in figure 4.7, the stalk model is a good model of

the RiSE and ZMan spines, so performing simulations with the stalk model can allow

us to quickly see the effects of changing parameters in future iterations of the toe

designs and determine general trends. Changing the parameters will primarily effect

the spines’ ability to do load-sharing during the Loaded state and their behavior in

the Re-engaging state.

In all of the following simulations, parameters were set to be close to those of the

RiSE toes so the results can be interpreted intuitively. The stalk had an initial length

l0 of 3cm. For comparison to the values in the following plots, the RiSE toes have

the parameters shown in table 4.1.

In the simulation, the toes were preloaded every 1mm from 6mm to -6mm into the

surface. Negative preloads are shown to demonstrate the effects of pulling the base

of the spines away from the wall after the spines have engaged. After preloading, the

base of the spines was moved 1cm parallel to the surface in the (-y) direction. In the

figures in this section, solid lines indicate positive or zero preloads, and dashed lines

indicate negative preloads.

A general overview of the simulation can be seen in figure 4.29. In this figure, the

top plot shows the forces on the stalk model under the applied displacements, i.e.,

preloads of 6mm to -6mm, and 1cm downward motion. The bottom plot shows the

corresponding displacements of the stalk base, and the stalk itself, indicated by the

dark black line (it is shown in its original position). In both plots, dots are plotted

on the lines periodically (every 1mm in y-displacement, which is parallel to the wall)

so the motion can be better understood.

Figure 4.30 illustrates the linkage motions for a very wide range of stalk preloads.

If the spines were permitted to move through a wider range of angles, the resulting

behavior would look more like this simulation. Different initial stalk angles will also

result in different subsets of the entire range of linkage motion.
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Figure 4.29: Top, example of forces found using the stalk model. Bottom, the base
positions where the stalk was moved to generate those forces. The thick black line
indicates the original stalk position. In the simulation, preloads from 6mm to -6mm
were applied, (negative preloads, with dashed lines, showing the effects of adhesive
loads), and the spine base was displaced 1cm down the surface. Dots are shown every
2mm of displacement.
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Figure 4.30: In this simulation, preloads from 14mm to -14mm were applied, in 2mm
increments. Negative preloads, with dashed lines, show the effects of adhesive loads.
The spine base was displaced 1cm down the wall. The original position of the stalk
is shown with a black line.
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In the limit as kθ goes to zero, the spine linkage acts as an extensible beam

supported on either end by a pin joint. In this case, since the pin joints cannot

support moments, the forces will always go along the length of the beam. If the beam

is then at an angle θ with respect to the surface, the forces on the spine will be at

an angle θ as well. If the base of the suspension is moved toward the surface with

a preload, this will cause the beam angle to change and thus the resulting loading

angle as well.

4.8.1 Effects of varying θ0 and kθ

Figure 4.31(left) shows the effects of varying θ0. From top to bottom, the rows have

θ0 = {15◦, 30◦, 45◦}. As the initial stalk angle θ0 is increased, the slope of the loading

lines becomes steeper.

In figure 4.31(left), the bottom plot has an initial angle of 45◦. In this plot, for

the largest preload of 6mm, the spine tip must be loaded with an angle of > 30◦.

Thus, this linkage will not be able to attach to any asperities with maximum loading

angles less than this, making it practially worthless, as discussed in section 3.5.3. In

general, when kθ ≈ 0, the angle the stalk makes with the surface when the stalk is

maximally preloaded (in this case 6mm) must be less than the maximum angle some

surface asperities must support.

One solution to the problems caused by a large θ0 angle is to increase kθ, which

is shown in figure 4.31(right). In this figure, from top to bottom, kθ = {0, 0.01, 0.02}
[N m/radian]. As ktheta increases, the lines shift upwards. For fixed other stalk param-

eters, a value of ktheta can be chosen to achieve forces in pure shear at the maximum

deflection and preload. In figure 4.31(right), this can be seen to be true in the bottom

plot, or in figure 4.31(left) in the top plot.

The cost to this favorable linkage behavior is that a very high preload force can be

required, almost 0.4N with the largest preload deflection in figure 4.31(right). This is

not a problem in applications where a positive normal force is applied, e.g. the rear

feet of a climber. This linkage behavior can be used to produce high effective friction.
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Figure 4.31: Results of simulations using the stalk model and varying parameters.
Left, θ0 is varied. From top to bottom, θ0 = {15◦, 30◦, 45◦}. Right, kθ is varied. From
top to bottom, kθ = {0, 0.01, 0.02} [N m/radian]. In both columns, the stalk model
was set to have an initial length l0 of 3cm. Preloads from 6mm to -6mm were applied,
(negative preloads, with dashed lines, showing the effects of adhesive loads), and the
spine base was displaced 1cm down the surface.
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However, in applications where adhesion is required, high required preloads are

counter-productive because any preload force applied into the surface must be sus-

tained as additional adhesion by the other parts of the system attached to the surface.

In this case, it is desirable to make the normal compliance as soft as possible. There

does need to be a minimum value for the normal compliance of a spine suspension,

however, because there is friction between the spines. With a very compliant struc-

ture, slight pressure between the toes leads to them sticking together and moving in

groups, which hinders them from finding their own asperities.

These design explorations suggest that ideally, we should make the overload pro-

tection pin permit the toe to move through as large an angular range as possible. To

make the linkage permit motions purely in shear, the θ0 angle should be small, and

then with the kθ assumed to be non-zero, it will be possible to generate pure shear

forces. However, the linkage should still be able to support large adhesive loads, if

the spines are used on surfaces that could support them. If the overload protection

pin can only permit a small range of angles, an ankle joint can be used in conjunction

with the toe suspension.

Further plots showing the effects of varying the stalk model parameters kext, kθ,

θ0, and θpreload are shown in the Appendix, section A.4.

4.8.2 Effects of varying l0 and θ0

Figure 4.32 shows the effects of varying the initial stalk length l0 and initial angle θ0.

In the left column, the initial angle θ0 was changed to keep the x-component of the

initial base position of the stalk a constant distance from the surface even as the stalk

length was increased (i.e., x0 remained constant). In the right column, the initial

stalk angle (θ0) was kept constant, so as the stalk length increased, the base of the

stalk got further from the surface.

Keeping the base of the stalk a constant distance from the surface might be de-

sirable to keep the height of the toe linkages (measured from the surface) small, for

robotic or human climbing applications. Or, this constant distance could model the

height required for the linkage itself. For example, in the RiSE and ZMan toes, in
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Figure 4.32: Results of simulations using the stalk model and varying l0 and θ0. In
both columns, the stalk length increases from top to bottom, with l0 = {1.5, 3, 6}
[cm]. In the left column, the initial angle θ0 was changed to keep the base of the stalk
a constant distance from the surface even as the stalk length was increased. From
top to bottom, θ0 = {30◦, 14.48◦, 7.18◦}. In the right column, the initial stalk angle
was kept constant at θ0 = 30◦, so as the stalk length increased, the base of the stalk
got further from the surface. In each simulation, preloads from 6mm to -6mm were
applied, (negative preloads, with dashed lines, showing the effects of adhesive loads),
and the spine base was displaced 1cm down the surface.
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figure 4.2, the plastic part supporting the back of the toes (element 2) has a minimum

thickness under the pin to prevent it from breaking.

In both columns, as the stalk length increases, the range of angles that forces can

be applied at decreases, for the fixed range of preloads. In the left column, the forces

become more concentrated towards the Fshear axis, which is useful if it is desired to

generate loads nearly in shear. In the right column, the forces stay approximately

around the same angular range.

These effects can be understood as follows: as l0 increases, the angular change

that the stalk undergoes decreases, for a given drag distance. In the limit as the stalk

becomes infinitely long, the stalk angle will not change at all if the base is moved,

and thus the forces will remain at a fixed angle. So, if the stalk length is increased,

it may be desirable to permit the stalk to move through a larger angular range.

Also, we can observe in this figure that as the stalk length increases, the loading

lines become straighter. This leads to better load-sharing, as discussed in section 4.4.

4.9 Summary

In summary, the RiSE toes are close in behavior to the ideal suspension for load-

sharing. The linkage characteristic loading lines in force-space are curved up slightly,

but the spines require extremely low preloads and have an approximately radial pat-

tern. The linkage causes a reduction in the limit curve of less than 2.5◦ due to the

non-ideality, as compared to an ideal suspension.

It is better to have linkage characteristic loading lines that curve up (towards the

Fshear axis) than curve down, because when excessive normal loads are applied, the

least-loaded spines will disengage (rather than the most-loaded). Also, the true limit

curves also bend towards the Fshear axis due to asperity failures, and loading lines

that curve up will match this more closely. Finally, loading lines that curve up may

be useful for facilitating the spines’ catching on asperities with higher θmax angles.

The RiSE spines also re-engage on surfaces effectively under most situations. One

cost of the linkage non-ideality is that spines will not be able to re-engage when loads
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are applied at large angles. However, for shallower loading angles, the spines exhibit

dynamic adhesion, maintaining adhesion while sliding large distances over the surface.

This behavior occurs when the loading magnitudes are too large, causing the spines to

hit their overload protection pins and disengage, at which point they can re-engage.

One shortcoming of the RiSE spine suspension is that the range of possible loading

angles over which the toes experience good load-sharing is somewhat small, only

around 10− 15◦, depending on the initial angle of the suspension with respect to the

surface. This range is improved by the addition of an ankle between the robot and

the spines.

Design explorations also suggest a number of areas for improvement to the spines.

Making them longer will improve load-sharing performance, though at the cost of

decreased packing density if multiple rows of spines are used. There is a practical limit

to how short the RiSE spine suspensions can be, because as the length shrinks, the

initial angle will become too steep for them to attach to many asperities. Allowing the

spines to move through a wider range of motion by modifying the overload protection

mechanism would also be beneficial. The extensional load-sharing performance of

the spines can also be improved by making the extensional force (between the spine

base and the spine tip) increase quickly and then become more constant for large

deflections.



Chapter 5

Patch stiffnesses and moments

5.1 Introduction

When multiple rows of spines are distributed over a finite area (e.g., the area of a

robot foot), it becomes necessary to consider the pressure distribution over the entire

patch. Similarly, for directional dry adhesives, patch loading, which depends on patch

stiffness and orientation, becomes an important consideration. Control of a robot’s

limb is drastically simplified if the foot will engage reliably when placed on the surface

even if it is not parallel to the surface. However, creating a structure that facilitates

alignment and even pressure distribution can be challenging, as we shall see in this

chapter.

We focus our attention on patches of dry adhesives for this chapter because they

are smaller, easier to measure, and perhaps more sensitive to minor misalignment,

than arrays of spines. In particular, we will use the hierarchical directional dry adhe-

sive developed in [2, 81] because it can be used in large patch sizes (larger than 100

cm2). These adhesives, shown in figure 5.1, are constructed of a sheet of microwedges

(small wedge-shaped rubber stalks) supported by a suspension layer (for details on

the microwedge layer, see [80]; for details on the whole structure see [2, 81]). These

adhesives are useful in analysis because they are directional, like the spines. They

have a limit curve which is also characterized by a maximum loading angle θmax and

108
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Figure 5.1: Left and center, examples of a patch of microwedges supported by a
suspension structure. The center version has much smaller microwedges. Right, a
close-up of the microwedges. Pictures from [81].

Figure 5.2: Left, example of a patch of dry adhesive supported by a hierarchy. The
patch is viewed through the glass surface it is attached to, with gray areas attached
and black areas not attached. Even with the hierarchy, the patch is only partially in
contact with the surface. Right, a large patch with multiple rows of spines.

a maximum force F ∗ which follows a similar pattern to the spines.

We observe that with these patches of dry adhesives, the entire patch does not

engage the surface, perhaps 50-80%. Figure 5.2 shows an example of a well-aligned

patch of dry adhesive which is only partially in contact with the glass surface. The

patch must be aligned to within fractions of a degree in both the φ and ψ directions
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to engage even this well. Large patches of spines were also observed not to attach to

a wall uniformly. With the ZMan climbing paddles, shown in figure 5.2(right), rows

of spines were mounted to a rigid backing. During their use, it was observed that

many fewer of the spines in the lower rows engaged as compared to the top row. In

this chapter we will examine the properties of the suspension structures for multiple

rows of spines, or patches of dry adhesives, and consider the tradeoffs between them,

in an attempt to generate as much adhesion as possible between a large patch and a

surface.

Patches of dry adhesives or spines have similar requirements to individual dry

adhesive stalks (e.g. microwedge stalks) or rows of spines, but with the further re-

quirement that moments at the face of the patch must be minimized. Because we

have a large patch area and a compliant suspension structure, any moment at the

patch-surface interface will lead to the patch tilting with respect to the surface, which

may lead to the patch coming un-stuck. This is arguably the primary difficulty in

creating a suspension for a large area, so we will examine the stiffness matrices for dif-

ferent patches and how they should behave in this regard. In practice, the suspension

for large patches includes the compliance of the robot’s leg or climber’s hand.

5.2 Problem setup

We define a simplified form of the problem to use in analysis. A diagram of the

problem setup is shown in figure 5.3. A patch of adhesive with width wz and length

wy is connected to a rigid backing. The patch’s rigid backing is connected to a ball

joint at a distance (xj, yj) from the center of the front of the patch, and is in the

center of the patch in the z-direction. The amount the front of the patch compresses

or extends under a load is assumed to be small in comparison to yj. The rotation of

the ball joint (which equals the rotation of the patch) is φ in the x-y plane and ψ

in the x-z plane. The surface it is attaching to is assumed to be flat, and in the y-z

plane.

The ball joint has a torsional spring about it, so it can generate moments
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Figure 5.3: Coordinate system and problem setup for patch moments analysis. A
patch of adhesive is attached to a rigid backing. The backing is supported by a ball
joint a distance (xj, yj, z = 0) from the center of the patch.

Mφ = kφ ∆φ, (5.1)

Mψ = kψ ∆ψ, (5.2)

under rotations ∆φ,∆φ.

When the patch is brought into contact with the substrate, it is at an initial angle

of (φ0, ψ0) (we assume it is rotated properly in the third direction).

5.2.1 Applicability of setup to practical situations

Frequently, patches of dry adhesives are tested on a stage which is very stiff. The stage

holds its orientation, and thus the patch’s orientation, relative to the substrate. It

can apply very large moments (in comparison to the moments caused by forces on the

patch) in order to maintain this orientation. In our problem setup, this corresponds

to kφ, kψ →∞. Furthermore, the patch is carefully aligned with the substrate before

testing begins (φ0, ψ0 = 0). With this careful alignment and stiff stage, the forces the
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patch can sustain will be as high as is practially achievable.

In applications other than testing on a stage, it is not always possible to hold

the patch parallel to the substrate. A robot can be built to be relatively rigid,

and can be very long relative to the patch diameter; in this case, it is possible to

maintain the patch’s initial orientation with respect to the wall—the feet will not

rotate under applied loads (corresponding to kφ, kψ → ∞). However, if the robot

does not have sufficient degrees of freedom, the patch may not be parallel to the

substrate (φ0, ψ0 6= 0). In this case, little of the patch may be in contact with the

substrate if φ0 or ψ0 are large.

The other possibility is to have a soft structure supporting the patch, such as

the human hand supporting the patch of spines in figure 5.2(right), corresponding

to kφ, kψ finite. In this case, we expect the patch to rotate under the applied loads.

This may be useful to bring the patch into alignment with the surface, if it can rotate

under preloads applied into the wall (Fnormal > 0). However, the patch will also be

able to rotate when adhesive loads are applied. This may cause it to disengage easily.

For the case of a soft structure supporting the patch, we can assume either the patch

is well-aligned to begin with (φ0, ψ0 = 0) or not well aligned (φ0, ψ0 6= 0).

We are interested in determining the constraints on kφ and kψ in order to maximize

the ability of the patch to maintain adhesion to the surface even under a variety of

Fshear and Fnormal loads, and also maximize the ability of the patch to self-align if

φ0, ψ0 6= 0. Also, to make patches of adhesive useable with soft supporting structures,

we are interested in determining how kφ and kψ can be made as small as possible.

5.2.2 Forces on the face of the patch

To analyze when a patch of adhesive will remain attached to the substrate or come

off requires examining the forces on the individual adhesive elements. These are

the individual microwedges, in the case of synthetic dry adhesives we consider, or

the individual spines in a large patch. Each adhesive element can support normal

and shear force up to some limits. If we again assume the elements can support

force magnitudes of F ∗ at angles between pure shear and θmax (see section 2.4),
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then the maximum shear force per element is F ∗ and the maximum normal force is

Fn,max = F ∗ sin(θmax).

A diagram of the forces on the individual adhesive elements in a patch is shown

in figure 5.4. The figure shows a top view of the patch in figure 5.3. N individual

elements are distributed uniformly across the patch. In the limit as N → ∞, it is

useful to analyze the forces as a continuum and consider forces per unit length across

the patch rather than the forces on individual elements. Force per unit length will

be denoted by γ. The maximum normal force per unit length across the width of the

patch is γn,z,max, and the maximum normal force per unit length across the length of

the patch is γn,y,max.

z

x

Substrate

Fn,joint

wz

Adhesive layer

Rigid backing

Fn,3
Fn,1

Fn,2

Fn,N-2

Fn,N-1
Fn,N

ψ

Ball joint

xj

Figure 5.4: Top view of a patch, showing forces on individual adhesive elements across
the width of a patch. The patch is loaded from the ball joint with a force Fn,joint in
the normal direction.

5.3 Calculations on patch behavior

In this section we compute the forces and moments on a patch when it is in static

equilibrium, and use this to determine trends that govern how a suspension should

be constructed. We begin by examining the patch in the y-z plane as shown in figure

5.4, because it is the simpler case.
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5.3.1 x-z plane

Although it is tempting to assume the forces on the face of the patch are uniformly

distributed, this is generally not the case. As illustrated in figure 5.5, the forces vary

across the patch (here shown in a top view). This non-uniform distribution can be

represented by a single force vector, Fn,patch, which is offset from the center of the

patch by a distance dz in the z-direction. There is a moment on the patch due to the

offset of this force from the center:

Mpatch = dzFn,patch. (5.3)

To achieve static equilibrium, the patch must rotate a small amount ψpatch. As

the patch rotates, two effects will occur. First, the forces on the adhesive elements

across the patch will redistribute to decrease dz. Second, the spring around the ball

joint will cause a moment on the patch. This moment from the ball joint spring will

counter any remaining moment on the patch due to dz not being zero. These two

effects are illustrated in the lower diagram in figure 5.5, where the force distribution

on the patch has changed as the patch rotates and there is a moment from the ball

joint.

We first consider how the forces on the adhesive elements vary with the rotation

of the patch. Suppose the adhesive layer on the patch has a spring constant κ per

unit length across the width of the patch, due to the compliance of the adhesive

elements. In general κ will not be constant (the springs will not be linear), but

assuming κ is constant will provide insight into the problem. If κ is constant, a

rotation corresponding to a height change of h from one side of the patch to the other

corresponds to a moment of

Madhesive =
w2
zκh

12
. (5.4)

We also assume h << wz, which leads to ∆ψ small so tan(∆ψ) ≈ ∆ψ. Then, the

height change of h corresponds to an angular change of the patch of
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Figure 5.5: Top view of a patch, showing forces on individual adhesive elements
across the width of a patch. The patch is not loaded uniformly, resulting in a net
force Fn,patch which is offset from the center of the patch a distance dz. This offset
creates a moment which must be resisted by either a moment caused by differences
in adhesion across the face of the patch, or by the torsional stiffness of the ball joint
after the patch rotates a small amount. The upper diagram shows the initial forces,
and the lower diagram shows the system after the patch has rotated and reached
static equilibrium. In the lower diagram, the dashed red line shows the initial force
distribution, and the small purple arrows show the change in forces to reach the final
distribution (solid red line).
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∆ψ = arctan(h/wz) ∼= h/wz, (5.5)

and thus:

Madhesive
∼= w3

z κ∆ψ

12
. (5.6)

This is the moment on the patch due to the adhesive being loaded more in tension

on one side and more in compression on the other side as the patch rotates about the

ball joint.

The other moment on the patch is from the torsional spring around the ball

joint. As the patch rotates, the spring applies a moment which is directly related

to its angular change per equation 5.2, Mjoint = kψ ∆ψ. The patch will reach an

equilibrium when the sum of these two moments equals the moment on the patch due

to the force imbalance (eq. 5.3).

Of note, the patch moment will also be affected by the rotation due to the fact

that the ball joint is a distance xj from the patch face. As the patch rotates, dz will

decrease. The new distance d′z is related to the original distance dz by

d′z = dz −∆ψ xj. (5.7)

The decrease in dz will decrease the Mpatch moment in equation 5.3.

Examples

In general, there will be a tradeoff between these three contributions (Madhesive, Mjoint,

d′z) to the moments on the system. A few sample cases are useful to discuss to gain

intuition for the system.

In the case of a very stiff spring around the ball joint, Mjoint will be large and

the patch will rotate very little. This will correspond to dz remaining large after the

rotation, and the forces largely remaining unchanged.

In the case of a very small spring around the ball joint, Mjoint will be small, and
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the patch will rotate significantly. The forces on the patch will be required to change

drastically. If the initial offset dz is too large, stalks on one end of the patch may

have forces on them in excess of Fn,max, causing them to disengage. Once one stalk

disengages, frequently this leads to a rapid disengagement of the entire patch. With

one fewer stalk, the remaining stalks must support the adhesive force formerly held

by that stalk. This will cause two effects. First, the remaining stalks are more likely

to fail because each must support an increased load. Second, the force distribution

will shift slightly so as to increase dz. This causes the Mpatch moment to increase,

followed by further rotation of the patch. The cycle will repeat itself, leading to

complete disengagement, unless the force distribution over the width of the patch is

altered somehow or the ball joint stiffness causes the Mjoint moment to increase faster

than Mpatch.

Solving for static equilibrium conditions

Given the initial situation of a flat patch with a force imbalance as shown in the

upper part of figure 5.5, we must solve the following equation for ∆ψ to determine

the rotation of the patch at static equilibrium:

Mpatch = Mjoint +Madhesive (5.8)

⇒ (dz −∆ψ xj)Fn,patch = kψ ∆ψ +
w3
z κ∆ψ

12
(5.9)

Furthermore, the force per unit length γ must remain less than the maximum

allowed γmax or stalks will disengage. The most-loaded end of the patch will have

γ = κ(h/2) + Fn,patch/wz (5.10)

with the first and second terms corresponding to forces from the moment on the patch

and the net force, respectively. Simplifying to remove h by substituting h = ∆ψ wz

we get
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κ∆ψ wz
2

+
Fn,patch
wz

< γmax. (5.11)

Combining equations 5.9 and 5.11, we get that the maximum force Fn,max on the

patch must satisfy:

6κwz dz Fn,max

12Fn,maxxj + 12kψ + w3
z κ

+
Fn,max
wz

≤ γmax. (5.12)

The first term of this equation is the additional force on the edge of the patch

caused by the moment due to the forces on the face and ball joint being misaligned.

The second term is the force uniformly distributed across the patch due to the applied

adhesive force. If the forces on the patch and ball joint were perfectly aligned, i.e.

dz = 0, then the first term would be zero and the patch could sustain the maximum

possible force of Fn,max = γmaxwz. To determine the effect of the different variables

in our model, we examine the first term of this equation, which we wish to minimize.

If kψ is increased, corresponding to stiffening the ball joint spring, the first term

will decrease. This is perhaps obvious from the examples earlier. One of our original

goals was to determine the minimum possible value of kψ, so this result is not entirely

useful. Rather, how kψ affects the result in comparison to the other terms is useful.

If wz, the patch width, is increased, then the first term will also decrease. Even if

the offset dz increases in proportion to wz, the term will still decrease due to the w3
z

in the denominator.

If xj is increased, moving the ball joint away from the surface, the first term will

decrease. The effect of xj is interesting because in this analysis we assume we are

applying an adhesive force exactly perpendicular to the wall. In practice, this may

not be true. A large xj will tend to amplify the effect of errors in the direction of

force, so this result should be treated with some caution.

Finally, decreasing κ will minimize the first term in the equation. While κ appears

in both the top and the bottom of this term, on the bottom there are two other

terms as well. So, if κ is decreased, the numerator and the term with κ in it in the

denominator will both decrease. However, the two other terms in the denominator
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will remain constant, and so the entire first term in equation 5.12 will decrease as

a result. Intuitively, this corresponds to the following: if κ is made smaller, the

adhesive patch can rotate to larger angles before developing a force on the most-

loaded stalks that will lead to disengagement. However, the torsional spring around

the ball joint will develop moments rapidly with increased patch rotation, as will the

effect of the ball joint being mounted a distance xj from the patch face. In the end,

these two components will end up contributing more towards the required moment

on the patch than they did previously, leaving the adhesive patch with a more even

force distribution.

It is also useful discussing the case where the patch is initially misaligned with

the surface before it comes into contact (ψ0 6= 0). Misalignment will cause two

problems. First, it will tend to increase the values of dz, since one side of the patch

will contact the wall before the other. The side which contacts first will have larger

preloads during engagement, and thus the adhesive elements may contact the wall

more securely. Second, and perhaps more importantly, the misalignment will cause

the patch to have an additional moment because some force will be required to keep

the patch aligned. This will tend to reduce the force that the patch can sustain.

Smaller values of κ and kψ will cause the misalignment to have a smaller moment. In

adhesion, though, stiffer values of kψ perform better. So reducing κ may be the best

way to permit initial angular misalignments.

In general, the situation is more complicated than this analysis has discussed.

When the patch rotates, dz may actually increase in response to the changing forces

on the patch, due to behavior of the adhesive elements. This will require the ball joint

stiffness kψ to be higher than would be indicated by these calculations. Furthermore,

the stiffnesses of the adhesive elements will likely be nonlinear, so it may further

behave differently. However, the same trends and method of analysis described here

will apply.
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5.3.2 x-y plane

The problem of suspension design in the x-y plane to accomodate rotations in the φ

direction shares many similarities with that in the x-z plane to accomodate rotations

in the ψ direction. In both cases, moments from the suspension ball joint and adhesive

patch are required to counter misalignment of the forces on the patch and on the ball

joint. The primary difference stems from the fact that both the Fnormal and Fshear

loads are in the x-y plane, whereas only the Fnormal force is in the x-z plane. With

both Fnormal and Fshear, the magnitude and direction of the applied force will now

vary, instead of just the magnitude. With the assumed limit curve of the adhesive

elements, forces can vary in magnitude up to F ∗, and can vary in angle from being in

pure shear to an angle of θmax away from the surface. Figure 5.6 shows the setup for

the x-y plane, with a patch connected to a rigid ball joint. The forces on the face of

the patch are not uniform, leading to a misalignment between the force on the face

of the patch, Fpatch, and the force on the ball joint Fjoint.

The x-z plane discussed previously is an unstable system: misalignments between

the force on the ball joint and the force on the patch will always lead to rotations

which, if unchecked, will lead to the patch disengaging. We must apply stiffness at

the ball joint or have a large value of xj to keep the patch on the wall.

We can perform a similar analysis on the x-y plane, to determine the required

stiffness at the ball joint in order to keep the patch on the wall. If we were to

perform such an analysis, we could again assume the patch was initially aligned

parallel to the wall, and compute the stiffnesses required to mitigate rotations leading

to disengagement.

However, in the x-y plane we do have control over another degree of freedom—the

initial pitch of the patch—which can be exploited to improve the behavior of the

system. Whereas with the x-z plane the patch will always be able to rotate in either

direction at perfect alignment with the maximum possible adhesion, with the x-y

plane we can alter the initial rotation of the patch and the location of the ball joint

to alter the behavior.

We briefly consider the moments on the patch to determine its rotational behavior.
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Figure 5.6: Diagram of setup for patch moments analysis in the x-y plane. (a), forces
on the patch are not uniform. Loads can be at an angle θ < θmax. The patch is at an
angle φ with respect to vertical (here drawn as φ = 0) and the loads are at an angle
θ. (b), the nonuniform load often leads to an offset of d between the force on the face
of the patch, Fpatch, and the force on the ball joint Fjoint.

We know that the loads on the patch will fall between θ = 0, in pure shear, and

θ = θmax, the maximum angle at which we can pull away from the surface without

the adhesive elements failing. There are two cases to consider. First, if the ball joint

is located below a line drawn at an angle θmax from the location of Fpatch on the patch

face, then the patch may rotate either direction, depending on the direction of force.

This is because the Fshear component of the force will cause clockwise rotations (for

xj > 0), but the Fnormal component will cause counter-clockwise rotations. The patch

can rotate in either direction depending on which component dominates. However, if

the ball joint is above a line drawn at an angle θmax from the location of Fpatch on the

patch face, then the patch will always rotate clockwise, because the Fshear component

will always be larger than the Fnormal component. This second case is illustrated in
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Figure 5.7: (a), the patch will always rotate clockwise independent of the loading
direction and magnitude if it is above a line at an angle θmax measured from the
location of Fpatch on the patch face. Fpatch must lie somewhere on the patch face, so
a conservative location is at the very top of the patch face. (b), angling the patch
so the top contacts the wall first is the first component of stable engagement. (c),
the green “stable” region indicates locations where the ball joint can be located and
achieve stable engagement. It must be located below Fpatch in the y-direction, and
above the line at θmax originating at the location of Fpatch. The closer the ball joint
is to the lower boundary of the region, the smaller the moment will be.

figure 5.7(a).

We would like the patch engagement with the wall to be stable, if possible. That

is, when forces are applied and the patch rotates in response to those forces (and to

the misalignment between Fpatch and Fjoint), we would like more of the patch to come

into contact with the surface or dz to decrease. In both cases, the patch will have

better adhesion after the rotation than before the rotation. One way of making the

patch engagement stable is the following:
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• Tilt the patch foward slightly so the top of the patch always engages first. This

is illustrated in figure 5.7(b).

• Place the ball joint such that the patch always rotates clockwise in response

to applied loads, independent of the direction of those loads. Thus, as the

patch rotates, the patch will become better-aligned with the surface, causing

the adhesion to become more secure.

A few details about this scheme must be discussed. First, the ball joint cannot

be too high or the system will be unstable: the ball joint needs to be located in the

y-direction below the location of Fpatch on the patch face. With the ball joint located

below Fpatch, the ball joint will approach the wall as the patch is loaded. This is

illustrated in figure 5.7(c).

Second, the ball joint must be located further away from the wall than the line

at angle θmax extending from the location of Fpatch. As discussed previously, this will

always cause the patch to rotate clockwise for loads between θ = 0 and θ = θmax. If

the top of the patch engages first, then Fpatch will start close to the top of the patch.

Then, as the patch becomes more aligned with the surface, Fpatch will move down the

wall. The ball joint must remain above the θmax line at all times, even as the location

of the ball joint changes as the patch rotates (due to the offset xj of the ball joint

from the wall). This is also illustrated in figure 5.7(c).

Third, it is still desirable to minimize the ball joint spring constant kφ. To mini-

mize it, the ball joint should be set to be close to the θmax line. Having the ball joint

further from this line will increase the distance between Fpatch and Fjoint, which will

increase the moment needing to be canceled by the adhesive and the ball joint spring.

Finally, the stiffness of the ball joint spring should be set so that when the patch

is at its maximum rotation, it is perfectly aligned with the wall. This assumes that

the patch will have maximum adhesion when it is perfectly aligned. If it also has

acceptably large adhesion when rotated slightly past parallel to the substrate, then

that angle can be used as the maximum rotation, to permit a larger angular change.

The maximum rotation will occur when the forces on the ball joint are the maximum

possible, F ∗, and the direction is such that the moment is largest. This direction
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is in pure shear, with θ = 0. With the ball joint above the θmax line, any Fnormal

component will cause a counter-clockwise moment, which will decrease the rotation

of the patch.

On the whole, this scheme will lead to a more secure engagement of the patch

than a scheme of keeping the patch initially parallel to the wall and then putting the

ball joint in a location where the patch can rotate in either direction. Of note, this

scheme is how the microwedges at the surface of the adhesive patches in figure 5.1

behave. Although these structures are flexible and not supported by a rigid backing

with a ball joint, the overall behavior is the same. The faces of these adhesives are

initially at a large angle with respect to the surface, and only the very tip touches.

As loads are applied, more and more of the face comes into contact with the surface.

We can also determine trends in the variables of the system to optimize perfor-

mance of the system. As with the x-z plane, a softer adhesive patch will permit larger

angular misalignments for the same moment. With this scheme, a larger permitted

angular misalignment will allow the patch to move through a larger angular change

as it is loaded, from being initially pitched forward to being parallel to the wall at

the maximum load. A larger angular change will permit the ball joint spring kφ to

be smaller for the same resulting moment.

It is unclear if making the patch length wy larger will be beneficial or not without

further analysis. At first glance a smaller patch seems to be preferable. A larger

patch will require a smaller angular misalignment with the wall to be fully in contact.

Making the patch length smaller, for a given height range h over which the adhesive

can attach effectively, will permit larger angular misalignments. Furthermore, with

the attachment scheme, the location of Fpatch is more controlled than in the x-z case,

so a larger patch length may not be helpful.

Similarly, a larger length for xj may not be of use either. For a constant load

angle, for example thetamax, a longer xj will cause the forces to become aligned more

easily, which is beneficial. But if the direction of load is altered (e.g., it changes to be

in pure shear), then a larger xj will cause a larger moment on the patch which will

need to be resisted by the ball joint spring. Therefore, it appears that to make kφ as
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small as possible, xj should be shortened as much as possible.

As in the x-z case, a stiffer kφ will cause less rotation, but we are interested

in optimizing the suspension to minimize kφ. Further analysis will be required to

determine how kφ varies relative to the other terms.

It is also useful discussing briefly the case where the patch is initially misaligned

with the wall. In this case, the patch should be pitched forward sufficiently so that

the top will continue to always attach first. Misalignment will require that the patch

move through a smaller percentage of its maximum possible angular rotation under

the maximum load; the remaining angular rotation can be used to accomodate the

misalignment. Making the adhesive patch stiffness softer will be useful in increasing

the maximum possible angular rotation, as discussed in section 5.3.1.

In summary, a scheme to tilt the patch foward is useful because the engagement

will be more secure and more tolerant of variation in the direction of loading. Further

analysis is required to fully understand this system.

5.4 Summary

We have analyzed an adhesive patch backed by a rigid backing and connected to a

supporting structure through a ball joint. Moments causing the patch to rotate and

detach from the surface must be countered by forces from the adhesive, moments

from the ball joint springs, or motion of the ball joint. This is a useful structure for

analysis, because many adhesives are used in patches with rigid backings exactly in

this manner.

There are a number of areas of future work. The analysis should be extended to

deal with non-linear adhesive stiffnesses and the actual behavior of patches as they are

misaligned with surfaces. The analysis should also be extended to deal with non-rigid

backings. Detailed analysis of the compliance of structures such as the microwedges

is needed to gain a deeper understanding of how such structures should be made to

maximize their adhesive performance.



Chapter 6

Conclusion and future work

In conclusion, we have developed a system for using spines to attach to rough sur-

faces. We found that the details of the spine/surface interaction depend on the local

geometry, rather than typical roughness measures. The spines/asperity contacts can

sustain forces within a certain limit curve, in which adhesive loads can be applied

up to some angle away from the surface. We established constraints on the spine

suspensions for them to be used effectively. Finally, we constructed arrays of spines

and tested their linkage properties and their performance on surfaces. Spines were

used effectively on both robot and human climbers to scale a variety of surfaces.

Spines are a robust and effective solution for adhesion, used by many types of

animals in nature. Our system enables robots to climb surfaces that are too smooth

for animals of comparable weight, due to the greater number of spines on our system

than on an animal’s foot. Our spines are useful in dirty and wet environments, similar

to how animals gain reliable adhesion in a variety of adverse conditions.

Future work includes making the spine suspensions more compact in width and

length so as to have increased spine density. Decreasing the height may also make

integration onto robots or human climbing paddles easier. Different suspension de-

signs can be used, so long as they follow the stiffness requirements laid out in chapter

3. Furthermore, it was found that the weight of the human climbing system was

significant; lighter designs, including lighter materials, would be beneficial.

126
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Smaller spines for grabbing onto smaller asperities will be useful as well, but will

require increased numbers of spines. Suspensions on a larger scale for small groups

of spines will probably be required, so the small spines can conform to the gross

geometry of the surface. Improved suspensions for multiple rows of spines is another

area of improvement. As discussed in chapter 5, proper compliance of the supporting

structure is vital to ensuring that a large patch of spines or dry adhesives stays

attached to the wall. There are many opportunities for future exploration in this

area, including investigating flexible suspensions and varying the lengths of spines

and dry adhesive stalks across the patch.

Finally, the constraints on spines interacting with surfaces can be used to gain

insight into dry adhesive systems. Dry adhesives function differently than spines in

that they are able to attach to most locations on a surface instead of just asperities.

But many synthetic dry adhesives will be manufactured in rows and thus will be

subject to constraints analogous to those for spines to achieve optimal load-sharing.

In the future, we look forward to large arrays of spines combined with patches of dry

adhesives to form an effective climbing system able to attach to most surfaces.



Appendix A

Appendices

A.1 Spine Failure Modes

We have observed that the spine/asperity contacts have three primary failure modes.

1. The spine fails plastically at its base due to tensile stress from bending.

2. The spine deflects elastically such that it slips off the asperity.

3. The asperity fails, typically as a particle becomes unbonded from the

surrounding matrix.

Figure A.1: Curved beam with variables used in spine failure mode analysis.

The first mode of failure is due to the tensile stress at the base of the spine. For

a long curved spine, the maximum stress is essentially the same as it would be for a

128
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straight cantilever beam [96]:

σmax =
Mc

I
=

32fld

πd4
∝ 1

d2
(if

l

d
= const)

where

M = moment on base = fl

c = distance from neutral axis to edge = d/2

I = moment of inertia, which for a circular beam = πc4/4

f = force exerted on tip of the spine

d = diameter of cross section of spine

l = equivalent beam length.

The second mode of failure is excessive tip rotation. Here we can apply Cas-

tigliano’s Theorem to solve for the tip deflections and rotations for a curved spine

[96]. Applying a dummy end moment, M , and solving for the end rotation, α, we

obtain:

α = ∂U/∂M

=
R2

2EI
[−2Fy + (2Fx + Fy(π + 2β))cos(β)

+(−2Fy + Fxπ + 2Fxβ)sin(β)] ∝ 1

d2

(if
R

d
= const. at given β, Fx and Fy) (A.1)

(see figure A.1).

The third mode of failure is that the asperity itself may break off. The literature

on surface failure or erosion (e.g. [71, 94]) for cementitious materials such as concrete,

or rock with hard crystals in a weaker matrix, generally starts with the Hertz stress
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distribution at the contact [48]. The maximum pressure is at the center of the contact

patch:

pmax = 3f/2πa2 = (6fE2/π3R2)1/3

where

a = (3fR/4E)1/3

E = (1− µ2
s)/Es + (1− µ2

a)/Ea

(1/R = 1/rs + 1/ra)

and the subscripts s and a refer to the spine tip and asperity, respectively.

The worst case tensile stress is at the periphery of the contact patch:

σT = ((1− 2µ2)pmax)/3

The actual failure will depend on the local stress state, number of cracks and fracture

toughness of the material. However, it will be a function of the maximum tensile

stress. Therefore we can write that

fmax = [(πσmax/(1− 2µ2))3(1/2E2)]R2

The quantity in square brackets is a constant depending on the materials so that, in

the end, the maximum sustainable load is expected to vary as the square of the radii

of curvature of the spine tip and asperity.

A.2 Detailed calculations of beam bending using

Mathematica

The following worksheet calculates the end rotation and deflection of a curved beam

resulting from the application of a force, F, at the tip of the beam. The approach is

to apply Castigliano’s 2nd Theorum, decomposing the applied force along orthogonal
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axes directions and applying a dummy moment at the tip of the beam to solve for

tip deflections and rotations, respectively.

William Provancher

December 7, 2004

Forces:={Fx→ F ∗ Sin[φ],Fy→ F ∗ Cos[φ]}Forces:={Fx→ F ∗ Sin[φ],Fy→ F ∗ Cos[φ]}Forces:={Fx→ F ∗ Sin[φ],Fy→ F ∗ Cos[φ]}
geometry1:={β → π/4, φ→ π/36}geometry1:={β → π/4, φ→ π/36}geometry1:={β → π/4, φ→ π/36}
geometry2:={xF→ R ∗ Cos[β], yF→ R ∗ Sin[β]}geometry2:={xF→ R ∗ Cos[β], yF→ R ∗ Sin[β]}geometry2:={xF→ R ∗ Cos[β], yF→ R ∗ Sin[β]}
geometry3:=

{
Emod→ 200 ∗ 109, Izz→ π∗d4

64

}
geometry3:=

{
Emod→ 200 ∗ 109, Izz→ π∗d4

64

}
geometry3:=

{
Emod→ 200 ∗ 109, Izz→ π∗d4

64

}

geometry4:={d→ 0.0002, R→ 0.005}geometry4:={d→ 0.0002, R→ 0.005}geometry4:={d→ 0.0002, R→ 0.005}
moment:={Mb→ Md + Fy ∗ (xF−R ∗ Cos[θ])moment:={Mb→ Md + Fy ∗ (xF−R ∗ Cos[θ])moment:={Mb→ Md + Fy ∗ (xF−R ∗ Cos[θ])

+Fx ∗ (yF−R ∗ Sin[θ])}+Fx ∗ (yF−R ∗ Sin[θ])}+Fx ∗ (yF−R ∗ Sin[θ])}

Formulating the energy stored in the beam.

U = 1
2∗Izz∗Emod

∫ β
−π

2

(
Mb2/.moment/.geometry2

)
Rdθ//SimplifyU = 1

2∗Izz∗Emod

∫ β
−π

2

(
Mb2/.moment/.geometry2

)
Rdθ//SimplifyU = 1

2∗Izz∗Emod

∫ β
−π

2

(
Mb2/.moment/.geometry2

)
Rdθ//Simplify

⇒ 1

8EmodIzz

(
R
(
2Md2π − 8FyMdR− 2FxFyR2 + 2Fx2πR2

+ 2Fy2πR2 + 4Md2β + 4Fx2R2β + 4Fy2R2β

+ 4R(2FxMd + Fy(Mdπ − 2FyR + 2Mdβ))Cos[β]

−R2
(
−6FxFy + Fx2(π + 2β)− Fy2(π + 2β)

)
Cos[2β]

− 8FyMdRSin[β] + 4FxMdπRSin[β]− 8FxFyR2Sin[β]

+ 8FxMdRβSin[β] + 3Fx2R2Sin[2β]− 3Fy2R2Sin[2β]

+2FxFyπR2Sin[2β] + 4FxFyR2βSin[2β]
))

The beam tip rotation, α, is

α = (∂MdU) /.Md→ 0//Simplifyα = (∂MdU) /.Md→ 0//Simplifyα = (∂MdU) /.Md→ 0//Simplify
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⇒ 1

2EmodIzz
R2(−2Fy + (2Fx + Fy(π + 2β))Cos[β]

+ (−2Fy + Fxπ + 2Fxβ)Sin[β])

In specifying beam geometry {β → π/4, φ→ π/36}
α/.Forces/.geometry1//N//Simplifyα/.Forces/.geometry1//N//Simplifyα/.Forces/.geometry1//N//Simplify

⇒ 0.165967FR2

EmodIzz

Assuming the geometry and material properties to be{
Emod→ 200 ∗ 109, Izz→ π∗d4

64
, d→ 0.0002, R→ 0.005

}

results in the following rotation (in Radians) (Force specified in Newtons)

α/.Forces/.geometry1 /.geometry3/.geometry4//N//Simplifyα/.Forces/.geometry1 /.geometry3/.geometry4//N//Simplifyα/.Forces/.geometry1 /.geometry3/.geometry4//N//Simplify

⇒ 0.264145F

The beam tip deflection in the x-direction, δx, is

δx = (∂FxU) /.Md→ 0//Simplifyδx = (∂FxU) /.Md→ 0//Simplifyδx = (∂FxU) /.Md→ 0//Simplify

⇒ 1

4EmodIzz
R3(−Fy + 2Fxπ + 4Fxβ + (3Fy− Fx(π + 2β))Cos[2β]

− 4FySin[β] + 3FxSin[2β] + FyπSin[2β] + 2FyβSin[2β])

In specifying beam geometry {β → π/4, φ→ π/36}
δx/.Forces/.geometry1 //N//Simplifyδx/.Forces/.geometry1 //N//Simplifyδx/.Forces/.geometry1 //N//Simplify

⇒ 0.490872FR3

EmodIzz

Assuming the geometry and material properties to be{
Emod→ 200 ∗ 109, Izz→ π∗d4

64
, d→ 0.0002, R→ 0.005

}

results in the following rotation (in Radians) (Force specified in Newtons)
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δx/.Forces/.geometry1/.geometry3/.geometry4//Nδx/.Forces/.geometry1/.geometry3/.geometry4//Nδx/.Forces/.geometry1/.geometry3/.geometry4//N

⇒ 0.00390624F

The beam tip deflection in the y-direction, δy, is

δy = (∂FyU) /.Md→ 0δy = (∂FyU) /.Md→ 0δy = (∂FyU) /.Md→ 0

⇒ 1

8EmodIzz

(
R
(
−2FxR2 + 4FyπR2 + 8FyR2β − 16FyR2Cos[β]

−R2(−6Fx− 2Fy(π + 2β))Cos[2β]− 8FxR2Sin[β]

−6FyR2Sin[2β] + 2FxπR2Sin[2β] + 4FxR2βSin[2β]
))

δy/.Forces/.geometry1 //N//Simplifyδy/.Forces/.geometry1 //N//Simplifyδy/.Forces/.geometry1 //N//Simplify

⇒ 0.210511FR3

EmodIzz

Assuming the geometry and material properties to be{
Emod→ 200 ∗ 109, Izz→ π∗d4

64
, d→ 0.0002, R→ 0.005

}

results in the following rotation (in Radians) (Force specified in Newtons)

δy/.Forces/.geometry1/.geometry3/.geometry4//Nδy/.Forces/.geometry1/.geometry3/.geometry4//Nδy/.Forces/.geometry1/.geometry3/.geometry4//N

⇒ 0.00167519F

To check this versus what’s shown in Shigley & Mischke’s Mechanical Engineering

Design (5th Ed) p. 119, make β = π/2 and look at δy

geometry1:={β → π/2}geometry1:={β → π/2}geometry1:={β → π/2}
U = 1

2∗Izz∗Emod

∫ β
−π

2

(
Mb2/.moment/.geometry2 /.geometry1

)
U = 1

2∗Izz∗Emod

∫ β
−π

2

(
Mb2/.moment/.geometry2 /.geometry1

)
U = 1

2∗Izz∗Emod

∫ β
−π

2

(
Mb2/.moment/.geometry2 /.geometry1

)

Rdθ/.Md→ 0 /.Fx→ 0//SimplifyRdθ/.Md→ 0 /.Fx→ 0//SimplifyRdθ/.Md→ 0 /.Fx→ 0//Simplify

⇒ Fy2R3(π + 2β + Sin[2β])

8EmodIzz

δy = (∂FyU) /.Fx→ 0/.geometry1//Simplify//Nδy = (∂FyU) /.Fx→ 0/.geometry1//Simplify//Nδy = (∂FyU) /.Fx→ 0/.geometry1//Simplify//N

⇒ 1.5708FyR3

EmodIzz
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Which matches the formula given by Shigley & Mischke.

A.3 Ra and Rq Calculation

The linear roughness Ra was calculated by

Ra =
1

N

N∑

i=1

abs(x[i]− x̄)

and RMS roughness Rq was calculated by

Rq =

√√√√
N∑

i=1

(x[i]− x̄)2,

where x[i] is the height of point i in the profile, x̄ is the average height of the

profile, and N is the number of points in the profile.

A.4 Effects of varying stalk model parameters

Plots are shown varying the parameters of kext, kθ, θ0, and θpreload so that their effects

on the linkage characteristic can be observed.
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Figure A.2: Results of simulations using the stalk model and varying kθ and kext.
From top to bottom, the rows have kθ = {0, 0.02, 0.04} [N m/radian]. From left to
right, the columns have kext = {75, 150, 300} [N m]. The stalk model was set to have
an initial length l0 of 3cm. Preloads from 6mm to -6mm were applied, (negative
preloads, with dashed lines, showing the effects of adhesive loads), and the spine base
was displaced 1cm down the surface.
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Figure A.3: Results of simulations using the stalk model and varying θ0 and kθ. From
top to bottom, the rows have θ0 = {15◦, 30◦, 45◦}. From left to right, the columns
have kθ = {0, 0.01, 0.02} [N m/radian]. The stalk model was set to have an initial
length l0 of 3cm. Preloads from 6mm to -6mm were applied, (negative preloads, with
dashed lines, showing the effects of adhesive loads), and the spine base was displaced
1cm down the surface.
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Figure A.4: Results of simulations using the stalk model and varying θ0 and θpreload.
From top to bottom, the rows have θ0 = {15◦, 30◦, 45◦}. From left to right, the
columns have θpreload = {0◦, 10◦, 20◦}. The stalk model was set to have an initial
length l0 of 3cm. Preloads from 6mm to -6mm were applied, (negative preloads, with
dashed lines, showing the effects of adhesive loads), and the spine base was displaced
1cm down the surface.
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Figure A.5: Results of simulations using the stalk model and varying kθ and θpreload.
From top to bottom, the rows have kθ = {0, 0.01, 0.02} [N m/radian]. From left to
right, the columns have θpreload = {0◦, 10◦, 20◦}. The stalk model was set to have
an initial length l0 of 3cm. Preloads from 6mm to -6mm were applied, (negative
preloads, with dashed lines, showing the effects of adhesive loads), and the spine base
was displaced 1cm down the surface.
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