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Advantages of Perching h\ N 13
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* Greatly extend mission time S .
 Stable vantage point while ?»'1
perched |

» Possibility of landing and
physically interacting with a
surface.

« Perching combines the best of
climbing and flying:
— Agile and fast while flying
— Can cover long distances

— Low energy consumption while
perched

— Wait for better weather conditions
— Quiet (no motor noise)

RIiSE platform climbing library at
SwRI, San Antonio, TX 3



Why vertical surfaces?

« Common in urban environments .
» After an explosion, earthquake, etc.

« FEasy to detect walls may be comparatively safe,

« Often provide a large surface to clean and uncluttered
simplify landing




Related Work

On agile flight:
— How et al. (MIT) on indoor flying and hovering
— Oh et al. (Drexel) on autonomous hovering

On perching aerodynamics & control:

— Wickenheiser et al. (Cornell) on vehicle
morphing for perching
— Tedrake et al. (MIT) on controllability of fixed-
wing plane for perching on a wire
Hybrid aerial/terrestrial vehicle (Quinn)

No detailed consideration of the
landing system

Slow maneuvers sensitive to
disturbances

Use of highly accurate motion capture
system/sensors to enable control
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Approach: Sonar

« Conventional plane

e Quick maneuver to minimize

disturbance effects Paparazzi
Autopilot

 Focus on suspension and spines & sensors
to simplify sensing and control

* Everything onboard Flat




Perching Strategy

1. Fly toward wall ~ 9 m/s

2. Detect wall with ultrasonic sensor o—
e 20 Hz, 6 m range

3. Pitch up to slow down (takes about 2-3m)
4. Touchdown possible for about 1.5 m before impact
5. Touchdown at 1-3 m/s. Let suspension absorb impact

Simulated trajectory of the perching maneuver
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(inspired by [Cory & Tedrake 2008])
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Clinging with spines

Why spines?
require no power
— work on a range of outdoor surfaces

— relatively unaffected by films of dirt and
moisture

— leave no trace of their passage
— provide many loading cycles

« Used on Spinybot and RIiSE to climb
brick, stucco, concrete rock...

* Spine mechanisms take advantage of
robot's control over foot trajectories
and forces.

« With UAVs, the challenge is to
provide desired trajectory and forces
using momentum of the plane.




Spine suspensions

« Small spines (10-15 ym tip radius)
catch and hang on asperities

 Individual spine suspensions
distribute the load

* Loading trajectory required

Approach
volume

1. Normal force

Loading Forces 10
Volume
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Spine/surface interaction

Traced surface

Regions with contact
angle in usable range

Approach
Vector

11

11



Spine limit curve -- 1 foot, 10 spines

(for roofing paper -- similar to stucco or composite roof shingles)
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Revisit spine constraints, from
standpoint of the plane

overload
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Spine constraints, from the
standpoint of the plane
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The actual picture » Loading trajectory is
: : Important
Fmax\ bit messier...

* Low damping ratio:
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Leg suspension requirements

Early tests revealed Solution: design suspension
that vertical rebound (links, springs, dampers,
was the main failure nonlinear elements) to absorb

Kinetic energy and direct
forces toward spines with:

— moderate peak landing force

— moderate suspension travel
(no knee contact)

— no negative tangential forces
3. Land o6 the wall and bounce of.. (vertical rebound, detachment)

— small negative normal forces
(no horizontal bounce-off)

16

16



| dynami ions vi
Suspension model e
Matlab)

. Spine
£ L Toe suspension
- (new)
ay Hip
Knee Pseudo-elastic
link model
L7aiLx accounts
for bending.
O.
Tail Details of the leg
—
I e LraiLy

Hip damping is large and nonlinear 17
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Leg Structure

Attachment . Foam
: oam
points _

| ~, hip

Carbon
\ tibia

Balsa/Carbon Sorbothane
femur knee
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Nonlinear elements
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« Material properties +
kKinematics to create roughly constant force

« Damping scaled w.r.t position and velocity
« Urethane foam exhibits reduced damping at high velocity
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Comparing model & force plate data
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Elevator
- aup

Wall
detection

>
»

R ot a
B 4
Touchdown
;possible

30/40 successful landings (10 autonomous, 20 in manual control)

e Pitch = 65 to 110 deg
e Pitch rate = 0 to 200 deg/s

e vx =1 -2.7 m/s (forward)
e vy = up to 1 m/s (downward)
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Improvements and future work

Land on other surfaces
(horizontal, inverted)

— > use opposed spines

Real conditions
(windy, etc.)

Maneuver on the wall
(hybrid scansorial robotics)

Take off from the wall!

Max. load

Current capabilities: |
Planned capabilities: |

.....

Smooth
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Improvements and future work
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Limits for directional adhesion

(e.qg. Stickybot)
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Spine limit curve -- 1 foot, 10 spines

(for roofing paper -- similar to stucco or composite roof shingles)
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Onboard Sensors

Simple wall detection using
the LV-Maxsonar:

— Range of 6 m
— Update rate of 20 Hz

Onboard accelerometer and
gyro are used for data
analysis

Combined using a second
order complementary filter:
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Need something better!!!
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Aero Model

(inspired by [Cory & Tedrake 2008])

Cp, = 2sin(a)cos(a)
Cp = 2sin?(a)
L,
L = 5P ACT,
1
D = Zpv?ACpH

2
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