Artificial Muscle

INTRODUCTION:


There are 4 actuator technologies that are currently being developed that have properties similar to biological muscle—high power density, scaling, contraction/elongation degree of freedom.  

1.  Piezoelectric actuators were first heavily researched after World War 2 and today are commonly available over the counter.  The most common form of piezoelectric actuator is based on a lead zirconate titanate (PZT) material which is a ceramic composite, although other materials including a polymer Polyvinylidene fluoride (PVDF) also have been demonstrated in actuators.  Piezoelectric actuators do require very high voltages and non-trivial drive electronics, but they are extremely good in positioning applications and are commonly used as sensors and actuators in MEMs devices because of their sensitivity.  They have also been demonstrated in macro scale products, however, including an SRI developed masonry drill.  

From Wikipedia:

“Types of piezoelectric motor include the well known traveling-wave motor used for auto-focus in reflex cameras, inchworm motors for linear motion, and rectangular four-quadrant motors with high power density (2.5 watt/cm³) and speed ranging from 10 nm/s to 800 mm/s. All these motors work on the same principle. Driven by dual orthogonal vibration modes with a phase shift of 90°, the contact point between two surfaces vibrates in an elliptical path, producing a frictional force between the surfaces. Usually, one surface is fixed causing the other to move. In most piezoelectric motors the piezoelectric crystal is excited by a sine wave signal at the resonant frequency of the motor. Using the resonance effect, a much lower voltage can be used to produce a high vibration amplitude.”
GENERAL CONCLUSION:  These actuators can produce extremely high forces and precision displacements, but typically, the material only exhibits <1% strain and therefore many layers of PZT must be stacked to achieve macroscale motion, which can be costly.

2.  MCKIBBEN ACTUATORS also known as pneumatic artificial muscles work by inflating a bladder inside of a mesh webbing.  The bulging of the bladder causes the mesh to contract providing the actuation in contraction, very similar to a human muscle.  The technology was first used in the 1950s for prosthetic limbs and later commercialized in the 1980s by a Japanese company and has lately gained much attention for its application in biomimetic robotics.  The actuators have very good power to weight ratios, but are hindered by the need for valves, air compressors, and non-linear controllers.  They can be manufactured at a variety of length scales.

From University of Washington:
“McKibben Artificial Muscles 


Abstract
The McKibben Artificial Muscle is a pneumatic actuator which exhibits many of the properties found in real muscle. Its spring-like characteristics, physical flexibility, and light weight make it ideal for applications such as the Anthroform Biorobotic Arm and Powered Prosthetics Project. The device was first developed for use in artificial limbs in the 1950's and, more recently, was commercialized in the 1980's by Bridgestone Rubber Company of Japan and in the 1990's by the Shadow Robot Group of England for robotic applications. Versions of the actuator are also available from Images Company. Among the more attractive attributes of the actuator is a very high force to weight ratio, making it ideal mobile robots.
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Research Activities

Actuator Construction - The device consists of an expandable internal bladder (an elastic tube) surrounded by a braided shell. When the internal bladder is pressurized, it expands in a balloon-like manner against the braided shell. The braided shell acts to constrain the expansion in order to maintain a cylindrical shape. As the volume of the internal bladder increases due to the increase in pressure, the actuator shortens and/or produces tension if coupled to a mechanical load. These actuators can be easily constructed in a variety of sizes or you can buy them ready to use.

Finite Element Models - By using a finite element model approach, we can estimate the interior stresses and strains of the McKibben actuator. Knowledge of these details have lead to improved actuator designs. 

Fatigue Properties - A typical application often requires a significant number of repeated contractions and extensions of the actuator. This repeated cycling leads to fatigue and failure of the actuator, yielding a specific life span that is an important design consideration. Our results found that natural latex bladders have a fatigue limit 24 times greater than synthetic silicone rubber bladders.

Performance Characteristics - The force generated by a McKibben Artificial Muscle is dependent on the weave characteristics of the braided shell, the material properties of the elastic tube, the actuation pressure, and the muscle's length. 

Artificial versus Biological Muscle - The force-length properties of the McKibben actuator are reasonably close to biological muscle. However, the force-velocity properties are not. We have designed a hydraulic damper to operate in parallel with the McKibben actuator to produce the desired results. “
GENERAL CONCLUSION:  McKibben actuators are a well established and readily available technology for linear actuation, but require external components like an air compressor which make then more difficult to implement in hand held devices.

3.  ELECTROACTIVE POLYMER ARTIFICIAL MUSCLES (EPAMs) were first developed by SRI in Menlo Park, CA in the early 1990s.  The actuators take advantage of the material’s property of expanding when placed under a large voltage.  There are two common types of electroactive polymers, dialectric EAPs which work using an electric field created by two electrodes on opposite sides of the substrate, and ionic EAPs which utilize ionic displacements to create motion.  Dialectric EAPs are far more common and have been more extensively researched and developed.  

There are two common configurations for EAP actuators, one is a thin film stretched across a rigid constraint.  Flexible electrodes are then placed onto the two sides of the film, and a bias force is generally implemented to control the direction of actuation.  The film will buckle out of plane when a high voltage is applied and common strains are between 5 and 15%, although it is worth noting that high strains correlate to low forces.  Large displacements are also limited by slow response times limiting the frequency response of the actuator at maximum strain.

[image: image2]
The other configuration of EAP Actuator is a tube, which can either extend linearly, or bend depending on the electrode configuration.  Again, strain is limited to about 15% in the best cases and sacrifices force and frequency response to achieve this result.
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Several impressive robotics applications have been accomplished using EAP actuators.  One, a human face, is actuated so that it displays facial expressions using EAP artificial muscles.

[image: image4.png]Platforms for EAP demonstrat

¥

Android facial expressions (photogr phe(l at JPL)





Another interesting research example is a full fledged walking robot that uses EAP artificial muscles as the prime movers.  This robot is the first of its kind to use artificial muscles.


[image: image5]
The only commercially available EPAM actuators are from Artificial Muscle Inc.  

GENERAL CONCLUSION:  EPAM actuators, while limited in their motion of actuation, are promising for applications where silent, lightweight actuation is needed.  It is also worth noting that EPAM actuators, while requiring high voltages or circuitry to modify low voltage inputs, draws less power than conventional motors and solenoids.

4.  SHAPE MEMORY ALLOY actuators are based on metals that change phase when subjected to heat—which can be created by electric current.  The most common material used is Nickel Titanium alloys called Nitinol.  Typical SMA strains are on the order of 10%, but unlike EPAM actuators, SMA exhibit a constant force throughout the entire stroke length.  However, SMA materials like Nitinol fatigue quickly when run at their maximum force capabilities, and therefore designs are based on pressures of 200 MPA or less to ensure lifetime of the actuator.  Another drawback of SMAs is their slow frequency response, which is limited to about 1 Hz.  SMA actuators are available from MIGA motor company for about $100 and raw nitinol wire is commonly available from companies like Memry inc.  




Various Actuators available for purchase

From MIGA motor company

Some previous applications of SMA material include eyeglass frames, dental braces, stents for heart surgery.  SMA actuators have been demonstrated in artificial humanoid face robots:
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A full scale humanoid robot has also been developed using SMA actuators possessing 38 artificial muscle actuators.
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Lara:  Humanoid SMA Robot

And many other SMA actuated robots.
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GENERAL CONCLUSION:  SMA actuators off a lot of potential for artificial muscle devices and have good force vs extension properties, unlike EPAMs.  Their biggest drawbacks are fatigue and high frequency response.
APPLICATION TO CELL PHONES …
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