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How are soft materials accounted for, and
used by, the control system?

« Soft-bodied, legged locomotion in Manduca

» Muscles as multi-state materials

 Neural control of locomotion and muscle state
* Using soft materialsin robot design

Soft materials in locomotion

« Soft-bodied, legged locomotion in Manduca

Caterpillar locomotion - a new model system

Locomotion is very versatile (climbing in complex branched
environments, burrowing) but stereotypical and slow (easy to capture and
analyze)

Muscles are discrete functional elements not “antagonistic blocks”
organized very similar to adult arthropods and vertebrates

Direct CNS to muscle relationship, 1 MN per muscle, muscles are
mapped, al major motoneurons identified. All sensory neurons are
peripheral.

Modular organization of segments (simplifies analysis)

Completely soft-bodied, stiff hooks used for gripping but not for any other
other part of the locomotion

Scalable (mass changes during growth 10,000 fold)
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‘ Kinematics of Manduca crawling ‘

Different modes in different segments
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Swing and stance of the terminal proleg (TP)
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‘ Kinematics of soft-bodied movements
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Soft materials in locomotion

* Muscles as multi-state materials
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Numerical model: Manduca muscle
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Experimental data (left) and numerical data (right) for pre-conditioned |oading-unloading
response of Manduca muscle in passive and stimulated conditions.

From: Dorfmann, A., Trimmer, B. A. and Woods, W. A., . (2006).
A constitutive modl for muscle properties n asoft bodied arthropod. 3. R Soc. Interfacein press.

Soft materials in locomotion

» Neural control of locomotion and muscle state
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Soft materials in locomotion

 Using soft materialsin robot design

‘ Building a soft-bodied robot modeled on Manduca sexta‘
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Developing a process

‘ Construction of Softbot ‘

Dragonskin™ elastomeric
body wall

Shape-memory alloy (SMA)
spring actuator

\M Offboard controller | [§
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Softbot : Learning to crawl

Outline of the control system ‘
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SMA work cycle

Design of Softbot

Pressurized cavity

Nitinol actuators
(SMA springs)
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Initial control
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Control Systems for Soft Bodied Roboic Endoscope
“Trimmer Labs

Tufts University
Designed By Steven Warren
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‘ Nitinol actuators as “smart” materials
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