
Limit Surface and Moment Function 
Descriptions of Planar Sliding 

Suresh Goyal Andy Ruina  J i m  Papadopoulos 
(Computer Science) (Theoretical & Applied Mechanics) (Mechanical Engineering) 

Comell University, Ithaca, NY 14853 
Goyal@gvax.cs.cornel.edu 

Abstract 

We present two geometric descriptions of the frictional 
properties of a rigid body sliding on a planar surface. The 
limit surface LS, from classical plasticity theory, is the 
boundary of the set of all possible frictional forces and 
moments that can be sustained by the frictional interface. 
Zhukovskii’s moment finction is the frictional moment as a 
function of the instantaneous center of rotation’s location. 
Both of these descriptions implicitly contain the full rela 
tion between slip motion and frictional load for an object 
which makes contact governed by a useful class of friction 
laws which includes Coulomb friction. These surfaces can 
be used to deduce results concerning the overall frictional 
motion behavior of rigid bodies such as the existence of 
characteristic final slip motion directions. 

Introduction 

In order to effectively plan and control the motion of 
an object in contact with the ground and/or another ob- 
ject it is helpful to understand the nature of the friction 
contact forces between objects. However, much about the 
mechanics of frictional contact is still poorly understood. 
The micro-mechanisms responsible for friction include a 
variety of mechanisms (e.g. adhesion, plastic deformation, 
fracture) that conspire in a complex way to cause what 
we know macroscopically as friction, e.g. [ll] Even the ap- 
propriate macroscopic descriptions for friction are not uni- 
versally agreed upon. Possible dependencies of friction on 
normal force or stress, on normal separation distance, on 
slip displacement, on slip velocity, on time of stationary 
contact, on slip history, and on vibrations are reviewed in 
[8]. After a possibly appropriate friction law has been cho- 
sen, there still remain many issues about the mechanics of 

A particularly simple set of mechanics problems relate 
to the slip of a single rigid body that has simple Coulomb- 
Amonton-DaVinci friction. A subtle but difficult aspect 
of these problems follows from the rigid body being finite 
in spatial extent so that many (or a continuum of) points 
of contact, each with different slip velocities and friction 
forces, all contribute to the net friction force and torque. 

slip. 

In the context of robotic motion planning, rigid body mo- 
tion with friction has been studied in [1,6,9]. These authors 
have looked at the quasi static motion of an object subject 
to indeterminate contact pressures (normal forces). The 
dynamics of slip for some special rigid bodies has been dis- 
cussed in [5,12]. In order to better understand the motion 
of a rigid body in frictional contact we feel it is useful to 
pause, and just study the nature of the s u m  of the friction 
contact forces on a given body. Certain aspects of the dy- 
namics (and quasi statics) of slip can be inferred from the 
description of the net friction that results. 

Specifically we consider the sum of the frictional forces 
and moments for the following restricted problem: 

1. A rigid body slides on a planar surface. Only the in- 
teractions of this body with the surface are studied 
and not the interactions with any other pushing or re- 
straining objects. 

2. The contact normal force (or pressure) distribution is 
known a priori. 

3. At each point of contact, the friction force depends 
only on the (known) contact force and on the direction 
of slip and not, for example, on the magnitude of the 
slip rate, the slip displacement or the slip history. 

4. At each point of contact the dependence of the fric- 
tion force on direction is consistent with a maximum 
work inequality (to be discussed). The maximum work 
inequality generalizes Coulomb friction to include, for 
example, anisotropic contacts mediated by wheels. 
Assuming 1-4 above, the friction of a rigid body is also 

fully characterized by a limit surface exactly of the type 
used in classical plasticity, e.g. [lo]. With the additional 
restriction of isotropic friction at every point, friction for a 
rigid body is also fully characterized by the moment func- 
tion of Zhukovskii [13]. Our goal here is to introduce these 
geometric descriptions of the net frictional force and torque 
on a rigid body. Some implications of the descriptions will 
be mentioned briefly. 

The plan of the paper is to first describe the motion 
of, and the load on a planar rigid body. Then the nature of 
friction at a single point is discussed. The maximum work 
inequality is introduced with the resulting concept of a limit 
curve for a point of contact. The limit curves for Coulomb 
friction (a circle) and for an ideal wheel (a straight line) are 
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given as examples. The maximum work inequality for the 
overall body is then derived and the resulting concept of a 
limit surface is introduced and illustrated with an example 
(a body with two points of support). The moment function 
is then presented. We conclude with mention of some facts 
and results related to these descriptions and the dynamics 
of motion. 

The discussion of most of the topics here is presented in 
an expanded form and with more examples and references 
in [2,3,4]. 

Motion of a Rigid Slider 

Since we shall be using rate independent friction laws, 
we only need the direction of the velocity v at each point of 
frictional contact to calculate the friction force. These are 
fully determined by the overall instantaneous motion direc- 
tion for the planar slider of figure 1 which can be defined 
either by: 

1. The location C about which the body’s motion is in- 
stantaneously a pure rotation (specified as clockwise 
or counter-clockwise). The point C is the center of ro- 
tation (COR) and is on the circle at infinity for pure 
translations. Or 

2. The unit motion vector q, or ‘versor’ in the language 
of Zmitrowicz [14], defined as q = [qz ,qy ,qw]  = Q/IQI 
where Q = [Vz, Vy,w] has components which are the 
translation velocity and angular velocity of the slider 
as referenced to a point ‘0’ on the slider. 

(The apparent dimensional inconsistency in the definition 
of q above and in the definition of P below, may be removed 
by normalizing all length quantities with some characteris- 
tic length. Using the radius of gyration of the slider as a 
length scale aids the geometric interpretation of dynamics 
calculations.) 

The Net Frictional Load 

The net frictional load is defined as P = [F,, Fy, M ]  
where F, and Fy are the net force that the planar slider 
exerts on the support surface and M is the net moment 
about a vertical axis passing through ‘0’. P is the negative 
of that which would represent the frictional load on a free 
body diagram of the object. When inertia is negligible, P is 

the total external load which need be applied to the slider 
to overcome the frictional resistance. 

The components of P can be expressed by integrals 
over the entire contact region A, of the frictional traction 
(stress) f = [faz,fay] that the slider causes on the sup- 
port plane at each contact point with position coordinates 
ITaz, r a y ] :  

The moment of the frictional forces about a vertical axis 
passing through the center of rotation C is given by: 

If point supports are involved, the integrands in (1) and (2) 
above contain delta functions or, equivalently, are replaced 
by sums. The sums (1) and (2) and their relation to the 
motion q (or C) are the central subject of this presentation. 

Isotropic Friction 

The simplest friction law for which this work applies is 
isotropic friction: during slip the friction force (or stress) at 
a point is in the direction of motion and its magnitude If 1 is 
a constant independent of the direction of motion. During 
stick the magnitude of the friction force is less than or equal 
to this constant. We need not consider the dependence of 
the friction on the normal force (or stress) since the normal 
force is assumed known a priori. 

An equivalent, and somewhat awkward at first sight, 
description of this same friction law is the following pair of 
st at ement s : 

1. There is a circle centered at the origin of [f,, f,] space. 
We call this circle the limit curve (LC) for isotropic 
friction at a given point of contact. 

2. The maximum work inequality is always satisfied: 

(3) (f - f*) . v 2 0 

where f and v are the friction force and the relative 
slip velocity at a point of contact, f and f*  are on or 
inside the limit curve, and f* is otherwise arbitrary. 

The situation is shown in figure 2(b) for contact at a point 
‘a’ on the sliding body. The strength of the maximum work 
inequality (as well as its name) comes from f* being arbi- 
trary. For a given v the corresponding f is that f ,  on or 
inside the limit curve, which maximizes the ‘work’ (actually 
power in this formulation) over all possible f* on or inside 
the limit curve (since f . v 2 f* . v for all f*). 

Anisotropic Friction 

The tool which we use in the construction of the limit 
surface is the maximum work inequality at each point; the 
isotropy of friction is not essential. So it is safe, and perhaps 
useful for some applications, to generalize the friction laws 
that are allowed to include any law that is described by the 
statements: 

1. A closed curve in force space is specified. 
2. The maximum work inequality (en. 3) is satisfied by 

(Much of the reasoning we present based on these state- 
ments is borrowed directly from classical plasticity theory, 
e.g. [lo].) The statements 1 and 2 above are only consis- 

all f and v. 
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tent if the specified closed curve is convex and encloses the 
origin. A possible (if artificial looking) limit curve is shown 
in figure 3 where the existence of a flat region and a vertex 
should be noted. 

Consequences of the limit curve description are: 1) the 
normality of v to the limit curve in places where the limit 
curve has a well defined normal, thus the friction law is said 
to ‘satisfy normality,’ 2) a non-uniqueness in the slip versor 
v/lvl for given friction force at a vertex on the limit curve 
(all normals to an imagined rounded vertex are possible), 
and 3) a non-uniqueness in the friction force for given slip 
velocity v which is normal to a flat region on the limit curve 
(all forces on the flat region are possible). These properties 
are worth noting even if one’s ultimate interest is isotropic 
friction since their andogues on the limit surface for the 
slider occur even when the limit curve at every point of 
contact is a circle. 

Wheels as Anisotropic Friction 
There is some argument about the applicability of nor- 

mality principles to anisotropic friction in general. How- 
ever, contact mediated by wheels provides a useful and 
consistent example [7]. One can imagine an object, say 
a car or a cart, that one may wish to model using wheeled 
contact friction. Figure 4 shows a microscopic and massless 
wheel that has a perfect rigid bearing attached to the rigid 
body and ordinary isotropic friction at its contact with the 
ground. This limit curve is highly degenerate in that it en- 
closes no area and has nothing but flat regions and vertices. 
During rolling the side force is indeterminate (anything on 
the limit curve), and during side slip any velocity is possi- 
ble. 

Other examples of anisotropic friction can be con- 
structed using a rusty wheel, a wheel with a ratchet, a 
rust wheel with a ratchet, a wheel with a continuum of 
ratcheted wheels at its perimeter, etc. On the other hand, 
one can also invent micro-machines to mediate the contact 
between the slider and the support plane that violate nor- 
mality. A microscopic, rusty, castor wheel that is mounted 
in an appropriately crooked manner violates the maximum 
work inequality when described macroscopically [2,3,4]. 

Maximum Work and the Limit Surface 

It turns out that the formalism above used to describe 
friction at a point carries over directly to the rigid body 
as a whole. The three dimensional friction load P and the 
motion versor q satisfy an inequality similar to the maxi- 
mum work inequality, with respect to a closed convex limit 
surface (LS). We term this inequality the load motion in- 
equality. The LS is fully determined by the limit curves of 
its contact points. In other words, for a given slider (known 
friction laws at all contact points) the sums in equations (1) 
evaluated for all possible motions are fully described by a 
single closed convex surface. 

The formal construction of the overall limit surface in 
load space from the limit curves follows from (3) applied 
to every point with the principle of virtual work (PVW). 

The principle of virtual work (actually power) for our rigid 
body may be expressed as: 

P . Q  = x f . v  (4) 
where P and f are any load and force distribution that 
are related by the ‘equilibrium’ sums (1) (whether or not 
the fs are properly associated with any friction laws). Q = 
[V,, Vy,w] and v (slip velocity at position r) are any motion 
vector and velocity distribution related by the rigid body 
‘compatibility’ equation: 

v = [v,, vy] = V - w x r = [V, - w r y ,  V, + U T , ]  

(The cross product should be interpreted as scalar or vector 
valued, depending on context.) Assume that f and f* are 
two frictional force distributions that do not violate the 
slip condition anywhere (f and f’ are on or inside their 
limit curves) and they correspond through (1) respectively 
to P and P’. Further assume that at every point f is also 
consistent with the friction law for the velocity field for the 
motion Q. Applying the principle of virtual work (4) to 
each of the two cases (P Q = f* .v), 
subtracting, and then applying the inequality (3) to each 
term, gives: 

f v and P’ . Q = 

(P - P*) .  q 2 0 ( 5 )  

So P is the load vector at 0 during slip associated 
with a motion vector q = Q/lQl, and P* is any other 
load vector at 0 that results from summing possible f*s 
(where ‘possible’ refers to that which is on or inside the 
limit curves with no attention paid to the velocities at the 
contact points). 

The set of a l l  possible P’ is the Minkowski sum of 
the contributions from each of the contact points (once the 
limit curves for each point of contact from two dimensional 
force space are replaced by appropriate limit surfaces in 
three dimensional load space). The boundary of this set is 
a closed convex surface in load space that encloses the ori- 
gin. This surface, the limit surface for the object, with the 
inequality (5) fully describes the relation between friction 
loads P and motions q. In short, the net friction on a rigid 
planar slider, subject to the assumptions named previously, 
is fully characterized by: 

1. Specification of a closed convex surface in load space 
that encloses the origin. This surface may be regarded 
as a macroscopic description of the slider, o r  a descrip- 
tion constructed from the microscopic contact distribu- 
tion. And, 

2. The load motion inequality ( 5 ) ,  (P - P*) . q 1 0 
As with the limit curves, 1) q is normal to the limit 

surface where it is smooth, 2) there is a non-uniqueness in 
the slip versor q for given friction load at a vertex on the 
limit surface (all normals to an imagined rounded vertex are 
possible), and 3) there is a non-uniqueness in the friction 
load for given motion q which is normal to a flat region on 
the limit surface (all loads on the flat region are possible). 
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Example Limit Surface 

Figure 5 shows a symmetric bar supported at its ends 
by two identical points of isotropic contact, the half length 
of the bar is 1. The limit surface for this object is shown 
in figure 6(a). It is the boundary of the volume swept by 
the convolution of two ellipses, each ellipse being the limit 
surface for a point of support of the bar. The intersection 
of the surface with the [F,, FYI plane is a circle, as is always 
the case for bodies whose contact points are governed by 
isotropic friction. The intersection of the limit surface with 
the [M,F,] plane is a circle and the intersection with the 
[M, F,] plane is a square as shown in figure 6(b). 

The limit surface has 4 vertices where it intersects the 
F, and the M axes. It has 4 flat regions showing as elliptical 
facets whose normals are on the [M,F, ]  plane. The end 
caps at and near the intersections of the LS with the PY 
axis are smooth with well defined normals. The vertices on 
the limit surface correspond to non-uniqueness of the slip 
motion when either a pure moment or a pure force in the 
z direction is applied. For example, if a force is applied 
in the z direction the object may translate or translate 
with a small amount of rotation and still have the same net 
friction force. For an object that is supported everywhere 
with isotropic friction, vertices appear on the limit surface 
if and only if all support points lie on one straight line. 

On this limit surface, a flat elliptical facet corresponds 
to a whole set of friction loads all of which correspond to 
rotation about one of the support points. When the bar 
rotates about a support point that point is not sliding and 
its friction force can be anything inside its friction circle, 
hence the non-uniqueness. For an object that is supported 
by isotropic friction at all points, the limit surface has flat 
facets if and only if there exist points that carry finite loads. 
In fact each point of support leads to two parallel flat facets 
on the limit surface of the slider. An object that has finite 
contact stress (or even finite force per unit length on a curve 
of contact) at all points has no flat facets. 

When sliders with more general friction laws (such as 
that describing contact mediated by wheels) are considered, 
vertices can appear on the limit surface even if all the sup- 
port is not on a line, and facets can appear even if there 
are no point supports. 

Other symmetries and properties of limit surfaces pro- 
vide some insight about the relation between forces and the 
sense of rotation of the object, tendency to rotate about 
points of support, etc. 

Moment Function for Isotropic Friction 

We have discovered, and since learned of Zhukovskii's 
[13] previous discovery of, another simple geometric repre- 
sentation of the friction load for the special case of isotropic 
friction. For rotation about a point C with position [x,, y,] 
the friction load M ,  can be calculated by the sum in equa- 
tion (2). The value of M ,  as a function of [z,, y,] is the mo- 
ment function. It is single valued and well defined since the 

non-uniqueness in the sums (1) is in the net force [F,, FYI 
and is due to the force of the non-sliding center of rotation. 
Since M ,  is calculated relative to this point, the undeter- 
mined friction force at that point has no net moment. 

The moment function can be constructed from the sum 
(2). This sum can be visualized as follows. For every point 
of support the moment function is a cone that opens up- 
wards with vertex at the point of support on the [z,, y,] 
plane. The moment function is the sum of these cones over 
all points of contact. 

A straightforward calculation shows that the moment 
function contains all information about the slider's con- 
tact. In particular, differentiation of the equations (1) with 
isotropic friction shows that, 

where rc is the position of the center of rotation relative to 
the reference point 0 and the cross product is scalar valued. 
The moment function for the bar with two points of support 
is shown in figure 7. Its gradient is not well defined for the 
two corners at the bottom. Thus the differentiation above 
is not sensible and the friction load is not well defined. This 
corresponds to the COR on a support point, the vertices 
of the frictional cones of the individual limitcones of the 
points of contact. The non-uniqueness in [F,, FYI at these 
points is the same as that represented by the elliptical facets 
on the limit surface. 

The moment function has a constant gradient value 
and constant M ,  for all points on the yE axis between the 
support points. So that set of CORs corresponds to a set 
of motions all with the same frictional load. Similarly, on 
the yc axis outside of the bar M, = rc x F and again a set 
of CORs is found with a fixed load. These straight lines 
on the moment function correspond to vertices on the limit 
surface. 

Dynamics Of Free Slip 

We have used the limit surface to generalize some re- 
sults in [5,12] on the dynamics of slip. In particular, any 
limit surface has at least two 'eigen-directions', directions 
for which P is parallel to q, the normal to the surface. 
When an object comes to rest at the end of free sliding 
(sliding purely under the action of the friction forces at the 
frictional interface), the final motion is always (for all ini- 
tial conditions) in one of these eigen-directions. Some of 
these eigen-directions are unstable in that they are final 
motions only for certain points on the limit surface as ini- 
tial conditions. Others are stable in that they occur as final 
motions for less restricted initial conditions. The stability 
of an eigen-direction can be determined from the relation 
between the principal radii of curvature and the radius of 
the limit surface at that point. Eigen-directions on flat 
facets are always stable, thus the final motion of a sliding 
object is often a rotation about a point of support. Further 

797 

Authorized licensed use limited to: Stanford University. Downloaded on April 8, 2009 at 17:07 from IEEE Xplore.  Restrictions apply.
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results on the stability of slip directions have been obtained 
as applicable to, say, a skidding car or cart. 

For dimensional consistency, as well as sensible dynam- 
ics, the limit surface uses moments that are scaled by the 
radius of gyration. Thus the shape of the limit surface de- 
pends in part on the distribution of mass. For axisymmetric 
rigid bodies the final motion is always a pure rotation if the 
mass is sufficiently far from the center of the object (unless 
the initial condition is pure translation). The final motion 
is always pure translation if the mass is sufficiently close 
to the center of the object (unless the initial condition is 
pure rotation). These results are discussed at some length 
in [2,3,4]. 

Conclusions 

The limit surface and moment function provide a gec- 
metric description of the overall relation between frictional 
load and motion of a sliding rigid body. They can be used to 
visualize or explain many features of rigid body slip of the 
type demonstrated in [6]. Some interesting results about 
the dynamics of free slip have also been obtained. 
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Figure 1. Rigid Slider on a planar surface. 

,direction of V. 
directio r y  f x  

\ e ,,' 

Circle of radiur Ifd. 

(a) (b) 

Figure 2. Coulomb friction at a point with position r,. 
The friction force is f, the slip velocity v,. f: is any fric- 
tion force on or inside the limit curve, which is a circle for 
isotropic coulomb friction. 

vertex on the LC 

direction of 
velocity 

v Cor force f 

Figure 3. Generic limit curve LC. Friction forces that can 
occur during sliding for an imagined anisotropic material. 
The curve is convex and encloses the origin. Where it is 
smooth velocity is normal to the curve. Where it is flat 
there is more than one friction force for a given velocity. 
Where it is kinked there is more than one velocity for a 
given friction force. 
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Supporting Surface 

(b) Limitcurve fy f skidding 

1 

P 
pure rolling of ideal wheel wheel axis 

Figure 4. a) Microscopic wheel embedded in the slider. 
It is massless, has a perfect bearing and makes ordinary 
frictional contact with the ground. The set of forces it can 
transmit to the ground, along with the motion of the slider 
to which they correspond is shown by b) the limit curve for 
contact mediated by an ideal wheel. 

Y 

Bar supported at 
points 'a' and 'b' 

X 

Figure 5. A sample rigid object, a bar supported at its 
ends. The net frictional load is shown in (a), the contact 
frictional forces in (b). 

(b) M 
'- loeruolallqlor.purc moment load vector 

vertex eomsponding i 

suble 'eigen dimtion' loadvector P=[F.. 0. MI 

Figure 6. a) The limit surface for the bar of figure 5 .  
The set of a l l  possible frictional loads during slip. b) the 
section of the limit surface of (sa) on the [F,,M] plane. 
Various non-uniquenesses are illustrated with respect to the 
flat sides and the sharp corners. 

Figure 7. The moment function for the bar of figure ( 5 ) .  
The moment function is the sum of two cones each centered 
at a contact point. 
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