
V+ Language
Reference Guide

Version 12.1

Part # 00962-01100, Rev A

September 1997

150 Rose Orchard Way • San Jose, CA 95134 • USA • Phone (408) 432-0888 • Fax (408) 432-8707

Otto-Hahn-Strasse 23 • 44227 Dortmund • Germany • Phone (49) 231.75.89.40 • Fax(49) 231.75.89.450

41, rue du Saule Trapu • 91300 • Massy • France • Phone (33) 1.69.19.16.16 • Fax (33) 1.69.32.04.62

1-2, Aza Nakahara Mitsuya-Cho • Toyohashi, Aichi-Ken • 441-31 • Japan • (81) 532.65.2391 • Fax (81) 532.65.2390

The information contained herein is the property of Adept Technology, Inc., and shall not be repro-
duced in whole or in part without prior written approval of Adept Technology, Inc. The informa-
tion herein is subject to change without notice and should not be construed as a commitment by
Adept Technology, Inc. This manual is periodically reviewed and revised.

Adept Technology, Inc., assumes no responsibility for any errors or omissions in this document.
Critical evaluation of this manual by the user is welcomed. Your comments assist us in preparation
of future documentation. A form is provided at the back of the book for submitting your comments.

Copyright © 1994-1997 by Adept Technology, Inc. All rights reserved.

The Adept logo is a registered trademark of Adept Technology, Inc.

Adept, AdeptOne, AdeptOne-MV, AdeptThree, AdeptThree-XL, AdeptThree-MV, PackOne,
PackOne-MV, HyperDrive, Adept 550, Adept 550 CleanRoom, Adept 1850, Adept 1850XP,

A-Series, S-Series, Adept MC, Adept CC, Adept IC, Adept OC, Adept MV,
AdeptVision, AIM, VisionWare, AdeptMotion, MotionWare, PalletWare, FlexFeedWare,

AdeptNet, AdeptFTP, AdeptNFS, AdeptTCP/IP, AdeptForce, AdeptModules, AdeptWindows,
AdeptWindows PC, AdeptWindows DDE, AdeptWindows Offline Editor,

and V+ are trademarks of Adept Technology, Inc.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Printed in the United States of America

Table of Contents
Introduction . 91
Introduction . 10
Related Publications . 10
Conventions Used in This Manual 12

Notes, Cautions, and Warnings 12
Values, Variables, and Expressions 12
Integers and Real Values 13
Special Notation 13

V+ Language Keyword Summary 14
Keyword Groups 14

How Can I Get Help? . 38
Within the Continental United States 38

Service Calls 38
Application Questions 38
Applications Internet E-Mail Address 39
Training Information 39

Within Europe . 39
France . 39

Outside Continental United States or Europe 39
Adept Fax on Demand 40
Adept on Demand Web Page 40

Descriptions of V+ Keywords 412
Introduction . 42

V+ Language Quick Reference 643A
System Messages 671B
Introduction . 672
Alphabetical Listing . 672
Numerical List . 763
V+ Language Reference Guide, Rev A 3

Table of Contents
ID Option Words . 779C
Introduction . 780
System Option Words . 780
Controller Option Word 782
Robot Option Words . 782
Processor Option Word 783
Vision Option Word . 784

Glossary . 785D
Index . 791
4 V+ Language Reference Guide, Rev A

V+ Language Reference Guide, Rev A 5

List of Figures

Figure 2-1. ABOVE/BELOW . 46
Figure 2-2. Analog Channel Addressing . 53
Figure 2-3. FLIP/NOFLIP . 224
Figure 2-4. Effect of mode bit 1 . 342
Figure 2-5. LEFTY/RIGHTY . 403
Figure 2-6. WINDOW Function for Mode Less Than or Equal to Zero 635
Figure 2-7. WINDOW Function for Mode Greater Than Zero 636

List of Tables
Table 1-1. Related Publications . 11
Table 1-2. Conveyor Belt Operations . 15
Table 1-3. Graphics Operations . 15
Table 1-4. System Input/Output Operations . 17
Table 1-5. Logical Operations . 20
Table 1-6. Motion Control Operations . 21
Table 1-7. Numeric Value Operations . 29
Table 1-8. Program Control Operations . 30
Table 1-9. String Operations . 36
Table 2-1. Acceptable Device Names to be Attached 72
Table 2-2. Default Device Numbers Supplied by the LUN 74
Table 2-3. Converting A and B Operands into Real

Values (BAND Operator) . 82
Table 2-4. Converting A and B Operands into Real

Values (BOR Real-Valued Function) . 99
Table 2-5. Converting A and B Operands into Real

Values (BXOR Operator) . 106
Table 2-6. INTB and LNGB Functions . 215
Table 2-7. FOPEN Window Attributes . 235
Table 2-8. FOPEN TCP Attributes . 240
Table 2-9. FSET Graphics Window Attributes . 259
Table 2-10. FSET Serial Line Attributes . 269
Table 2-11. FSET Attributes for AdeptNet . 271
Table 2-12. Standard Graphics Color Values . 283
Table 2-13. Graphics Events Codes . 292
Table 2-14. String Arrays with 4 Bits per Pixel . 301
Table 2-15. String Arrays with 1 Bit per Pixel . 301
Table 2-16. Instructions Affected by GTRANS . 338
Table 2-17. Common Transformations . 339
Table 2-18. Approximate Joint Positions for READY Location 501
Table B-1. Cat3 Diagnostic Error Message Codes 682
Table B-2. Cat3 External E-STOP Error Message Codes 683
Table B-3. Cat3 External Sensor Fault Error Message Codes 684
Table B-4. NFS Error Message Codes . 726
Table B-5. Informational Messages . 764
Table B-6. Warning Messages . 764
Table B-7. Error Messages . 766
V+ Language Reference Guide, Rev A 6

Table of Contents
Table C-1. System Option Word #1 [from ID(5)] . 781
Table C-2. System Option Word #2 [from ID(6)] . 781
Table C-3. Robot Option Word #2 (from ID(11, 10+robot)] 782
Table C-4. Processor Option Word [from ID(6, 4)] 783
Table C-5. Vision Option Word [from ID(5, 3)] . 784
V+ Language Reference Guide, Rev A 7

Introduction 1
Introduction . 10

Related Publications. 10

Conventions Used in This Manual . 12

Notes, Cautions, and Warnings . 12
Values, Variables, and Expressions . 12
Integers and Real Values . 13
Special Notation . 13

V+ Language Keyword Summary . 14

Keyword Groups . 14
How Can I Get Help? . 38

Within the Continental United States . 38
Service Calls . 38
Application Questions . 38
Applications Internet E-Mail Address 39
Training Information . 39

Within Europe . 39
France . 39

Outside Continental United States or Europe. 39
Adept Fax on Demand . 40
Adept on Demand Web Page. 40
V+ Language Reference Guide, Rev A 9

Chapter 1 Introduction
Introduction

This reference guide is for use with V+ systems version 12.1 or later.

Related Publications

This reference guide is a companion to the V+ Language User’s Guide, which
covers the principles of the V+ programming language and robot-control system.

In addition to being a complete programming language, V+ is also a complete
operating system that controls equipment connected to Adept controllers. The V+
Operating System User’s Guide and V+Operating System Reference Guide detail
the V+ operating system. You must be familiar with the operating system in order
to effectively use the V+ programming language.

The most current releases of some related publications may be for an earlier
version of the V+ system. You need to use them in conjunction with the release
notes published since those books were published.

You should have handy the manuals listed in Table 1-1.
10 V+ Language Reference Guide, Rev A

Chapter 1 Related Publications
Table 1-1. Related Publications

Manual Material Covered

Adept MV Controller User’s
Guide

Instructions for setting up, configuring, and
maintaining the controller V+ runs on.

AdeptForce VME User’s Guide Installation, operation, and programming of the
AdeptForce VME product.

Adept Motion VME Developer’s
Guide

Installation, configuration, testing, and tuning of
a motion device controlled by AdeptMotion
VME.

AdeptNet User’s Guide Use and programming of the AdeptNet product.

AdeptVision Reference Guide (if
your system is equipped with
AdeptVision VXL)

Enhancements to the V+ language that are added
when the AdeptVision option is installed.

Instructions for Adept Utility
Programs

Instructions for running various setup and
configuration software utilities

AdeptWindowsPC User’s Guide Instructions for using the AdeptWindowsPC
product.

Release Notes for V+ Version 12.X Late-breaking changes not in manuals; summary
of changes.

Robot or motion device user’s
guides (if connected to your
system)

Instructions for installing and maintaining the
motion device connected to your system.
V+ Language Reference Guide, Rev A 11

Chapter 1 Conventions Used in This Manual
Conventions Used in This Manual

The following conventions are used throughout this manual to make this
reference easier to use.

Notes, Cautions, and Warnings

Three levels of special notation are used in this manual. In descending order of
importance, they are:

WARNING: If the actions indicated in a warning are not complied
with, injury or major equipment damage could result. A warning
typically describes the potential hazard, its possible effect, and the
measures that must be taken to reduce the hazard.

CAUTION: If the action specified in a caution is not complied with,
damage to your equipment or data could result.

NOTE: A note provides supplementary information, emphasizes or
supplements a point or procedure, or gives a tip for easier
operation.

Values, Variables, and Expressions

The parameters to V+ keywords can generally be satisfied with a specific value of
the correct data type, a variable of the correct data type, or an expression that
resolves to the correct type. Unless specifically stated, parameters can be replaced
with a value, variable, or expression (of the correct type). The most common case
where a parameter cannot be satisfied with all three options occurs when data is
being returned in one of the parameters. In this case, a variable must be used; the
parameter description states this restriction.
12 V+ Language Reference Guide, Rev A

Chapter 1 Conventions Used in This Manual
Integers and Real Values

In V+ integers and real values are not different data types. Real values satisfy
parameters requiring integers by truncating the real value. Where real values are
required, an integer is considered a special case of a real value with no fractional
part.

Special Notation

Key combinations such as pressing the CTRL key and the Q key at the same time
are shown as CTRL+Q.

Numbers shown in other than decimal format are preceded with a carat (^) and
the letter H for hexadecimal, O for octal, or B for binary. For example, ^HF =
^B1111 = ^O17 = 15.
V+ Language Reference Guide, Rev A 13

Chapter 1 V+ Language Keyword Summary
V+ Language Keyword Summary

Tables 1-2 to 1-9 summarize the keywords used by the V+ language. Appendix A
is a quick reference to the V+ language. It lists all the keywords, their parameters,
and a brief description of each keyword.

Keyword Groups

The V+ keyword summary groups keywords as follows:

Table 1-2 lists the keywords whose primary use is with tracking conveyor belt
operations.

Table 1-3 lists the keywords used primarily with graphics-based systems to
manage windows, graphics, and event-driven programming for a
graphical user interface (GUI).

Table 1-4 lists the keywords whose primary use is for system input/output
operations. These include disk I/O, serial I/O, digital I/O, and ter-
minal I/O.

Table 1-5 lists the V+ logical operators.

Table 1-6 lists the keywords that control motion devices.

Table 1-7 lists the numerical operations (square root, modulo, trigonometric,
and similar functions).

Table 1-8 lists the keywords primarily concerned with program control.
Instructions for operations such as creating programs and program
flow are in this group.

Table 1-9 lists the string operators (substring, string conversions, and similar
functions).
14 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
Table 1-2. Conveyor Belt Operations

Keyword Type Function

BELT S Control the function of the conveyor tracking features of
the V+ system.

BELT RF Return information about a conveyor belt being tracked
with the conveyor tracking feature.

BELT.MODE P Set characteristics of the conveyor tracking feature of the
V+ system.

BSTATUS RF Return information about the status of the conveyor
tracking system.

DEFBELT PI Define a belt variable for use with a robot tracking
conveyor belt.

SETBELT PI Set the encoder offset of the specified belt variable equal to
the value of the expression.

WINDOW PI Set the boundaries of the operating region of the specified
belt variable for conveyor tracking.

WINDOW RF Return a value that indicates where the location described
by the belt-relative transformation value is relative to the
predefined boundaries of the working range on a moving
conveyor belt.

P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S: Switch

Table 1-3. Graphics Operations

Keyword Type Function

FDELETE PI Delete the specified disk file, the specified graphics
window and all its child windows, or the specified
graphics icon.

FOPEN PI Create and open a new graphics window, or open an
existing graphics window, for subsequent input
and/or output.

P: Parameter, PI: Program Instruction
V+ Language Reference Guide, Rev A 15

Chapter 1 V+ Language Keyword Summary
FSET PI Set or modify attributes of a graphics window or serial
line.

GARC PI Draw an arc or a circle in a graphics window.

GCHAIN PI Draw a chain of points in a graphics window to form a
complex figure.

GCLEAR PI Clear an entire graphics window to the background
color.

GCLIP PI Set the clipping rectangle for all graphics instructions
(except GFLOOD) to suppress all subsequent graphics
that fall outside the rectangle.

GCOLOR PI Set the foreground and background colors for
subsequent graphics output.

GCOPY PI Copy one region of a window to another region in the
same window.

GETEVENT PI Return information describing input from a graphics
window.

GFLOOD PI Flood a region in a graphics window with color.

GGETLINE PI Return pixel information from a single pixel row in a
graphics window.

GICON PI Draw a predefined graphic symbol (icon) in a graphics
window.

GLINE PI Draw a single line segment in a graphics window.

GLINES PI Draw multiple line segments in a graphics window.

GLOGICAL PI Set the logical operation to be performed between new
graphics output and graphics data already displayed,
and select which bit planes are affected by graphics
instructions.

GPANEL PI Draw a rectangular panel with shadowed or grooved
edges.

GPOINT PI Draw a single point in a graphics window.

Table 1-3. Graphics Operations (Continued)

Keyword Type Function

P: Parameter, PI: Program Instruction
16 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
GRECTANGLE PI Draw a rectangle in a graphics window.

GSCAN PI Draw a number of horizontal lines in a graphics
window to form a complex figure.

GSLIDE PI Draw a slide bar in preparation for receiving slide
events.

GTEXTURE PI Set the opaque/transparent mode and the texture
pattern for subsequent graphics output.

GTRANS PI Scale, rotate, and offset subsequent graphics
instructions.

GTYPE PI Display a text string in a graphics window.

SCREEN.TIMEOUT P Establish the time-out period for blanking the screen
of the graphics monitor.

Table 1-4. System Input/Output Operations

Keyword Type Function

AIO.IN RF Read a channel from one of the analog IO boards.

AIO.INS RF Test whether an analog input or output channel is
installed.

AIO.OUT PI Write to a channel on one of the analog IO boards.

ATTACH PI Make a device available for use by the application
program.

BITS PI Set or clear a group of digital signals based on a value.

BITS RF Read multiple digital signals and return the value
corresponding to the binary bit pattern present on the
signals.

$DEFAULT SF Return a string containing the current system default
device, unit, and directory path for disk file access.

P: Parameter, PI: Program Instruction, RF: Real-Valued Function, SF: String Function

Table 1-3. Graphics Operations (Continued)

Keyword Type Function

P: Parameter, PI: Program Instruction
V+ Language Reference Guide, Rev A 17

Chapter 1 V+ Language Keyword Summary
DEF.DIO PI Assign third-party digital I/O boards to standard V+
signal numbers, for use by standard V+ instructions,
functions, and monitor commands.

DETACH PI Release a specified device from the control of the
application program.

DEVICE PI Send a command or data to an external device and,
optionally, return data back to the program. (The
actual operation performed depends on the device
referenced.)

DEVICE RF Return a real value from a specified device. The value
may be data or status information, depending upon
the device and the parameters.

DEVICES PI Send commands or data to an external device and
optionally return data. The actual operation performed
depends on the device referenced.

FCLOSE PI Close the disk file, graphics window, or graphics icon
currently open on the specified logical unit.

FCMND PI Generate a device-specific command to the
input/output device specified by the logical unit.

FEMPTY PI Empty any internal buffers in use for a disk file or a
graphics window by writing the buffers to the file or
window if necessary.

FOPENA PI Open a disk file for read-only, read-write,
read-write-append, or read-directory, respectively, as
indicated by the last letter of the instruction name.

FOPEND PI Open a disk file for read-only, read-write,
read-write-append, or read-directory, respectively, as
indicated by the last letter of the instruction name.

FOPENR PI Open a disk file for read-only, read-write,
read-write-append, or read-directory, respectively, as
indicated by the last letter of the instruction name.

Table 1-4. System Input/Output Operations (Continued)

Keyword Type Function

P: Parameter, PI: Program Instruction, RF: Real-Valued Function, SF: String Function
18 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
FOPENW PI Open a disk file for read-only, read-write,
read-write-append, or read-directory, respectively, as
indicated by the last letter of the instruction name.

FSEEK PI Position a file open for random access and initiate a
read operation on the specified record.

FSET PI Set serial I/O port configuration parameters.

GETC RF Return the next character (byte) from a device or input
record on the specified logical unit.

IGNORE PI Cancel the effect of a REACT or REACTI instruction.

IOGET_ RF Return a value from a device on the VME bus.

$IOGETS SF Return a string value from a device on the VME bus.

IOPUT_ PI Send a value to a device on the VME bus.

IOSTAT RF Return status information for the last input/output
operation for a device associated with a logical unit.

IOTAS RF Control access to shared devices on the VME bus.

KERMIT.RETRY P Establish the maximum number of times the (local)
Kermit driver should retry an operation before
reporting an error.

KERMIT.TIMEOUT P Establish the delay parameter that the V+ driver for the
Kermit protocol will send to the remote server.

KEYMODE PI Set the behavior of a group of keys on the manual
control pendant.

NETWORK RF Return network status and IP address information.

PENDANT RF Return input from the manual control pendant.

PROMPT PI Display a string on the system terminal and wait for
operator input.

READ PI Read a record from an open file or from an attached
device that is not file oriented.

Table 1-4. System Input/Output Operations (Continued)

Keyword Type Function

P: Parameter, PI: Program Instruction, RF: Real-Valued Function, SF: String Function
V+ Language Reference Guide, Rev A 19

Chapter 1 V+ Language Keyword Summary
RESET PI Turn off all the external output signals.

SETDEVICE PI Initialize a device or set device parameters. (The actual
operation performed depends on the device
referenced.)

SIG RF Return the logical AND of the states of the indicated
digital signals.

SIG.INS RF Return an indication of whether or not a digital I/O
signal is configured for use by the system, or whether
or not a software signal is available in the system.

SIGNAL PI Turn on or off external digital output signals or
internal software signals.

TYPE PI Display the information described by the output
specifications on the system terminal. A blank line is
output if no argument is provided.

WRITE PI Write a record to an open file or to an attached device
that is file oriented.

Table 1-5. Logical Operations

Keyword Type Function

AND O Perform the logical AND operation on two values.

BAND O Perform the binary AND operation on two values.

BMASK RF Create a bit mask by specifying which bits to set.

BOR O Perform the binary OR operation on two values.

BXOR O Perform the binary exclusive-OR operation on two values.

COM O Perform the binary complement operation on a value.

FALSE RF Return the value used by V+ to represent a logical false result.

O: Operator, RF: Real-Valued Function

Table 1-4. System Input/Output Operations (Continued)

Keyword Type Function

P: Parameter, PI: Program Instruction, RF: Real-Valued Function, SF: String Function
20 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
MOD O Compute the modulus of two values.

NOT O Perform logical negation of a value.

OFF RF Return the value used by V+ to represent a logical false result.

ON RF Return the value used by V+ to represent a logical true result.

OR O Perform the logical OR operation on two values.

TRUE RF Return the value used by V+ to represent a logical true result.

XOR O Perform the logical exclusive-OR operation on two values.

Table 1-6. Motion Control Operations

Keyword Type Function

ABOVE PI Request a change in the robot configuration during the
next motion so that the elbow is above the line from
the shoulder to the wrist.

ACCEL PI Set acceleration and deceleration for robot motions.

ACCEL RF Return the current robot acceleration or deceleration
setting.

ALIGN PI Align the robot tool Z axis with the nearest world axis.

ALTER PI Specify the magnitude of the real-time path
modification that is to be applied to the robot path
during the next trajectory computation.

ALTOFF PI Terminate real-time path-modification mode (alter
mode).

ALTON PI Enable real-time path-modification mode (alter
mode), and specify the way in which ALTER
coordinate information will be interpreted.

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function

Table 1-5. Logical Operations (Continued)

Keyword Type Function

O: Operator, RF: Real-Valued Function
V+ Language Reference Guide, Rev A 21

Chapter 1 V+ Language Keyword Summary
APPRO PI Start a robot motion toward a location defined relative
to specified location.

APPROS PI Start a robot motion toward a location defined relative
to specified location.

BASE PI Translate and rotate the World reference frame relative
to the robot.

BASE TF Return the transformation value that represents the
translation and rotation set by the last BASE command
or instruction.

BELOW PI Request a change in the robot configuration during the
next motion so that the elbow is below the line from
the shoulder to the wrist.

BRAKE PI Abort the current robot motion.

BREAK PI Suspend program execution until the current motion
completes.

CALIBRATE PI Initialize the robot positioning system.

CLOSE PI Close the robot gripper.

CLOSEI PI Close the robot gripper.

COARSE PI Enable a low-precision feature of the robot hardware
servo.

CONFIG RF Return a value that provides information about the
robot’s geometric configuration or the status of the
motion servo-control features.

CP S Control the continuous-path feature.

CPOFF PI Instruct the V+ system to stop the robot at the
completion of the next motion instruction (or all
subsequent motion instructions) and null position
errors.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
22 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
CPON PI Instruct the V+ system to execute the next motion
instruction (or all subsequent motion instructions) as
part of a continuous path.

DECEL.100 S Enable or disable the use of 100 percent as the
maximum deceleration for the ACCEL program
instruction.

DECOMPOSE PI Extract the (real) values of individual components of a
location value.

DELAY PI Cause robot motion to stop for the specified period of
time.

DEPART PI Start a robot motion away from the current location.

DEPARTS PI Start a robot motion away from the current location.

DEST TF Return a transformation value representing the
planned destination location for the current robot
motion.

DISTANCE RF Determine the distance between the points defined by
two location values.

DRIVE PI Move an individual joint of the robot.

DRY.RUN S Control whether or not V+ communicates with the
robot.

DURATION PI Set the minimum execution time for subsequent robot
motions.

DURATION RF Return the current setting of one of the motion
DURATION specifications.

DX RF Return a displacement component of a given
transformation value.

DY RF Return a displacement component of a given
transformation value.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
V+ Language Reference Guide, Rev A 23

Chapter 1 V+ Language Keyword Summary
DZ RF Return a displacement component of a given
transformation value.

ESTOP PI Assert the emergency-stop signal to stop the robot.

FINE PI Enable a high-precision feature of the robot hardware
servo.

FLIP PI Request a change in the robot configuration during the
next motion so that the pitch angle of the robot wrist
has a negative value.

FRAME TF Return a transformation value defined by four
positions.

GAIN.SET PI Select a set of gain parameters for one or more joints of
the current robot.

HAND RF Return the current hand opening.

HAND.TIME P Establish the duration of the motion delay that occurs
during OPENI, CLOSEI, and RELAXI instructions.

HERE PI Set the value of a transformation or precision-point
variable equal to the current robot location.

HERE TF Return a transformation value that represents the
current location of the robot tool point.

HOUR.METER RF Return the current value of the robot hour meter.

IDENTICAL RF Determine if two location values are exactly the same.

INRANGE RF Return a value that indicates if a location can be
reached by the robot, and if not, why not.

INVERSE TF Return the transformation value that is the
mathematical inverse of the given transformation
value.

IPS CF Specify the units for a SPEED instruction as inches per
second.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
24 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
LATCH TF Return a transformation value representing the
location of the robot at the occurrence of the last
external trigger.

LATCHED RF Return the status of the external trigger and of the
information it causes to be latched.

LEFTY PI Request a change in the robot configuration during the
next motion so that the first two links of a SCARA
robot resemble a human’s left arm.

MMPS CF Specify the units for a SPEED instruction as
millimeters per second.

MOVE PI Initiate a robot motion to the position and orientation
described by the given location.

MOVES PI Initiate a robot motion to the position and orientation
described by the given location.

MOVEF PI Initiate a three-segment pick-and-place robot motion
to the specified destination, moving the robot at the
fastest allowable speed.

MOVESF PI Initiate a three-segment pick-and-place robot motion
to the specified destination, moving the robot at the
fastest allowable speed.

MOVET PI Initiate a robot motion to the position and orientation
described by the given location and simultaneously
operate the hand.

MOVEST PI Initiate a robot motion to the position and orientation
described by the given location and simultaneously
operate the hand.

MULTIPLE PI Allow full rotations of the robot wrist joints.

NOFLIP PI Request a change in the robot configuration during the
next motion so that the pitch angle of the robot wrist
has a positive value.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
V+ Language Reference Guide, Rev A 25

Chapter 1 V+ Language Keyword Summary
NONULL PI Instruct the V+ system not to wait for position errors to
be nulled at the end of continuous-path motions.

NOOVERLAP PI Generate a program error if a motion is planned that
will cause selected multiturn axes to turn more than ±
180 degrees (the long way around) in order to avoid a
limit stop.

NORMAL TF Correct a transformation for any mathematical
round-off errors.

NOT.CALIBRATED P Indicate (or assert) the calibration status of the robots
connected to the system.

NULL TF Return a null transformation value—one with all zero
components.

OPEN PI Open the robot gripper.

OPENI PI Open the robot gripper.

OVERLAP PI Disable the NOOVERLAP limit-error checking either
for the next motion or for all subsequent motions.

PAYLOAD PI Set an indication of the current robot payload.

#PDEST PF Return a precision-point value representing the
planned destination location for the current robot
motion.

#PLATCH PF Return a precision-point value representing the
location of the robot at the occurrence of the last
external trigger.

POWER S Control or monitor the status of Robot Power.

#PPOINT PF Return a precision-point value composed from the
given components.

REACTI PI Initiate continuous monitoring of a specified digital
signal. Automatically stop the current robot motion if
the signal transitions properly and, optionally, trigger
a subroutine call.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
26 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
READY PI Move the robot to the READY location above the
workspace, which forces the robot into a standard
configuration.

RELAX PI Limp the pneumatic hand.

RELAXI PI Limp the pneumatic hand.

RIGHTY PI Request a change in the robot configuration during the
next motion so that the first two links of the robot
resemble a human’s right arm.

ROBOT S Enable or disable one robot or all robots.

RX TF Return a transformation describing a rotation.

RY TF Return a transformation describing a rotation.

RZ TF Return a transformation describing a rotation.

SCALE TF Return a transformation value equal to the
transformation parameter with the position scaled by
the scale factor.

SCALE.ACCEL S Scale acceleration and deceleration as a function of
program speed when program speed is below 100%.

SCALE.ACCEL.ROT S Specify whether or not the SCALE.ACCEL switch
takes into account the Cartesian rotational speed
during straight-line motions.

SELECT PI Select the unit of the named device for access by the
current task.

SET PI Set the value of the location variable on the left equal
to the location value on the right of the equal sign.

#SET.POINT PF Return the commanded joint-angle positions
computed by the trajectory generator during the last
trajectory-evaluation cycle.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
V+ Language Reference Guide, Rev A 27

Chapter 1 V+ Language Keyword Summary
SET.SPEED S Control whether or not the monitor speed can be
changed from the manual control pendant. The
monitor speed cannot be changed when the switch is
disabled.

SHIFT TF Return a transformation value resulting from shifting
the position of the transformation parameter by the
given shift amounts.

SINGLE PI Limit rotations of the robot wrist joint to the range
–180 degrees to +180 degrees.

SOLVE.ANGLES PI Compute the robot joint positions (for the current
robot) that are equivalent to a specified
transformation.

SOLVE.FLAGS RF Return bit flags representing the robot configuration
specified by an array of joint positions.

SOLVE.TRANS PI Compute the transformation equivalent to a given set
of joint positions for the current robot.

SPEED PI Set the nominal speed for subsequent robot motions.

SPEED RF Return one of the system motion speed factors.

SPIN PI Rotate one or more continuous-turn joints of the
selected robot at a specified speed.

STATE RF Return a value that provides information about the
robot system state.

TOOL PI Set the internal transformation used to represent the
location and orientation of the tool tip relative to the
tool-mounting flange of the robot.

TOOL TF Return the value of the transformation specified in the
last TOOL command or instruction.

TRANS TF Return a transformation value computed from the
given X, Y, Z position displacements and y, p, r
orientation rotations.

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
28 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
TRANSB TF Return a transformation value represented by a
48-byte string.

UNIDIRECT PI Specify that a continuous-turn joint is turning only in
a single direction.

Table 1-7. Numeric Value Operations

Keyword Type Function

ABS RF Return absolute value.

ATAN2 RF Return the size of the angle (in degrees) that has its
trigonometric tangent equal to value_1/value_2.

BCD RF Convert a real value to Binary Coded Decimal (BCD) format.

COS RF Return the trigonometric cosine of a given angle.

DBLB RF Return the value of eight bytes of a string interpreted as an
IEEE double-precision floating-point number.

$DBLB SF Return an 8-byte string containing the binary representation
of a real value in double-precision IEEE floating-point
format.

DCB RF Convert BCD digits into an equivalent integer value.

FLTB RF Return the value of four bytes of a string interpreted as an
IEEE single-precision floating-point number.

$FLTB SF Return a 4-byte string containing the binary representation
of a real value in single-precision IEEE floating-point format.

FRACT RF Return the fractional part of the argument.

INT RF Return the integer part of the value.

INTB RF Return the value of two bytes of a string interpreted as a
signed 16-bit binary integer.

RF: Real-Valued Function, SF: String Function

Table 1-6. Motion Control Operations (Continued)

Keyword Type Function

CF: Conversion Factor, P: Parameter, PF: Precision-Point Function, PI: Program
Instruction, RF: Real-Valued Function, S: Switch, TF: Transformation Function
V+ Language Reference Guide, Rev A 29

Chapter 1 V+ Language Keyword Summary
LNGB RF Return the value of four bytes of a string interpreted as a
signed 32-bit binary integer.

$LNGB SF Return a 4-byte string containing binary representation of a
32-bit integer.

MAX RF Return the maximum value contained in the list of values.

MIN RF Return the minimum value contained in the list of values.

OUTSIDE RF Test a value to see if it is outside a specified range.

PI RF Return the value of the mathematical constant pi (3.141593).

RANDOM RF Return a pseudo random number.

SIGN RF Return the value 1, with the sign of the value parameter.

SIN RF Return the trigonometric sine of a given angle.

SQR RF Return the square of the parameter.

SQRT RF Return the square root of the parameter.

VAL RF Return the real value represented by the characters in the
input string.

Table 1-8. Program Control Operations

Keyword Type Function

ABORT PI Terminate execution of a program task.

ALWAYS K Used with certain program instructions to specify a
long-term effect.

ANY PI Signal the beginning of an alternative group of
instructions for the CASE structure.

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function

Table 1-7. Numeric Value Operations (Continued)

Keyword Type Function

RF: Real-Valued Function, SF: String Function
30 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
AUTO PI Declare temporary variables that are automatically
created on the program stack when the program is
entered.

AUTO.POWER.
OFF

S Control whether or not V+ disables high power when
certain motion errors occur.

BY K Complete the syntax of the SCALE and SHIFT functions.

CALL PI Suspend execution of the current program and continue
execution with a new program (that is, a subroutine).

CALLP PI Call a program given a pointer to the program.

CALLS PI Suspend execution of the current program and continue
execution with a new program (that is, a subroutine)
specified with a string value.

CASE PI Initiate processing of a CASE structure by defining the
value of interest.

CLEAR.EVENT PI Clear an event associated with the specified task.

CYCLE.END PI Terminate the specified control program the next time it
executes a STOP program instruction (or its equivalent).
Suspend processing of an application program or
command program until a program completes
execution.

DEFINED RF Determine whether a variable has been defined.

DISABLE PI Turn off one or more system control switches.

DO PI Introduce a DO program structure.

DOS PI Execute a program instruction defined by a string
expression.

ELSE PI Separate the alternate group of statements in an
IF ... THEN control structure.

ENABLE PI Turn on one or more system control switches.

END PI Mark the end of a control structure.

Table 1-8. Program Control Operations (Continued)

Keyword Type Function

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function
V+ Language Reference Guide, Rev A 31

Chapter 1 V+ Language Keyword Summary
.END PI Mark the end of a V+ program.

ERROR RF Return the error number of a recent error that caused
program execution to stop or caused a REACTE
reaction.

$ERROR SF Return the error message associated with the given
error code.

EXECUTE PI Begin execution of a control program.

EXIT PI Branch to the statement following the nth nested loop of
a control structure.

FOR PI Execute a group of program instructions a certain
number of times.

FREE RF Return the amount of unused free memory storage
space.

GET.EVENT RF Return events that are set for the specified task.

GLOBAL PI Declare a variable to be global and specify the type of
the variable.

GOTO PI Perform an unconditional branch to the program step
identified by the given label.

HALT PI Stop program execution and do not allow the program
to be resumed.

ID RF Return values that identify the configuration of the
current system.

$ID SF

IF GOTO PI Branch to the specified label if the value of a logical
expression is TRUE (nonzero).

IF... THEN PI Conditionally execute a group of instructions (or one of
two groups) depending on the result of a logical
expression.

INSTALL PI Install an Adept software option.

Table 1-8. Program Control Operations (Continued)

Keyword Type Function

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function
32 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
INTERACTIVE S Control the display of message headers on the system
terminal and requests for confirmation before
performing certain operations.

INT.EVENT PI Send a SET.EVENT instruction to the current task if an
interrupt occurs on a specified VME bus vector or a
specified digital I/O transitions to positive.

KILL PI Clear a program execution stack and detach any I/O
devices that are attached.

LAST RF Return the highest index used for an array (dimension).

LOCAL PI Declare permanent variables that are defined only
within the current program.

LOCK PI Set the program reaction lock-out priority to the value
given.

MC PI Introduce a monitor command within a command
program.

MCP.MESSAGE S Control how system error messages are handled when
the controller keyswitch is not in the PENDANT
position.

MCS PI Invoke a monitor command from an application
program.

MCS.MESSAGE S Enable or disable output to the system terminal from
monitor commands executed with the MCS instruction.

MESSAGES S Enable or disable output to the system terminal from
TYPE instructions.

MONITORS S Enable or disable selecting of multiple monitor
windows.

NEXT PI Branch to the top of the next iteration of a looping
control structure.

NULL PI Instruct the V+ system to wait for position errors to be
nulled at the end of continuous path motions.

Table 1-8. Program Control Operations (Continued)

Keyword Type Function

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function
V+ Language Reference Guide, Rev A 33

Chapter 1 V+ Language Keyword Summary
PARAMETER PI Set the value of a system parameter.

PARAMETER RF Return the current setting of the named system
parameter.

PAUSE PI Stop program execution but allow the program to be
resumed.

PRIORITY RF Return the current reaction lock-out priority for the
program.

REACT PI Initiate continuous monitoring of a specified digital
signal and automatically trigger a subroutine call if the
signal properly transitions.

REACTE PI Initiate the monitoring of errors that occur during
execution of the current program task.

RELEASE PI Allow the next available program task to run.

RETRY S Control whether the PROGRAM START button causes a
program to resume.

RETURN PI Terminate execution of the current subroutine and
resume execution of the last-suspended program at the
step following the CALL or CALLS instruction that
caused the subroutine to be invoked.

RETURNE PI Terminate execution of an error reaction subroutine and
resume execution of the last-suspended program at the
step following the instruction that caused the
subroutine to be invoked.

RUNSIG PI Turn on (or off) the specified digital signal as long as
execution of the invoking program task continues.

SEE PI Invoke the screen-oriented program editor to allow a
program to be created, viewed, or modified.

SELECT RF Return the unit number that is currently selected by the
current task for the device named.

SET.EVENT PI Set an event associated with the specified task.

Table 1-8. Program Control Operations (Continued)

Keyword Type Function

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function
34 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
STATUS RF Return status information for an application program.

STOP PI Terminate execution of the current program cycle.

SWITCH PI Enable or disable a system switch based on a value.

SWITCH RF Return an indication of the setting of a system switch.

TAS RF Return the current value of a real-valued variable and
assign it a new value. The two actions are done
indivisibly so no other program task can modify the
variable at the same time.

TASK RF Return information about a program execution task.

TERMINAL P Determine how V+ will interact with the system
terminal.

TIME PI Set the date and time.

TIME RF Return an integer value representing either the date or
the time specified in the given string parameter.

$TIME SF Return a string value containing either the current
system date and time or the specified date and time.

TIMER PI Set the specified system timer to the given time value.

TIMER RF Return the current time value (in seconds) of the
specified system timer.

TPS RF Return the number of ticks of the system clock that
occur per second (Ticks Per Second).

TRACE S Control the display of program steps on the system
terminal during program execution.

UNTIL PI Indicate the end of a DO ... UNTIL control structure and
specify the expression that is evaluated to determine
when to exit the loop. The loop continues to be executed
until the expression value is non-zero.

UPPER S Control whether or not string comparisons are
performed ignoring the case of each character.

Table 1-8. Program Control Operations (Continued)

Keyword Type Function

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function
V+ Language Reference Guide, Rev A 35

Chapter 1 V+ Language Keyword Summary
VALUE PI Indicate the values that a CASE statement expression
must match in order for the program statements
immediately following to be executed.

WAIT PI Put the program into a wait loop until the condition is
TRUE.

WAIT.EVENT PI Suspend program execution until a specified event has
occurred or until a specified amount of time has
elapsed.

WHILE PI Initiate processing of a WHILE structure if the condition
is TRUE or skipping of the WHILE structure if the
condition is initially FALSE.

Table 1-9. String Operations

Keyword Type Function

ASC RF Return an ASCII character value from within a string.

$CHR SF Return a one-character string having a given value.

$DBLB SF Return an 8-byte string containing the binary
representation of a real value in double-precision IEEE
floating-point format.

$DECODE SF Extract part of a string as delimited by given break
characters.

$ENCODE SF Return a string created from output specifications. The
string produced is similar to the output of a TYPE
instruction.

$FLTB SF Return a 4-byte string containing the binary
representation of a real value in single-precision IEEE
floating-point format.

$INTB SF Return a 2-byte string containing the binary
representation of a 16-bit integer.

PI: Program Instruction, RF: Real-Valued Function, SF: String Function

Table 1-8. Program Control Operations (Continued)

Keyword Type Function

K: Keyword, P: Parameter, PI: Program Instruction, RF: Real-Valued Function, S:
Switch, SF: String Function
36 V+ Language Reference Guide, Rev A

Chapter 1 V+ Language Keyword Summary
LEN RF Return the number of characters in the given string.

$LNGB SF Return a 4-byte string containing the binary
representation of a 32-bit integer.

$MID SF Return a substring of the specified string.

PACK PI Replace a substring within an array of (128-character)
string variables or within a (nonarray) string variable.

POS RF Return the starting character position of a substring in a
string.

STRDIF RF Compare two strings byte by byte for the purpose of
sorting.

$SYMBOL SF Determine the user symbol that is referenced by a
pointer previously obtained with the SYMBOL.PTR
real-valued function.

SYMBOL.PTR SF Determine the value of a pointer to a user symbol in V+
memory.

$TRANSB SF Return a 48-byte string containing the binary
representation of a transformation value.

$TRUNCATE SF Return all characters in the input string until an ASCII
NUL (or the end of the string) is encountered.

$UNPACK SF Return a substring from an array of 128-character string
variables.

Table 1-9. String Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, SF: String Function
V+ Language Reference Guide, Rev A 37

Chapter 1 How Can I Get Help?
How Can I Get Help?

The following section tells you who to call if you need help.

Within the Continental United States

Adept Technology maintains a Customer Service Center at its headquarters in San
Jose, California. The phone numbers are:

Service Calls

(800) 232-3378 (24 hours a day, 7 days a week)
(408) 433-9462 FAX

NOTE: When calling with a controller-related question, please have
the serial number of the controller. If your system includes an Adept
robot, also have the serial number of the robot. The serial numbers
can be determined by using the ID command (see the V+ Operating
System User’s Guide) .

Application Questions

If you have an application question, you can contact the Adept Applications
Engineering Support Center for your region:

Adept Office
Phone #,
Hours Region

San Jose, CA Voice (408) 434-5033
Fax (408) 434-6248
8:00 A.M. – 5:00 P.M. PST

Western Region States:
AR, AZ, CA, CO, ID, KS, LA, MO, MT, NE,
NM, NV, OK, OR, TX, UT, WA, WY

Cincinnati, OH Voice (513) 792-0266
Fax (513) 792-0274
8:00 A.M. – 5:00 P.M. EST

Midwestern Region States:
AL, IA, IL, IN, KY, MI, MN, MS, ND, West
NY, OH, West PA, SD, TN, WI

Southbury, CT Voice (203) 264-0564
Fax (203) 264-5114
8:00 A.M. – 5:00 P.M. EST

Eastern Region States:
CT, DE, FL, GA, MD, ME, NC, NH, MA,
NJ, East NY, East PA, RI, SC, VA, VT, WV
38 V+ Language Reference Guide, Rev A

Chapter 1 How Can I Get Help?
Applications Internet E-Mail Address

If you have access to the Internet, you can send application questions by e-mail to:

adeptinfo@infolab.com

This method also enables you to attach a file, such as a portion of V+ program
code, to your message.

NOTE: Please attach only information that is formatted as text.

Training Information

For information regarding Adept Training Courses in the USA, please call
(408) 474-3246 or fax Adept at (408) 474-3226.

Within Europe

Adept Technology maintains a Customer Service Center in Dortmund, Germany.
The phone numbers are:

(49) 231/75 89 40 from within Europe (Monday to Friday, 8:00 A.M. to 5:00 P.M.)
(49) 231/75 89 450 FAX

France

For customers in France, Adept Technology maintains a Customer Service Center
in Massy, France. The phone numbers are:

(33) 1 69 19 16 16 (Monday to Friday, 8:30 A.M. to 5:30 P.M., CET)
(33) 1 69 32 04 62 FAX

Outside Continental United States or Europe

For service calls, application questions, and training information, call the Adept
Customer Service Center in San Jose, California USA:

1 (408) 434-5000
1 (408) 433-9462 FAX (service requests)
1 (408) 434-6248 FAX (application questions)
V+ Language Reference Guide, Rev A 39

Chapter 1 How Can I Get Help?
Adept Fax on Demand

Adept maintains a fax-back information system for customer use. The phone
numbers are (800) 474-8889 (toll free) and (503) 207-4023 (toll call). Application
utility programs, product technical information, customer service information,
and corporate information is available through this automated system. There is
no charge for this service (except for any long-distance toll charges). Simply call
either number and follow the instructions to have information faxed directly to
you.

Adept on Demand Web Page

If you have access to the Internet, you can view Adept’s web page at the following
address:

http://www.adept.com

The web site contains sales, customer service, and technical support information.
40 V+ Language Reference Guide, Rev A

Descriptions of V+
 Keywords 2

Introduction . 42

Help Marker
V+ Language Reference Guide, Rev A 41

Chapter 2 Introduction
Introduction

This chapter details the keywords in the V+ programming language. The
functional groups of programming keywords are:

• Program Instructions

• Functions

• System Parameters

• System Switches

This manual often refers to monitor commands. Monitor commands are part of the
V+ operating system. The V+ operating system commands are detailed in the V+
Operating System Reference Guide.

If your system is equipped with AdeptVision VXL, additional program
instructions, functions, switches, parameters, and monitor commands are
detailed in the AdeptVision Reference Guide.

The keywords are presented in alphabetical order, with the description for each
keyword starting on a new page.

Each keyword is described, starting with the syntax, as shown on pages 43 and 44.
42 V+ Language Reference Guide, Rev A

Keyword Type
Syntax

This section presents the syntax of the keyword. The keyword is shown in
uppercase, and the arguments are shown in lowercase. The keyword must be
entered exactly as shown.1 Parentheses must be placed exactly as shown.
Required keywords, parameters, and marks such as equal signs and parentheses
are shown in bold type; optional keywords, parameters, and marks are shown in
regular type. In the example:

KEYWORD req.param1 = req.param2 OPT.KEYWORD opt.param

KEYWORD must be entered exactly as shown,1

req.param1 must be replaced with a value, variable, or expression,

the equal sign must be entered,

req.param2 must be replaced with a value, variable, or expression,

OPT.KEYWORD can be omitted but must be entered exactly as shown if used,

opt.param may be replaced with a value, variable, or expression but
assumes a default value if not used.

The keyword type (function, program instruction, and so on) is shown at the top
of the page.

An abbreviated syntax is shown for some keywords. This is done when the
abbreviated form is the most commonly used variation of the complete syntax.

Function

This section gives a brief description of the keyword.

Usage Considerations

This section lists any restrictions on the keyword’s use. If specific hardware or
other options are required, they are listed here.

1 In the SEE editor, instructions can be abbreviated to a length that uniquely identifies the
keyword. The SEE editor automatically expands the instruction to its full length.
V+ Language Reference Guide, Rev A 43

Keyword Type
Parameters

The requirements for input and output parameters are explained in this section. If
a parameter is optional, it is noted here. When an instruction line is entered,
optional parameters do not have to be specified and the system will assume a
default. Unspecified parameters at the end of an argument list can be ignored.
Unspecified parameters in the middle of an argument list must be represented by
commas. For example, the following keyword has four parameters—the first and
third are used, and the second and fourth are left unspecified:

SAMPLE.INST var_1,,"test"

String and numeric input parameters can be constant values (3.32, part_1, etc.) or
any legitimate variable names. The data type of the constant or variable must
agree with that expected by the instruction. String variables must be preceded by
with a $. Precision-point variables must be preceded with a #. Belt variables must
be preceded with a %. String constants must be enclosed in quotes. Real and
integer constants can be used without modification. (Some V+ keywords cannot
be used as variable names—see ”V+ Language Keyword Summary” on page 14
for a complete list of keywords.)

Details

This section describes the function of the keyword in detail.

Examples

Examples of correctly formed instruction lines are presented in this section.

Related Keywords

Additional keywords that are similar or are frequently used in conjunction with
this instruction are listed here.

Any related keywords that are monitor commands are described in the V+
Operating System Reference Guide.
44 V+ Language Reference Guide, Rev A

Program Instruction ABORT
Syntax

ABORT-I
ABORT task_num

Function

Terminate execution of an executing program task.

Usage Considerations

ABORT is ignored if no program is executing as the specified task.

ABORT does not force DETACH or FCLOSE operations on the disk or serial
communication logical units. If the program has one or more files open and you
decide not to resume execution of the program, use a KILL command to close all
the files and detach the logical units.

Parameter

task_num Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be terminated.
The default task is 0.

Details

Terminates execution of the specified active executable program after completion
of the step currently being executed. If the task is controlling a robot, robot motion
terminates at the completion of the current motion. (Program execution can be
resumed with the PROCEED command.)

Related Keywords

ABORT (monitor command, see the V+ Operating System Reference
Guide)

CYCLE.END (monitor command and program instruction)

EXECUTE (monitor command and program instruction)

KILL (monitor command and program instruction)

PANIC (monitor command, see the V+ Operating System Reference
Guide)

PROCEED (monitor command, see the V+ Operating System Reference
Guide)

STATUS (monitor command and real-valued function)
V+ Language Reference Guide, Rev A 45

ABOVE Program Instruction
Syntax

ABOVE-I

ABOVE

Function

Request a change in the robot configuration during the next motion so that the
elbow is above the line from the shoulder to the wrist.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support an ABOVE configuration, this instruction is
ignored by the robot (SCARA robots, for example, cannot have an ABOVE
configuration).

The ABOVE instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the ABOVE
instruction causes an error.

Figure 2-1 shows the ABOVE and BELOW configurations.

Figure 2-1. ABOVE/BELOW

Related Keywords

BELOW (program instruction)

CONFIG (real-valued function)

SELECT (program instruction and real-valued function)

Below

Above
46 V+ Language Reference Guide, Rev A

Real-Valued Function ABS
Syntax

ABS-R

ABS (value)

Function

Return absolute value.

Parameter

value Real-valued expression.

Details

Returns the absolute value (magnitude) of the argument provided.

Examples

ABS(0.123) ;Returns 0.123

ABS(-5.462) ;Returns 5.462

ABS(1.3125E-2) ;Returns 0.013125

belt.length = part.size/ABS(belt.scale)
V+ Language Reference Guide, Rev A 47

ACCEL Program Instruction
Syntax

ACCEL-I

ACCEL (profile) acceleration , deceleration

Function

Set acceleration and deceleration for robot motions. Optionally, specify a defined
acceleration profile.

Usage Considerations

The ACCEL instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the ACCEL
instruction causes the error *Robot not attached to this program*.

Before an acceleration/deceleration profile can be used, it must be defined for the
selected robot (profile 0 is always defined). The SPEC utility program can be used
by the robot manufacturer to define new or alter existing profiles (see the
Instructions for Adept Utility Programs).

Parameters

profile Optional integer specifying the acceleration profile to use.
Acceptable values are 0 to 8 (depending on the number of
defined profiles). The default is the last specified profile (see
Details for the number of the start-up profile). If a profile is
specified that has not been defined, profile 0 is used.

acceleration Optional real value, variable, or expression considered a
percentage of the maximum possible acceleration.

deceleration Optional real value, variable, or expression considered a
percentage of the maximum possible deceleration.

The value should normally be in the range of 1 to 100 (upper
limits greater than 100 may be established by the robot
manufacturer). If an out-of-range value is specified, the nearest
extreme value will be used.

If a parameter is omitted, its current setting remains in effect.
48 V+ Language Reference Guide, Rev A

Program Instruction ACCEL
Details

If profile 0 is used, a square wave acceleration profile will be generated at the
beginning and end of the motion.

If a profile is specified, that profile is invoked for subsequent robot motions.
Defined profiles set the maximum rate of change of the acceleration and
deceleration. The values set with this instruction define the maximum
acceleration and deceleration magnitudes that will be achieved.

When the V+ system is initialized, the profile, acceleration, and deceleration
values are set to initial values, which can be defined by the SPEC utility program.
As delivered by Adept, the selected profile is initially set to 1. The settings are not
affected when program execution starts or stops, or when a ZERO command is
processed.

Normally, the robot manufacturer sets the 100% acceleration and deceleration
values to rates that can be achieved with typical payloads and robot link inertias.
However, because the actual attainable accelerations vary greatly as a function of
the end effector, payload, and the initial and final locations of a motion,
accelerations greater than 100% may be permitted for your robot. The limits for
the maximum values are defined by the robot manufacturer and vary from one
type of robot to the next. If you specify a higher acceleration than is permitted, the
limit established by the robot manufacturer is utilized.

You can use the functions ACCEL(3) and ACCEL(4) to determine the maximum
allowable acceleration and deceleration settings.

For a given motion, the maximum attainable acceleration may actually be less
than what you have requested. This occurs when a profile with a nonzero
acceleration ramp time is used and there is insufficient time to ramp up to the
maximum acceleration. That is, for a given jerk, a specific time must elapse before
the acceleration can be changed from zero to the specified maximum value. If the
maximum acceleration cannot be achieved, the trapezoidal profile will be reduced
to a triangular shape. There are two circumstances when this occurs:

1. The motion is too short. In this case, the change in position is achieved before
the maximum acceleration can be achieved.

2. The maximum motion speed is too low. In this case, the maximum speed is
achieved before the maximum acceleration.

In both of these situations, raising the maximum acceleration and deceleration
values does not affect the time for the motion.
V+ Language Reference Guide, Rev A 49

ACCEL Program Instruction
Hint: If you increase the maximum acceleration and deceleration values but the
motion time does not change, try the following: increase the program speed;
switch to an acceleration profile that allows faster acceleration ramp times; or
switch to acceleration profile 0, which specifies a square-wave acceleration
profile.

NOTE: This type of acceleration limiting cannot occur with
acceleration profile 0 because a square-wave acceleration
instantaneously changes acceleration values without ramping.

Examples

Set the default acceleration time to 50% of normal and the deceleration time to
30% of normal:

ACCEL 50, 30

Change the deceleration time to 60% of normal; leave acceleration alone:

ACCEL ,60

Reduce the acceleration and deceleration to one half of their current settings:

ACCEL ACCEL(1)/2, ACCEL(2)/2

Invoke defined profile #2 and set the acceleration magnitude to 80% of the
defined rate:

ACCEL (2) 80

Related Keywords

ACCEL (real-valued function)

DURATION (program instruction)

PAYLOAD (program instruction)

SCALE.ACCEL (system switch)

SELECT (program instruction and real-valued function)

SPEED (monitor command and program instruction)
50 V+ Language Reference Guide, Rev A

Real-Valued Function ACCEL

l
Syntax

ACCEL-R

ACCEL (select)

Function

Return the current setting for robot acceleration or deceleration setting or return
the maximum allowable percentage limits set by the SPEC utility program (see
the Instructions for Adept Utility Programs for details).

Usage Considerations

The ACCEL function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the ACCEL function
does not generate an error due to the absence of a robot. However, the
information returned by the function may not be meaningful.

Parameter

select Real-valued expression, the result of which is rounded to an
integer to select the value that is returned.

Examples

ACCEL(1) ;Return the current acceleration setting.

ACCEL(2) ;Return the current deceleration setting.

Related Keywords

ACCEL (program instruction)
SCALE.ACCEL (system switch)
SELECT (program instruction and real-valued function)

select Value returned

0 Number of selected acceleration profile

1 Acceleration

2 Deceleration

3 Maximum allowable percentage acceleration

4 Maximum allowable percentage deceleration

5 Program speed below which acceleration and deceleration are scaled proportiona
to a program’s speed setting when the SCALE.ACCEL system switch is enabled
V+ Language Reference Guide, Rev A 51

AIO.IN Real-Valued Function
Syntax

AIO.IN-R

AIO.IN (channel , gain)

Function

Read a channel from one of the analog IO boards.

Usage Considerations

Analog IO must be installed in the system and correctly configured. See the
controller user’s guide for details on hardware configuration. See the V+
Language User’s Guide for details on programming analog IO.

Parameters

channel Integer that specifies the analog IO board and channel to read.
The valid ranges are 0, 1 to 32, and 1001 to 1256, inclusive (see
Details). If an output channel number is specified, the last value
written to that channel is returned. The special value 0 is used
for testing.

gain Optional integer that specifies the gain for the channel. Must
match the gain set by jumpers on the IO board (see the Adept
MV Controller User’s Guide for details). Acceptable values are 0
- 3. The default is 0.
52 V+ Language Reference Guide, Rev A

Real-Valued Function AIO.IN
Details

Each analog IO board contains 32 input (16 for differential input) and 4 output
channels. A maximum of 8 boards can be installed. Figure 2-2 shows the
addressing for each board in the system.

Figure 2-2. Analog Channel Addressing

The value returned by this function is in the range –1.0 to +1.0 (if the board is set
for bipolar output), or 0 to 1.0 (if the board is set for unipolar output). Contact
Adept applications for details on setting the configuration; refer to ”Application
Questions” on page 38 for phone numbers.

Related Keywords

AIO.OUT (program instruction)

AIO.INS (real-valued function)

Board 1

in 1001-1032
(dif 1001-1016)
out 1-4

Board 2

in 1033-1064
(dif 1033-1048)
out 5-8

Board 3

in 1065-1096
(dif 1065-1080)
out 9-12

Board 4

in 1097-1128
(dif 1097-1112)
out 13-16

Board 5

in 1129-1160
(dif 1129-1144)
out 17-20

Board 6

in 1161-1192
(dif 1161-1176)
out 21-24

Board 7

in 1193-1224
(dif 1193-1208)
out 25-28

Board 8

in 1225-1256
(dif 1225-1240)
out 29-32
V+ Language Reference Guide, Rev A 53

AIO.INS Real-Valued Function
Syntax

AIO.INS-R

AIO.INS (channel)

Function

Test whether an analog input or output channel is installed.

Parameter

channel Integer that specifies the analog IO board and channel to test.
The valid ranges are 0, 1 to 32, and 1001 to 1256, inclusive.

Details

Each analog IO board contains 32 input (16 for differential input) and 4 output
channels. A maximum of 8 boards can be installed. Figure 2-2 shows the
addressing for each board in the system.

TRUE is returned if the channel is installed or 0 is specified. FALSE is returned if
the channel is not installed.

Related Keywords

AIO.IN (real-valued function)

AIO.OUT (program instruction)
54 V+ Language Reference Guide, Rev A

Program Instruction AIO.OUT
Syntax

AIO.OUT-I

AIO.OUT channel = value

Function

Write to a channel on one of the analog IO boards.

Usage Considerations

Analog IO must be installed in the system and correctly configured. See the
controller user’s guide for details on hardware configuration. Contact Adept
applications for details on programming analog IO; refer to ”Application
Questions” on page 38 for phone numbers.

Parameters

channel Integer that specifies the analog IO board and channel to read.
Acceptable values are 1 to 32 (see Figure 2-2 for details on
channel addressing).

value Value to output to the analog channel.

Details

Each analog IO board contains 32 input (16 for differential input) and 4 output
channels. A maximum of 8 boards can be installed. Figure 2-2 shows the
addressing for each board in the system.

The value parameter is assumed to be in the range –1.0 to +1.0 if the board is set
for bipolar output, or 0 to 1.0 if the board is set for unipolar output (contact Adept
applications for details). If value is outside this range, it will be clipped to be
within the range. The actual voltage or current output by the analog I/O board is
determined by jumper settings on the board (contact Adept applications for
details).

Related Keywords

AIO.IN (real-valued function)

AIO.INS (real-valued function)
V+ Language Reference Guide, Rev A 55

ALIGN Program Instruction
Syntax

ALIGN-I

ALIGN

Function

Align the robot tool Z axis with the nearest world axis.

Usage Considerations

The ALIGN instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the ALIGN
instruction causes an error.

Details

Causes the tool to be rotated so that its Z axis is aligned parallel to the nearest axis
of the World coordinate system. This instruction is primarily useful for lining up
the tool before a series of locations are taught. This is most easily done by using
the monitor DO command.

Related Keyword

SELECT (program instruction and real-valued function)
56 V+ Language Reference Guide, Rev A

Program Instruction ALTER
Syntax

ALTER-I

ALTER (control) Dx, Dy, Dz, Rx, Ry, Rz

Function

Specify the magnitude of the real-time path modification that is to be applied to
the robot path during the next trajectory computation.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

This instruction can be executed by the task that is controlling a robot in alter
mode (see the ALTON instruction), or by any other task that has SELECTed the
robot.

This instruction is ignored if the selected robot is not in alter mode.

When alter mode is enabled, this instruction should be executed once during each
trajectory cycle (every 16 milliseconds). If this instruction is executed more often,
only the last set of values defined during each cycle will be used.

Parameters

control Optional real value, variable, or expression specifying a series of
control bits. Currently, this parameter is not utilized, and it can be
omitted.

Dx

Dy

Dz

Rx

Ry

Rz

Optional real values, variables, or expressions that define the
translations along, and the rotations about, the X, Y, and Z axes.

In cumulative mode, omitted coordinates are interpreted as zero.
In noncumulative mode, omitted coordinates default to the
values specified in the previous ALTER instruction.

Distances are interpreted as millimeters; angles are interpreted as
degrees.
V+ Language Reference Guide, Rev A 57

ALTER Program Instruction
Details

After alter mode has been enabled (see the ALTON instruction), this instruction is
executed once each trajectory-generation cycle to specify the amount by which the
path is to be modified. The coordinates defined by this instruction are interpreted
according to the modes specified by the ALTON instruction that initiated alter
mode.

Example

The following pair of instructions could be embedded in a program loop that uses
sensor data to control the motion of the robot.

; Modify the current robot path by (0.1*sx) millimeters
; along the X axis and (0.2*sz) millimeters along the Z axis,
; where "sx" and "sz" are variables that contain current
; sensor input data.

ALTER () 0.1*sx,,0.2*sz

; Wait for the next system cycle to give the trajectory
; generator a chance to execute.

WAIT

Related Keywords

ALTOFF (program instruction)

ALTON (program instruction)

STATE (real-valued function)
58 V+ Language Reference Guide, Rev A

Program Instruction ALTOFF
Syntax

ALTOFF-I

ALTOFF

Function

Terminate real-time path-modification mode (alter mode).

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

A robot must be attached by the program task prior to executing this instruction.

Turning off alter mode causes a BREAK in continuous-path motion.

Details

This instruction suspends program execution until any previous robot motion has
been completed (similarly to the BREAK instruction), and then terminates
real-time path-modification mode. After alter mode terminates, the robot is left at
a final location that reflects both the destination of the last robot motion and the
total ALTER correction that has been applied.

Related Keywords

ALTER (program instruction)

ALTON (program instruction)

STATE (real-valued function)
V+ Language Reference Guide, Rev A 59

ALTON Program Instruction
Syntax

ALTON-I

ALTON (lun) mode

Function

Enable real-time path-modification mode (alter mode), and specify the way in
which ALTER coordinate information will be interpreted.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

A robot must be attached by the program task prior to executing this instruction.

Alter mode cannot be active at the time this instruction is executed.

Any motions that are performed while alter mode is enabled must be of the
straight-line motion type and cannot be specified relative to a conveyor belt.

Parameters

lun Optional real value, variable, or expression that specifies a
communications channel associated with the ALTER operation.
Currently, this parameter is not utilized, and it can be omitted
(the parentheses are required, however).

mode Optional real value, variable, or expression that defines how
path-modification data specified by subsequent ALTER
instructions are to be interpreted. The mode value is interpreted
as a sequence of bit flags, as detailed below. All the bits are
assumed to be clear if the mode parameter is omitted.

Bit 1 (LSB) Accumulate corrections (mask value = 1)

If this bit is set, coordinate values specified by subsequent
ALTER instructions are interpreted as incremental and are
accumulated. If this bit is clear, each set of coordinate values is
interpreted as the total (noncumulative) correction to be applied.

Bit 2 World coordinates (mask value = 2)

If this bit is set, coordinate values specified by subsequent
ALTER instructions are interpreted to be in the World coordinate
system. If this bit is cleared, coordinates are interpreted to be in
the Tool coordinate system.
60 V+ Language Reference Guide, Rev A

Program Instruction ALTON
Details

This instruction initiates the real-time path-modification (alter) facility. After this
instruction is executed, during all subsequent robot motions the coordinate values
specified by ALTER instructions will automatically be superimposed every 16
milliseconds on the nominal path computed by the V+ trajectory generator. The
corrections can be applied in all six degrees of freedom, and they can be specified
as cumulative or noncumulative values in World or Tool coordinates.

Once alter mode is initiated, the robot location is corrected during all subsequent
motions, and between motions if breaks occur between continuous-path
segments. Alter mode is terminated by any of the following:

• Executing an ALTOFF instruction

• DETACHing the robot

• Prematurely terminating a robot motion

• Stopping program execution

Example

Initiate alter mode and interpret subsequent ALTER instructions as incremental
(bit #1 is clear), World-coordinate (bit #2 is set) corrections to the nominal path of
the robot:

ALTON () 2

Related Keywords

ALTER (program instruction)

ALTOFF (program instruction)

STATE (real-valued function)
V+ Language Reference Guide, Rev A 61

ALWAYS Keyword
Syntax

ALWAYS-I

... ALWAYS

Function

Used with certain program instructions to specify a long-term effect.

Details

ALWAYS can be specified with any of the instructions listed below as related
keywords. When ALWAYS is specified, the effect of the instruction continues until
explicitly disabled. Otherwise, the effect of the instruction applies only to the next
robot motion.

Examples

Permanently set the robot motion speed:

SPEED 50 ALWAYS

Permanently set loose-tolerance servo mode:

COARSE ALWAYS

Related Keywords

COARSE (program instruction)

DURATION (program instruction)

FINE (program instruction)

MULTIPLE (program instruction)

NONULL (program instruction)

NOOVERLAP (program instruction)

NULL (program instruction)

OVERLAP (program instruction)

SINGLE (program instruction)

SPEED (program instruction)
62 V+ Language Reference Guide, Rev A

Operator AND
Syntax

AND-I

... value AND value ...

Function

Perform the logical AND operation on two values.

Details

The AND operator operates on two values, resulting in their logical AND
combination. For example, during the AND operation

c = a AND b

the following four situations can occur:

The result is TRUE only if both of the two operand values are logically TRUE.

Example

IF ready AND (count == 1) THEN

;The instructions following the IF will be executed if
;both "ready" is TRUE (nonzero) and "count" equals 1.

Related Keywords

BAND (operator)

OR (operator)

XOR (operator)

a b c

FALSE FALSE ➨ FALSE

FALSE TRUE ➨ FALSE

TRUE FALSE ➨ FALSE

TRUE TRUE ➨ TRUE
V+ Language Reference Guide, Rev A 63

ANY Program Instruction
Syntax

ANY-I

ANY

Function

Signal the beginning of an alternative group of instructions for the CASE
structure.

Usage Considerations

The ANY instruction must be within a CASE structure.

Details

See the description of the CASE structure.

Related Keywords

CASE (program instruction)

VALUE (program instruction)
64 V+ Language Reference Guide, Rev A

Program Instruction APPRO
Syntax

APPRO-IAPPROS-I

APPRO location, distance

APPROS location, distance

Function

Start a robot motion toward a location defined relative to specified location.

Usage Considerations

APPRO causes a joint-interpolated motion.

APPROS causes a straight-line motion, during which no changes in configuration
are permitted.

The APPRO and APPROS instructions can be executed by any program task so
long as the task has attached a robot. The instructions apply to the robot selected
by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Parameters

location Transformation value that defines the basis for the final location.

distance Real-valued expression that specifies the distance along the
robot tool Z axis between the specified location and the actual
desired destination.

A positive distance sets the tool back (negative tool-Z) from the
specified location; a negative distance offsets the tool forward
(positive tool-Z).

Details

These instructions initiate a robot motion to the orientation described by the given
location value. The position of the destination location is offset from the given
location by the distance given, measured along the tool Z axis.
V+ Language Reference Guide, Rev A 65

APPROS Program Instruction
Examples

APPRO place,offset

Moves the tool, by joint-interpolated motion, to a location offset millimeters from
that defined by the transformation place. The offset is along the resultant Z axis of
the tool.

APPROS place,–50

Moves the tool along a straight line to a location 50 millimeters from that defined
by the transformation place, with the offset along the resultant Z axis of the tool to
a location beyond the location place.

Related Keywords

DEPART and DEPARTS (program instructions)

MOVEF and MOVESF (program instructions)

SELECT (program instruction and real-valued function)
66 V+ Language Reference Guide, Rev A

Real-Valued Function ASC
Syntax

ASC-R

ASC (string , index)

Function

Return an ASCII character value from within a string.

Parameters

string String expression from which the character is to be picked. If the
string is empty, the function returns the value –1.

index Optional real-valued expression defining the character position
of interest. The first character of the string is selected if the index
is omitted or has a value of 0 or 1.

If the value of the index is negative, or greater than the length of
the string, the function returns the value –1.

Details

The ASCII value of the selected character is returned as a real value.

Examples

ASC("sample", 2)
;Returns the ASCII value of the letter "a".

ASC($name)
;Returns the ASCII value of the first character of the
;string contained in the variable $name.

ASC($system, i)
;Uses the value of the real variable "i" as an index to
;the character of interest in the string contained in the
;variable "$system".

Related Keywords

$CHR (string function)

VAL (real-valued function)
V+ Language Reference Guide, Rev A 67

ATAN2 Real-Valued Function
Syntax

ATAN2-R

ATAN2 (value_1, value_2)

Function

Return the size of the angle (in degrees) that has its trigonometric tangent equal to
value_1/value_2.

Usage Considerations

The returned value is zero if both parameter values are zero.

Parameters

value_1 Real-valued expression.

value_2 Real-valued expression.

Examples

ATAN2(0.123,0.251) ;Returns 26.1067

ATAN2(—5.462,47.2) ;Returns –6.600928

ATAN2(1.3125E+2,—1.3) ;Returns –90.56748

slope = ATAN2(rise, run)

NOTE: TYPE, PROMPT, and similar instructions output the results
of the above examples as single-precision values. However, they are
actually stored and manipulated as double-precision values. The
LISTR monitor command will display real values to full precision.
68 V+ Language Reference Guide, Rev A

Program Instruction ATTACH
Syntax

ATTACH-I

ATTACH (lun, mode) $devic e

Function

Make a device available for use by the application program.

Usage Considerations

The robot is automatically attached when the EXECUTE monitor command or
program instruction is processed (with the DRY.RUN system switch disabled). All
the other logical units are automatically detached when program execution
begins.

The logical unit for the manual control pendant can be attached even when the
pendant is not connected to the system. The function PENDANT(-4) can be used
(before or after attaching) to determine if the pendant is connected.

If the system terminal or the manual control pendant was attached when a
program stopped executing, it is automatically reattached if execution of the
program is resumed with the PROCEED, RETRY, SSTEP, or XSTEP commands.

Use of this instruction to attach to NFS or TCP devices requires the AdeptNet
option and the appropriate license(s).

Parameters

lun The logical unit number to associate with the attached device.
The interpretation of this parameter depends on the value of the
mode parameter, as follows:

If bit 3 of the mode parameter is 0, this parameter is optional
(defaulting to 0, to attach the robot); and it can be a real value,
variable, or expression (interpreted as an integer) in the range 0
to 24 that specifies the logical unit to be attached. See the Details
section for the default association of logical units with devices. If
the logical unit specified is not 0, you can use the $device
parameter to override the default device for the logical unit.

If bit 3 of the mode parameter is 1, this parameter is required and
must be a real variable. In this case, the V+ system automatically
assigns a logical unit to the device specified by the $device
parameter and to this parameter. The parameter is set to –1 if all
the logical units are in use. V+ assigns a value to the lun
parameter even if the ATTACH request fails.
V+ Language Reference Guide, Rev A 69

ATTACH Program Instruction
mode Optional real value, variable, or expression (interpreted as a bit
field) that defines how the ATTACH request is to be processed.
The value specified is interpreted as a sequence of bit flags as
detailed below. All the bits are assumed to be clear if no value is
specified.)

Bit 1 (LSB) Queue (0) versus Fail (1) (mask value = 1)

This bit controls how the device driver responds to the attach
request from the control program task. (The device driver is an
internal system task that is separate from the control program
task.) For most applications, this bit should be set.

If this bit is clear, and the device is already attached by another
control program task, the driver queues this attach request and
signals the control program that the attach is not complete. The
attachment will complete when the device becomes available.

If this bit is set, and the device is already attached by another
control program task, the device driver immediately signals that
the attach request has failed.

The function IOSTAT(lun) can be used to determine the success
or failure of the attachment. A positive value from IOSTAT
indicates successful completion; zero indicates the attachment
has not completed; a negative value indicates completion with
an error.

Bit 2 Wait (0) versus No-wait (1) (mask value = 2)

This bit controls whether or not the control program task waits
for a response from the device driver. For most applications, this
bit should not be set.

If this bit is clear, program execution waits for the device driver
to signal the result of the attach request.

If this bit is set, program execution does not wait for the result of
the attach request. The program must then use the function
IOSTAT(lun) to determine if the attachment has succeeded (see
earlier text). If the program attempts to READ from or WRITE to
the logical unit while the attachment is pending, program
execution then waits for the attachment to complete.

Bit 3 Specify LUN (0) vs. Have LUN assigned (1) (mask
value = 4)

This bit determines how the lun parameter is processed.
70 V+ Language Reference Guide, Rev A

Program Instruction ATTACH
If this bit is clear, the device corresponding to the value of lun is
attached. That is, the value of the lun parameter specifies the
device that is to be attached (according to the table in the Details
section) except when a different device is specified with the
$device parameter.

If this bit is set, the device to be attached is specified by the
$device parameter (which should not be omitted). In this case,
a logical unit is automatically selected, and the value of the lun
parameter is set by the ATTACH instruction. V+ assigns a value
to lun even if the ATTACH request fails. (This mode cannot be
used to attach the robot or manual control pendant.)

$device Optional string constant, variable, or expression that identifies
the device to be attached. If bit 3 of the mode parameter is 0, this
parameter is used to override the default device associated with
the value of the lun parameter (except that logical unit 0 is
always the robot).

The acceptable device names are shown in Table 2-1 on page 72.
V+ Language Reference Guide, Rev A 71

ATTACH Program Instruction
a The global serial line used for DDCMP must have been configured for DDCMP protocol using
CONFIG_C

b The global or local serial line used for KERMIT must have been configured for KERMIT protocol
using CONFIG_C

c The initial settings for these serial lines are set with CONFIG_C. They may be changed with the FSET
program instruction or monitor command.

Table 2-1. Acceptable Device Names to be Attached

Device Meaning

DDCMP:n Global serial line (see SERIAL:n below) configured for
DDCMP supporta

DISK Physical disk

GRAPHICS Graphics window

KERMIT Serial line that is configured for Kermit supportb

LOCAL.SERIAL:n Local serial line (n = 1 or 2 for Adept CPUs)c

MONITOR The current monitor window or operator’s terminal

NFS NFS protocol device driver

SERIAL:n Global serial line (n = 1, 2, 3, or 4 for Adept SIO board—
manual control pendant uses global serial line 4)c

SYSTEM Disk device, drive, and subdirectory path currently set with
the DEFAULT command

TCP TCP protocol device driver
72 V+ Language Reference Guide, Rev A

Program Instruction ATTACH
Details

The robot must remain attached by a robot control program for the program to
command motion of the robot. When the robot is detached (see the DETACH
instruction), however, the operator can use the manual control pendant to move
the robot under directions from the application program. This is useful, for
example, for application setup sequences. (The belt and vision calibration
programs provided by Adept use this technique.)

Program task 0 automatically attaches robot #1 when that task begins execution.
A robot control program executed by any of the other program tasks must
explicitly attach the robot.

Any task can attach to any robot, provided that the robot is not already attached
to a different task. The robot that is attached by an ATTACH instruction is the one
that was last specified by a SELECT instruction executed by the current task (see
the SELECT instruction). If no SELECT instruction has been executed, then robot
#1 is attached. The SELECT instruction can be used to select a different robot only
if no robot is currently attached to the task.

To successfully attach the robot, the system must be in COMP mode. Otherwise
(for mode bit 1 = 0), program execution is suspended (without notice) until the
system is placed in COMP mode. This situation can be avoided in two ways: (1)
use the STATE function to determine if the system is in COMP mode before
executing an ATTACH instruction, (2) set bit 1 in the mode value, and use the
IOSTAT function to determine the success of the ATTACH instruction.

The manual control pendant (logical unit 1) must be attached before (1) text can
be sent to the display, (2) a KEYMODE instruction can be processed, or (3) keys
can be read in keyboard mode or special mode (see KEYMODE). When the
manual control pendant is attached, the USER light on the pendant is turned on.
The light will blink if the pendant is not in background mode (for example, it is in
DISP mode) while an input or output operation is pending.

NOTE: The logical unit for the manual control pendant can be
attached even when the pendant is not connected to the system. The
function PENDANT(–4) can be used (before or after attaching) to
determine if the pendant is connected.

When the system terminal (logical unit 4) is attached, all keyboard input will be
buffered for input requests by the program.

NOTE: When the system terminal is attached, the user will not be
able to type ABORT to terminate program execution. The program
will have to provide a means for fielding a termination request, or
the user will have to use the manual control pendant or emergency
stop switch to stop program execution.
V+ Language Reference Guide, Rev A 73

ATTACH Program Instruction
When a DISK is attached, a program can write and read data to and from the local
disk drives, and to and from remote systems via the Kermit protocol. One of the
FOPEN_ instructions must be used to specify which disk to use, and which file on
the disk. WRITE and READ instructions can then be used to transfer information
to and from the disk. Also, FCMND instructions can be used to send commands
to the disk.

When a LOCAL.SERIAL:n or SERIAL:n serial communication line is attached, it
can be used to send and receive information to and from another system. As with
the disk, WRITE and READ instructions are used for the information transfer.
When a serial communication line is attached, its configuration is set to that on
the boot disk from which the V+ system was loaded. That is, ATTACH cancels the
effect of any FSET that had been used previously to modify the characteristics of
the serial line.

When a GRAPHICS logical unit is attached, a program can access graphics
windows on the system monitor (A-series and AdeptWindowsPC systems only).
After a window logical unit is attached, the FOPEN instruction must be used to
specify which window will be accessed with the logical unit. The FSET instruction
can then be used to modify attributes of the window, the graphics instructions can
be used to output to the window, and the GETEVENT instruction can be used to
receive input from the window.

When mode bit 3 = 0 and the $device parameter is omitted, the logical unit num-
ber implicitly specifies the corresponding default device from Table 2-2.

Table 2-2. Default Device Numbers Supplied by the LUN

Number Device

0 Robot (default when lun is omitted)

1 Manual control pendant

2 System terminal

3 System terminal

4 System terminal

5 Disk

6 Disk

7 Disk

8 Disk

9 No default device

10 Serial communication line (Global #1 on SIO board)
74 V+ Language Reference Guide, Rev A

Program Instruction ATTACH
Logical units 5 to 8 and 17 to 19 can also be used for disk-like devices such as
KERMIT or remote disks on a network.

11 Serial communication line (Global #2 on SIO board)

12 Serial communication line (Global #3 on SIO board)

13 Serial communication line (Global #4 on SIO board)

14 Serial communication line (Local #1 on system processor)

15 Serial communication line (Local #2 on system processor)

16 No default device

17 Disk

18 Disk

19 Disk

20 Graphics window

21 Graphics window

22 Graphics window

23 Graphics window

24 Graphics window

25 - 31 No default devices

Table 2-2. Default Device Numbers Supplied by the LUN (Continued)

Number Device
V+ Language Reference Guide, Rev A 75

ATTACH Program Instruction
Examples

Take over control of the robot:

ATTACH

Connect to global serial line 1; wait for it to become available if another task has it
attached; return the assigned logical unit number in lun :

ATTACH (lun, 4) "serial:1"

The next instruction is very similar to the previous one, but this one requires use
of the IOSTAT function to determine if another task has the serial line attached:

ATTACH (lun, 5) "serial:1"

Attach to the TCP device driver with automatic allocation of a logical unit num-
ber:

ATTACH (lun, 4) "TCP"

Attach to the NFS device driver with automatic allocation of a logical unit num-
ber:

ATTACH (lun, 4) "NFS"

Related Keywords

DETACH (program instruction)

FSET (program instruction)

IOSTAT (real-valued function)

SELECT (program instruction and real-valued function)
76 V+ Language Reference Guide, Rev A

Program Instruction AUTO
Syntax

AUTO-I

AUTO type variable , ..., variable

Function

Declare temporary variables that are automatically created on the program stack
when the program is entered.

Usage Considerations

AUTOmatic variables have an undetermined value when a program is first
entered (but they are not necessarily undefined), and they have no value after the
program exits.

AUTO statements must appear before any executable instruction in the
program—only the .PROGRAM statement, comments, blank lines, GLOBAL and
LOCAL statements, and other AUTO statements may precede this instruction.

If a variable is listed in an AUTO statement, any global variables with the same
name cannot be accessed directly by the program.

The values of AUTOmatic variables are not saved by the STORE or restored by
the LOAD monitor commands.

Parameters

type Optional keyword REAL, DOUBLE, or LOC, indicating that all
the variables in this statement are to be single precision, double
precision, or location variables. (A location can be a
transformation, precision point, or belt variable.)

If this keyword is omitted, the type of each variable is
determined by its use within the program. An error is generated
if the type cannot be determined from usage.

variable Name of a variable of any data type available with V+ (belt,
precision point, real-value, string, and transformation). Each
variable can be a simple variable or an array. If the type
parameter is specified (see below), all the variables must match
that type. Array variables must have their indexes specified
explicitly, indicating the highest valid index for the array.
V+ Language Reference Guide, Rev A 77

AUTO Program Instruction
Details

This instruction is used to declare variables to be defined only within the current
program. That is, an AUTOmatic variable can be referenced only by the specific
calling instance of a program. Also, the names of AUTOmatic variables can be
selected without regard for the names of variables defined in any other programs
(except for global variables; see following text).

AUTOmatic variables are allocated each time the program is called, and their
values are not preserved between successive subroutine calls. These values can be
displayed via monitor commands only when the program task is inactive but is
on an execution stack. When a program is first entered, automatic variables have
arbitrary, undetermined values (and they are not necessarily undefined).
AUTOmatic variables are lost when the program exits.

Unlike a LOCAL variable, a separate copy of an AUTOmatic variable is created
each time a program is called, even if it is called simultaneously by several
different program tasks, or called recursively by a single task. If a program that
uses LOCAL or global variables is called by several different program tasks, or
recursively by a single task, the values of those variables can be modified by the
different program instances and can cause very strange program errors.
Therefore, AUTOmatic variables should be used for all temporary local variables
to minimize the chance of such errors.

Variables can be defined as GLOBAL, AUTOmatic, or LOCAL. An attempt to
define AUTOmatic, GLOBAL, or LOCAL variables with the same name will
result in the error message *Attempt to redefine variable class* .

Variables can be defined only once within the same context (AUTOmatic, LOCAL,
or GLOBAL). Attempting to define a variable more than once (that is, with a
different type) will yield the error message *Attempt to redefine
variable type* .

AUTOmatic array variables must have the size of each dimension specified in the
AUTO statement. Each index specified must represent the last element to be
referenced in that dimension. The first element allocated always has index value
zero. For example, the statement

AUTO LOC points[3,5]

allocates a transformation array with 24 elements. The left-hand index ranges
from 0 to 3, and the right-hand index ranges from 0 to 5.

The storage space for AUTOmatic variables is allocated on the program execution
stack. If the stack is too small for the number of AUTOmatic variables declared,
the task execution will stop with the error message

Too many subroutine calls
78 V+ Language Reference Guide, Rev A

Program Instruction AUTO
If this happens, use the STACK monitor command to increase the stack size and
then issue the RETRY monitor command to continue program execution.

AUTOmatic variables cannot be deleted with the DELETE_ commands.

AUTOmatic variables can be referenced with monitor commands such as BPT,
DELETE_, DO, HERE, LIST_, POINT, TEACH, TOOL, and WATCH by using the
optional context specifier @. The general syntax is:

command @task:program command_arguments

Examples

Declare the variables loc.a, $ans, and i to be AUTOmatic in the current program
(the variable types for loc.a and i must be clear from their use in the program):

AUTO loc.a, $ans, i

Declare the variables i, j, and tmp[] to be AUTOmatic, real variables in the
current program (array elements tmp[0] through tmp[10] are defined):

AUTO REAL i, j, tmp[10]

Declare the variable loc to be an AUTOmatic variable in the current program. The
variable type of loc must be determined by its use in the program. Note that since
LOC appears by itself, it is not interpreted as the type-specifying keyword.)

AUTO loc

Related Keywords

GLOBAL (program instruction)

LOCAL (program instruction)

STACK (monitor command, see the V+ Operating System Reference
Guide)
V+ Language Reference Guide, Rev A 79

AUTO.POWER.OFF System Switch
Syntax

AUTO.POWER.OFF-S

AUTO.POWER.OFF

Function

Control whether or not V+ disables high power when certain motion errors occur.

Usage Considerations

This switch has effect during automatic mode but not during manual mode. It is
especially useful in reducing operator intervention during common
nulling-timeout and envelope errors.

Details

Because the HIGH POWER ON/OFF button cannot be used by itself to enable
high power as in earlier versions of V+, Adept has sought to reduce the number of
instances that high power is disabled during normal program execution. Making
this improvement allows programs to continue to recover automatically from
errors without manual intervention, that is, without requiring the operator to
press the HIGH POWER ON/OFF button. This system switch cancels the effect of
this change. By default this switch is disabled. Enabling it restores functionality as
it was in V+ version 12.1 and earlier.

Adept reviewed all automatic-mode errors that disabled high power in V+
version 12.1 and determined which could be changed simply to decelerate the
robot and generate an error without compromising the safe operation of the
system. Examples of particular importance are errors such as nulling-timeout and
envelope errors that often occur during the normal operation of the system. In
some cases, Adept has modified internal software to ensure the continued safe
operation of your system.

The setting of this switch has no effect during manual mode.

If this switch is set to nonzero, V+ does not report any servo 3 errors. That is, all
the servo errors disable high power.
80 V+ Language Reference Guide, Rev A

System Switch AUTO.POWER.OFF
Example

The following program segment instructs V+ to disable high power when any
motion error occurs:

ENABLE AUTO.POWER.OFF ;Disable high power when any
;motion error occurs

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 81

BAND Operator
Syntax

BAND-I

... value BAND value ...

Function

Perform the binary AND operation on two values.

The BAND operation is meaningful only when performed on integer values.

Details

The BAND operator can be used to perform a binary AND operation on two
values on a bit-by-bit basis, resulting in a real value.

Specifically, the BAND operation consists of the following steps:

1. Convert the operands to sign-extended 24-bit integers, truncating any
fractional part.

2. Perform a binary AND operation (see below).

3. Convert the result back to a real value.

During the binary AND operation,

c = a BAND b

the bits in the resultant C are determined by comparing the corresponding bits in
the operands A and B as indicated below.

Table 2-3. Converting A and B Operands into Real Values (BAND Operator)

For each bit in: a b c

0 0 ➡ 0

0 1 ➡ 0

1 0 ➡ 0

1 1 ➡ 1
82 V+ Language Reference Guide, Rev A

Operator BAND
That is, a bit in the result will be 1 if the corresponding bit in both of the operands
is 1.

Refer to the V+ Language User’s Guide for the order in which operators are
evaluated within expressions.

Examples

Consider the following (binary values are used to make the operation more
evident):

^B101000 BAND ^B100001 yields ^B100000 (32)

Note that a very different result is obtained with the logical AND operation:

^B101000 AND ^B100001 yields –1 (TRUE)

In this case, ^B101000 and ^B100001 are each interpreted as logically TRUE since
they are nonzero.

Related Keywords

AND (operator)

BOR (operator)

BXOR (operator)
V+ Language Reference Guide, Rev A 83

BASE Program Instruction
Syntax

BASE-I

BASE X_shift, Y_shift, Z_shift, Z_rotation

Function

Translate and rotate the World reference frame relative to the robot.

Usage Considerations

The BASE program instruction causes a BREAK in continuous-path motion.

The BASE monitor command applies to the robot selected by the V+ monitor
(with the SELECT command). The command can be used while programs are
executing. However, an error will result if the robot is attached by any executing
program.

The BASE instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, use of the BASE command or
instruction will cause an error.

Parameters

X_shift Optional real-valued expression describing the X component (in
the normal World coordinate system) of the origin point for the
new coordinate system. (Zero is assumed if no value is
provided.)

Y_shift Similar to X_shift, but for the Y direction.

Z_shift Similar to X_shift, but for the Z direction.

Z_rotation Similar to X_shift, but for a rotation about the Z axis.

Details

When the V+ system is initialized, the origin of the reference frame of the robot is
assumed to be fixed in space such that the X-Y plane is at the robot mounting
surface, the X axis is in the direction defined by joint 1 equal to zero, and the Z
axis coincides with the joint-1 axis.

The BASE instruction offsets and rotates the reference frame as specified above.
This is useful if the robot is moved after locations have been defined for an
application.
84 V+ Language Reference Guide, Rev A

Program Instruction BASE
If, after robot locations have been defined by transformations relative to the robot
reference frame, the robot is moved relative to those locations—to a point
translated by <dX>,<dY>,<dZ> and rotated by <Z rotation> degrees about the Z
axis—a BASE command or instruction can be used to compensate so that motions
to the previously defined locations will still be as desired.

Another convenient use for the BASE command or instruction is to realign the X
and Y coordinate axes so that SHIFT functions cause displacements in desired,
nonstandard directions.

NOTE: The BASE instruction has no effect on locations defined as
precision points. The arguments for the BASE instruction describe
the displacement of the robot relative to its normal location.

The BASE function can be used with the LISTL command to display
the current BASE setting.

Examples

BASE xbase,, –50.5, 30

Redefines the World reference frame because the robot has been shifted xbase
millimeters in the positive X direction and 50.5 millimeters in the negative Z
direction, and has been rotated 30 degrees about the Z axis.

BASE 100,, –50

Redefines the World reference frame to effectively shift all locations 100
millimeters in the negative X direction and 50 millimeters in the positive Z
direction from their nominal location. Note that the arguments for this instruction
describe movement of the robot reference frame relative to the robot, and thus
have an opposite effect on locations relative to the robot.

Related Keywords

BASE (transformation function)

SELECT (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 85

BASE Transformation Function
Syntax

BASE-T

BASE

Function

Return the transformation value that represents the translation and rotation set by
the last BASE command or instruction.

Usage Considerations

The BASE function returns information for the robot selected by the task
executing the function.

The command LISTL BASE can be used to display the current base setting.

If the V+ system is not configured to control a robot, use of the BASE function will
not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

Related Keywords

BASE (monitor command and program instruction)

SELECT (program instruction and real-valued function)
86 V+ Language Reference Guide, Rev A

Real-Valued Function BCD
Syntax

BCD-R

BCD (value)

Function

Convert a real value to Binary Coded Decimal (BCD) format.

Usage Considerations

The BCD function is most useful when used in conjunction with the BITS
command, instruction, and function (see below).

Parameter

value Real-valued expression defining the value to be converted.

Details

The BCD function converts an integer value in the range 0 to 9999 into its BCD
representation. This can be used to set a BCD value on a set of external output
signals.

Example

If you want to use digital signals 4 to 8 to output a BCD digit: The instruction

BITS 4,4 = BCD(digit)

would convert the value of the real variable digit to BCD and impress it on
external output signals 4-8.

Related Keyword

DCB (real-valued function)
V+ Language Reference Guide, Rev A 87

BELOW Program Instruction
Syntax

BELOW-I

BELOW

Function

Request a change in the robot configuration during the next motion so that the
elbow is below the line from the shoulder to the wrist.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a below configuration, this instruction is
ignored by the robot. (SCARA robots, for example, cannot be in an
ABOVE/BELOW configuration.)

The BELOW instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the BELOW
instruction will cause an error.

See Figure 2-1 on page 46.

Related Keywords

ABOVE (program instruction)

CONFIG (real-valued function)

SELECT (program instruction and real-valued function)
88 V+ Language Reference Guide, Rev A

System Switch BELT
Syntax

BELT-S

... BELT

Function

Control the function of the conveyor tracking features of the V+ system.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

If the V+ system is not configured to control a robot, an attempt to enable the
BELT system switch will cause an error. (The DEVICE real-valued function and
the SETDEVICE program instruction must be used to access external encoders
from a nonrobot system. See the V+ Language User’s Guide for more information.)

Details

This switch must be enabled before any of the special conveyor tracking
instructions can be executed. When BELT is disabled, the conveyor tracking
software has a minimal impact on the overall performance of the system.

When the BELT switch is enabled, error checking is initiated for the encoders
associated with any belt variables that are defined. The switch is disabled when the
V+ system is initialized.

Related Keywords

BELT (real-valued function)

BELT.MODE (system parameter)

BSTATUS (real-valued function)

DEFBELT (program instruction)

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SETBELT (program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)

WINDOW (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 89

BELT Real-Valued Function
Syntax

BELT-R

BELT (%belt_var , mode)

Function

Return information about a conveyor belt being tracked with the conveyor
tracking feature.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The BELT system switch must be enabled before this function can be used.

Parameters

%belt_var The name of the belt variable used to reference the conveyor belt.
As with all belt variables, the name must begin with a percent
symbol (%).

mode Control value that determines the information that will be
returned.

If the mode is omitted or its value is less than or equal to zero,
the BELT function returns the encoder reading of the belt
specified by the belt variable.

If the value of the expression is greater than zero, the encoder
velocity is returned in units of encoder counts per V+ cycle (16
ms).

Examples

Set the point of interest on the referenced conveyor to be that corresponding to the
current reading of the belt encoder:

SETBELT %main.belt = BELT(%main.belt)

Save the current speed of the belt associated with the belt variable %b:

belt.speed = BELT(%b, 1)

Related Keywords

BELT (system switch)

SETBELT (program instruction)
90 V+ Language Reference Guide, Rev A

System Parameter BELT.MODE
Syntax

BELT.MODE-P

... BELT.MODE

Function

Set characteristics of the conveyor tracking feature of the V+ system.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The current value of the BELT.MODE parameter can be determined with the
PARAMETER monitor command or real-valued function.

The value of the BELT.MODE parameter can be modified only with the
PARAMETER monitor command or program instruction.

Details

This parameter is interpreted as a bit-flag word. The initial setting of this
parameter is 0. That is, all the bits are zero. Bits can be set by assigning the value
resulting from adding together the desired bit mask values (see the example
below).

The bit flags have the following interpretations:

Bit 1 (LSB) Upstream/downstream definition (mask value = 1)

When this bit is set to one, the instantaneous direction of travel
of the belt is used to define upstream and downstream for the
window testing routines (both in the internal motion planner
and the WINDOW real-valued function).

When this bit is set to zero, going from upstream to downstream
always corresponds to traveling in the direction of the positive X
axis of the nominal transformation.

Bit 2 Stopped-belt processing (mask value = 2)

When this bit is set to one, a program error will be generated
during motion planning if the destination is outside of the belt
window and the belt is stopped.

When this bit is set to zero, if the belt is stopped during motion
planning, the direction of the positive X axis of the nominal
V+ Language Reference Guide, Rev A 91

BELT.MODE System Parameter
transformation is used to define the downstream direction. The
normal window-error criteria are then applied (see below).

Bit 3 Window error definition (mask value = 4)

When this bit is set to one, destination locations that are
downstream or upstream of the belt window cause motion
instructions to fail during planning.

When this bit is set to zero, upstream window violations cause
planning to wait until the location comes into the window.
Destination locations that are downstream of the belt window
cause window errors.

Bit 4 Effect of window errors (mask value = 8)

When this bit is set to one, motion instructions that fail during
planning due to a window error are ignored (skipped) and
program execution continues as usual. When this option is
selected, each belt-relative motion instruction should be
followed by an explicit test for planning errors using the
BSTATUS function.

When this bit is zero, window errors during motion planning
generate a program step execution error, which either halts
program execution or triggers the REACTE routine.

Regardless of the setting of this bit, window errors that occur
while the robot is actually tracking the belt cause the program
specified in the latest WINDOW instruction to be executed. If no
such program has been specified, program execution is halted.

Example

Set the parameter to have bits 1 and 3 set to one (mask values 1 + 4):

PARAMETER BELT.MODE = 5

Related Keywords

BELT (system switch and real-valued function)

BSTATUS (real-valued function)

PARAMETER (monitor command, program instruction, and real-valued
function)

WINDOW (program instruction and real-valued function)
92 V+ Language Reference Guide, Rev A

Program Instruction BITS
Syntax

BITS-I

BITS first_sig , num_sigs = value

Function

Set or clear a group of digital signals based on a value.

Usage Considerations

Both external digital output signals and internal software signals can be
referenced. Input signals must not be referenced. (Input signals are displayed by
the monitor command IO 1.)

No more than eight signals can be set at one time.

Any group of up to eight signals can be set, providing that all the signals in the
group are configured for use by the system.

Note that software signal 2032 (brake solenoid) is a read-only signal. Attempting
to set this signal will result in an *Illegal digital signal* error message.

Parameters

first_sig Real-valued expression defining the lowest-numbered signal to
be affected.

num_sigs Optional real-valued expression specifying the number of
signals to be affected. A value of 1 is assumed if none is
specified. The maximum valid value is 8.

value Real-valued expression defining the value to be set on the
specified signals. If the binary representation of the value has
more bits than num_sigs , only the lowest num_sigs signals
will be affected.

Details

Sets or clears one or more external output signals or internal software signals
based on the value to the right of the equal sign. The effect of this instruction is to
round value to an integer, and then set or clear a number of signals based on the
individual bits of the binary representation of the integer.
V+ Language Reference Guide, Rev A 93

BITS Program Instruction
Examples

Set external output signals 1-8 (8 bits) to the binary representation of the current
monitor speed setting:

BITS 1,8 = SPEED(1)

If the monitor speed were currently set to 50% (0011 0010 binary), then signals 1-8
would be set as follows after this instruction:

signal 1 ➡ 0 (off) signal 5 ➡ 1(on)

signal 2 ➡ 1 (on) signal 6 ➡ 1 (on)

signal 3 ➡ 0 (off) signal 7 ➡ 0 (off)

signal 4 ➡ 0 (off) signal 8 ➡ 0 (off)

Set external output signals 5-9 (4 bits) to the binary representation of the BCD
digit 7:

BITS 5,4 = BCD(7)

Set external output signals 1-8 (8 bits) to the binary representation of the constant
255, which is 11111111 (binary). Thus, signals 1-8 will all be turned on:

BITS 1,8 = 255

Related Keywords

BITS (real-valued function)

IO (monitor command, see the V+Operating System Reference
Guide)

RESET (monitor command, see the V+Operating System Reference
Guide)

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (monitor command and program instruction)
94 V+ Language Reference Guide, Rev A

Real-Valued Function BITS
Syntax

BITS-R

BITS (first_sig , num_sigs)

Function

Read multiple digital signals and return the value corresponding to the binary bit
pattern present on the signals.

Usage Considerations

External digital input or output signals, or internal software signals can be
referenced.

A maximum of 8 signals can be read at one time.

Any group of up to eight signals can be read, providing that all the signals in the
group are configured for use by the system.

Parameters

first_sig Real-valued expression defining the lowest-numbered signal to
be read.

num_sigs Optional real-valued expression specifying the number of
signals to be affected. A value of 1 is assumed if none is
specified. The maximum valid value is 8.

Details

This function returns a value that corresponds to the binary bit pattern present on
one to eight digital signals.

The binary representation of the value returned by the function has its
least-significant bit determined by signal numbered first_sig , and its
higher-order bits determined by the next num_sigs –1 signals.
V+ Language Reference Guide, Rev A 95

BITS Real-Valued Function
Example

Assume that the following input signal states are present:

Signal:10081007 1006100510041003 10021001

State: 11 0101 1 0

The program step:

x = BITS(1003, 4)

will yield a value of 5 for x since the 4 signals starting at 1003 (that is, signals 1003
through 1006) can be interpreted as a binary representation of that value.

Related Keywords

BITS (monitor command and program instruction)

IO (monitor command, see the V+Operating System Reference
Guide)

RESET (monitor command, see the V+Operating System Reference
Guide)

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (monitor command and program instruction)
96 V+ Language Reference Guide, Rev A

Real-Valued Function BMASK
Syntax

BMASK-R

BMASK (bit , bit , ..., bit)

Function

Create a bit mask by setting individual bits.

Parameter

bit Integer value from 1 to 32 specifying a bit to turn on. The
least-significant bit is number 1.

Details

This instruction creates a bit mask by turning on (bit = 1) the specified bits and
leaving all other bits off (bit = 0).

Bit 32 is the sign bit and yields a negative number when set.

Examples

Create the bit mask ^B10001:

bm = BMASK(1, 5)

Attach to a disk LUN with mode bit 2 turned on:

mode = BMASK(2)

ATTACH (lun, mode) "DISK"
V+ Language Reference Guide, Rev A 97

BOR Real-Valued Function
Syntax

BOR-R

... value BOR value ...

Function

Perform the binary OR operation on two values.

Usage Considerations

The BOR operation is meaningful only when performed on integer values.

Details

The BOR operator can be used to perform a binary OR operation on two values on
a bit-by-bit basis, resulting in a real value. Note, however, that this operation is
meaningful only when performed on integer values.

Specifically, the BOR operation consists of the following steps:

1. Convert the operands to sign-extended 24-bit integers, truncating any
fractional part.

2. Perform a binary OR operation (see below).

3. Convert the result back to a real value.

During the binary OR operation,

c = a BOR b

the bits in the resultant C statement are determined by comparing the
corresponding bits in the operands A and B as indicated in Table 2-4.
98 V+ Language Reference Guide, Rev A

Real-Valued Function BOR
That is, a bit in the result will be 1 if the corresponding bit in either of the
operands is 1.

Refer to the V+ Language User’s Guide for the order in which operators are
evaluated within expressions.

Examples

Consider the following (binary values are shown only to make the operation more
evident):

^B101000 BOR ^B100001 yields ^B101001 (41.0)

Note that a very different result is obtained with the logical OR operation:

^B101000 OR ^B100001 yields –1 (TRUE)

In this case, ^B101000 and ^B100001 are each interpreted as logically TRUE since
they are nonzero.

Related Keywords

BAND (operator)

BXOR (operator)

OR (operator)

Table 2-4. Converting A and B Operands into Real Values (BOR Real-Valued Function)

For each bit in: a b c

0 0 ➡ 0

0 1 ➡ 1

1 0 ➡ 1

1 1 ➡ 1
V+ Language Reference Guide, Rev A 99

BRAKE Program Instruction
Syntax

BRAKE-I

BRAKE

Function

Abort the current robot motion.

Usage Considerations

The BRAKE instruction can be executed by any program task, including a task
that is not actively controlling the robot.

This instruction does not cause a BREAK to occur (see Details below).

If more than one robot is connected to the controller, this instruction applies to the
robot currently selected (see the SELECT instruction).

If the V+ system is not configured to control a robot, the BRAKE instruction will
not generate an error due to the absence of a robot.

Details

BRAKE causes the current robot motion to be aborted immediately. In response to
this instruction, the robot will decelerate to a stop and then (without waiting for
position errors to null) begin the next motion.

Note, however, that program execution is not suspended until the robot motion
stops.
100 V+ Language Reference Guide, Rev A

Program Instruction BRAKE
Example

The following program segment initiates a robot motion and simultaneously tests
for a condition to be met. If the condition is met, the motion is stopped with a
BRAKE instruction. Otherwise, the motion is completed normally.

MOVES step[1] ;Initiate motion to next location

DO ;Loop continuously...

IF SIG(1023) THEN ;If input signal 1023 becomes set,

BRAKE ;stop the motion immediately

EXIT ;and continue elsewhere

END

UNTIL STATE(2) == 2 ;...until location reached

MOVES step[2] ;Move to next location

Related Keyword

BREAK (program instruction)
V+ Language Reference Guide, Rev A 101

BREAK Program Instruction
Syntax

BREAK-I

BREAK

Function

Suspend program execution until the current motion completes.

Usage Considerations

The BREAK instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the robot is not attached to the task executing the BREAK instruction, the
instruction completes immediately.

If the V+ system is not configured to control a robot, executing the BREAK
instruction will cause an error.

Details

This instruction has two effects:

1. Program execution is suspended until the robot reaches its current
destination.

Note, however, that BREAK cannot be used to have one task wait until a
motion is completed by another task.

2. The continuous-path transition between the current motion and that
commanded by the next motion instruction is broken. That is, the two motions
are prevented from being merged into a single continuous path.

Related Keywords

BRAKE (program instruction)

CP (system switch)

SELECT (program instruction and real-valued function)
102 V+ Language Reference Guide, Rev A

Real-Valued Function BSTATUS
Syntax

BSTATUS-R

BSTATUS

Function

Return information about the status of the conveyor tracking system.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The BSTATUS function returns information for the robot selected by the task
executing the function.

The word bstatus cannot be used as a program name or variable name.

Details

This function returns a value that is equivalent to the binary value represented by
a set of bit flags, which indicate the following conditions of the conveyor tracking
software:

Bit 1 (LSB) Tracking belt (mask value = 1)

When this bit is set, the robot is currently tracking a belt.

Bit 2 Destination upstream (mask value = 2)

When this bit is set, the destination location was found to be
upstream of the belt window during the planning of the last
motion.

Bit 3 Destination downstream (mask value = 4)

When this bit is set, the destination location was found to be
downstream of the belt window during the planning of the last
motion.

Bit 4 Window violation (mask value = 8)

When this bit is set, a window violation occurred while the robot
was tracking a belt during the last belt-relative motion. (This flag
is cleared at the start of each belt-relative motion.)
V+ Language Reference Guide, Rev A 103

BSTATUS Real-Valued Function
Related Keywords

BELT (system switch and real-valued function)

BELT.MODE (system parameter)

DEFBELT (program instruction)

SELECT (program instruction and real-valued function)

WINDOW (program instruction and real-valued function)
104 V+ Language Reference Guide, Rev A

Operator BXOR
Syntax

BXOR-I

... value BXOR value ...

Function

Perform the binary exclusive-OR operation on two values.

Usage Considerations

The BXOR operation is meaningful only when performed on integer values.

Details

The BXOR operator can be used to perform a binary exclusive-OR operation on
two values on a bit-by-bit basis, resulting in a real value. Note, however, that this
operation is meaningful only when performed on integer values.

Specifically, the BXOR operation consists of the following steps:

1. Convert the operands to sign-extended 24-bit integers, truncating any
fractional part.

2. Perform a binary exclusive-OR operation (see below).

3. Convert the result back to a real value.

During the binary exclusive-OR operation,

c = a BXOR b

the bits in the resultant C are determined by comparing the corresponding bits in
the operands A and B as indicated in Table 2-5 on page 106.
V+ Language Reference Guide, Rev A 105

BXOR Operator
That is, a bit in the result will be 1 if the corresponding bit in one (and only one) of
the operands is 1.

Refer to the V+ Language User’s Guide for the order in which operators are
evaluated within expressions.

Examples

Consider the following (binary values are shown only to make the operation more
evident):

^B101000 BXOR ^B100001 yields ^B001001 (9.0)

Note that a very different result is obtained with the logical XOR operation:

^B101000 XOR ^B100001 yields 0 (FALSE)

In this case, ^B101000 and ^B100001 are each interpreted as logically TRUE since
they are nonzero.

Related Keywords

BAND (operator)

BOR (operator)

XOR (operator)

Table 2-5. Converting A and B Operands into Real Values (BXOR Operator)

For each bit in: a b c

0 0 ➡ 0

0 1 ➡ 1

1 0 ➡ 1

1 1 ➡ 0
106 V+ Language Reference Guide, Rev A

Keyword BY
Syntax

BY-I

SCALE(transformation BY value)

SHIFT(transformation BY value, value, value)

Function

Complete the syntax of the SCALE and SHIFT functions.

Examples

SET new.trans = SCALE(old.trans BY scale.factor)

SET new.trans = SHIFT(old.trans BY x,y,z)

Related Keywords

SCALE (transformation function)

SHIFT (transformation function)
V+ Language Reference Guide, Rev A 107

CALIBRATE Program Instruction
Syntax

CALIBRATE-I

CALIBRATE mode, status

Function

Initialize the robot positioning system with the robot’s current position.

Usage Considerations

Normally, the instruction is issued with mode equal to 0.

The instruction has no effect if the DRY.RUN system switch is enabled.

If the robot is to be moved under program control, the CALIBRATE instruction
(or command) must be processed every time system power is turned on and the
V+ system is booted from disk.

The robot cannot be moved under program control or with the manual control
pendant until a CALIBRATE instruction (or monitor command) has been
processed.1

If multiple robots are connected to the system controller, this instruction attempts
to calibrate all robots unless they are disabled with the ROBOT switch. All of the
enabled robots must be calibrated before any of them can be moved under
program control.

The CALIBRATE instruction may operate differently for each type of robot. For
Adept robots, this instruction causes the robot to move. The robot must be far
enough from the limits of the working range that it will not move out of range
during the calibration process. (See the description of the CALIBRATE monitor
command for details of the robot motion.)

This instruction generates an error if the robot is not selected by the task executing
the CALIBRATE instruction. (See the SELECT instruction.)

If the V+ system is not configured to control a robot, executing the CALIBRATE
instruction causes an error.

1 Some robots can be moved in joint mode with the MCP even when they have not been
calibrated.
108 V+ Language Reference Guide, Rev A

Program Instruction CALIBRATE
Parameters

mode An optional real expression that indicates what part of the
calibration process is to be performed:

status An optional real variable that receives the exit status returned by
the user calibration program or (in mode –1) from the V+ system
when trying to enter into the special calibrate mode. If it
completed with success, status = 1; otherwise, status is a
standard V+ error code.

Details

When started, V+ assumes that the robot is not calibrated and restricts your ability
to move the robot—with the manual control pendant (MCP) or an application
program. Note that the COMP mode light on the MCP does not come on when
the robot is not calibrated.

Value of
mode Interpretation

–1 Set the V+ system into the calibrate mode.
This is a special robot control mode that
ensures that no robot motions are generated
that might conflict with those commanded
by the user calibration program. This system
mode is terminated when the robot is
successfully calibrated (as indicated by a
modification to the NOT.CALIBRATED
system parameter) or when an error occurs
such as the disabling of robot power.

0 (or omitted) Optionally load the calibration program; run
the calibration program (with load, execute,
and delete flags set).

1 Optionally load the calibration program; run
the calibration program (with load flag set).

2 Run the calibration program (with the
execute flag set).

3 Run the calibration program (with the delete
flag set).
V+ Language Reference Guide, Rev A 109

CALIBRATE Program Instruction
The robot loses start-up calibration whenever system power is switched off. As a
safety measure, Adept robots also lose start-up calibration whenever an *Encoder
quadrature error* occurs for one of the robot joints. Other servo errors that can
cause the robot to lose calibration are *Unexpected zero index*, *No zero index*,
and *RSC Communications Failure*.

The robot must be selected by the program that executes the CALIBRATE
instruction. The default selection is robot #1. You can use the SELECT ROBOT
instruction to select another robot. If the robot is not attached by the program, the
robot is temporarily attached while the CALIBRATE instruction is executed.

For Adept robots, this instruction causes all the robot joints to be driven.

For devices controlled by the AdeptMotion VME option, the robot action depends
upon the particular robot device module that is being used.

When this program instruction attempts to load the calibration file, it uses the
same file name and search algorithm that the CALIBRATE monitor command
uses. This instruction runs the user calibration program in the task that executed
the invoking CALIBRATE program instruction.

If you wish to carry out a CALIBRATE instruction in task 0, one way to do so is
from a program run using the /C qualifier on the EXECUTE instruction. With that
qualifier specified, a program to calibrate the robot can run in task 0 even when
DRY.RUN is disabled. A program running in any task other than 0 can execute the
CALIBRATE instruction without special conditions.

Example

The following instruction sequence can be used by any program task to perform
start-up calibration on the robot (if task #0 is used, the DRY.RUN switch must be
enabled before the program is executed):

DETACH() ;Detach the robot

DISABLE DRY.RUN ;Ensure DRY.RUN is disabled

CALIBRATE ;Calibrate the robot

ATTACH() ;Reattach the robot

Related Keywords

CALIBRATE (monitor command, see the V+Operating System
Reference Guide)

NOT.CALIBRATED (system parameter)

SELECT (program instruction and real-valued function)
110 V+ Language Reference Guide, Rev A

Program Instruction CALL
Syntax

CALL-I

CALL program(arg_list)

Function

Suspend execution of the current program and continue execution with a new
program (that is, a subroutine).

Parameters

program Name of the new program to be executed.

arg_list Optional list of subroutine arguments (separated by commas) to
be passed between the current program and the new program.
(If no argument list is specified, the parentheses after the
program parameter can be omitted.)

Arguments can be used to pass data to the called program, to
receive results back, or a combination of both. (How arguments
are passed is described below.)

Each argument can be any one of the data types supported by V+
(that is, belt, precision point, real-value, string, and
transformation), and can be specified as a constant, a variable, or
an expression.1 The type of each argument must match the type
of its counterpart in the argument list of the called program. An
argument specified as a variable can be a simple variable, an
array element, or an array with one or more of its indexes left
blank. (See below for more information.)

Any argument can be omitted, with the result that the
corresponding argument in the called program will be
undefined. If an argument is omitted within the argument list,
the separating comma must still be included. If an argument is
omitted at the end of the list, the comma preceding the argument
can also be omitted. (See the description of .PROGRAM for more
information on the effect of omitting an argument.)

1 If a value is being passed back to the calling program, the parameter must be specified as a
variable.
V+ Language Reference Guide, Rev A 111

CALL Program Instruction
Details

The CALL instruction causes execution of the current program to be suspended
temporarily. Execution continues at the first step of the indicated new program,
which is then considered a subroutine.

Execution automatically returns to the current program when a RETURN
instruction is executed in the subroutine. Execution continues with the instruction
immediately following the CALL instruction.

Subroutine arguments can be passed by value or by reference. When an argument
is passed by value, a copy of the argument value is passed to the subroutine. Any
changes to the corresponding subroutine argument in the subroutine will not be
passed back to the calling routine. Any argument that is specified as an
expression (or compound transformation) will be passed by value.

When an argument is a (scalar or array) variable, it is passed by reference. That
means a pointer to the variable is passed to the subroutine, which then works
with exactly the same variable as the calling routine. If the called routine changes
the value of the variable, the value is also changed for the calling routine. This can
be especially significant, for example, if the same variable is passed as two
arguments of a subroutine call. Then, any change to either of the corresponding
subroutine arguments in the subroutine would automatically change the other
corresponding subroutine argument.

Note that an argument that would be passed by reference (because it is a variable)
can generally be forced to passage by value. The way that is done depends on the
type of the variable, as follows:

• For a real variable, passage by value can be forced by enclosing the variable in
parentheses:

CALL prog_a((count))

• For a string variable, an empty string () can be added to the variable:

CALL prog_b($str.var+"")

• For a transformation variable (for example, start), an equivalent
transformation value can be specified by a compound transformation
consisting of the variable and the NULL transformation:

CALL prog_c(start:NULL).

As stated above, the items in the arg_list must match their corresponding
items in the called program. In addition to straightforward matches of scalar to
scalar, and arrays of equal numbers of dimensions, there are several situations in
which higher dimension arrays can be passed in place of lower dimension arrays.
For example, all the following cases are valid:
112 V+ Language Reference Guide, Rev A

Program Instruction CALL
Array element passed to a scalar:

CALL example(a[1]) ---> .PROGRAM example(b)

CALL example(a[1,2]) ---> .PROGRAM example(b)

CALL example(a[1,2,3])---> .PROGRAM example(b)

One dimension of an array passed to a one-dimensional array:

CALL example(a[]) ---> .PROGRAM example(b[])

CALL example(a[1,]) ---> .PROGRAM example(b[])

CALL example(a[1,2,]) ---> .PROGRAM example(b[])

Two dimensions of an array passed to a two-dimensional array:

CALL example(a[,]) ---> .PROGRAM example(b[,])

CALL example(a[1,,]) ---> .PROGRAM example(b[,])

Three dimensions of an array passed to a three-dimensional array:

CALL example(a[,,]) ---> .PROGRAM example(b[,,])

Examples

CALL pallet(count)

Branches to the program named pallet, passing to it a pointer to the variable
count. When a RETURN instruction is executed, control returns to the program
containing the CALL instruction and count will contain the current value of the
corresponding subroutine argument.

CALL cycle(1, , n+3)

Branches to the program named cycle. The value 1 is passed to the first parameter
of cycle, its second parameter will be undefined, and its third parameter will
receive the value of the expression n+3. (If cycle has more than three parameters,
the remainder will all be undefined.)

Since none of the arguments in the CALL are variables, no data will be returned
by the program cycle.

Related Keywords

CALLS (program instruction)

.PROGRAM (program instruction)

RETURN (program instruction)
V+ Language Reference Guide, Rev A 113

CALLP Program Instruction
Syntax

CALLP-I

CALLP var(arg_list)

Function

Call a program given a pointer to the program in memory.

Usage Considerations

Using SYMBOL.PTR and CALLP is an alternative to using CALLS to invoke a V+
subroutine given its name as string data. For some applications, the
SYMBOL.PTR-CALLP combination is much faster than CALLS.

Parameters

var A real variable (not an expression) that contains a pointer to a
program symbol.

arg_list A list of arguments to be passed between the current program
and the new program.

Details

In situations where the same program is called multiple times, the CALLP
instruction can be significantly more efficient than the CALLS instruction. This is
especially true in systems that have many programs loaded. (In situations where a
program is called only once, the CALLS instruction is faster.)

When a CALLS instruction is used, the following steps are performed each time
the CALLS instruction is encountered:

1. The user string is evaluated.

2. The V+ program symbol with that name is found in the V+ symbol table.

3. The proper V+ program is called.

As an alternative, the SYMBOL.PTR function can be used to perform the first two
steps. Typically, that is done one time, during the initialization portion of the
application software. Then, in place of the CALLS instruction, a CALLP
instruction can be used to perform the third step above. (The CALLP instruction
is just slightly slower than a CALL instruction.)

In situations where the same program is called multiple times, avoiding the first
two steps of CALLS can be significant, especially in systems that have many
programs loaded.
114 V+ Language Reference Guide, Rev A

Program Instruction CALLP
The CALLP instruction calls the program pointed to by the real variable var . This
variable should have been obtained by using the SYMBOL.PTR function. If the
value of var is zero, no program is called, and no error is reported. If var does
not contain a valid pointer, program execution stops with error −406 (*Undefined
program or variable name*).

Example

Instructions such as the following are executed in the initialization section of the
application program:

my.pgm.ptr[1] = SYMBOL.PTR("my.program.1")

my.pgm.ptr[2] = SYMBOL.PTR("my.program.2")

Then, in the repetitive section of the application program, the following is
executed:

CALLP my.pgm.ptr[index](parm1, parm2)

Related Keywords

CALLS (program instruction)

$SYMBOL (string function)

SYMBOL.PTR (real-valued function)
V+ Language Reference Guide, Rev A 115

CALLS Program Instruction
Syntax

CALLS-I

CALLS string(arg_list)

Function

Suspend execution of the current program and continue execution with a new
program (that is, a subroutine) specified with a string value.

Usage Considerations

CALLS takes much longer to execute than the normal CALL instruction. Thus,
CALLS should be used only when necessary.

Parameters

string String value, variable, or expression defining the (1- to
15-character) name of the new program to be executed. (The
letters in the name can be lowercase or uppercase.)

arg_list Optional list of arguments to be passed between the current
program and the new program. The parentheses can be omitted
if no argument list is specified. (See the CALL instruction for
further information on subroutine arguments.)

NOTE: Since the argument list is not specified as part of the
string parameter, all the subroutines called by a specific CALLS
instruction must have equivalent argument lists.

Details

The CALLS instruction behaves exactly like the CALL instruction. The only
difference between the two instructions is the way the subroutine name is
specified. CALL requires that the name be explicitly entered in the instruction
step. CALLS permits the name to be specified by a string variable or expression,
which can have its value defined when the program is executed. That allows the
program to call different subroutines depending on the circumstances.

As with the CALL instruction, execution automatically returns to the current
program when a RETURN instruction is executed in the subroutine. Execution
continues with the instruction immediately following the CALLS instruction.
116 V+ Language Reference Guide, Rev A

Program Instruction CALLS
Examples

The program segment below demonstrates how the CALLS instruction can be
used to branch to a subroutine whose name is determined when the program is
executed.

First the program reads a set of four digital input lines (1001 to 1004) to determine
which of sixteen different part types it is dealing with. The part type is considered
to be a hexadecimal number, which is converted to the corresponding ASCII
character. Once the character is defined, the appropriate subroutine (that is,
part.0, part.1, ..., part.f) is called to process the part. (The part-type value is also
used to select the portion of the two-dimensional array argument that is passed to
the subroutine.)

type = BITS(1001,4) ;Get part type from digital input

$type = $ENCODE(/H0, type) ;Convert to ASCII character

CALLS "part."+$type(arguments[type,], status)

This example could be made more robust by using the STATUS real-valued
function to make sure the proposed subroutine exists before it is called. That way
the program could avoid possible errors from undefined program names.

Related Keywords

CALL (program instruction)

.PROGRAM (program instruction)

RETURN (program instruction)
V+ Language Reference Guide, Rev A 117

CASE Program Instruction
Syntax

CASE-I

CASE value OF

Function

Initiate processing of a CASE structure by defining the value of interest.

Usage Considerations

This instruction must be part of a complete CASE structure.

Parameter

value Real value, variable, or expression that defines the value to be
matched in the CASE structure to determine which instructions
are executed.

Details

This is perhaps the most powerful structure available with V+. It provides a
means for executing one group of instructions from among any number of
groups. The complete syntax is as follows (the blank lines are not required):

CASE value OF

VALUE value_1,...:
group_of_steps

VALUE value_2,...:
group_of_steps
.
.
.

ANY
group_of_steps

END

The three vertical dots indicate that any number of VALUE steps can be used to
set off additional groups of instructions.

The ANY step and the group of steps following it are optional. There can be only
one ANY step in a CASE structure, and it must mark the last group in the
structure (as shown above).

Note that the ANY and END steps must be on lines by themselves as shown.
(However, as with all instructions, those lines can have comments.)
118 V+ Language Reference Guide, Rev A

Program Instruction CASE
The CASE structure is processed as follows:

1. The expression following the CASE keyword is evaluated.

2. All the VALUE steps are scanned until the first one is found that has the same
value.

3. The group of instructions following that VALUE step is executed.

4. Execution continues at the first instruction after the END step.

If no VALUE step is found that contains the same value as that in the CASE
instruction, and there is an ANY step in the structure, then the group of
instructions following the ANY step will be executed.

If no VALUE match is found in the structure, and there is no ANY step, none of
the instructions in the entire CASE structure will be executed.

Examples

The following example shows the basic function of a CASE statement:

CASE number OF
VALUE 1:

TYPE "one"
VALUE 2:

TYPE "two"
ANY

TYPE "Not one or two"
END

The following sample program asks the user to enter a test value. If the value is
negative, the program exits after displaying a message. Otherwise, a CASE
structure is used to classify the input value as a member of one of three groups.
The groups are (1) even integers from zero to ten, (2) odd integers from one to
nine, and (3) all other positive numbers.

PROMPT "Enter a value from 1 to 10: ", x

CASE x OF
VALUE 0, 2, 4, 6, 8, 10:

TYPE "The number", x, " is EVEN"

VALUE 1, 3, 5, 7, 9:
TYPE "The number", x, " is ODD"

ANY
TYPE x, " is not an integer from 0 to 10"

END
V+ Language Reference Guide, Rev A 119

CASE Program Instruction
The following example shows a special use of the CASE structure to test Boolean
conditions:

PROMPT "Enter a number", x

CASE TRUE OF
VALUE (x > 0):

TYPE "The number was greater than 0."
VALUE (x == 0):

TYPE "The number was equal to 0."
VALUE (x < 0):

TYPE "The number was less than 0."
END

Related Keywords

ANY (program instruction)

END (program instruction)

VALUE (program instruction)
120 V+ Language Reference Guide, Rev A

String Function $CHR
Syntax

$CHR-$

$CHR (value)

Function

Return a one-character string corresponding to a given ASCII value.

Parameter

value Real-valued expression defining the value to be translated into a
character. The value must be in the range of 0 to 255 (decimal).

If the value is in the range 0 to 127 (decimal), the corresponding
ASCII character will be returned.

Example

$CHR(65)

;Returns the character A, since its ASCII value is 65.

Related Keywords

ASC (real-valued function)

$FLTB (string function)

$INTB (string function)
V+ Language Reference Guide, Rev A 121

CLEAR.EVENT Program Instruction
Syntax

CLEAR.EVENT-I

CLEAR.EVENT task , flag , processor

Function

Clear an event associated with the specified task.

Parameters

task Real value, variable, or expression (interpreted as an integer)
that specifies the task for which the event is to be cleared. The
valid range is 0 to 6 or 0 to 27, inclusive.1

flag Not used, defaults to 1.

processor Optional real value, variable, or expression that specifies the V+
processor running the task to be signaled. The default value is 0
which indicates the local processor. The maximum value
depends on the software and hardware configuration. (Only
systems equipped with the V+ Extensions option can have
multiple processors.)

Details

This instruction clears the event associated with the specified task.

The default event cleared is the input/output completion event for which the
instruction WAIT.EVENT 1 waits. This event is also cleared by the execution (not
the completion) of an input/output instruction.

Related Keywords

GET.EVENT (real-valued function)

INT.EVENT (program instruction)

SET.EVENT (program instruction)

WAIT.EVENT (program instruction)

1 The basic system allows 7 tasks (0 - 6). The V+ Extensions option allows 28 tasks (0 - 27).
122 V+ Language Reference Guide, Rev A

Program Instruction CLOSE
Syntax

CLOSE-ICLOSEI-I

CLOSE

CLOSEI

Function

Close the robot gripper.

Usage Considerations

CLOSE causes the hand to close during the next robot motion.

CLOSEI causes a BREAK in the current continuous-path motion and causes the
hand to close immediately after the current motion completes.

The CLOSE instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

The CLOSEI instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Details

These instructions send a signal to the control valves for the pneumatic hand to
close. If the CLOSE instruction is used, the signal will not be sent until the next
robot motion begins.1

The CLOSEI instruction differs from CLOSE in the following ways:

• A BREAK occurs if a continuous-path robot motion is in progress.

• The signal is sent to the control valves at the conclusion of the current motion,
or immediately if no motion is in progress.

• Robot motions are delayed for a brief time to allow the hand actuation to
complete. The length of the delay (in seconds) is the current setting of the
HAND.TIME system parameter.

1 You can use the SPEC Utility program to set which digital signals control the pneumatic hand.
See the Instructions for Adept Utility Programs for information on use of the program.
V+ Language Reference Guide, Rev A 123

CLOSEI Program Instruction
Examples

During the next robot motion, cause the pneumatic control valves to assume the
closed state:

CLOSE

Cause the pneumatic control valves to assume the closed state as soon as the
current motion stops:

CLOSEI

Related Keywords

HAND.TIME (system parameter)

OPEN and OPENI (program instructions)

RELAX and RELAXI (program instructions)

SELECT (program instruction and real-valued function)
124 V+ Language Reference Guide, Rev A

Program Instruction COARSE
Syntax

COARSE-I

COARSEtolerance ALWAYS

Function

Enable a low-precision feature of the robot hardware servo.

Usage Considerations

Only the next robot motion will be affected unless the ALWAYS parameter is
specified.

If the tolerance parameter is specified, its value becomes the default for any
subsequent COARSE instruction executed during the current execution cycle
(regardless of whether ALWAYS is specified).

FINE 100 ALWAYS is assumed whenever program execution is initiated and
when a new execution cycle begins.

The COARSE instruction can be executed by any program task so long as the
robot selected by the task is not attached by any other task. The instruction
applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the COARSE
instruction will cause an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the
percentage of the standard coarse tolerances that are to be used
for each joint of the robot attached by the current execution task.
See the Details section for default values.

ALWAYS Optional qualifier that establishes COARSE as the default
condition. That is, COARSE will remain in effect until disabled
by a FINE instruction. If ALWAYS is not specified, the COARSE
instruction will apply only to the next robot motion.

Details

This instruction enables a low-tolerance feature in the robot motion servo so that
larger errors in the final positions of the robot joints are permitted at the ends of
motions. This allows faster motion execution when high accuracy is not required.
V+ Language Reference Guide, Rev A 125

COARSE Program Instruction
If the tolerance parameter is specified, the new setting takes effect at the start
of the next motion. Also, the value becomes the default for any subsequent
COARSE instruction executed during the current execution cycle (regardless of
whether ALWAYS is specified). (Changing the COARSE tolerance does not affect
the FINE tolerance.)

If the tolerance parameter is omitted, the most recent setting (for the attached
robot) is used. The default setting is restored to 100 percent when program
execution begins, or a new execution cycle starts (assuming that the robot is
attached to the program).

Examples

Enable the low-tolerance feature only for the next motion:

COARSE

Enable the low-tolerance feature for the next motion, with the tolerance settings
changed to 150% of the standard tolerance for each joint (that is, a looser
tolerance):

COARSE 150

Enable the low-tolerance feature until it is explicitly disabled:

COARSE ALWAYS

Related Keywords

CONFIG (real-valued function)

FINE (program instruction)

NONULL (program instruction)

NULL (program instruction)

SELECT (program instruction and real-valued function)
126 V+ Language Reference Guide, Rev A

Operator COM
Syntax

COM-I

... COM value ...

Function

Perform the binary complement operation on a value.

Usage Considerations

The word com cannot be used as a program name or variable name.

The COM operation is meaningful only when performed on an integer value.

Parameter

value Real-valued expression defining the value to be complemented.

Details

The COM operator performs the binary complement operation on a bit-by-bit
basis, resulting in a real value.

Specifically, the COM operation consists of the following steps:

1. Convert the operand to a sign-extended 32-bit integer, truncating any
fractional part.

2. Perform a binary complement operation.

3. Convert the result back to a real value.

See the V+ Language User’s Guide for the order in which operators are evaluated
within expressions.

Examples

For example:

COM 40 yields –41

Note that a very different result is obtained with the logical complement
operation (NOT):

NOT 40 yields 0.0 (FALSE)

In this case, 40 is interpreted as logically TRUE since it is nonzero.
V+ Language Reference Guide, Rev A 127

CONFIG Real-Valued Function
Syntax

CONFIG-R

CONFIG (select)

Function

Return a value that provides information about the robot’s geometric
configuration, or the status of the motion servo-control features.

Usage Considerations

The CONFIG function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the CONFIG function
causes an error.

Parameter

select Optional real value, variable, or expression (interpreted as an
integer) that has a value from 0 to 11 and selects the category of
the configuration information to be returned. (See below for
details.)

Details

This function returns a value that is interpreted as a series of bit flags. The
meaning of the bit flags depends on the select parameter.

When the select parameter is omitted, or has the value 0, 1, or 2, the CONFIG
function returns a value that can be interpreted as bit flags indicating a geometric
configuration of the robot. That is, each bit in the value represents one
characteristic of a robot configuration.

The parameter values in this group determine which robot configuration is
returned by the function:

Select Configuration information returned

0 The robot’s current (instantaneous) configuration. (The default value is 0.)

1 The configuration the robot will achieve at the completion of the current
motion, or the current configuration if no motion is in progress (and the robot
is attached). (Note: The result returned is not meaningful if the robot is not
attached.)

2 The configuration the robot will achieve at the completion of the next motion
(assuming that it will be a joint-interpolated [not straight-line] motion).
128 V+ Language Reference Guide, Rev A

Real-Valued Function CONFIG
The interpretations of the bit flags returned by these selections are as follows:

When the select parameter is 3, 4, or 5, the CONFIG function returns a value
that can be interpreted as bit flags indicating the settings of several robot motion
servo-control features. That is, each bit in the value represents the state of one
motion servo-control feature.

The different parameter values in this group select which motion(s) will be
affected by the features settings reported by the function, as follows:

The interpretations of the bit flags returned by selections 3, 4, and 5 are as follows:

Bit # Bit Mask Indication if bit SET

1 1 Robot has righty configuration

2 2 Robot has below configuration

3 4 Robot has flipped configuration

4-16 (None)

Select Configuration information returned

3 The permanent settings of the robot motion servo-control features.
That is, the settings defined by instructions that specify the ALWAYS
qualifier.

4 The temporary settings for the motion currently executing, or the last
motion completed if no motion is in progress.

5 The temporary settings that will apply to the next motion performed.

Bit# Bit mask Indication if bit CLEAR Bit SET

1 1 (None) (None)

2 2 FINE asserted COARSE asserted

3 4 NULL asserted NONULL asserted

4 8 MULTIPLE asserted SINGLE asserted

5 ^H10 CPON asserted CPOFF asserted

6 ^H20 OVERLAP asserted NOOVERLAP asserted

7-16 (None) (None)
V+ Language Reference Guide, Rev A 129

CONFIG Real-Valued Function
When the select parameter is 6, 7, or 8, the CONFIG function returns a value
that represents the setting of the FINE tolerance.

When the select parameter is 9, 10, or 11, the CONFIG function returns a value
that represents the setting of the COARSE tolerance.

When the select parameter is 12, the available joint configuration options for
the selected robot are returned as shown below.

Select FINE tolerance returned

6 The permanent setting, as a percentage of the standard tolerance.

7 The setting used for the previous or current motion, as a percentage
of the standard tolerance.

8 The setting to be used for the next motion, as a percentage of the
standard tolerance.

Select COARSE tolerance returned

9 The permanent setting, as a percentage of the standard tolerance.

10 The setting used for the previous or current motion, as a percentage
of the standard tolerance.

11 The setting to be used for the next motion, as a percentage of the
standard tolerance.

Bit # Bit Mask Indication if bit set

1 1 Robot can have lefty or righty configuration.

2 2 Robot can have above or below configuration.

3 4 Robot can have flipped or noflip configuration.

18 ^H20000 Robot supports the OVERLAP and NOOVERLAP
instructions.

22 ^H200000 Robot’s last rotary joint can be limited to ±180°
(single/multiple).
130 V+ Language Reference Guide, Rev A

Real-Valued Function CONFIG
When the select parameter is 13, the type of robot motion is returned. The bit
values returned are shown below.

Related Keywords

ABOVE (program instruction)

BELOW (program instruction)

COARSE (program instruction)

CPOFF (program instruction)

CPON (program instruction)

FINE (program instruction)

FLIP (program instruction)

LEFTY (program instruction)

MULTIPLE (program instruction)

NOFLIP (program instruction)

NONULL (program instruction)

NOOVERLAP (program instruction)

NULL (program instruction)

OVERLAP (program instruction)

RIGHTY (program instruction)

SELECT (program instruction and real-valued function)

SINGLE (program instruction)

STATE (real-valued function)

Bit # Definition

^H1 This bit is set if the joint is interpolated, otherwise it is cleared for
straight-line motion.

^H2 This bit is set if the robot is in a SPIN motion.
V+ Language Reference Guide, Rev A 131

COS Real-Valued Function
Syntax

COS-R

COS (value)

Function

Return the trigonometric cosine of a given angle.

Usage Considerations

The angle parameter must be measured in degrees.

The parameter will be interpreted as modulo 360 degrees, but excessively large
values may cause a loss of accuracy in the returned value.

Parameter

value Real-valued expression that defines the angular value (in
degrees) to be considered.

Details

Returns the trigonometric cosine of the argument, which is assumed to be in
degrees. The resulting value will always be in the range of –1.0 to +1.0, inclusive.

Examples

COS(0.5) ;Returns 0.999962

COS(–5.462) ;Returns 0.9954596

COS(60) ;Returns 0.4999999

COS(1.3125E+2) ;Returns –0.6593457

NOTE: TYPE, PROMPT, and similar instructions output the results
of the above examples as single-precision values. However, they are
actually stored and manipulated as double-precision values. The
LISTR monitor command will display real values to full precision.
132 V+ Language Reference Guide, Rev A

System Switch CP
Syntax

CP-S

... CP

Function

Control the continuous-path feature.

Details

The CP switch can be used to turn off continuous-path motion processing. Refer
to the V+ Language User’s Guide for an explanation of continuous-path motions.

This switch is enabled when the V+ system is initialized.

Example

DISABLE CP ;Turn off continuous-path motion processing.

Related Keywords

BREAK (program instruction)

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 133

CPOFF Program Instruction
Syntax

CPOFF-I

CPOFF ALWAYS

Function

Instruct the V+ system to stop the robot at the completion of the next motion
instruction (or all subsequent motion instructions) and null position errors.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

CPON ALWAYS is assumed whenever program execution is initiated and when a
new execution cycle begins.

The CPOFF instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies only
to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the CPOFF
instruction will cause an error.

Parameter

ALWAYS Optional qualifier that establishes CPOFF as the default
condition. That is, when ALWAYS is included in a CPOFF
instruction, CPOFF will remain in effect continuously until
disabled by a CPON instruction. If ALWAYS is not specified, the
CPOFF instruction applies only to the next robot motion.
134 V+ Language Reference Guide, Rev A

Program Instruction CPOFF
Details

When CPOFF is in effect, the robot will be brought to a stop at the completion of
the next robot motion, and any final position errors will be nulled (if required).

Unlike the BREAK instruction, which is executed after a motion to cause
continuous-path processing to terminate, CPON and CPOFF are executed before
a motion instruction to affect the continuous-path processing of the next motion
instruction. Also, while BREAK applies to only one motion instruction, CPOFF
can apply to all the motion instructions that follow.

If the CP system switch is disabled, continuous-path processing never occurs
regardless of any CPON or CPOFF instructions.

Related Keywords

BREAK (program instruction)

CP (system switch)

CPON (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 135

CPON Program Instruction
Syntax

CPON-I

CPONALWAYS

Function

Instruct the V+ system to execute the next motion instruction (or all subsequent
motion instructions) as part of a continuous path.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

This is the default state of the V+ system. CPON ALWAYS is assumed whenever
program execution is initiated and when a new execution cycle begins.

The CPON instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies only
to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the CPON
instruction causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPON as the default
condition. That is, if ALWAYS is specified, CPON will remain in
effect continuously until disabled by a CPOFF instruction. If
ALWAYS is not specified, the CPON instruction applies only to
the next robot motion.
136 V+ Language Reference Guide, Rev A

Program Instruction CPON
Details

When CPON is in effect, it is possible to execute a series of motion instructions
that are blended into a single continuous path. That is, each motion will be
performed in succession without stopping the robot at specified locations.

Unlike the BREAK instruction, which is executed after a motion to cause
continuous-path processing to terminate, CPON and CPOFF are executed before
a motion instruction to affect the continuous-path processing of the next motion
instruction.

While asserting CPON permits continuous-path processing to occur, any of the
following conditions will break a continuous path and override CPON:

• No subsequent motion instruction is executed before completion of the next
motion instruction.

• CP system switch is disabled.

(If the CP system switch is disabled, continuous-path processing never
occurs, regardless of any CPON or CPOFF instructions.)

• The next motion instruction is followed by an instruction that explicitly or
implicitly causes motion termination (for example, BREAK, OPENI).

Related Keywords

BREAK (program instruction)

CP (system switch)

CPOFF (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 137

CYCLE.END Program Instruction
Syntax

CYCLE.END-I

CYCLE.END task_num , stop_flag

Function

Terminate the executing program in the specified task the next time it executes a
STOP program instruction (or its equivalent).

Suspend processing of an executable program until a program running in the
specified task completes execution.

Usage Considerations

The CYCLE.END instruction has no effect if the specified program task is not
active.

The CYCLE.END instruction suspends execution of the program containing the
instruction until the specified program task completes execution. If a program is
aborted while its execution is suspended by a CYCLE.END instruction, the
program task specified by the CYCLE.END instruction will still be terminated (if
the stop_flag is TRUE).

Parameters

task_num Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be monitored or
terminated.

If the task number is not specified, the CYCLE.END instruction
always accesses task #0.

stop_flag Optional real value, variable, or expression interpreted as a
logical (TRUE or FALSE) value. If the parameter is omitted or
has the value 0, the specified task is not stopped—but the
CYCLE.END has all its other effects (see below). If the parameter
has a nonzero value, the selected task stops at the end of its
current cycle.
138 V+ Language Reference Guide, Rev A

Program Instruction CYCLE.END
Details

If the stop_flag parameter has a TRUE value, the specified program task will
terminate the next time it executes a STOP program instruction (or its equivalent),
regardless of how many program cycles are left to be executed.

NOTE: CYCLE.END will not terminate a program with continuous
internal loops. Such a program must be terminated with the ABORT
command or instruction.

Regardless of the stop_flag parameter, this instruction will wait until the
program actually is terminated. If the program being terminated loops internally
so that the current execution cycle never ends, the CYCLE.END instruction will
wait forever.

To proceed from a CYCLE.END that is waiting for a program to terminate, abort
the program that is waiting for a CYCLE.END by typing an ABORT command for
the program task that executed the CYCLE.END instruction.

Example

The following program segment shows how a program task can be initiated from
another program task (the ABORT and CYCLE.END program instructions are
used to make sure the specified program task is not already active):

ABORT 3 ;Abort any program already active

CYCLE.END 3 ;Wait for execution to abort

EXECUTE 3 new.program ;Start up the new program

Related Keywords

ABORT (monitor command and program instruction)

CYCLE.END (monitor command, see the V+Operating System Reference
Guide)

EXECUTE (monitor command and program instruction)

KILL (monitor command and program instruction)

STATUS (monitor command and real-valued function)

STOP (program instruction)
V+ Language Reference Guide, Rev A 139

DBLB Real-Valued Function
Syntax

DBLB-R

DBLB ($string , first_char)

Function

Return the value of eight bytes of a string interpreted as an IEEE double-precision
floating-point number.

Parameters

$string String expression that contains the eight bytes to be converted.

first_char Optional real-valued expression that specifies the position of the
first of the eight bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first eight
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second through ninth bytes
are extracted. An error is generated if first_char specifies
eight bytes that are beyond the end of the input string.

Details

Eight sequential bytes of the given string are interpreted as being a
double-precision (64-bit) floating-point number in the IEEE standard format. This
64-bit field is interpreted as follows:

where

s is the sign bit, s = 0 for positive, s = 1 for negative.

exp is the binary exponent, biased by –1023.

fraction is a binary fraction with an implied 1 to the left of the binary point.

For 0 < exp < 2047, the value of a floating point number is:

−1s ∗ (1.fraction) ∗ 2 exp −1023

63 62 52 51 0

s exp fraction

Bytes 1-2 Bytes 3-4 Bytes 5-6 Bytes 7-8
140 V+ Language Reference Guide, Rev A

Real-Valued Function DBLB
Double-precision real values have the following special values:

The range for normalized numbers is approximately 2.2–308 to 18307

The main use of this function is to convert a binary floating-point number from an
input data record to a value that can be used internally by V+.

Example

DBLB($CHR(^H3F)+$CHR(^HF0)+$CHR(0)+$CHR(0)
+$CHR(0)+$CHR(0)+$CHR(0)+$CHR(0)) ;Returns 1.0

Related Keywords

ASC (real-valued function)

$DBLB (string function)

FLTB (real-valued function)

$FLTB (string function)

INTB (real-valued function)

TRANSB (real-valued function)

VAL (real-valued function)

exp fraction Description

0 Zero Zero value

0 Nonzero Denormalized number

2047 Zero Signed infinity

2047 Nonzero Not-a-number
V+ Language Reference Guide, Rev A 141

$DBLB String Function
Syntax

$DBLB-$

$DBLB (value)

Function

Return an 8-byte string containing the binary representation of a real value in
double-precision IEEE floating-point format.

Parameter

value Real-valued expression, the value of which is converted to its
IEEE floating-point binary representation.

Details

A real value is converted to its binary representation using the IEEE
double-precision standard floating-point format. This 64-bit value is packed as
eight successive 8-bit characters in a string. See the DBLB real-valued function for
a more detailed description of IEEE floating-point format.

The main use of this function is to convert a double-precision real value to its
binary representation in an output record of a data file.

Example

$DBLB(1.215)

Returns a character string equivalent to:

$CHR(^H3F)+$CHR(^H3F)+$CHR(^H70)+
$CHR(^HA3)+$CHR(^HD7)+$CHR(^H0A)+$CHR(^H3D)+$CHR(^H71)

Related Keywords

$CHR (string function)

$FLTB (string function)

FLTB (real-valued function)

$INTB (string function)

$TRANSB (string function)
142 V+ Language Reference Guide, Rev A

Real-Valued Function DCB
Syntax

DCB-R

DCB (value)

Function

Convert BCD digits into an equivalent integer value.

Usage Considerations

No more than four BCD digits can be converted.

The DCB function is most often used with the BITS real-valued function to decode
input from the digital input signal lines.

Parameter

value Real value interpreted as a binary bit pattern representing up to
four BCD digits.

NOTE: An error will be reported if any digit is not a valid BCD
digit. That is, if a digit is greater than 9.

Example

If external input signals 1001-1008 (8 bits of input) receive two BCD digits from an
external device, then the instruction

input = DCB(BITS(1001, 8))

sets the real variable input equal to the integer equivalent of the BCD input on the
specified signals.

Related Keyword

BCD (real-valued function)
V+ Language Reference Guide, Rev A 143

DECEL.100 System Switch
Syntax

DECEL.100-S

... DECEL.100 [robot_num]

Function

Enable or disable the use of 100 percent as the maximum deceleration for the
ACCEL program instruction.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected.

Details

When DECEL.100 is enabled for the selected robot, the maximum deceleration
percentage defined by the SPEC utility program is ignored, and a maximum
deceleration of 100% is used instead. This maximum is used to limit the value
specified by the ACCEL program instruction. By default, DECEL.100 is disabled
for all robots.

Example

DECEL.100[2] ;Cause ACCEL to use 100% for maximum
;deceleration for robot #2

Related Keywords

ACCEL (program instruction and real-valued function)

SPEED (monitor command and program instruction)
144 V+ Language Reference Guide, Rev A

String Function $DECODE
Syntax

$DECODE-$

$DECODE ($string_var, string_exp , mode)

Function

Extract part of a string as delimited by given break characters.

Usage Considerations

$DECODE modifies the input variable as well as returning a string value.

The test for break characters is always performed without regard for the case of
the characters in the input string.

The break characters are treated as individual characters, independent of the
other characters in the string that defines them.

Parameters

$string_var String variable that contains the string to be scanned. After the
function is processed, this variable will contain the portion of the
original string that was not returned as the function value.

NOTE: This parameter is modified by the function and cannot be
specified as a string constant or expression.

If the program causes the same variable to receive the function value,
the variable will end up containing the value returned by the
function.

string_exp String constant, variable, or expression that defines the
individual break characters, which are to be considered as
separating the substrings of interest in the input string value.
(The order of the characters in this string has no effect on the
function operation.)

mode Optional real value, variable, or expression that controls the
operation performed by the function, as follows:

If the mode is negative or zero, or is omitted, characters up to the
first break character are removed from the input string and
returned as the output of the function.

If the mode is greater than zero, characters up to the first
nonbreak character are removed from the input string and
returned as the output of the function. That is, this case returns
all the leading break characters in the input string.
V+ Language Reference Guide, Rev A 145

$DECODE String Function
Details

This function is used to scan an input string and return the initial substring, as
delimited by any of a group of break characters. After the substring is returned by
the function, it is deleted from the input string.

The string returned (and deleted) can either contain no break characters (mode 0),
or nothing but break characters (mode 1). That is, $DECODE can return (and
delete) all the characters up to the first break character—usually some desired
substring; or the function can return (and delete) all the leading break
characters—which are usually discarded.

By alternating the modes, groups of desired characters can be picked from the
input string (see the first example later).

The modes –2 and –3 copy all nonbreak characters up to the first break characters
plus the first break character. Mode –2 is equivalent to the following instructions:

$s = $DECODE($i,$break,0);Extract up to 1st break character
$s = $s+$MID($i,1,1);Add on 1st break character
$i = $MID($i,2,127);Remove the break character

The following instruction can perform these operations:

$s = $DECODE($i,$break,-2);Extract through 1st break character

Mode –3 is equivalent to mode –2 if a break character is present. However, if no
break character is contained in the input string, mode –3 returns an empty string
and leaves the input string unchanged.

Examples

The instructions below pick off consecutive numbers from the string $input,
assuming that the numbers are separated by some combination of spaces and
commas.

The first instruction within the DO structure sets the variable $temp to the
substring from $input that contains the first number (and removes that substring
from $input). The VAL function is used to convert the numeric string into its
corresponding real value, which is assigned to the next element of the real array
value. The $DECODE function is used a second time to extract the characters that
separate the numbers (the characters found are ignored).
146 V+ Language Reference Guide, Rev A

String Function $DECODE
i = 0 ;Set array index
DO

$temp = $DECODE($input," ,",0) ;Pick off a number string
value[i] = VAL($temp) ;Convert to real value
$temp = $DECODE($input," ,",1) ;Discard spaces and

;commas
i = i+1 ;Advance the array index

UNTIL $input == "" ;Stop when input is empty

If $input contains a sequence of numeric values (as strings) separated by spaces,
commas, or any combination of spaces and commas. That is, for example, the
input string could have the value

$input = "1234. 93465.2, .4358,3458103"

Then the result of executing the above instructions will be that the first four
elements of the value array will have the following values:

value[0] = 1234.0
value[1] = 93465.2
value[2] = 0.4358
value[3] = 3458103.0

Also, the string variable $input will end up containing an empty string ("").

As shown above, use of the $DECODE function normally involves two string
variables: the input variable and the output variable. If you are interested only in
the characters up to the first break character, and want to discard all the characters
that follow, the same variable can be used for both input and output. In the
following instruction, for example, the same variable is used on both sides of the
equal sign because the programmer wants to discard all the white space (that is,
space and tab) characters at the end of the input string. (Note that the break
characters are specified by a string expression consisting of a space character and
a tab character.)

$line = $DECODE($line," "+$CHR(9),0)
;Discard trailing blanks

Related Keywords

$TRUNCATE (string function)

$MID (string function)
V+ Language Reference Guide, Rev A 147

DECOMPOSE Program Instruction
Syntax

DECOMPOSE-I

DECOMPOSE array_name[index] = location

Function

Extract the (real) values of individual components of a location value.

Parameters

array_name Name of the real-valued array that will have its elements
defined.

index Optional integer value(s) that identifies the first array element to
be defined. Zero will be assumed for any omitted index. If a
multiple-dimension array is specified, only the right-most index
will be incremented as the values are assigned.

location Location value that will be decomposed into its component
values. This can be a transformation value or a precision-point
value, and can be defined by a variable or a location-valued
function.

Details

This instruction assigns values to consecutive elements of the named array,
corresponding to the components of the specified location.

If the location is represented as a transformation value, six elements are defined,
corresponding to X, Y, Z, yaw, pitch, and roll.

If the location is represented as a precision-point value, then four, five, or six
elements are defined (depending on the number of robot joints), that corresponds
to the individual joint positions.
148 V+ Language Reference Guide, Rev A

Program Instruction DECOMPOSE
Examples

DECOMPOSE x[] = part

Assigns the components of transformation part to elements 0 to 5 of array x.

DECOMPOSE angles[4] = #pick

Assigns the components of precision point #pick to array element angles[4] and
those that follow it.

Related Keywords

#PPOINT (precision-point function)

TRANS (transformation function)
V+ Language Reference Guide, Rev A 149

$DEFAULT String Function
Syntax

$DEFAULT-$

$DEFAULT ()

Function

Return a string containing the current system default device, unit, and directory
path for disk file access.

Usage Considerations

Parentheses must be included even though the function has no parameters.

Details

The system default device, unit, and directory path can be set by the DEFAULT
monitor command. The $DEFAULT function returns the current default values as
a string. The string contains the portions of the following information that have
been set:

device>disk_unit:directory_path

where:

device is DISK, indicating a local disk drive, or KERMIT, indicating
a serial line using the Kermit protocol.

disk_unit is the disk unit specified to the DEFAULT monitor command.
The colon (:) is omitted if no unit was specified.

directory_path is any input to the DEFAULT command that followed the
device and unit. The directory path is omitted if no
additional input was specified.

Example

The following commands set the default disk specification to DISK>A:\TEST\,
and then display it on the terminal for confirmation:

DEFAULT = D>A:\TEST\
LISTS $DEFAULT()

Related Keyword

DEFAULT (monitor command, see the V+ Operating System Reference
Guide)
150 V+ Language Reference Guide, Rev A

Program Instruction DEFBELT
Syntax

DEFBELT-I

DEFBELT %belt_var = nom_trans, belt_num, vel_avg, scale_fact

Function

Define a belt variable for use with a conveyor tracking robot.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The DEFBELT instruction supports up to six belt encoders, depending on the
hardware configuration.

The BELT switch must be enabled for this instruction to be executed.

DEFBELT cannot be executed while the robot is moving relative to the specified
belt variable.

When a belt variable is initialized using this instruction, its window parameters
are set to allow any location in the working volume of the robot. That is, no belt
window is set. (See the WINDOW instruction.)

When a belt variable is initialized with DEFBELT, error checking is initiated for
the associated belt encoder. This error checking can be turned off by disabling the
BELT system switch or by using the ZERO command to reinitialize the V+ system.

Parameters

%belt_var Name of the belt variable to be defined. (All appearances of belt
variables must be prefixed with the percent character [%].)

nom_trans Transformation value that defines the position and orientation of
the conveyor belt. This can be provided by a transformation
variable, a transformation-valued function, or a compound
transformation.

The X axis of the nominal transformation defines the direction of
travel of the belt. Normally, the belt moves along the direction of
+X. The X-Y plane defined by this transformation is parallel to
the surface of the belt. The (X, Y, Z) position defined by the
nominal transformation defines the approximate center of the
belt with respect to the robot.

belt_num The number of the encoder used for reading the instantaneous
location of the belt. (The V+ system can read up to two belt
V+ Language Reference Guide, Rev A 151

DEFBELT Program Instruction
encoders, numbered 1 and 2.) This can be specified with a
constant, a variable, or an expression.

vel_avg (This parameter is currently ignored, but some value must be
provided.)

scale_fact The calibration constant that relates motion of the conveyor belt
with counts of the encoder mounted on the conveyor. This value
(which can be supplied as a constant, a real variable, or an
expression) will be interpreted as having the units in millimeters
of belt travel per encoder count.

Details

A conveyor belt is modeled by a belt variable. In addition to the parameters to the
DEFBELT instruction, a belt variable contains the following information:

• Window parameters, which define the working range of the robot along the
belt. (Set with the WINDOW instruction.)

• An encoder offset, which is used to adjust the origin of the belt frame of
reference. (Set with the SETBELT instruction.)

Belt variables have the following characteristics:

• Belt variable names must always be preceded by the percent character (%), for
example, %main.belt. Otherwise, the normal rules for variable names apply.

• Belt variable arrays are allowed, for example, %b[x].

• Belt variables can be passed as subroutine parameters just like other
variables.

• Belt variables can be defined only with the DEFBELT instruction—there is no
assignment instruction for them. Thus, the following are not valid
instructions:

%new_belt = %old_belt

SET %new_belt = %old_belt

• Belt variables cannot be stored on a mass-storage device. (Variables used to
define the parameters in a DEFBELT instruction can be stored, however.)

Example

The following instruction will define the belt variable %belt.var. The value of
b.num must be the number of the encoder to be associated with this belt variable
(1 or 2). The variable b.num is also used as an index for arrays of data describing
the position and orientation of the belt, its velocity smoothing, and the encoder
scale factor.
152 V+ Language Reference Guide, Rev A

Program Instruction DEFBELT
DEFBELT %belt.var = belt.nom[b.num], b.num, v.avg[b.num],
belt.sf[b.num]

Related Keywords

BELT (system switch and real-valued function)

BELT.MODE (system parameter)

BSTATUS (real-valued function)

SETBELT (program instruction)

WINDOW (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 153

DEF.DIO Program Instruction
Syntax

DEF.DIO-I

DEF.DIO signal = address, type

Function

Assign third-party digital I/O boards to standard V+ signal numbers, for use by
standard V+ instructions, functions, and monitor commands.

Usage Considerations

This instruction requires the Third-Party Board Support license.

Parameters

signal An integer or real-valued expression representing a V+ signal
number from 17 to 505 for output or from 1017 to 1505 for input.
This is the first signal number of a block of 8 contiguous signals
that is located in a byte at an address on the VMEbus. The signal
numbers must be on an 8-bit boundary (17, 25, 33,...). The
least-significant bit in the byte at the address corresponds to the
lowest signal number.

address An integer or real-valued expression representing the VMEbus
address in the ranges described in Details. (These are the same
ranges as allowed for the IOGET_ and IOPUT_ keywords.)

type An optional integer or real-valued expression representing the
VMEbus address type, like that specified for the IOGET_ and
IOPUT_ keywords:

Details

The VMEbus specification defines three independent address spaces: short, stan-
dard, and extended. Adept does not support the extended address space. The
DEF.DIO instruction can access addresses in the following ranges:

1 VMEbus standard address space (default)

2 VMEbus short address space

Standard 0 to ^H3FFFFF (0 to ^H7FFFFF on nonvision
systems). With a dual vision system, no user
memory is available in the standard space.

Short 0 to ^H7FFF
154 V+ Language Reference Guide, Rev A

Program Instruction DEF.DIO
CAUTION: Adept must first approve all third-party boards used in
Adept controllers. Contact Adept Applications support for details.
Not all boards support the full range of addresses listed above.

After a DEF.DIO instruction has executed successfully, any operation that
references any of the eight signals defined by the instruction will access the
third-party board.

Example

Define input signals 1033 through 1040 to be associated with the third-party
board that is configured to respond to the address ^H3000 in the short address
space:

DEF.DIO 1033 = ^H3000, 2

Related Keywords

BITS (real-valued function)

IO (monitor command, see the V+ Operating System Reference
Guide)

IOGET_ (real-valued functions)

$IOGETS (string function)

IOPUT_ (program instructions)

RESET (program instruction)

RUNSIG (program instruction)

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (program instruction)
V+ Language Reference Guide, Rev A 155

DEFINED Real-Valued Function
Syntax

DEFINED-R

DEFINED (var_name)

Function

Determine whether a variable has been defined.

Parameter

var_name The name of a location, string, or real variable. Both scalar
variables and array variables are permitted. A location variable
can be a transformation, a precision point, or a belt variable.

Details

The value of the specified variable is tested. If the value is defined, the function
returns the value TRUE. Otherwise, the value FALSE is returned.

For array variables, if a specific array element is specified, the single array
element will be tested. If no array element is specified, this function will return a
TRUE value if any element of the array is defined.

NOTE: For nonreal arguments (i.e. strings, locations,
transformations) that are passed in the argument list of a CALL
statement, you can test to see if the variable is defined or not.
However, you cannot assign a value to undefined nonreal
arguments within the CALLed program. If you attempt to assign a
value to an undefined nonreal argument, you will receive an
undefined value error message.

Therefore, when using DEFINED to test for user input, be sure to assign a default
value to the variable before testing it. See the example below.
156 V+ Language Reference Guide, Rev A

Real-Valued Function DEFINED
Examples

.PROGRAM test($s)
AUTO $tmp
$tmp = "default"
IF DEFINED($s) THEN

$tmp = $s
END
TYPE /C3 "The string is: ", $tmp

When the example above is executed with a value:

ex test("ABCD")

the routine returns:

The string is: ABCD

When the example above is executed without a value:

ex test()

the routine returns:

The string is: default

The instruction:

DEFINED(base_part)

returns a value of TRUE if the variable base_part is defined.

The instruction:

DEFINED(corner[])

returns a value of TRUE if any element of the array corner has been defined.

Related Keywords

STATUS (real-valued function)

TESTP (monitor command, see the V+ Operating System Reference
Guide)
V+ Language Reference Guide, Rev A 157

DELAY Program Instruction
Syntax

DELAY-I

DELAY time

Function

Cause robot motion to stop for the specified time.

Usage Considerations

The robot will stop during the delay, but the wait and nulling normally associated
with a motion BREAK do not occur.

Program execution will continue during the delay, up to the next motion
instruction in the program. (V+ system timers can be used to control the timing of
program execution. The DELAY instruction should not be used for that purpose.)

The DELAY instruction is interpreted as a move-to-here motion instruction. (See
below for the consequences of that interpretation.)

The DELAY instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the DELAY
instruction will cause an error.

If the AMOVE instruction has been executed to prepare for motion of an extra
axis, execution of the DELAY instruction will cancel the effect of the AMOVE
instruction.

Parameter

time Real value, variable, or expression that specifies the length of
time, in seconds, that the robot is to pause.

A time value less than 0.016 (16 milliseconds) will result in a
16-millisecond delay.
158 V+ Language Reference Guide, Rev A

Program Instruction DELAY
Details

The DELAY instruction is processed as a robot motion. As a result, the following
consequences occur when a DELAY is executed:

1. Any pending hand actuation takes place during the execution of the DELAY
instruction.

2. Any temporary trajectory switches that have been specified are cleared after
the conclusion of the delay.

3. Any pending configuration change is canceled.

NOTE: When DRY.RUN mode is in effect, DELAY instructions will
not cause any delay.

Examples

DELAY 2.5

Causes all robot motion to stop for 2.5 seconds and any pending hand operation
to occur. Clears any temporary trajectory switches that may be set, and cancels
any pending requests for configuration change.

DELAY pause.1

Stops all robot motion for pause.1 seconds.

Related Keywords

DURATION (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 159

DEPART Program Instruction
Syntax

DEPART-IDEPARTS-I

DEPART distance

DEPARTS distance

Function

Start a robot motion away from the current location.

Usage Considerations

DEPART causes a joint-interpolated motion.

DEPARTS causes a straight-line motion, during which no changes in
configuration are permitted.

These instructions can be executed by any program task so long as the task has
attached a robot. The instructions apply to the robot selected by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Parameter

distance Real-valued expression that specifies the distance (in
millimeters) along the robot tool Z axis between the current
robot location and the desired destination.

A positive distance moves the tool back (toward negative tool-Z)
from the current location; a negative distance moves the tool
forward (toward positive tool Z).

Details

These instructions initiate a robot motion to a new location, which is offset from
the current location by the distance given, measured along the current tool Z axis.
160 V+ Language Reference Guide, Rev A

Program Instruction DEPARTS
Examples

DEPART 80

Moves the robot tool 80 millimeters back from its current location using a
joint-interpolated motion.

DEPARTS 2∗offset

Withdraws the robot tool (2 ∗ offset) millimeters along a straight-line path from its
current location.

Related Keywords

APPRO and APPROS (program instructions)

MOVEF and MOVESF (program instructions)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 161

DEST Transformation Function
Syntax

DEST-T

DEST

Function

Return a transformation value representing the planned destination location for
the current robot motion.

Usage Considerations

The DEST function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the DEST function will
not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

The word dest cannot be used as a program name or variable name.

Details

DEST returns the location a robot was moving to when its motion was
interrupted. This applies for all motion instructions, including:

1. Motions to named locations, such as

MOVE start

MOVES #part[10], 25.40

Note that even though the second instruction references a precision-point
location variable, the DEST function would return a transformation value
during that motion.

2. Motions to locations defined relative to named locations or defined relative to
the current robot location

APPROS drop, 50.00

DEPART 30.00

MOVE SHIFT(HERE BY 50,0,10)

3. Motions to special locations such as

READY
162 V+ Language Reference Guide, Rev A

Transformation Function DEST
The location value returned by the DEST function may not be the same as the
location at which the robot stops if the motion of the robot is interrupted for some
reason. For example, if the RUN/HOLD button on the manual control pendant is
pressed, the robot will stop immediately, but DEST will still return the location
the robot was moving to.

If a motion is not begun because V+ realizes the destination location cannot be
reached (for example, it is too far from the robot), then DEST will not be set to the
goal location.

Example

The DEST function is useful, for example, for continuing a motion that has been
interrupted by a reaction initiated by a REACTI instruction. The subroutine
automatically invoked could contain steps such as the following to process the
interruption and resume the original motion.

SET save = HERE ;Record where the robot is

SET old.dest = DEST ;Record where the robot was going

old.speed = SPEED(3);Record the current motion speed

DEPART 50.0 ;Back away a safe distance

.

.

.

APPRO save, 50.0 ;Return to the original motion path

MOVES save ;...back to where we left

SPEED old.speed ;Restore the original motion speed

MOVES old.dest ;Continue toward original destination

Related Keywords

HERE (transformation function)

#PDEST (precision-point function)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 163

DETACH Program Instruction
Syntax

DETACH-I

DETACH(logical_unit)

Function

Release a specified device from the control of the application program.

Usage Considerations

Detaching the robot causes a BREAK in continuous-path motion.

DETACH automatically forces an FCLOSE if a disk file or graphics window is
open on the specified device.

The robot is automatically attached to task 0 when the EXECUTE monitor
command or program instruction is processed to initiate that task and the
DRY.RUN system switch is disabled. All the other logical units are automatically
detached when program execution begins. (Other events that cause automatic
detachment are listed below.)

Parameter

logical_unit Optional real value, variable, or expression (interpreted as an
integer) that identifies the device to be detached. (See the
ATTACH instruction for a description of logical unit numbers.)

The parentheses can be omitted if the logical unit number is
omitted (causing the robot to be detached).

Details

This instruction releases the specified device from control by the application
program. (No error is generated if the device was not attached.)

Control of the specified device can be returned to the program with the ATTACH
instruction.

When logical_unit is 0 (or is omitted), the program releases control of the
robot. While the robot is detached, robot power can be turned off and on, the
manual control pendant can be used to move the robot, and a different robot can
be selected (if more than one robot is connected to the system controller). A delay
of one system cycle (16 ms) occurs when a robot is detached.
164 V+ Language Reference Guide, Rev A

Program Instruction DETACH
This is useful for applications that require the operator to define where the robot
should be located for certain operations. For such tasks a teaching program can
DETACH the robot and then output directions to the operator on the system
terminal or the manual control pendant. Then the operator can use the manual
control pendant to move the robot to the desired locations. The system terminal or
the manual control can be used for accepting input from the operator (the latter
can be read by using the PENDANT function).

When a disk logical unit is detached, any device that was specified by the
corresponding ATTACH instruction is forgotten. Thus, a subsequent ATTACH
instruction will need to specify the device again if the default device is not
desired.

The following events automatically DETACH all the logical units (except the
robot) from the affected program task:

• Processing of the EXECUTE command and instruction

• Processing of the KILL command and instruction

• Processing of the ZERO command

• Normal completion of program execution

Note, however, that if a program terminates execution abnormally,1 all of its
devices remain attached—except that the terminal and the manual control
pendant are detached. If the task is subsequently resumed, the program
automatically reattaches the terminal and manual control pendant if they
were attached before the termination.

NOTE: It is possible that another program task could have attached
the terminal or manual control pendant in the meantime. That
would result in an error message when the stopped task is restarted.

DETACH ;Release program control of the robot.

DETACH (1) ;Discontinue program control of the
;manual control pendant.

Related Keyword

ATTACH (program instruction)

1 Abnormal termination of program execution refers to any cause other than HALT or STOP
instructions.
V+ Language Reference Guide, Rev A 165

DEVICE Program Instruction
Syntax

DEVICE-I

DEVICE (type, unit , error , p1 , p2 , ...) out[i] , in[j] ,
out_trans , in_trans

Function

Send a command or data to an external device and, optionally, return data back to
the program. (The actual operation performed depends on the device referenced.)

Usage Considerations

The syntax contains optional parameters that apply only to specific device types
and commands.

Parameters

type Real value, variable, or expression (interpreted as an integer)
that indicates the type of device being referenced.

unit Real value, variable, or expression (interpreted as an integer)
that indicates the device unit number. The value must be in the
range 0 to (max –1), where max is the maximum number of
devices of the specified type. The value should be 0 if there is
only one device of the given type.

error Optional real variable that receives a standard system error
number that indicates if this instruction succeeded or failed. If
this parameter is omitted, any device error stops program
execution. If an error variable is specified, the program must
explicitly check it to detect errors.

p1, p2, ... Optional real values, variables, or expressions, the values of
which are sent to the device as part of a command. The number
of parameters specified, and their meanings, depend upon the
particular device type being accessed.

out[] Optional real array that contains data values that are sent to the
device as part of a command. The actual data sent depends upon
the device type and command.

i Optional real value, variable, or expression (interpreted as an
integer) that indicates the first array element to be considered in
the array out[] . Element 0 is accessed first if no index is
specified.
166 V+ Language Reference Guide, Rev A

Program Instruction DEVICE
in[] Optional real array that receives any data values returned from
the device as the result of a command. The actual data returned
depends upon the device type and the command.

j Optional real value, variable, or expression (interpreted as an
integer) that indicates the first array element to be filled in the
array in[] . Element 0 is accessed first if no index is specified.

out_trans Optional transformation variable, function, or compound
transformation that defines a transformation value to be sent to
the device as part of a command.

in_trans Optional transformation variable that receives a data value
returned from the device as the result of a command. The actual
data returned depends upon the device type and the command.

Details

DEVICE is a general-purpose instruction for accessing external devices. For
details and examples see the V+ Language User’s Guide for specific devices.

Related Keywords

DEVICE (real-valued function)

DEVICES (program instruction)

SETDEVICE (program instruction)
V+ Language Reference Guide, Rev A 167

DEVICE Real-Valued Function
Syntax

DEVICE-R

DEVICE (type, unit , error, p1, p2 ,...)

Function

Return a real value from a specified device. The value may be data or status
information, depending upon the device and the parameters.

Usage Considerations

The syntax contains optional parameters that may be useful only for specific
device types and commands.

Parameters

type Real value that indicates the type of device being referenced.

unit Real value that indicates the device unit number. The value must
be in the range 0 to (max –1), where max is the maximum
number of devices of the specified type. The value should be 0 if
there is only one device of the given type.

error Optional real variable that receives a standard system error
number, which indicates if this function succeeded or failed. If
this parameter is omitted, any device error stops program
execution. If error is specified, the program must check it to
detect errors.

p1, p2, ... Optional real values that are sent to the device as part of a
command. The number of values specified and the meanings of
the values depend upon the particular device type.
168 V+ Language Reference Guide, Rev A

Real-Valued Function DEVICE
Details

DEVICE is a general-purpose function for returning data and status information
from external devices. For details and examples see the supplementary
documentation for specific devices.

See the V+ Language User’s Guide for information on use of the DEVICE function
to access external encoders.

The DEVICE instruction is used to configure vision system memory allocation
and frame buffer configuration. See the AdeptVision User’s Guide for details.

Related Keywords

DEVICE (real-valued function)

DEVICES (program instruction)

SETDEVICE (program instruction)
V+ Language Reference Guide, Rev A 169

DEVICES Program Instruction
Syntax

DEVICES-I

DEVICES (type, unit , error, p1, p2 , ...) $out, $in

Function

Send commands or data to an external device and optionally return data. The
actual operation performed depends on the device referenced.

Usage Considerations

The syntax contains optional parameters that may be useful only for specific
device types and commands.

Parameters

type Real value that indicates the type of device being referenced.

unit Real value that indicates the device unit number. The value must
be in the range 0 to (max –1), where max is the maximum
number of devices of the specified type. The value should be 0 if
there is only one device of the given type.

error Optional real variable that receives a standard system error
number that indicates if this instruction succeeded or failed. If
this parameter is omitted, any device error stops program
execution. If error is specified, the program must check it to
detect errors.

p1, p2, ... Optional real values that are sent to the device as part of a
command. The number of values specified and the meanings of
the values depend upon the particular device type.

$out Optional string expression that defines a string to be sent to the
device as part of a command. The actual data sent depends upon
the device type and the command.

$in Optional string variable that receives any data values returned
from a device as the result of a command. The actual data
returned depends upon the device type and the command.
170 V+ Language Reference Guide, Rev A

Program Instruction DEVICES
Details

DEVICES is a general-purpose instruction for accessing external devices. It is
similar to the DEVICE program instruction except that data items may be sent or
received with strings rather than real arrays.

NOTE: Similar to the CALL and CALLS instruction pair, this
instruction is a string-based version of the DEVICE command. Thus,
the name DEVICES can be thought of as device s, rather than
devices.

For details and examples see the supplementary documentation for specific
devices.

Related Keywords

DEVICE (real-valued function)

SETDEVICE (program instruction)
V+ Language Reference Guide, Rev A 171

DISABLE Program Instruction
Syntax

DISABLE-I

DISABLE switch , ..., switch

Function

Turn off one or more system control switches.

Usage Considerations

If a specified switch accepts an index qualifier and the index is zero or omitted
(with or without the brackets), all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned off.

The name can be abbreviated to the minimum length that
uniquely identifies the switch. That is, for example, the
MESSAGES switch can be referred to with ME since there is no
other switch with a name beginning with the letters ME.

Details

System switches control various aspects of the operation of the V+ system,
including some optional subsystems such as vision. The Switch entry in the index
for this document directs you to the detailed descriptions of these switches.

Other system switches are available when options are installed. Refer to the
option documentation for details. For example, the switches associated with the
AdeptVision options are described in the AdeptVision Reference Guide.

When a switch is disabled, or turned off, the feature it controls is no longer
functional or available for use. Turning a switch on with the ENABLE monitor
command or program instruction makes the associated feature functional or
available for use.
172 V+ Language Reference Guide, Rev A

Program Instruction DISABLE
NOTE: The system switches are shared by all the program tasks.
Thus, care should be exercised when multiple tasks are disabling
and enabling switches—otherwise, the switches may not be set
correctly for one or more of the tasks. Disabling the DRY.RUN
switch does not have effect until the next EXECUTE command or
instruction is processed for task #0, an ATTACH instruction is
executed for the robot, or a CALIBRATE command or instruction is
processed.

The SWITCH monitor command or the SWITCH real-valued function can be used
to determine the status of a switch at any time. The SWITCH program instruction
can be used, like the DISABLE instruction, to disable a switch.

Example

DISABLE MESSAGES ;Turns off the MESSAGES switch.

Related Keywords

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 173

DISTANCE Real-Valued Function
Syntax

DISTANCE-R

DISTANCE (location, location)

Function

Determine the distance between the points defined by two location values.

Parameter

location Transformation value that defines one of the points of interest.
This can be a function, a variable, or a compound
transformation.

Details

Returns the distance in millimeters between the points defined by the two
specified locations. The order in which the locations are specified does not matter.
Also, the orientations defined by the locations have no effect on the value
returned.

Example

The statement

x = DISTANCE(HERE, part)

will set the value of the real variable x to be the distance between where the robot
tool point is currently located to the point defined by the transformation part.

Related Keyword

IDENTICAL (real-valued function)
174 V+ Language Reference Guide, Rev A

Program Instruction DO
Syntax

DO-I

DO

Function

Introduce a DO program structure.

Usage Considerations

The DO program structure must be concluded with an UNTIL instruction.

Details

The DO structure provides a way to control the execution of a group of
instructions based on a control expression. The syntax for the DO structure is as
follows:

DO
group_of_steps

UNTIL logical_expression

Processing of the DO structure can be described as follows:

1. The group of instruction steps is executed.

2. The logical expression is evaluated. If the result is FALSE, return to item 1.
Otherwise, proceed to item 3.

3. Program execution continues at the first instruction after the UNTIL step.

When this structure is used, it is assumed that some action occurs within the
group of enclosed instructions that will change the result of the logical expression
from TRUE to FALSE when the structure should be exited. Alternately,
logical_expression could be replaced with an expression that evaluates the state of
a digital I/O signal (see example).

Note that the group of instructions within the DO structure is always executed at
least one time. (The WHILE structure differs in that respect.)

There do not need to be any instructions between the DO and UNTIL instructions.
When there are no such instructions, the UNTIL criterion is continuously
evaluated until it is satisfied, at which time program execution continues with the
instructions following the UNTIL instruction.
V+ Language Reference Guide, Rev A 175

DO Program Instruction
Example

The following example uses a DO structure to control a task that involves moving
parts from one place to another. The sequence assumes that the digital signal line
buffer.full changes to the on state when the parts buffer becomes full. (The robot
should then perform a different sequence of motions.)

.

.
DO

CALL get.part()
CALL put.part()

UNTIL SIG(buffer.full)
.
.

Related Keywords

DO (monitor command, see the V+ Operating System Reference
Guide)

DOS (program instruction)

EXIT (program instruction)

NEXT (program instruction)

UNTIL (program instruction)

WHILE (program instruction)
176 V+ Language Reference Guide, Rev A

Program Instruction DOS
Syntax

DOS-I

DOS string , error

Function

Execute a program instruction defined by a string expression.

Usage Considerations

Before the instruction is executed, the string must be translated from ASCII into
the internal representation used by V+. Thus, the instruction executes much more
slowly than a normal program instruction.

The string cannot define a declaration statement or most of the control structure
statements.

The DOS instruction will be ignored if the string defines a comment line or a
blank line.

Parameters

string String constant, variable, or expression that defines the program
instruction to be executed. The instruction may contain a label
field (which is ignored) and may be followed by a standard
comment field. Leading and trailing spaces and tabs are ignored.

error Optional real variable that receives any parsing or execution
error generated by the instruction. The value is set to 1 if the
instruction succeeds. If the instruction fails, a standard V+ error
number is returned.

If this parameter is omitted and an error occurs, execution of the
program stops and the appropriate error message is displayed.

Details

The DOS (DO String) instruction provides a means for modifying a program on
the fly. That is, the embedded program instruction, which is defined by a string
expression, is executed as though it had been entered in the program as a normal
instruction.

The instruction executes in the context of the current program. Thus, any
subroutine arguments, automatic variable, or local variable can be accessed.
V+ Language Reference Guide, Rev A 177

DOS Program Instruction
If a variable referenced in the instruction is not found in the current program
context, the variable is assumed to be global. Any new variables that are created
by the instruction (for example, in an assignment statement) are created as
globals. Normal variable type checking is performed, and errors are generated if
there are type conflicts.

The single-line control statements GOTO, IF ... GOTO, CALL, and CALLS are
allowed and execute normally. The multiline control structures (for example,
CASE ... END, IF ... ELSE ... END) cannot be executed by the DOS instruction.

Examples

DOS "var = 123"

Causes the variable var to be assigned the value 123. If var is undefined, a new
global variable named var is created. Any errors cause the program to stop
executing.

DOS $ins, status

Causes the instruction contained in the string variable $ins to be executed. If an
error occurs, a V+ error code is placed in the real variable status and execution
continues.

Related Keywords

DO (monitor command, see the V+ Operating System Reference
Guide)

MCS (program instruction)
178 V+ Language Reference Guide, Rev A

Program Instruction DRIVE
Syntax

DRIVE-I

DRIVE joint, change, speed

Function

Move an individual joint of the robot.

Usage Considerations

The DRIVE instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the DRIVE
instruction causes an error.

If the AMOVE instruction has been executed to prepare for motion of an extra
axis, execution of the DRIVE instruction cancels the effect of the AMOVE
instruction.

Parameters

joint Number of the robot joint to be moved. This can be specified by
a constant, a variable, or an expression.

change The change desired in the joint position. This can be specified by
a constant, a variable, or an expression. The value can be positive
or negative.

The value is interpreted in the units used to measure the joint
position. That is, a change for a rotary joint must be the number
of degrees the joint is to move; a change for a linear joint must
specify the number of millimeters to move.

speed The temporary program speed to be used for the motion,
considered as a percentage of the current monitor speed setting.
Again, this can be specified by a constant, a variable, or an
expression.

Details

Operates the single specified robot joint, changing its position by change amount
(in degrees or millimeters). The joint number, joint , can be 1, 2, ..., n, where n is
the number of joints the robot has.
V+ Language Reference Guide, Rev A 179

DRIVE Program Instruction
The speed of the motion is governed by a combination of the speed given in this
instruction and the monitor SPEED setting. That is, the regular program speed
setting is not used. (See the SPEED monitor command and the SPEED program
instruction for explanations of motion speeds.)

The duration setting established by the DURATION instruction also affects the
execution time of the motion.

Example

Change the angle of joint 2 by driving the joint 62.4 degrees in the negative
direction at a speed of 75% of the monitor speed:

DRIVE 2,–62.4,75

Related Keyword

SELECT (program instruction and real-valued function)
180 V+ Language Reference Guide, Rev A

System Switch DRY.RUN
Syntax

DRY.RUN-S

... DRY.RUN

Function

Control whether or not V+ communicates with the robot.

Usage Considerations

The DRY.RUN switch can be enabled or disabled by an application program, but
the new setting of the switch will not take effect until the next time any of the
following events occurs:

1. An EXECUTE command or instruction is processed for task #0

2. The robot is attached with an ATTACH instruction

3. A CALIBRATE command or instruction is processed

Before an application program changes the setting of the DRY.RUN switch, the
program must have the robot detached. Otherwise, an error will result when the
attempt is made to change the switch setting.

Details

This system switch can be used to stop V+ from sending motion commands to the
robot and expecting position information back from the robot. Thus, when the
system is in DRY.RUN mode, application programs can be executed to test for
such things as proper logical flow and correct external communication without
having to worry about the robot running into something. (Also see the TRACE
system switch.)

The manual control pendant can still be used to control the robot while the system
is in DRY.RUN mode.
V+ Language Reference Guide, Rev A 181

DRY.RUN System Switch
The DRY.RUN switch is sampled whenever a robot is attached. (Note that task #0
attempts to attach the robot when program execution begins or is resumed.) The
DRY.RUN setting for a task can be changed during execution by DETACHing the
robot, changing DRY.RUN, and then ATTACHing the robot.

NOTE: Do not allow multiple tasks to change DRY.RUN
simultaneously, since the DRY.RUN state could then be different
from that expected. Your programs should use a software interlock
in this case.

The DRY.RUN switch is initially disabled.

WARNING: Digital and analog I/O is not affected by DRY.RUN, so
external devices driven by analog or digital output instructions will
still operate.

Related Keywords

DISABLE (monitor command, see the V+ Operating System Reference
Guide)

ENABLE (monitor command, see the V+ Operating System Reference
Guide)

SWITCH (monitor command, program instruction, and real-valued
function)
182 V+ Language Reference Guide, Rev A

Program Instruction DURATION
Syntax

DURATION-I

DURATION time ALWAYS

Function

Set the minimum execution time for subsequent robot motions.

Usage Considerations

Unless the ALWAYS parameter is specified, only the next robot motion will be
affected.

DURATION 0 ALWAYS is assumed whenever program execution is initiated and
when a new execution cycle begins.

The DURATION instruction affects the DRIVE instruction but not the DELAY
instruction.

The setting of the monitor SPEED command affects the results of the DURATION
setting.

The DURATION instruction can be executed by any program task so long as the
robot selected by the task is not attached by any other task. The instruction
applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the DURATION
instruction causes an error.

Parameters

time Real-valued expression that specifies the minimum length of
time (in seconds) that subsequent robot motions will take to be
performed (see below).

If the value is zero, robot motions are performed without
consideration of their time duration and use only the applicable
values for SPEED and ACCEL.

ALWAYS Optional keyword that determines how long the new duration
will have an effect.

If ALWAYS is included, the specified duration time applies to all
subsequent robot motions (until the duration setting is changed
by another DURATION instruction). The specified duration
applies only to the next robot motion if ALWAYS is not included.
V+ Language Reference Guide, Rev A 183

DURATION Program Instruction
Details

This instruction sets the minimum execution time for subsequent robot motions.
For any motion, the time specified by the DURATION instruction has no effect if
the duration setting is less than the time computed by the V+ robot-motion
trajectory generator (considering the current motion speed and acceleration
settings). However, if the duration is longer than the time computed by the
trajectory generator, the motion is slowed so that its elapsed time corresponds
approximately to the specified duration.

NOTE: Actual motion times may differ slightly from the duration
setting due to quantization effects and due to acceleration and
deceleration profiling.

The duration instruction does not specify the duration of an entire motion but
instead specifies the minimum time of the constant-velocity segment plus
one-half the acceleration and deceleration segments. In this way, continuous-path
motions (in which individual motions are blended together) get the correct
duration, but a single motion takes longer than the specified duration. In other
words, the time of motion is primarily defined either by the value of DURATION
or SPEED, using whichever value gives the longer time.

This instruction is very useful. Consider, for example, a situation where the value
of a periodic, external signal is employed to continuously correct the path of the
robot while the robot is moving. The DURATION instruction can be used to
match the motion execution time to the sensor sampling rate and processing time.
This ensures that the robot will be kept in motion while new information is being
processed. A sample program of this type is shown later.
184 V+ Language Reference Guide, Rev A

Program Instruction DURATION
Example

The following example reads an external sensor and moves to the computed robot
location. This sequence is repeated 20 times at intervals of 96 milliseconds1
(6/TPS seconds). Note that the motion speed is set to a very large value to make
sure the motion is paced by the duration setting.

DURATION 6/TPS ALWAYS ;Each motion to be 6 ticks long

SPEED 200 ALWAYS ;Motion time determined primarily
;by DURATION, not SPEED

FOR i = 1 TO 20 ;Repeat 20 times...
CALL read.signal(loc) ;Get new step from sensor
MOVE loc ;Move to the location

END

Related Keywords

ACCEL (program instruction)

DELAY (program instruction)

DURATION (real-valued function)

PAYLOAD (program instruction)

SELECT (program instruction and real-valued function)

SPEED (monitor command and program instruction)

1 This assumes the default period (tick) of 16 milliseconds for the V+ trajectory generator.
V+ Language Reference Guide, Rev A 185

DURATION Real-Valued Function
Syntax

DURATION-R

DURATION (select)

Function

Return the current setting of one of the motion DURATION specifications.

Usage Considerations

The DURATION function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, the DURATION function will
not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

Parameter

select Real-valued expression whose value determines which duration
value should be returned (see below).

Details

This function returns the user-specified minimum robot motion duration (in
seconds) corresponding to the select parameter value. (See the description of
the DURATION program instruction for an explanation of the specification of
motion duration times.)

Different select values determine when the duration time returned will apply,
as listed below. (All other values for the select parameter are considered
invalid.)

select DURATION value returned

2 Permanent minimum robot motion duration (set by a
DURATION ... ALWAYS program instruction)

3 Temporary motion duration for the current or last
motion

4 Temporary motion duration to be used for the next
motion
186 V+ Language Reference Guide, Rev A

Real-Valued Function DURATION
Related Keywords

DURATION (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 187

DX Real-Valued Function
Syntax

DX-R

DX (location)

DY-R

DY (location)

DZ-R

DZ (location)

Function

Return a displacement component of a given transformation value.

Parameter

location Transformation value from which a component is desired. This
can be a function, a variable, or a compound transformation.

Details

These three functions return the respective displacement components of the
specified transformation value.

NOTE: The DECOMPOSE instruction can also be used to obtain
the displacement components of a transformation value. If the
rotation components are desired, that instruction must be used.
DECOMPOSE is more efficient if more than one element is needed
and the location is a compound transformation.

Example

Consider a transformation start with the following components:

125, 250, −50, 135, 50, 75

The following function references will then yield the indicated values:

DX(start) ;Returns 125.00

DY(start) ;Returns 250.00

DZ(start) ;Returns −50.00

Related Keywords

DECOMPOSE (program instruction)

RX RY RZ (transformation functions)
188 V+ Language Reference Guide, Rev A

Program Instruction ELSE
Syntax

ELSE-I

ELSE

Function

Separate the alternate group of statements in an IF ... THEN control structure.

Usage Considerations

ELSE can be used only within an IF ... THEN ... ELSE ... END control structure.

Details

Marks the end of a group of statements to be executed if the value of the logical
expression in an IF logical_expr THEN control structure is nonzero, and the start
of the group of statements to be executed if the value is zero.

See IF ... THEN for more details and examples.

Related Keyword

IF... THEN (program instruction)
V+ Language Reference Guide, Rev A 189

ENABLE Program Instruction
Syntax

ENABLE-I

ENABLE switch , ..., switch

Function

Turn on one or more system control switches.

Usage Considerations

The ENABLE monitor command can be used when a program is executing.

If a specified switch accepts an index qualifier and the index is zero or omitted
(with or without the brackets), all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned on.

The name can be abbreviated to the minimum length that
uniquely identifies the switch. That is, for example, the
MESSAGES switch can be referred to with ME, since there is no
other switch with a name beginning with the letters ME.

Details

System switches control various aspects of the operation of the V+ system,
including some optional subsystems such as vision. The Switch entry in the index
for this document directs you to the detailed descriptions of these switches.

Other system switches are available when options are installed. Refer to the
option documentation for details. For example, the switches associated with the
AdeptVision options are described in the AdeptVision Reference Guide.

When a switch is enabled, or turned on, the feature it controls is functional and
available for use. Turning a switch off with the DISABLE monitor command or
program instruction makes the associated feature not functional or available for
use.
190 V+ Language Reference Guide, Rev A

Program Instruction ENABLE
NOTE: The system switches are shared by all the program tasks.
Thus, care should be exercised when multiple tasks are disabling
and enabling switches. Otherwise, the switches may not be set
correctly for one or more of the tasks.

Disabling the DRY.RUN switch does not have effect until the next
EXECUTE command or instruction is processed for task #0, an
ATTACH instruction is executed for the robot, or a CALIBRATE
command or instruction is processed.

The SWITCH monitor command or the SWITCH real-valued function can be used
to determine the status of a switch at any time. The SWITCH program instruction
can be used, like the ENABLE instruction, to set a switch.

Example

ENABLE MESSAGES ;Turns on the MESSAGES switch.

Related Keywords

DISABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 191

$ENCODE String Function
Syntax

$ENCODE-$

$ENCODE (output_specification , output_specification , ...)

Function

Return a string created from output specifications. The string produced is similar
to the output of a TYPE instruction.

Parameter

An output specification can consist of any of the following components (in any
order) separated by commas:

1. A string expression.

2. A real-valued expression, which is evaluated to determine a value to be
displayed.

3. Format-control information, which determines the format of the output
message.

Details

This function makes strings normally produced by the TYPE instruction available
within a program. That is, $ENCODE does not generate any output, but rather
creates a string value.

The following format specifiers can be used to control the display of numeric
values. These settings remain in effect for the remainder of the function parameter
list unless another specifier is used.

For all these specifiers, if a value is too large to be displayed in the given field
width, the field is filled with asterisk characters (∗).

 /D Use the default format, which is equivalent to /G15.8 (see
below), except trailing zeros and all but one leading space are
omitted.

The following format specifications accept a zero as the width field. That causes
the actual field size to vary to fit the value, and causes all leading spaces to be
suppressed. That is useful when a value is displayed within a line of text, or at the
end of a line.

/En.m Format values in scientific notation (for example, –1.234E+2) in
fields n spaces wide with m digits in the fractional parts. (If n is
not 0, its value must be at least five larger than the value of m.)
192 V+ Language Reference Guide, Rev A

String Function $ENCODE
/Fn.m Format values in fixed-point notation (for example, –123.4) in
fields n spaces wide, with m digits in the fractional parts.

/Gn.m Format values in F format with m digits in the fractional parts if
that can be done in fields n spaces wide. Otherwise use /En.m
format.

/Hn Format values as hexadecimal integers in fields n spaces wide.

/In Format values as decimal integers in fields n spaces wide.

/On Format values as octal integers in fields n spaces wide.

The following specifiers can be used to insert special characters in the string:

 /Cn Include the characters carriage return (CR) and line feed (LF) n
times.

If the string resulting from the $ENCODE function is output to the terminal, this
will result in n blank lines if the control specifier is at the beginning or end of the
function parameter list; otherwise n –1 blank lines will result.

/Un Include the characters necessary to move the cursor up n lines if
the resulting string is output to the terminal. (This will work
correctly only if the TERMINAL parameter is correctly set for the
terminal being used.)

/Xn Include n spaces.

/B Include a character that will beep the terminal if the resulting
string is output to the terminal.
V+ Language Reference Guide, Rev A 193

$ENCODE String Function
Example

The program statement:

$output = $output+$ENCODE(/F6.2, count)

adds a formatted representation of the value of count to the string contained in
$output.

The $ENCODE function provides a way of adding format control to the output
from PROMPT instructions. This is shown by the following example, in which the
value of motor is displayed as part of the prompt message to the operator.

PROMPT $ENCODE(/B,"Start motor #",/I0,motor," (Y/N)? "),
$answer

This PROMPT instruction will beep the terminal (/B), and display the following
user prompt when the value of motor is 3:

Start motor #3 (Y/N)?

Related Keyword

TYPE (program instruction)
194 V+ Language Reference Guide, Rev A

Program Instruction END
Syntax

END-I

END

Function

Mark the end of a control structure.

Usage Considerations

Every END instruction must be part of a CASE, FOR, IF, or WHILE control
structure.

Details

Every CASE, FOR, IF, and WHILE control structure must have its end marked by
an END instruction. The V+ editor will display an error message when program
editing is exited if there is not the correct number of END instructions in a
program (that is, if there are too few or too many).

Related Keywords

CASE (program instruction)

FOR (program instruction)

IF ... THEN (program instruction)

WHILE (program instruction)
V+ Language Reference Guide, Rev A 195

.END Program Instruction
Syntax

.END-I

.END

Function

Mark the end of a V+ program.

Usage Considerations

The V+ editors automatically add this line to the end of every program.

Details

Normally, you will not need to concern yourself with the .END step of
programs—it is created automatically by the V+ editors. The only time you will
see this step while working with the V+ system is when you issue a LISTP
monitor command. Then you will see an .END step as the last step of each
program.

The .END is important, however, when a program is created on another computer
for transfer to a V+ system. In that case, the programmer must be sure to include a
line starting with .END at the end of each program (the remainder of the line is
ignored by V+). Programs missing the .END instruction will not load correctly
into the V+ system.

Related Keyword

.PROGRAM (program instruction)
196 V+ Language Reference Guide, Rev A

Real-Valued Function ERROR
Syntax

ERROR-R

ERROR (task_num, select)

Function

Return the error number of a recent error that caused program execution to stop
or caused a REACTE reaction.

Parameters

task_num Real value, variable, or expression (interpreted as an integer)
whose value selects the source of the error code as follows:

–1 Return the number of the most recent error from the program in
which the ERROR function is executed.

0 Return the number of the most recent error from the program
executing as task #0.

>0 Return the number of the most recent error from the program
executing as the corresponding task number.

select Optional real value, variable, or expression (interpreted as an
integer) that selects the error information to be returned. (The
value 0 is assumed if this parameter is omitted.)

0 Return the error number of the most recent program execution
error (excluding I/O errors—see IOSTAT) for the specified
program task.

1 If the most recent error (for the specified program task) had an
error code less than or equal to –1000 (that is, –1000, –1001, etc.),
return the variable portion of the corresponding error message.
The value returned should be interpreted as a 6-bit numeric
value—see below for details. Zero is returned if the error did not
have a variable portion in its message. (Also see select = 3
below.)

2 Return the error number of the most recent error from an MCS
instruction executed by the specified program task.

3 Return the number of the robot associated with the most recent
error for the specified program task. Zero is returned if the error
was not associated with a specific robot. (Also see select = 1.)

4 Return the error code corresponding to any pending RSC errors
for the robot selected by the specified user task.
V+ Language Reference Guide, Rev A 197

ERROR Real-Valued Function
RSC errors may not be valid until 0.1 seconds after a REACTE
routine receives an *E-STOP from robot* (–640) error. The
REACTE routine can take any time-critical action, wait 0.1
seconds, and then use ERROR(task,4) to get a more definitive
error number. If no RSC errors are pending, this function returns
zero.

Details

This function is especially useful in a REACTE subroutine program to determine
why the REACTE was triggered.

NOTE: The ERROR function does not report errors reported by the
IOSTAT function.

Appendix B contains a list of all the V+ error messages and their error numbers.

As noted above, when the select parameter is 1, the value returned by this
function should be interpreted as a 6-bit numeric value. The following program
illustrates how the value should be interpreted.

.PROGRAM error.string(code, vcode, robot, $msg)

; ABSTRACT: Return error message corresponding to
; error code(s).
;
; INPUT PARAMS:
; code Basic error code e.g., from
; ERROR(n) or IOSTAT(lun)
; vcode Variable part of the error
; code [e.g., from ERROR(n,1)].
; robot Number of the robot associated
; with the error [i.e., from
; ERROR(n,3)].
;
; OUTPUT PARAM:
; $msg Corresponding error message may be null

AUTO i, n

$msg = "" ;Assume no error

IF code < 0 THEN ;If there was an error...

$msg = $ERROR(code) ;Get base message string
198 V+ Language Reference Guide, Rev A

Real-Valued Function ERROR
IF (−1100 < code) AND (code <= −1000) THEN
;Bit field

n = 1 ;Initialize bit mask
FOR i = 1 TO 7 ;For each of 7 bits

IF vcode BAND n THEN ;If this bit is set,
$msg = $msg+$ENCODE(i) ;add it to message

END
n = 2*n ;Shift the mask 1 bit

END
END
IF (−1200 < code) AND (code <= −1100) THEN

$msg = $msg+$ENCODE(vcode) ;Add number
END

IF robot AND (SELECT(ROBOT,1) > 1) THEN
;Maybe add

$msg = $msg+" (Robot"+$ENCODE(robot)+")"
;robot number
END

.END

Related Keywords

$ERROR (string-valued function)

IOSTAT (real-valued function)

REACTE (program instruction)
V+ Language Reference Guide, Rev A 199

$ERROR String Function
Syntax

$ERROR-$

$ERROR (error_code)

Function

Return the error message associated with the given error code.

Parameter

error_code Real-valued expression with a negative value, that identifies an
error condition.

Details

All the error codes returned by the IOSTAT function and by the ERROR
real-valued function can be converted into their corresponding V+ error message
strings with this function. (The ERROR real-valued function must be used to
determine the variable portion of the error message for an error code less than or
equal to –1000.)

Appendix B contains a list of all the V+ error messages and their error codes.

Example

The following program segment displays an error message if an I/O error occurs:

READ (5) $input

IF IOSTAT(5) < 0 THEN

TYPE "I/O error during read: ", $ERROR(IOSTAT(5))

HALT

END

Related Keywords

ERROR (real-valued function)

IOSTAT (real-valued function)

REACTE (program instruction)
200 V+ Language Reference Guide, Rev A

Program Instruction ESTOP
Syntax

ESTOP-I

ESTOP

Function

Assert the emergency-stop signal to stop the robot.

Details

This instruction immediately asserts the backplane emergency-stop signal,
provided that a later model SIO module is installed. It immediately deasserts
High Power Enable (HPE) and then proceeds with a normal power-down
sequence.

Related Keywords

BRAKE (program instruction

PANIC (monitor command, see the V+ Operating System Reference
Guide)

STATE (real-valued function)
V+ Language Reference Guide, Rev A 201

EXECUTE Program Instruction
Syntax

EXECUTE-i

EXECUTE/C task_num program(param_list), cycles, step,
priority[i]

Function

Begin execution of a control program.

Usage Considerations

A program cannot already be active as the specified program task.

The priority values are normally used only during experimental tuning of the
system execution tasks.

Parameters

/C Optional qualifier that conditionally attaches the selected robot.
The qualifier has an effect only when starting the execution of
task 0.

task_num Optional real value or expression specifying which program task
is to be activated. (See below for the default. See the V+ Language
User’s Guide for information on tasks.)

program Name of the program to be executed. If the name is omitted, the
last program name specified in an EXECUTE command or
instruction (or PRIME command) for the selected task is used.

WARNING: Entering an EXECUTE instruction with no program
specified can result in unexpected motion of the robot because the
previous program is executed again.

param_list Optional list of constants, variables, or expressions separated by
commas, that must correspond in type and number to the
arguments in the .PROGRAM statement for the program
specified. If no arguments are required by the program, the list is
blank, but the parentheses must be entered.

Program parameters may be omitted as desired, using commas
to skip omitted parameters. No commas are required if
parameters are omitted at the end of the list. Omitted parameters
are passed to the called program as undefined and can be
detected with the DEFINED real-valued function.
202 V+ Language Reference Guide, Rev A

Program Instruction EXECUTE
Automatic variables (and subroutine arguments) cannot be
passed by reference in an EXECUTE instruction. They must be
passed by value (see the description of CALL).

The parameters are evaluated in the context of the new task that
is started (see below).

cycles Optional real value, variable, or expression (interpreted as an
integer) that specifies the number of program execution cycles to
be performed. If omitted, the cycle count is assumed to be 1. For
unlimited cycles, specify any negative value. The maximum loop
count value allowed is 32,767.

step Optional real value, variable, or expression (interpreted as an
integer) that specifies the step at which program execution is to
begin. If omitted, program execution begins at the first
executable statement in the program (that is, after the initial
blank and comment lines and all the AUTO and LOCAL
instructions).

priority[] Optional array of real values (interpreted as integers) that are
used by V+ to override the default execution priority within the
task. The array contains 16 elements, which specify the program
priority in each of 16 one-millisecond time slices. If specified, the
elements must be in the range –1 to 64, inclusive. (See the V+
Language User’s Guide for the details of task scheduling.)

i Optional real value, variable, or expression (interpreted as an
integer) that specifies the index value of the first element.

Details

This command initiates execution of the specified control program. The program
will be executed cycles times, starting at the specified program step. If no
program is specified, the system reexecutes the last program executed by the
selected program task.

Note that EXECUTE can be used as a program instruction as well as a monitor
command. Thus, one control program can initiate execution of other, related
control programs. (After a program initiates execution of another program, the
initiating program can use the STATUS and ERROR real-valued functions to
monitor the status of the other program.)

If the task number is not specified and the system is not in DEBUG mode, the
EXECUTE command accesses task number 0. The current debug task is assumed
if the system is in DEBUG mode. The EXECUTE instruction always accesses task
#0 if the task number is omitted.
V+ Language Reference Guide, Rev A 203

EXECUTE Program Instruction
The optional /C qualifier has an effect only when starting execution of task 0.
When /C is not specified, an EXECUTE instruction for task 0 fails if the robot
cannot be attached; attachment requires that the robot be calibrated and that arm
power be enabled (or that the DRY.RUN switch is enabled). When /C is specified,
an EXECUTE instruction for task 0 attempts to attach the robot but allows
execution to continue without any indication of error if the robot cannot be
attached.

Certain default conditions are assumed whenever program execution is initiated.
They are equivalent to the following program instructions:

DURATION 0 ALWAYS

FINE 100 ALWAYS

LOCK 0

MULTIPLE ALWAYS

NULL ALWAYS

SPEED 100,100 ALWAYS

SELECT ROBOT = 1

Also, the robot configuration is saved for subsequent motions.

An execution cycle is terminated when a STOP instruction is executed, a RETURN
instruction is executed in the top-level program, or the last defined step of the
program is encountered. The value of cycles can range from –32,768 to 32,767.
The program is executed one time if cycles is omitted or has the value 0 or 1.
Any negative value for cycles causes the program to be executed continuously
until a HALT instruction is executed, an error occurs, or the user (or another
program) aborts execution of the program.

NOTE: Each time an execution cycle is initiated, the execution
parameters are reset to their default values. This includes motion
speed, robot configuration, and servo modes. However, the robot
currently selected is not changed.

If step is specified, the program begins execution at that step for the first pass.
Successive cycles always begin at the first executable step of the program.

The priority values override the default execution configuration for the
specified program task. The specified priorities remain in effect only until the next
time an EXECUTE instruction is issued for the program task. The acceptable
values are:
204 V+ Language Reference Guide, Rev A

Program Instruction EXECUTE
–1 do not run in this slice even if no other task is ready to run

0 run in this task only when no other task is ready to run

1-64 run in this task according to the specified priority (64 is the
highest priority; higher priority tasks may lock out lower
priority tasks for the duration of the time slice)

When setting priorities, remember:

1-31 are normal user task priorities

32-62 are used by V+ device drivers and system tasks

63 is used by the trajectory generator. Do not use 63 or 64 unless
you have very short task execution times or jerky robot motions
may result.

The priority values can have a very significant influence on the performance of
the system. Thus they should be specified very carefully. Normally, these
parameters will be used only when experimenting with execution configurations
in preparation for changing the default configuration recorded on the V+ system
file. (See the V+ Language User’s Guide for a discussion of task execution
configuration and for information on how to change the default configuration
permanently.)

All the instruction parameters are evaluated in the context of the new task that is
started. This can lead to unexpected results when the EXECUTE program
instruction is used, and an attempt is made to pass a task-dependent value (for
example, the TASK real-valued function). In such a case, if you want the
task-dependent value to reflect the invoking task, you must assign the
task-dependent value to a variable and pass that variable.
V+ Language Reference Guide, Rev A 205

EXECUTE Program Instruction
Examples

Initiate execution (as task #0) of the program named assembly, with execution to
continue indefinitely (that is, until execution is aborted, a HALT instruction is
executed, or a run-time error occurs):

EXECUTE assembly, –1

Initiate execution, with program task #2, of the program named test. The
parameter values 1 and 2 are passed to the program.

EXECUTE 2 test(1,2)

Initiate execution of the last program executed by program task #0 (or by the
current debug task). No parameters are passed to the program.

EXECUTE

The following program segment shows how an application program can be
initiated from another application program (the ABORT and CYCLE.END
program instructions are used to make sure the specified program task is not
already active):

ABORT 3 ;Abort any program already active

CYCLE.END 3 ;Wait for execution to abort

EXECUTE 3 new.program ;Start up the new program

Related Keywords

ABORT (monitor command and program instruction)

CALL (program instruction)

CYCLE.END (monitor command and program instruction)

KILL (monitor command and program instruction)

PRIME (monitor command)

PROCEED (monitor command)

RETRY (monitor command)

SSTEP (monitor command)

STATUS (monitor command and real-valued function)

XSTEP (monitor command)

See the V+ Operating System Reference Guide for details on monitor commands.
206 V+ Language Reference Guide, Rev A

Program Instruction EXIT
Syntax

EXIT-I

EXIT count

Function

Branch to the statement following the nth nested loop of a control structure.

Usage Considerations

This instruction works with the FOR, WHILE, and DO control structures.

Parameter

count Integer value (expressions and variables are not acceptable)
specifying how many nested structures to exit. Default is 1.

Details

When an EXIT instruction is reached, the control structure is terminated and
execution continues at the first instruction following the outermost control
structure exited.

Example

If input signal 1001 is set, exit one control structure; if 1002 is set, exit three control
structures:

27 FOR i = 1 to 40
28 WHILE ctrl.var DO
29 DO
30 IF SIG(1002) THEN
31 EXIT 3 ;Exit to step 39
32 END
33 IF SIG(1001) THEN
34 EXIT ;Exit to step 37
35 END
36 UNTIL FALSE
37 END
38 END

Related Keywords

DO... UNTIL (program instruction)

FOR (program instruction)

NEXT (program instruction)

WHILE...DO (program instruction)
V+ Language Reference Guide, Rev A 207

FALSE Real-Valued Function
Syntax

FALSE-R

FALSE

Function

Return the value used by V+ to represent a logical false result.

Usage Considerations

The word false cannot be used as a program name or variable name.

Details

This named constant is useful for situations where true and false conditions need
to be specified. The value returned is 0.

Example

The following program loop will execute continuously until the subroutine cycle
returns a FALSE value for the real variable continue:

DO

CALL cycle(continue)

UNTIL continue == FALSE

Related Keywords

OFF (real-valued function)

TRUE (real-valued function)
208 V+ Language Reference Guide, Rev A

Program Instruction FCLOSE
Syntax

FCLOSE-I

FCLOSE (logical_unit)

Function

Close the disk file, graphics window, or graphics icon currently open on the
specified logical unit.

Usage Considerations

No error is generated if a file or graphics window is not open on the logical unit,
although the IOSTAT real-valued function will return an error code.

When a graphics window is closed, the window is not deleted from graphics
memory and its stacking and display status are not changed.

Parameter

logical_unit Real value, variable, or expression (interpreted as an integer)
that identifies the device to be accessed. (See the ATTACH
instruction for a description of logical unit numbers.)

Details

After a program has finished accessing a file that has been opened via an FOPEN_
instruction, the program must close the file by executing an FCLOSE instruction.
FCLOSE frees the file for access by the V+ monitor and other programs. In
addition, for files that have been opened for writing, FCLOSE writes out any data
still buffered by V+ and updates the file directory information. Thus, if this
operation is not performed, the disk file may not actually contain all of the
information written to it.

If a program is finished accessing a graphics window, or needs to reuse its logical
unit number, the window can be closed with this instruction. After a window is
closed, it can be deleted with an FDELETE instruction or it can be opened again
later with an FOPEN instruction. (Note that reopening a window resets all its text
and graphics attributes [for example, color, font ID, character path and
orientation, texture, logical operation, and enabled events], which must be
explicitly reset by the program before attempting output to the window.)

An FCLOSE operation is automatically performed on a logical unit when the unit
is detached, when the program that issued the FOPEN_ completes execution, or
when a KILL of the program task is performed.
V+ Language Reference Guide, Rev A 209

FCLOSE Program Instruction
The IOSTAT real-valued function should be used to check for successful
completion of a close operation. (The error code for File not opened will be
returned if there was no file or window currently open on the specified logical
unit.)

Related Keywords

ATTACH (program instruction)

DETACH (program instruction)

FOPEN (program instruction)

FOPEN_ (program instructions)

IOSTAT (real-valued function)

KILL (monitor command and program instruction)
210 V+ Language Reference Guide, Rev A

Program Instruction FCMND
Syntax

FCMND-I

FCMND (logical_unit, command_code) $out_string , $in_string

Function

Generate a device-specific command to the input/output device specified by the
logical unit.

Usage Considerations

The logical unit referenced must have been previously attached.

As appropriate, the current default device, unit, and directory path are considered
for any disk file specification (see the DEFAULT command).

Parameters

logical_unit Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of logical unit
numbers.)

command_code Real-valued expression that specifies the command to be
executed. (See the explanation of command codes below.)

$out_string String constant, variable, or expression that is transmitted to the
device along with the command code to specify the operation to
be performed.

$in_string Optional string variable. This variable receives any information
returned from the device as a result of the command.

Details

This instruction allows a program to generate device-specific command
sequences. For example, this instruction can be used to send a command to the
disk to delete a file or to rename a file. Since these are maintenance operations,
which are not generally performed by V+ programs, no special-purpose V+
program instructions exist for performing these operations.
V+ Language Reference Guide, Rev A 211

FCMND Program Instruction
Command Codes

At present, the FCMND instruction can be used only in connection with the
storage disks, the USER serial communication ports, and graphics windows. The
command codes listed below are accepted.

6 Rename a file. The $out_string parameter must contain the
new name of the file (including any required disk unit and
directory path specification), followed by a space, followed by
the old file name (which cannot include a disk or directory
specification). Note that the data contained in $out_string is
not the same as that of the argument list of the FRENAME
monitor command. No data is returned in the $in_string
variable.

7 Compress the disk. This command is invalid for local disks.

8 Format the disk. The $out_string parameter must contain
the name of the disk unit to format, followed by any required
qualifiers. The data contained in $out_string must be
identical to that of the argument list of a FORMAT monitor
command. On completion, the $in_string variable will
contain text indicating how many bad blocks were located.

CAUTION: Formatting a disk erases all the information on the
disk.

14 Create a subdirectory. The $out_string parameter must
contain the specification of the subdirectory, including an
optional unit name if the current default disk unit is not to be
accessed. (Refer to the V+Operating System User’s Guide for a
description of subdirectory specifications.)

NOTE: Only the final subdirectory in the specified directory path is
created by this operation. That is, all the intermediate subdirectories
must already exist, and they are not created.

15 Delete a subdirectory. The $out_string parameter must
contain the specification of the subdirectory, including an
optional unit name if the current default disk unit is not to be
accessed. (See the V+Operating System User’s Guide for a
description of subdirectory specifications.)
212 V+ Language Reference Guide, Rev A

Program Instruction FCMND
NOTE: Only the final subdirectory in the specified directory path is
deleted by this operation. That is, all the intermediate subdirectories
must already exist, and they are not deleted.

19 Assert the creation date/time for the file currently open on the
specified logical unit. This command can be issued at any time a
disk file is opened. Once asserted, when the file is closed, the
file's creation date and time are set equal to the specified values
rather than the current date and time. Also, if this command is
issued when the file is closed, V+ does not automatically assert
the not archived bit. The input string must contain date and
time, where

date is a 16-bit integer word representing the date in the
standard compressed format used by the TIME and $TIME
functions.

time is a 16-bit integer word representing the time in the
standard compressed format.

20 Return the number of unused and total number of sectors on a
local disk. The returned string is in the form uuuu/ttttt
where uuuuu is the number of unused sectors and ttttt is the
total number of sectors. A file must be open on the drive (with
prereads disabled). The open file identifies the disk unit.

21 Read the creation date/time for the file currently open on the
specified logical unit. This command can be issued any time
after a file has been opened. Normally, this command returns
the values that are read from the disk directory at the time the
file was opened. However, if an FCMND 19 instruction has been
issued to assert file creation date and time, FCMND 21 returns
the value set by FCMND 19. The string returned by this
command contains date and time (use INTB to extract the
values), where

date is a 16-bit integer word representing the date in the
standard compressed format used by the TIME and $TIME
functions.

time is a 16-bit integer word representing the time in the
standard compressed format.

102 Clear the type-ahead buffer for a serial line, or clear the event
queue for a graphics window. This command, which is
recognized only by the serial communication lines and the
graphics logical units, does not process any arguments.
V+ Language Reference Guide, Rev A 213

FCMND Program Instruction
106 Read modem control flags. The flags are returned as a one-byte
string with the following interpretation:

500 Return information about DDCMP status. (This FCMND is
present in all V+ systems that support DDCMP.) The FCMND
reply string may be parsed using INTB and LNGB functions to
extract the binary data, as described in the following code.
When the instruction

FCMND (lun,500) "", $reply

is executed, the string variable $reply receives packed binary
data regarding the DDCMP line attached on the specified
logical unit. Then the functions shown in Table 2-6 on page 215
can be used to extract the data.

Bit State of:

1 Request to Send (RTS)

2 Data Terminal Ready (DTR)

5 Input Clear to Send (CTS)

6 Input Data Set Ready (DSR)
214 V+ Language Reference Guide, Rev A

Program Instruction FCMND
501 Set DDCMP communication parameters. This command is
recognized only by serial communication lines configured for
use with the DDCMP protocol. See the V+ Language User’s
Guide for the details of this command.

600 Initiate a close connection from the TCP server side for the client
identified by the handle number handle in the instruction
FCMND (lun, 600) $INTB(handle). Note, however, that
close-connection requests are more commonly initiated by the
client side.

601 Initiate a PING command (see the V+ Operating System
Reference Guide for details on the PING monitor command).
The resulting IOSTAT value is either 1, indicating the client was
found on the network, or −562, indicating a network timeout.

With the exception of the CLOSE command, a file cannot be open on the logical
unit when the FCMND is executed.

Table 2-6. INTB and LNGB Functions

Function Notes

INTB($reply,1)
DDCMP network
state (0, 1, or 2)

0 = Line is closed

1 = Line is open but waiting for
remote

2 = Line is active

INTB($reply,3) Not used

LNGB($reply,5) Local media error count

LNGB($reply,9) Local timing error count

LNGB($reply,13) Local format error count

LNGB($reply,17) Remote media error count

LNGB($reply,21) Remote timing error count

LNGB($reply,25) Remote format error count

LNGB($reply,29) Count of blocks sent

LNGB($reply,33) Count of blocks received
V+ Language Reference Guide, Rev A 215

FCMND Program Instruction
Any error in the specification of this instruction (such as attempting to access an
invalid unit) will cause a program error and will halt program execution.
However, errors associated with performing the actual operations (such as device
not ready) do not halt program execution since these errors can occur in the
normal operation of a program. These normal errors can be detected by using the
IOSTAT function after performing the FCMND. In general, it is good practice
always to test whether each FCMND operation completed successfully using
IOSTAT.

Examples

Return modem control bit flags for the serial port attached to logical unit 10:

FCMND (10,106), $temp
flags = ASC($temp)

Format the disk loaded in drive A in double-sided, double-density format and
return the string containing the bad-block count in $bad:

FCMND (5, 8) "A:/Q", $bad

Specify a time-out interval of 2 seconds, with maximums of 20 time-outs and 8
NAK retries.

FCMND (lun, 501) $CHR(2)+$CHR(20)+$CHR(8)

Check to see if a client is on the network.

FCMND (lun, 601) "node_address", $str

Related Keywords

ATTACH (program instruction)

DETACH (program instruction)

FDELETE (monitor command and program instruction)

FDIRECTORY (monitor command

FOPEN_ (program instruction)

FORMAT (monitor command)

FRENAME (monitor command)

IOSTAT (real-valued function)

MCS (program instruction)

See the V+ Operating System Reference Guide for details on monitor commands.
216 V+ Language Reference Guide, Rev A

Program Instruction FDELETE
Syntax

FDELETE-I

FDELETE (logical_unit) object

Function

Delete the specified disk file, the specified graphics window and all its child
windows, or the specified graphics icon.

Usage Considerations

The logical unit number must be attached, but no file or window can be currently
open on that logical unit.

The window cannot be deleted if it (or any of its child windows) is open as any
other logical unit or by any other program task.

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer)
that corresponds to a disk or window logical unit. (See the
ATTACH instruction for a description of logical unit numbers.)

object String constant, variable, or expression specifying the disk file,
graphics window, or graphics icon to delete. The error
∗Nonexistent file∗ will be reported (via IOSTAT) if the specified
object does not exist.

For disk files, the string may contain an optional disk unit and
an optional directory path, and must contain a file name, a
period (.), and a file extension. The current default disk unit and
directory path are considered as appropriate (see the DEFAULT
command).

For graphics windows, the string must fully specify the position
in the window tree of the window to be deleted.

For graphics icons, the string must specify the name of the icon,
followed by /ICON.

Details

If a disk logical unit number is specified, the object parameter is interpreted as
the specification of a disk file to be deleted. If the deletion fails for any reason (for
example, the file does not exist, or the disk is protected), an error will be returned
via the IOSTAT real-valued function.
V+ Language Reference Guide, Rev A 217

FDELETE Program Instruction
NOTE: In order to delete a file from a 3-1/2" diskette, the
write-protect slider must be in the position that covers the hole.

If the logical unit number specified is for a graphics window, the object
parameter is interpreted as the specification of a graphics window or icon to be
deleted. When a window is specified, that window and all of its child windows
are deleted. If any of the window’s children cannot be deleted, the specified
window is not affected and an error is returned (via the IOSTAT real-valued
function). When a window is deleted, it is erased from the display. (A window
must be FCLOSEd before it can be FDELETEd.)

When a graphics logical unit is accessed, a *Protection error* message is
reported (via IOSTAT) if a system window or icon is specified.

NOTE: The DISKCOPY utility may provide a more convenient way
of deleting multiple files.

Examples

Delete the disk file defined by the file specification in the string variable $file:

FDELETE (5) $file

Delete the top-level window named TEST, and all of its child windows. The
logical unit defined by main must be a graphics logical unit:

FDELETE (main) "TEST"

Delete the graphics window named ERROR, which is a child of the top-level
window named VISION:

FDELETE (21) "VISION\ERROR"

Delete the graphics icon named BUTTON:

FDELETE (20) "BUTTON/ICON"

Related Keywords

ATTACH (program instruction)

FCLOSE (program instruction)

FDELETE (monitor command, see the V+ Operating System Reference
Guide)

FOPEN (program instruction)

IOSTAT (real-valued function)
218 V+ Language Reference Guide, Rev A

Program Instruction FEMPTY
Syntax

FEMPTY-I

FEMPTY (logical_unit)

Function

Empty any internal buffers in use for a disk file or a graphics window by writing
the buffers to the file or window if necessary.

Usage Considerations

When accessing a file, the file must be open for random access on the specified
logical unit (see the FOPEN_ instructions).

When accessing a graphics window, this instruction is useful only for a window
that is opened in buffered mode. (That is, the /BUFFERED attribute was specified
in the FOPEN instruction that opened the window.)

Parameter

logical_unit Real value, variable, or expression (interpreted as an integer)
that identifies the device to be accessed. (See the ATTACH
instruction for a description of logical unit numbers.)

Details

During random-access I/O of a disk file, V+ writes data to the disk in blocks of
512 bytes (characters). For efficiency, when a record with a length of less than 512
bytes is written using a WRITE instruction, that data is stored in an internal buffer
and might not actually be written to the disk until a later time.

When a disk logical unit is referenced, the FEMPTY instruction directs V+ to write
its internal buffer contents immediately to the disk file. That is useful, for
example, in applications where data integrity is especially critical (see FOPEN_
for details on defeating buffering).

When a window logical unit is referenced, the FEMPTY instruction forces all
buffered graphics output to be immediately written to the window.

The IOSTAT real-valued function can be used to determine if any error results
from an FEMPTY operation.

Examples

Empty the internal output buffer for logical unit 5 and write it to the disk
immediately:

FEMPTY (5)
V+ Language Reference Guide, Rev A 219

FEMPTY Program Instruction
Empty the internal buffer for graphics logical unit 20 by writing it to the window
immediately:

FEMPTY (20)

Related Keywords

ATTACH (program instruction)

FOPEN (program instruction)

FOPEN_ (program instruction)

GARC (program instruction)

GCHAIN (program instruction)

GCLEAR (program instruction)

GCLIP (program instruction)

GCOPY (program instruction)

GFLOOD (program instruction)

GICON (program instruction)

GLINE (program instruction)

GLINES (program instruction)

GPANEL (program instruction)

GPOINT (program instruction)

GRECTANGLE (program instruction)

GSCAN (program instruction)

GSLIDE (program instruction)

GTYPE (program instruction)

IOSTAT (real-valued function)

WRITE (program instruction)
220 V+ Language Reference Guide, Rev A

Program Instruction FINE
Syntax

FINE-I

FINE tolerance ALWAYS

Function

Enable a high-precision feature of the robot hardware servo.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

If the tolerance parameter is specified, its value becomes the default for any
subsequent FINE instruction executed during the current execution cycle
(regardless of whether ALWAYS is specified).

This is the default state of the V+ system. FINE 100 ALWAYS is assumed
whenever program execution is initiated and when a new execution cycle begins.

The FINE instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the FINE
instruction causes an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the
percentage of the standard fine tolerances that are to be used for
each joint of the robot attached by the current execution task.

ALWAYS Optional qualifier that establishes FINE as the default
condition. That is, FINE will remain in effect continuously until
disabled by a COARSE instruction. If ALWAYS is not specified,
the FINE instruction will apply only to the next robot motion.

Details

Enables the high-precision feature in the robot motion servo system so that only
small errors in the final positions of the robot joints are permitted at the ends of
motions. This produces high-accuracy motions but increases cycle times since the
settling time at the end of each motion is increased.
V+ Language Reference Guide, Rev A 221

FINE Program Instruction
If the tolerance parameter is specified, the new setting takes effect at the start
of the next motion. Also, the value becomes the default for any subsequent FINE
instruction executed during the current execution cycle (regardless of whether or
not ALWAYS is specified). (Changing the FINE tolerance does not affect the
COARSE tolerance.)

If the tolerance parameter is omitted, the most recent setting (for the attached
robot) is used. The default setting is restored to 100 percent when program
execution begins, or a new execution cycle starts (assuming that the robot is
attached to the program).

The actual tolerance achieved when FINE is in effect for an AdeptMotion VME
device is set with the SPEC utility program.

Examples

Enable the high-tolerance feature only for the next motion:

FINE

Enable the high-tolerance feature for the next motion, with the tolerance settings
changed to 50% of the standard tolerance for each joint (that is, a tighter
tolerance):

FINE 50

Enable the high-tolerance feature until it is explicitly disabled:

FINE ALWAYS

Related Keywords

COARSE (program instruction)

CONFIG (real-valued function)

NONULL (program instruction)

NULL (program instruction)

SELECT (program instruction and real-valued function)
222 V+ Language Reference Guide, Rev A

Program Instruction FLIP
Syntax

FLIP-I

FLIP

Function

Request a change in the robot configuration during the next motion so that the
pitch angle of the robot wrist has a negative value.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a flip configuration, this instruction is
ignored by the robot.

The FLIP instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the FLIP
instruction causes an error.

Details

Asserting a FLIP configuration forces the wrist joint to have a positive rotation
(top robot in Figure 2-3 on page 224). Asserting a NOFLIP configuration forces a
wrist joint to have a negative rotation (bottom robot in Figure 2-3). Wrist joints
angles are expressed as ±180°. Remember, robots can change configuration only
during joint-interpolated moves.
V+ Language Reference Guide, Rev A 223

FLIP Program Instruction
Figure 2-3. FLIP/NOFLIP

Related Keywords

CONFIG (real-valued function)

NOFLIP (program instruction)

SELECT (program instruction and real-valued function)

+

–

224 V+ Language Reference Guide, Rev A

Real-Valued Function FLTB
Syntax

FLTB-R

FLTB ($string , first_char)

Function

Return the value of four bytes of a string interpreted as an IEEE single-precision
floating-point number.

Parameters

$string String expression that contains the four bytes to be converted.

first_char Optional real-valued expression that specifies the position of
the first of the four bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first four
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second, third, fourth, and
fifth bytes are extracted. An error is generated if first_char
specifies four bytes that are beyond the end of the input string.

Details

Four sequential bytes of the given string are interpreted as being a
single-precision (32-bit) floating-point number in the IEEE standard format. This
32-bit field is interpreted as follows:

where:

s is the sign bit, s = 0 for positive, s = 1 for negative.

exp is the binary exponent, biased by –127.

fraction is a binary fraction with an implied 1 to the left of the binary
point.

For 0 < exp < 255, the value of a floating-point number is:

−1s ∗ (1.fraction) ∗ 2 exp −127

31 30 23 22 0

s exp fraction

1st Byte 2nd Byte 3rd Byte 4th Byte
V+ Language Reference Guide, Rev A 225

FLTB Real-Valued Function
For exp = 0, the value is zero; for exp = 255, an overflow error exists.

The main use of this function is to convert a binary floating-point number from an
input data record to a value that can be used internally by V+.

Examples

FLTB($CHR(^H3F)+$CHR(^H80)+$CHR(0)+$CHR(0)) ;Returns 1.0

FLTB($CHR(^HC0)+$CHR(^H40)+$CHR(0)+$CHR(0)) ;Returns –3.0

Related Keywords

ASC (real-valued function)

DBLB (real-valued function)

$DBLB (string-function)

$FLTB (string function)

INTB (real-valued function)

TRANSB (real-valued function)

VAL (real-valued function)
226 V+ Language Reference Guide, Rev A

String Function $FLTB
Syntax

$FLTB-$

$FLTB (value)

Function

Return a 4-byte string containing the binary representation of a real value in
single-precision IEEE floating-point format.

Parameter

value Real-valued expression, the value of which is converted to its
IEEE floating-point binary representation.

Details

A real value is converted to its binary representation using the IEEE
single-precision standard floating-point format. This 32-bit value is packed as
four successive 8-bit characters in a string. See the FLTB real-valued function for a
more detailed description of IEEE floating-point format.

The main use of this function is to convert a real value to its binary representation
in an output record of a data file.

Example

$FLTB(1.215)

;Returns a character string equivalent to:

$CHR(^H3F)+$CHR(^H9B)+$CHR(^H85)+$CHR(^H1F)

Related Keywords

$CHR (string function)

DBLB (real-valued function)

$DBLB (string-function)

FLTB (real-valued function)

$INTB (string function)

$TRANSB (string function)
V+ Language Reference Guide, Rev A 227

FOPEN Program Instruction
Syntax

FOPEN-I

FOPEN (logical_unit, mode) attribute_list

Function

Create and open a new graphics window or TCP connection, or open an existing
graphics window for subsequent input or output.

Open a graphics icon for definition.

Usage Considerations

The logical unit must be attached before an open operation will succeed.

When this instruction is executed, any previous settings (for the specified logical
unit) from the following instructions are reset to their default conditions: GCLIP,
GCOLOR, GLOGICAL, and GTEXTURE.

Closing or undisplaying a window does not release the graphics memory used by
that window. The window must be deleted to release that memory. (See the
FDELETE instruction.)

The TCP mode of operation of the FOPEN instruction applies only to Adept
controllers with the AdeptNet option and the license for the AdeptTCP/IP
Protocol Access.

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number to be assigned to the
window or TCP device. (See the ATTACH instruction for a
description of unit numbers.)

mode Optional expression that applies only to TCP logical units and
selects the type of TCP connection:
0 = Client mode, 16 = Server mode.

attribute_list List of string constants, variables, and expressions; real values,
variables, and expressions; and format specifiers used to assign
a name to the window and to define some of the characteristics
of the window.

When opening a TCP connection in server mode, this string
defines the characteristics of the server. When opening a
connection in client mode, the string defines the name of the
server in addition to characteristics of the connection.
228 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
The attribute list (which is processed like an output
specification for the TYPE instruction) is used to compose a
single string that is passed to the window manager or TCP
driver. The string must begin with the name of the window and
can optionally contain keyword attributes that define
characteristics of the window. The string must not exceed 512
characters.1

The attribute list can consist of one or more components
separated by commas. Each component can be expressed in any
of the following ways:

1. A string constant, variable, or expression.

2. A real-valued constant, variable, or expression, which is
evaluated to determine a value to be used in the control string.

3. A format-control specifier, which determines the format of
information in the control string.

Details

There are three basic uses of the FOPEN program instruction:

• Using FOPEN with Windows

• Graphics Memory Allocation

• Using FOPEN with TCP

The following sections describe each of these situations.

Using FOPEN with Windows

The primary use of this instruction is to create a new graphics window or to
establish a link to a window that already exists. The information in the instruction
attribute list identifies the window and defines its characteristics.

After a window is opened, it may be written to by any of the V+ graphics
instructions. In fact, instructions can output to a window even if the window is
not displayed. In that case the output will be seen the next time the window is
displayed.

1 A V+ string literal or string variable cannot exceed 128 characters. In order to create an attribute
list longer than 128 characters you must concatenate multiple strings .
V+ Language Reference Guide, Rev A 229

FOPEN Program Instruction
This instruction can also be used to open a graphics icon for definition in graphics
memory. After an icon is opened, data can be written to it with the WRITE
instruction (see the GICON instruction for details). The /ICON and /ARRAY
attributes, described below, apply to icons.

However, this instruction normally will not be used to define icons. Icons usually
will be defined by using the Adept Icon Editing Utility to create icon images and
store them in data files on disk.1 At runtime your application program will call
the program load.icon to read the data files and define the icons in graphics
memory.

Graphics Memory Allocation

The V+ system has these basic limitations on the number of windows and icons
that may be created:

• Graphics memory space

• The number of open windows allowed by the system

• The number of open icons allowed by the system

Graphics memory space is used by all graphics items including windows, fonts,
and icons. The portion of graphics memory space that is currently available can be
determined with the FREE monitor command or real-valued function. The error
∗Out of graphics memory∗ indicates that graphics memory space is filled.

The FREE monitor command and real-valued function can be used to tell how
many windows are available. The error ∗Too many windows∗ indicates that all
the allocated windows are in use. The maximum number of windows is 250.

The maximum number of icons is 255. The error ∗Too many icons∗ indicates that
all the allocated icon buffers are in use.

Window Name — General Information The first component in the FOPEN
argument string must be the window name specifier. This component determines
the name of a new or existing window to be opened.

Window names follow a convention similar to that used for disk subdirectories.
Like subdirectories, windows can be logically related in tree structures. The
backslash character (\) is used to separate names in the tree structure.

1 The icon editing utility is available with AIM software packages or with the Adept Application
Disk. Contact Adept Applications Dept. at (800) 232-3378.
230 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
The first name in a window-name specification is for the top-level window. That
name must not be preceded by a backslash, but each successive name in the
window-name specification must be preceded by a backslash. For example, the
name Graph could specify a top-level window named Graph. Then, the name
Graph\Dialog would specify a window named Dialog that is a child of the
top-level window Graph.

The same name can be used for more than one window in the tree, except that no
two children of one window can have the same name. (When checking for
uniqueness, the case of letters in the name is ignored.)

Window names follow the same rules as program and variable names. That is,
each name must start with a letter and can contain only letters, numbers, periods,
and underline characters. Letters used in window names can be entered in either
lowercase or uppercase. Window names can have up to 15 characters.

Note that the name for a top-level, closeable window (see the /CLOSEABLE
attribute) is used verbatim in the Adept pull-down menu. Unless a title is
explicitly specified for a window (see the /TITLE attribute for the FSET
instruction), the name specified in the FOPEN instruction is also used verbatim
for the title of the window.

Window Name — Reserved Names There are a few window names that are
restricted. The standard windows listed below are defined by the V+ system.
These windows cannot be deleted by the user, and programs cannot create
top-level windows with the same names.

Name Description

Monitor V+ monitor window

Monitor_n Monitor windows for additional V+ systems
(n = 2 to the number of V+ systems)

Status White bar at the top of the screen

Vision Vision video and graphics window (*)

* The vision window appears only if the vision option is installed.
V+ Language Reference Guide, Rev A 231

FOPEN Program Instruction
If a window has associated control bars, they are accessed as subwindows with
the predefined names listed below.

Attributes — General Information In addition to the window-name
specification, the attribute_list parameter can contain a number of keyword
attributes that define characteristics of the window. These attributes fall into two
groups. The first group, which can appear only in an FOPEN instruction, is
documented below. The second group of attributes can be specified with an
FOPEN instruction or with an FSET instruction—these attributes are documented
with the FSET instruction.

Window attributes can be specified in any order in the attribute list. If an attribute
appears more than once in the same list, the last instance of that attribute
supersedes all previous instances. Each attribute is specified by a string with the
following general form:

/keyword argument_1 ... argument_n

All the attributes consist of a forward slash (/) and a keyword, which is optionally
followed by an argument list. Arguments for an attribute are separated by spaces
(not by commas). Attribute keywords may be specified in lowercase or uppercase
letters, and they can be abbreviated as long as the abbreviation cannot be
confused with another attribute’s.

NOTE: To ensure that programs will be compatible with future
releases of V+, Adept recommends that keywords not be
abbreviated.

Keywords and numeric arguments are entered directly in the attribute list. String
arguments must be delimited with a pair of single-quote characters ('...'). Each
delimited string argument must be separated from the next one by at least one
space. A single-quote character may be specified within a delimited string by
including two consecutive single-quote characters.

Name Description

Horz_scroll_bar Horizontal scroll bar

Menu_bar Pull-down menu bar

Title_bar Title bar

Vert_scroll_bar Vertical scroll bar
232 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
The following examples show how the different types of attributes can be
expressed.

Remember, the argument list for the FOPEN instruction is processed as a single
long string. Extra spaces in the string are ignored, but tab characters are not
allowed. When creating the argument list for an FOPEN instruction, it may be
helpful to think in terms of composing an output line with the TYPE or WRITE
instruction.

Attributes — Default Settings When a new window is created, the
maximum-size attribute must be specified. (That attribute is ignored if it is
specified when an existing window is reopened.) However, most of the window
attributes do not need to be specified—default settings are assumed for attributes
that are not mentioned in the attribute list. Note that the minimum window size
for windows with a title bar is 8 x 8.

Unless otherwise specified, the window is created if it does not already exist, and
the window is opened for read-write access. The /NEW and /WRITEONLY
attributes specify opening modes other than the defaults.

A new window has the following default characteristics:

• It has a title bar.

• It has a menu bar.

• It has horizontal and vertical scroll bars.

• If it is a top-level window, it can be closed with the Close icon.

"/POSITION 400 200" Keyword and two explicit numeric
arguments

"/BACKGROUND", bg.color Keyword and one numeric
argument

"/SHOW_SCROLL" Keyword with no arguments

"/TITLE_BAR 'Erase' 'Exit'" Keyword and two string
arguments
V+ Language Reference Guide, Rev A 233

FOPEN Program Instruction
When a (new or existing) window is opened, it has the following default graphics
state unless the FOPEN instruction includes an overriding attribute specification.

Attributes — Descriptions The window attributes that can be specified with
the FOPEN instruction are described in Table 2-7 on page 235. The following
information is provided for each attribute:

• Keyword that identifies the attribute

Some attributes can be either on or off. For each such attribute there are two
corresponding keywords. The on keyword directly relates to the attribute (for
example, /CLOSEABLE); the off keyword has a NO prefix (for example,
/NOCLOSEABLE).

• Description of the effect of the attribute

For attributes with an on/off character, the on condition is described.

Note that some attributes cannot be changed after a window is created. The
keywords for those attributes are ignored when an existing window is
opened.

• Description of any arguments required for the attribute

• Default setting assumed if the attribute is not specified

NOTE: The window attributes shown in Table 2-7 can be specified
only with an FOPEN instruction. There are additional attributes that
can be specified either with an FOPEN or with an FSET instruction.
Those attributes are documented with the FSET instruction.

Characteristic Setting

Font 1

Character path 0

Character rotation 0

Foreground color Black

Background color Light blue

Texture Transparent

Texture pattern Solid

Logical operation Source

Bit-plane mask All bit planes
234 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
Table 2-7. FOPEN Window Attributes

Attribute: /ARRAY

Explanation:
FOPEN-ARRAY

This keyword is meaningful only when the /ICON or /DEFFONT
keyword is also present (see below). This keyword specifies the
maximum index for the icon being opened for definition on the
specified logical unit or the maximum characters in the font.

Argument: Integer maximum index for the icon or font to be defined (0 - 255; 0
means only one element is available)

Default: /ARRAY 0

Attribute: /BACKGROUND

Explanation:
FOPEN-BACKGROUND

Specifies the window background color for a new window. This
keyword has no effect if the window already exists.

Argument: Color number (0 to 15 for 16-color window; 0 or 1 for 2-color window)

Default: Default: /BACKGROUND 5 (for 16-color window) and
/BACKGROUND 0 (for 2-color window)

Attribute: /BUFFERED

Explanation:
FOPEN-BUFFERED

Indicates that graphics commands are to be buffered up to 512 bytes
rather than being sent individually. The buffer contents are sent to the
window whenever the buffer is filled or when an FEMPTY instruction is
executed. Buffered mode is much more efficient (and faster) when many
graphics commands are sent. Commands within a single buffer are
executed indivisibly, which is useful for animation (erasing old and
drawing new).

Argument: None

Default: Output is not buffered

Attribute: /CLOSEABLE and /NOCLOSEABLE

Explanation:
FOPEN-CLOSEABLEFOPEN-NOCLOSEABLE

Indicates the window can be closed with the close icon if it is a top-level
window. Also, if it is a top-level window, the window name (not title)
will appear in the Adept pull-down menu at the top of the screen. (After
the pull-down becomes full, all subsequent windows created will be
forced to be noncloseable.)

Argument: None

Default: /CLOSEABLE
V+ Language Reference Guide, Rev A 235

FOPEN Program Instruction
Attribute: /COLORS

Explanation:
FOPEN-COLORS

Specifies the number of colors (and therefore the number of bits per
pixel) for a new window. Two-color windows take only one fourth as
much memory as 16-color windows. Windows with 2 colors are always
black and light blue. This keyword has no effect if the window already
exists.

Argument: Number of colors (2 or 16 [values 3 through 15 are considered to be 16;
values less than 2 or greater than 16 are invalid])

Default: /COLORS 16

Attribute: /DEFFONT n

Explanation:
FOPEN-DEFFONT

Indicates that the logical unit is to be opened for defining a font rather
than for accessing a window. (After having been opened for defining a
font, the logical unit must be closed [with an FCLOSE instruction]
before it can be reopened for accessing a window.)

If the font already exists and is non-deletable (e.g., all standard fonts), a
Protection error is returned. If the font already exists and is deleteable,
it is deleted and replaced by the new font. The maximum size of
characters is 255 pixels (/SIZE 255 255).

If the /POSITION keyword is specified, its arguments specify the
position of the reference point of the icon relative to the top left corner
of the icon. The arguments must be in the range 0 to 255; their default
values are both zero.

If the /ARRAY keyword is specified, its argument specifies the
maximum index to be used for an array of characters. The value must be
in the range 0 to 255.

Argument: Integer indicating which font is to be defined

Default: Open a window

Table 2-7. FOPEN Window Attributes (Continued)
236 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
Attribute: /ICON

Explanation:
FOPEN-ICON

Indicates that the logical unit is to be opened for defining an icon rather
than for accessing a window. (After having been opened for defining an
icon, the logical unit must be closed [with an FCLOSE instruction]
before it can be reopened for accessing a window.)

When a logical unit is opened for defining an icon, the name specified
with the FOPEN instruction is used for the name of the icon. If the icon
already exists, the icon size and maximum index specified in the
FOPEN instruction must match the old icon size and maximum index
(see below). System icons may not be redefined.

The /SIZE keyword must be specified if /ICON is specified. The
arguments specified with the /SIZE keyword indicate the size of the
icon. Their values must be in the range 1 to 255 (and they are not
rounded).

If the /POSITION keyword is specified, its arguments specify the
position of the reference point of the icon relative to the top left corner
of the icon. The arguments must be in the range 0 to 255; their default
values are both zero.

If the /ARRAY keyword is specified, its argument specifies the
maximum index to be used for an icon array. The value must be in the
range 0 to 255; the default is zero, indicating only a single icon.

See the GICON instruction for information on how to define the image
of an icon.

Argument: None

Default: Open a window

Attribute: /MAXSIZE

Explanation:
FOPEN-MAXSIZE

Specifies the size of the window when it is created; also specifies the
maximum size the window can be dragged to with the mouse. This
keyword has no effect if the window already exists.

The X value is always rounded up to be an even number. For windows
with a title bar, X and Y values less than 64 are set to 64. For windows
without a title bar, X and Y values less than 8 are set to 8.

Argument: 1. X dimension in pixels (if the value is odd, it is rounded up to an even
number)

2. Y dimension in pixels

Default: None—both arguments must be given

Table 2-7. FOPEN Window Attributes (Continued)
V+ Language Reference Guide, Rev A 237

FOPEN Program Instruction
Attribute: /NEW

Explanation:
FOPEN-NEW

Forces creation of a new window. An error is returned (via IOSTAT) if
the window already exists.

Argument: None

Default: New or existing window is opened

Attribute: /SCROLL_BAR and /NOSCROLL_BAR

Explanation:
FOPEN-SCROLLBARFOPEN-NOSCROLLBAR

Indicates the window is to be created with vertical and horizontal scroll
bars. This keyword has no effect if the window already exists. (Also see
/SHOW_SCROLL.)

Argument: None

Default: /SCROLL_BAR

Attribute: /SHOW_SCROLL and /NOSHOW_SCROLL

Explanation:
FOPEN-SHOWSCROLLFOPEN-NOSHOWCROLL

Indicates the window is to be initially displayed with its scroll bars
showing. This keyword has no effect if the window already exists. (Also
see /SCROLL_BAR.)

Argument: None

Default: /NOSHOW_SCROLL

Attribute: /TITLE_BAR and /NOTITLE_BAR

Explanation:
FOPEN-TITLEBARFOPEN-NOTITLEBAR

Indicates the window is to be created with a title bar.

This keyword has no effect if the window already exists.

Argument: None

Default: /TITLE_BAR

Attribute: /WRITEONLY

Explanation:
FOPEN-WRITEONLY

Indicates window is to be open only for writing (thus, the window will
not have an event queue). A window can be simultaneously opened for
write-only access by more than one program task. Only one window
can have read access at any one time.

Argument: None

Default: Window has read access

Table 2-7. FOPEN Window Attributes (Continued)
238 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
Using FOPEN with TCP

A TCP/IP connection can be opened in either server mode or client mode. In server
mode, one or more clients (depending on the value assigned to /CLIENTS) are
allowed to connect to the server for subsequent communication.

To establish a client-server connection, the client must know the port number for
the server. For this reason, when using the FOPEN instruction for opening a
server connection, the port is explicitly defined using the /LOCAL_PORT
attribute. Note that the server does not need to know the port number used by the
client.

Port numbers 0 through 255 are used by standard TCP application packages. For
example, FTP uses ports 20 and 21. By convention, if you are writing your own
custom protocol, use a port number greater than 255.

Table 2-8 on page 240 shows valid TCP attributes for the FOPEN instruction.
V+ Language Reference Guide, Rev A 239

FOPEN Program Instruction
Examples

The example below opens a new or existing window named My_Graph on the
logical unit identified by the value of lun. If the window is being created, the size
of the window is specified by the variables x.size and y.size; the initial position is
fixed at X=400, Y=200; the background color is defined by the value of
bckgrnd.col; and the scrollbars are to be displayed. Output to the window is to be
buffered. The window will be accessible in read-write mode. (In addition, there
are several other attributes that will have default settings—see the FSET
instruction.)

NOTE: The FOPEN instruction is shown on multiple lines because
of the limited page width. In a V+ program the instruction must be
fully contained on a single line.

FOPEN (lun) "My_Graph", "/MAXSIZE", x.size, y.size,
"/POSITION 400 200 /BACKGROUND", bckgrnd.col,
"/SHOW_SCROLL/BUFFER"

Assuming that x.size is 100, y.size is 150, and bckgrnd.col is 4, the string below
will result when the argument list is processed. (Note that spaces between
attributes are optional, but the spaces between keywords and parameters or those
between parameters are not.)

Table 2-8. FOPEN TCP Attributes

Attribute: /BUFFER_SIZE

Explanation:
FOPEN-BUFFERSIZE

Defines the size of the buffer. If omitted, the buffer size defaults to 1024
bytes.

Attribute: /CLIENTS

Explanation:
FOPEN-CLIENTS

Defines the number of client connections allowable on a server. If
omitted, a single client connection is assumed.

Attribute: /LOCAL_PORT

Explanation:
FOPEN-LOCALPORT

Defines the local port number for the connection. If omitted, a local port
number is automatically assigned.

Attribute: /REMOTE_PORT

Explanation:
FOPEN-REMOTEPORT

Defines the port number of a server to which a client connection is to be
made. This must be provided when establishing a client connection.
240 V+ Language Reference Guide, Rev A

Program Instruction FOPEN
"My_Graph/MAXSIZE 100 150/POSITION 400 200 /BACKGROUND 4
/SHOW_SCROLL/BUFFER"

In this case, the following attribute settings will be used by default:

"/COLORS 16 /CLOSEABLE /SCROLL_BAR /TITLE_BAR"

The following example shows a utility subroutine that is passed the logical unit
number, the window name, a list index, and the desired background color. String
variables are used to refer to alternative lists of window attributes. The status of
the FOPEN operation is returned in the variable error.

.PROGRAM open.window(lun, $name, type, color, error)

AUTO $list[2]

; Define sets of common attributes

$list[1] = "/MAXSIZE 100 100 /NOSCROLL_BAR /BUFFER"
$list[2] = "/MAXSIZE 300 200 /SCROLL_BAR /SHOW_SCROLL

/BUFFER"

; Open the window

ATTACH (lun, 4) "GRAPHICS"
FOPEN (lun) $name, $list[type], "/BACKGROUND", color

error = IOSTAT(lun) ;Return error status

RETURN

Set up a TCP server with local port #260 to accept 5 client connections, with a
buffer size of 1024 bytes:

FOPEN (lun, 16) "/LOCAL_PORT 260 /CLIENTS 5 /BUFFER_SIZE
1024"

Set up a TCP client connection that connects to port number 260 on the server
called server1 , and allocate a buffer size of 1024 bytes:

FOPEN (lun, 0) "server1 /REMOTE_PORT 260 /BUFFER_SIZE 1024"
V+ Language Reference Guide, Rev A 241

FOPEN Program Instruction
Related Keywords

ATTACH (program instruction)

DETACH (program instruction)

FCLOSE (program instruction)

FDELETE (program instruction)

FEMPTY (program instruction)

FOPEN_ (program instruction)

FSET (program instruction)

IOSTAT (real-valued function)

KILL (monitor command and program instruction)
242 V+ Language Reference Guide, Rev A

Program Instruction FOPEN_
Syntax

FOPENR-IFOPENW-IFOPENA-IFOPEND-I

FOPEN_ (lun , record_len, mode) file_spec

Function

Open a disk file for read-only, read-write, read-write-append, or read-directory,
respectively, as indicated by the last letter of the instruction name.

Usage Considerations

The forms of FOPEN_ are:

• FOPENA

• FOPEND

• FOPENR

• FOPENW

See the Details section for descriptions of each instruction.

A logical unit must be attached before an open operation will succeed.

Each program task can have up to four disk files open at one time (one on each of
the disk logical units). However, no more than 15 disk files can be open by the
entire system at any time. That includes files opened by all of the program tasks
and by the system monitor (for example, for an FCOPY command). (The error
Device not ready results if an attempt is made to open a 16th file.)

Parameters

lun Real-valued expression defining the logical unit number of the
disk device to be accessed. (See the ATTACH instruction for a
description of unit numbers.)

record_len Optional real-valued expression defining the length of records
to be read and written.

If the record length is omitted or is 0, variable-length records
will be processed. In this case, random access of records cannot
be done.

If the record length is nonzero, it specifies the length (in
characters) of fixed-length records to be processed. Random
access is allowed with fixed-length records.

mode Optional real-valued expression defining how read access is to
be done. The value specified is interpreted as a sequence of bit
V+ Language Reference Guide, Rev A 243

FOPEN_ Program Instruction
flags as detailed below. (All bits are assumed to be clear if no
mode value is specified.)

Bit 1 (LSB) Disable prereads (mask value = 1)

If this bit is clear, V+ will read a record as soon as the file is
opened (a preread) and after each READ instruction in
anticipation of subsequent READ requests. If this bit is set, no
such prereads will be performed.

Bit 2 Enable random access (mask value = 2)

If this bit is clear, the file will be accessed sequentially. That is,
records will be read or written in the order they occur in the file.

If this bit is set, the file will be accessed using random access
(which is allowed only for disk files with fixed-length records).
In random-access mode, the record-number parameter in the
READ or WRITE instruction specifies which record will be
accessed.

Bit 4 Force disk write (mask value = 8)

If set for a disk file being opened for write access, the physical
disk will be written every time a record is written. In addition,
the directory or file allocation information is updated with each
write. This mode is equivalent to (but faster than) closing the
file after every write. It is much slower than normal buffered
mode, but it guarantees that information that is written will not
be lost due to a system crash or power failure. This mode is
intended primarily for use with log files that are left opened
over an extended period of time and intermittently updated.
For these types of files, the additional (significant) overhead of
this mode is not as important as the benefit.

file_spec String constant, variable, or expression specifying the file to be
opened. The string may contain an optional disk unit and an
optional directory path, and must contain a file name, a period
(.), and a file extension. (For FOPEND, the file name and
extension are optional, and both can contain wildcard
characters—see below.)

The current default disk unit and directory path are considered
as appropriate (see the V+Operating System User’s Guide).
244 V+ Language Reference Guide, Rev A

Program Instruction FOPEN_
The file specification may not include a physical device (for
example, KERMIT>). If that component is needed, it must be
specified when the logical unit is attached.

Details

This instruction opens a disk file so that input/output (I/O) operations can be
performed. When the I/O operations are complete, the file should be closed using
an FCLOSE or DETACH instruction.

FOPENA opens a file for read-write-append access. If the specified file
does not already exist, the file will be created.

If the file already exists, no error will occur, and the file position
will be set to the end of the file. Then write operations will
append to the existing file.

FOPEND opens a disk directory for reading. The file name and extension
in the file_spec parameter are used to prepare a file name
template for use when read operations are later performed.
Those read operations will return only records from the disk
directory file that match the file name template. Any attempt to
write to the directory file will cause an error. (See the V+
Language User’s Guide for information on the format of
directory records.)

The file name and extension can include wildcard characters
(asterisks, *). A wildcard character within a file name or
extension indicates that any character should be accepted in that
position. A wildcard character at the end of a file name or
extension indicates that any trailing characters are acceptable. A
wildcard character in place of a file name (or extension)
indicates that any name (or extension) is acceptable. Omission
of the file name, the period, and the file extension is equivalent
to specifying *.*. Omission of the period and file extension is
equivalent to specifying a wildcard extension.

The FOPEND instruction cannot access the KERMIT device.

FOPENR opens a file for read-only access. If the file does not already
exist, an error will occur. Any attempt to write to the file will
cause an error.

FOPENW opens a file for read-write access. If the file already exists, an
error will occur.
V+ Language Reference Guide, Rev A 245

FOPEN_ Program Instruction
Any error in the specification of this instruction (such as attempting to access an
invalid unit) will cause a program error and will halt program execution.
However, errors associated with performing the actual operations (such as device
not ready) do not halt program execution since these errors can occur in the
normal operation of a program. These normal errors can be detected by using the
IOSTAT function.

Example

FOPENR (5) "data.dat"

Open the file named data.dat on the default device for read-only access with
variable-length records (record length omitted). Since the mode parameter is
omitted, prereads will occur and the records will be accessed sequentially (which
is required for variable-length records).

FOPENW (5, 32, 3) "A:x.d"

Open the file named x.d on the device A for read-write access using fixed-length
records of 32 characters each. The mode value 3 has both bits 1 and 2 set; thus,
prereads are to be disabled and random access is to be used.

FOPEND (5) "*.dat"

Open the current default directory to find all the files with the extension dat.

Related Keywords

ATTACH (program instruction)

DETACH (program instruction)

FCLOSE (program instruction)

FOPEN (program instruction)

IOSTAT (real-valued function)

KILL (monitor command and program instruction)
246 V+ Language Reference Guide, Rev A

Program Instruction FOR
Syntax

FOR-I

FOR loop_var = initial TO final STEP increment

group_of_steps

END

Function

Execute a group of program instructions a certain number of times.

Usage Considerations

An END instruction must be included in a program to match every FOR.

Parameters

loop_var Real valued variable that is initialized when the FOR instruction
is executed, and is incremented each time the loop is executed
(cannot be a specified value or expression).

initial Real value that determines the value of the loop variable the
first time the loop is executed.

final Real value that establishes the value to be compared to the loop
variable to determine when the loop should be terminated.

increment Optional real-value that establishes the value to be added to the
loop variable every time the loop is executed. If omitted, the
increment defaults to one, and the keyword STEP may also be
omitted.

Details

The instructions between the FOR statement and the matching END statement are
executed repeatedly, and loop_var is changed each time by the value of
increment .

The processing of this structure is as follows:

1. When the FOR statement is first entered, set loop_var to the initial
value.

2. Determine the values of the increment and final parameters.
V+ Language Reference Guide, Rev A 247

FOR Program Instruction
3. Compare the value of final to the value of loop_var :

a. If increment is positive and loop_var is greater than final ,
skip to item 7 below.

b. If increment is negative and loop_var is less than (that is, more
negative than) final , skip to item 7 below.

4. Execute the group of instructions following the FOR statement.

5. When the END step is reached, add the value of increment to the loop
variable.

6. Go back to item 3 above.

7. Continue program execution at the first instruction after the END statement.
loop_var retains the value it had at the time of the test in item 3 above.

Note that the group of instructions in the FOR structure may not be executed at all
if the test in item 3 fails the first time.

The values of initial , increment , and final when the FOR statement is first
executed determine how many times the group of instructions will be executed.
Any changes to the values of these parameters within the FOR loop will have no
effect on the processing of the FOR structure.

Changes to the loop variable within the loop will affect the operation of the loop
and should normally not be done.

NOTE: If initial , final , or increment are not integer values,
rounding in the floating point computations may cause the loop to
be executed more or fewer timer than expected.

Example

The following example sets all elements of a 10x10 array to 0:

FOR i = 1 TO 10
FOR j = 1 TO 10

array[i,j] = 0
END

END

Related Keywords

DO ... UNTIL (program instructions)

EXIT (program instruction)

NEXT (program instruction)

WHILE ... DO (program instruction)
248 V+ Language Reference Guide, Rev A

Program Instruction FORCE._
Syntax

FORCE.FRAME-IFORCE.MODE-IFORCE.OFFSET-IFORCE.READ-I

FORCE._

Function

AdeptForce option status and control instructions.

Usage Considerations

The forms of FORCE._ are:

FORCE.FRAME Set transformation for force reference frame

FORCE.MODE Set and control force operating modes

FORCE.OFFSET Set temporary or permanent force offset

FORCE.READ Return current force reading

Details

These instructions are part of the AdeptForce VME option.

See the AdeptForce VME User’s Guide for full syntax and details.

Related Keywords

SELECT (real-valued function)

LATCH (transformation function)

LATCHED (real-valued function)

#PLATCH (precision-point function)
V+ Language Reference Guide, Rev A 249

FRACT Real-Valued Function
Syntax

FRACT-R

FRACT (value)

Function

Return the fractional part of the argument.

Parameter

value Real-valued expression whose fractional part is returned by this
function.

Details

The fractional part of a real value is the portion to the right of the decimal point
(when the value is written without the use of scientific notation).

The value returned has the same sign as the function argument.

Examples

FRACT(0.123) ;Returns 0.123

FRACT(–5.462) ;Returns –0.462

FRACT(1.3125E+2) ;Returns 0.25 (1.3125E+2 = 131.25)

Related Keyword

INT (real-valued function)
250 V+ Language Reference Guide, Rev A

Transformation Function FRAME
Syntax

FRAME-T

FRAME (location_1, location_2, location_3, location_4)

Function

Return a transformation value defined by four positions.

Parameters

location_1 Transformation, compound transformation, or a
transformation-valued function whose position is used to
define the X axis of the computed frame.

location_2 Transformation, compound transformation, or a
transformation-valued function whose position is used to
define the X axis of the computed frame.

location_3 Transformation, compound transformation, or a
transformation-valued function whose position is used to
define the Y axis of the computed frame.

location_4 Transformation, compound transformation, or a
transformation-valued function whose position is returned as
the position of the computed frame transformation.

Details

While the robot can be used to define an X, Y, Z position very accurately, it is often
difficult to define precisely an orientation. For applications such as palletizing, the
FRAME function is very useful for accurately defining a base transformation
whose position and orientation are determined by four positions. This function
returns a transformation value that is computed as follows:

1. Its origin is at the point defined by location_4 .

2. Its positive X axis is parallel to the line passing through the points defined by
location_1 and location_2 , in the direction from location_1
to location_2 .

3. Its X-Y plane is parallel to the plane that contains the points defined by
 location_1 , location_2 , and location_3 .

4. Its positive Y direction is from the computed X axes (as defined above), toward
the point defined by location_3 .
V+ Language Reference Guide, Rev A 251

FRAME Transformation Function
Example

The following instruction defines the transformation base.frame to have the same
X, Y, Z position as origin, its X axis parallel to the line from center to x, and its Y
axis approximately in the same direction as the line from center to y.

SET base.frame = FRAME(center, x, y, origin)

Related Keyword

TRANS (transformation function)
252 V+ Language Reference Guide, Rev A

Real-Valued Function FREE
Syntax

FREE-R

FREE (memory, select)

Function

Return the amount of unused free memory storage space.

Parameters

memory Optional real value, variable, or expression (interpreted as an
integer) that specifies which portion of system memory is to be
examined, as shown below. The value 0 is assumed if the
parameter is omitted.

select Optional real value, variable, or expression (interpreted as an
integer) that specifies what information about the memory is to
be returned, as shown below. The value 0 is assumed if the
parameter is omitted.

NOTE: If both parameters are omitted, the parentheses must still be
included.

memory Memory examined

0 Program memory

1 Graphics memory

2 Vision memory
V+ Language Reference Guide, Rev A 253

FREE Real-Valued Function
Details

This function returns the information displayed by the FREE command. Unlike
the FREE command, however, this function returns only one value, as requested
with the parameters.

As shown above, the memory parameter specifies which portion of system
memory is to be examined. The select parameter specifies which item of
information is to be returned for that portion of memory, as follows:

If the controller does not have a graphics system processor, this function always
returns zero when the memory parameter is 1. If the controller does not include
the optional AdeptVision system, the function always returns zero when the
memory parameter is 2.

Related Keyword

FREE (monitor command, see the V+ Operating System Reference
Guide)

select Information returned

0 Percentage of memory available

1 Available memory, in kilobytes (1024 bytes)

2 Number of segments in program memory (memory =
0)

Number of free windows (memory = 1)

% of vision memory used for models (memory = 2)
254 V+ Language Reference Guide, Rev A

Program Instruction FSEEK
Syntax

FSEEK-I

FSEEK (logical_unit , record_number)

Function

Position a file open for random access and initiate a read operation on the
specified record.

Usage Considerations

A file must be open for random access on the specified logical unit (see the
FOPEN_ instruction).

For efficiency in most applications, the file should be opened in no preread mode.

Parameters

logical_unit Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_number Optional real-valued expression that specifies the record to read
for file-oriented devices opened in random-access mode. If
omitted, the record following the one last read is assumed.

Details

When a file is open for random access, system performance can be improved by
overlapping the time required for disk file access with processing of the current
data. By using the FSEEK instruction, an application program can initiate a disk
seek and possible read operation immediately after a READ instruction is
processed but before processing the data.

Any error in the specification of this instruction (such as referencing an invalid
unit) will cause a program error and will halt program execution. However, errors
associated with performing the actual seek operation (such as end of file or device
not ready) will not halt program execution since these errors may occur in the
normal operation of a program. These normal errors can be detected by using the
IOSTAT function after performing the subsequent READ operation. In general, it
is good practice always to test whether each file operation completed successfully
by testing the value from IOSTAT.
V+ Language Reference Guide, Rev A 255

FSEEK Program Instruction
Example

Seek record number 130 in the file open on logical unit 5:

FSEEK (5, 130)

Related Keywords

ATTACH (program instruction)

FOPEN_ (program instruction)

IOSTAT (real-valued function)

READ (program instruction)
256 V+ Language Reference Guide, Rev A

Program Instruction FSET
Syntax

FSET-I

FSET (logical_unit) attribute_list

Function

Set or modify attributes of a graphics window, serial line, or network device
related to AdeptNet.

Usage Considerations

If a window has been referenced, it must have been opened already with an
FOPEN instruction. If a serial line is referenced, it must have been attached
already with an ATTACH instruction.

The use of this instruction with NFS or TCP network devices applies only to
systems fitted with the AdeptNet option and with the appropriate license(s).

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

attribute_list List of string constants, variables, and expressions; real values,
variables, and expressions; and format specifiers used to define
the characteristics of the window. See the description of the
FOPEN instruction for detailed information on this parameter.

Details

Using FSET with Windows

This instruction sets attributes for a window that already exists and is already
open for access.

NOTE: No interlocks exist to prevent multiple program tasks from
changing the attributes of a window.

The argument list for this instruction has exactly the same format as that for the
FOPEN instruction, except that no window name is included for this instruction.
Refer to the description of the FOPEN instruction for information on how
window attributes are specified.
V+ Language Reference Guide, Rev A 257

FSET Program Instruction
The window attributes described below can be specified with either the FSET or
FOPEN instructions (unless noted otherwise). For some attributes, after the
attribute has been specified, its effect may be modified later in one of the
following ways:

• The following keywords set attributes that can be changed only by another
FSET instruction.

• The following keywords set attributes that can be changed by another FSET
instruction or by pointer device activity.

• The following keywords are related to the pull-down menu and do not
actually remain as attributes of the window.

This information is provided for each attribute described in Table 2-9:

• Keyword that identifies the attribute

Some attributes can be either on or off. For each such attribute there are two,
corresponding keywords. The on keyword directly relates to the attribute (for
example, /DISPLAY); the off keyword has a NO prefix (for example,
/NODISPLAY).

/BORDER /LUT /SPECIAL

/EVENT /MARGINS /TERMINAL

/FONT /MENU /UPDATE

/FONT_HDR /CURSOR /V_ARROWINC

/H_ARROWINC /NOUPDATE /V_RANGE

/H_RANGE /POINTER

/ABS_POSITION /NODISPLAY /SIZE

/DISPLAY /POSITION /STACK

/H_HANDLE /SELECT /V_HANDLE

/H_SCROLL /SHOW /V_SCROLL

/IGNORE /PULLDOWN
258 V+ Language Reference Guide, Rev A

Program Instruction FSET
• Description of the effect of the attribute

For attributes with an on/off character, the on condition is described.

• Description of any arguments required for the attribute

• Default attribute setting

Table 2-9. FSET Graphics Window Attributes

Attribute: /ABS_POSITION

Explanation:
FSET-ABS_POSITION

Position the window at an absolute location on the screen rather than at
a location relative to the parent window.

Arguments: The X and Y offsets from the upper left corner of the monitor.

Default: None

Attribute: /BORDER

Explanation:
FSET-BORDER

Enable a border around all or part of the window. The border is a line
(one pixel wide) inside the window boundary, and it will obscure
anything in that area. The border is always drawn with color 1 (black).

Arguments: One or more of the following keywords.

• ALL = Display all borders

• NONE= Display no borders

• TOP = Display top border

• NOTOP = Suppress top border

• BOTTOM = Display bottom border

• NOBOTTOM = Suppress bottom border

• LEFT = Display left border

• NOLEFT = Suppress left border

• RIGHT = Display right border

• NORIGHT = Suppress right border

Default: /BORDER ALL

Attribute: /CURSOR

Explanation:
FSET-CURSOR

Set the mouse cursor to a loaded icon.
V+ Language Reference Guide, Rev A 259

FSET Program Instruction
Arguments: The index of the icon element to use, followed by the name of the icon
(in single quotes)

Default: None

Attribute: /DISPLAY and /NODISPLAY

Explanation:
FSET-DISPLAYFSET-NODISPLAY

Display the window. Top-level windows that are not displayed may be
displayed by selecting their name from the Adept pull-down menu at
the top of the screen.

Arguments: None

Default: /DISPLAY

Attribute: /EVENT

Explanation:
FSET-EVENT

Enables or disables event processing for the window. If you want to
receive events, you must explicitly use this attribute with FSET or
FOPEN each time you open a window. The details of event processing,
and descriptions of the events that can be specified with this keyword,
are described with the GETEVENT instruction. If the window is
opened for write-only access (see the /WRITEONLY attribute), this
keyword causes the error File already opened.

Arguments: One or more keywords (see GETEVENT)

Default: /EVENT NONE

Attribute: /EVENT CONNECT

Explanation:
FSET-EVENT_CONNECT

Enables or disables connect and disconnect event notification. If the
event value returned is 20, then you are connected to the PC. If the
event value returned is 21, then you are disconnected from the PC.

Arguments: None

Default: None

Table 2-9. FSET Graphics Window Attributes (Continued)
260 V+ Language Reference Guide, Rev A

Program Instruction FSET
Attribute: /FONT

Explanation:
FSET-FONT

Selects a character font to be used for all text output in the window,
except for output from the GTYPE instruction. The new font will take
effect immediately, with the following effect on the placement of the
next character output to the window: (1) The new character cell will
have its left edge at the same pixel column as before the font change. (2)
Its baseline will remain at the same pixel row. (3) If the top of the
character cell extends above the text top margin, the character position
will be bumped down so that no part of the cell is outside the text
margins. (4) A similar rule applies if the right edge of the character cell
extends beyond the text right margin. Font number 1 is the standard
font—it has character cells 8 pixels wide and 15 pixels high; there are 3
pixels below the baseline; and uppercase letters are 9 pixels high.

Arguments: Font number (the value must be greater than or equal to one)

Default: /FONT 1

Attribute: /FONT_HDR

Explanation:
FSET-FONT_HDR

Specify the font number to use for the title, menu bars, and pull-down
menus of the window. (Changes the title bar immediately, changes the
menu bars at the next FSET /MENU... instruction.)

Arguments: Font number

Default: /FONT 1

Attribute: /H_ARROWINC

Explanation:
FSET-H_ARROWWINC

Sets the change in the position of the scroll handle in the horizontal
scroll bar that will be caused by clicking on the arrow buttons in the
horizontal scroll bar. (This keyword is valid only when the event
GRAB_H_SCROLL is enabled [see the GETEVENT instruction].)

Arguments: Number of units (see /H_RANGE) to move the handle for each click on
an arrow button (the value must be greater than or equal to zero)

Default: Pixel width of the current font cell

Attribute: /H_HANDLE

Explanation:
FSET-H_HANDLE

Sets the displayed position of the scroll handle in the horizontal scroll
bar. (This keyword is valid only when the event GRAB_H_SCROLL is
enabled [see GETEVENT].)

Arguments: Relative position along bar (note that this is not a pixel count; 0 =
left-most end, right-most end may be set with /H_RANGE)

Table 2-9. FSET Graphics Window Attributes (Continued)
V+ Language Reference Guide, Rev A 261

FSET Program Instruction
Default: Current scroll position

Attribute: /H_RANGE

Explanation:
FSET-H_RANGE

Sets the value of the right-most position of the scroll handle in the
horizontal scroll bar. (This keyword is valid only when the event
GRAB_H_SCROLL is enabled [see GETEVENT].)

Arguments: Value associated with the right-most position of the scroll handle (value
must be greater than or equal to 0; if n handle positions are desired, use
the value n−1)

Default: Total number of pixels that the window can be scrolled (not the width
of the window)

Attribute: /H_SCROLL

Explanation:
FSET-H_SCROLL

Sets the horizontal scroll position of the displayed contents of the
window. (This keyword is ignored if it is specified with FOPEN and the
window already exists.)

Arguments: Horizontal offset (in pixels) in the bitmap to the first column to display
(the value must be greater than or equal to zero)

Default: /H_SCROLL 0

Attribute: /IGNORE

Explanation:
FSET-IGNORE

Specifies pull-down menu items that cannot be selected. These items
are dimmed in the pull-down menu display. This keyword must be
specified in the same FSET instruction as the /PULLDOWN keyword.

Arguments: List of numbers in the range 1 to 30, which correspond to rows in the
pull-down menu. Numbers greater than the number of pull-down
items are ignored.

Default: No pull-down items are ignored

Attribute: /LUT

Explanation:
FSET-LUT

Sets the red, green, and blue (RGB) values of a color. The specified color
is actually altered for the entire graphics system. Thus, this keyword
must be used with care. Note, for example, that changing color values
may cause all the color descriptions in this manual to become invalid.

Arguments: The color to be changed (in the range 0 to 15), followed by the red,
green, and blue values for the color (each in the range 0 to 255). A value
of –1 may be specified for the red, green, or blue value to return that
value to its default. For instance, specifying /LUT 15 127 127 127 will
change the default white (color #15) in the system to a gray, and
specifying /LUT 15 –1 –1 –1 will return the white to its default color.

Table 2-9. FSET Graphics Window Attributes (Continued)
262 V+ Language Reference Guide, Rev A

Program Instruction FSET
Default: System default colors (see GCOLOR)

Attribute: /MARGINS

Explanation:
FSET-MARGINS

Sets the text margins for the window. This keyword also sets the text
cursor position to the top left corner of the text window defined by the
new margins. The text scrolling window is reset to its maximum size.

Arguments: Coordinates of the left, top, right, and bottom edges of the text window
(if a value is negative, the corresponding margin is not modified)

Default: • X coordinate of left margin = 8

• Y coordinate of top margin = 8

• X coordinate of right margin = (right_edge_of_window – 8)

• Y coordinate of bottom margin = (left_edge_of_window – 8)

Attribute: /MENU

Explanation:
FSET-MENU

Specifies up to 20 items to appear in the menu bar of the window. Each
menu string is displayed in a box in the menu bar, left to right in the
order specified. A space is added to each side of each string. If the
strings are too long, the excess fall off the end of the menu bar without
any error indication. The strings are written in the current font defined
for the menu bar. (This keyword is ignored if the window does not have
a menu bar.)

Arguments: List of up to 20 strings, each one enclosed in single quotes. Each string
delimited by single-quote characters must be separated from the next
string by at least one space. The correct way to clear the menu bar is to
specify no strings, not a null string (that is, with /MENU, not with
/MENU ' ').

Default: /MENU (no items)

Attribute: /POINTER

Explanation:
FSET-POINTER

Specifies the point of reference for position information obtained from
the mouse cursor. This keyword takes effect with the next event that
occurs—it does not change any events that have already occurred but
are waiting to be read.

Table 2-9. FSET Graphics Window Attributes (Continued)
V+ Language Reference Guide, Rev A 263

FSET Program Instruction
Arguments: • DISPLAY = Return pointer device positions relative to the
upper left-hand corner of the window region displayed on
the screen.

• SCREEN = Return pointer device positions relative to the
upper left-hand corner of the entire screen.

• WINDOW = Return pointer device positions relative to the
upper left-hand corner of the allocated window, even if the
corner is scrolled out of the displayed region.

Default: /POINTER WINDOW

Attribute: /POSITION

Explanation:
FSET-POSITION

Sets the displayed position of the window relative to its parent. The
arguments define the position of this window’s upper left-hand corner
relative to the upper left-hand corner of the parent’s allocated window.
If this is a top-level window, the position is relative to the upper
left-hand corner of the screen. (This keyword may not be specified for
control-bar windows.) This keyword is ignored if it is specified with
FOPEN and the window already exists. If this keyword is used with
FSET, the value specified overrides any mouse drag that may have been
done by the user. This keyword may also specify the position of the
reference point of an icon relative to the top left corner of the icon (see
the /ICON keyword for FOPEN).

Arguments: X position (in pixels) relative to parent (always rounded up to be an
even number)
Y position (in pixels) relative to parent

Default: /POSITION 0 0

Table 2-9. FSET Graphics Window Attributes (Continued)
264 V+ Language Reference Guide, Rev A

Program Instruction FSET
Attribute: /PULLDOWN

Explanation:
FSET-PULLDOWN

Outputs text into a pull-down window, and displays the pull-down
window under the specified menu-bar item if that item is currently
selected (highlighted). (This keyword may not be specified with
FOPEN.) All the strings specified are displayed, left justified, stacked
vertically, in a window the width of the longest string (plus a space on
each side of the string). With the standard font, the pull-down window
may have a maximum area equivalent to 25 lines of text, 25 characters
wide. There can be a maximum of 30 lines of text. If there are more than
25 lines, the maximum pull-down will be less than 25 characters wide;
conversely, if there are fewer than 25 lines, the pull-down can be more
than 25 characters wide. Each line of text will be truncated on the right
if necessary. (See the /IGNORE keyword for information on how to
disable pull-down items.) Only one pull-down window can be present
in the entire system at any one time.

Arguments: Number of the menu-bar item with which this pull-down list is
associated (1 [left-most item] to N [right-most item]) followed by a list
of strings (each in single quotes) separated by spaces

Default: No pull-down menu specified

Attribute: /SELECT

Explanation:
FSET-SELECT

Specifies that a window is selected for receiving input. The effect of this
keyword is equivalent to clicking the mouse on the window.

Arguments: None

Default: The window is not selected

Attribute: /SHOW

Explanation:
FSET-SHOW

Forces a window and all its ancestors to be displayed. (This keyword
differs from /DISPLAY—that keyword does not display a window if
any one of its ancestors is not displayed.)

Arguments: None

Default: None

Table 2-9. FSET Graphics Window Attributes (Continued)
V+ Language Reference Guide, Rev A 265

FSET Program Instruction
Attribute: /SIZE

Explanation:
FSET-SIZE

Sets the size of the window in the display. The size specified overrides
any mouse drag that may have been done by the user. This keyword
may not be specified for control-bar windows. (This keyword is
ignored if it is specified with FOPEN and the window already exists.)

The X value is always rounded up to be an even number. For windows
with a title bar, X and Y values less than 64 are set to 64. For windows
without a title bar, X and Y values less than 8 are set to 8. The values of
X and Y are clipped to the full size of the window as required.

This keyword may also specify the size of an icon or font (see the
/ICON or /DEFFONT keyword for the FOPEN instruction).

Arguments: • X size (in pixels)

• Y size (in pixels)

Default: Display the whole window (see /MAXSIZE described in the FOPEN
instruction)

Attribute: /SPECIAL

Explanation:
FSET-SPECIAL

Sets special attributes for the window.

Arguments: One or more of the following keywords.

• DESELECT = Allow deselection

• NODESELECT = Don’t allow deselection

• POSITION = Allow moving by dragging title bar

• NOPOSITION = Don’t allow dragging of title bar

• SELECTABLE = Allow window to be selected from
pull-down menu under Adept icon

• NOSELECTABLE = Don’t allow window to be selected from
pull-down menu under Adept icon. (Window name is
dimmed in pull-down menu.)

• SIZE = Allow resize with sizing icon

• NOSIZE = Don’t allow resize with sizing icon

Default: /SPECIAL DESELECT POSITION SELECTABLE SIZE

Table 2-9. FSET Graphics Window Attributes (Continued)
266 V+ Language Reference Guide, Rev A

Program Instruction FSET
Attribute: /STACK

Explanation:
FSET-STACK

Sets the position of the window in its window stack, which determines
the layering of the windows in the display. This keyword may not be
specified for control-bar windows. No child of a window can be
stacked below that window’s control bars.

Arguments: Code value for desired position:

• 1 Move to top of parent’s stack

• –1 Move to bottom of parent’s stack

Default: /STACK 1

Attribute: /TERMINAL

Explanation:
FSET-TERMINAL

Sets characteristics of the terminal emulator used to output text to the
window.

Arguments: One or more of the following keywords.

• CURSOR = Display the text cursor

• NOCURSOR = Do not display text cursor

• OVERSTRIKE = Force designated overstrike characters to
overstrike the previous character

• NOOVERSTRIKE = defeat overstriking

• WRAP = Wrap lines of text that are too long

• NOWRAP = Truncate long lines of text

Default: /TERMINAL CURSOR OVERSTRIKE WRAP

Attribute: /TITLE

Explanation:
FSET-TITLE

Set the window title, which is the text that is displayed in the title bar.
The title has no other meaning to the V+ system.

Arguments: String enclosed in single quotes. The string will be truncated to 40
characters.

Default: Same as the window name

Table 2-9. FSET Graphics Window Attributes (Continued)
V+ Language Reference Guide, Rev A 267

FSET Program Instruction
Attribute: /UPDATE and /NOUPDATE

Explanation:
FSET-UPDATEFSET-NOUPDATE

In normal operation, the screen display is updated every time new
graphics appear in any displayed window. The /NOUPDATE keyword
stops this process for the window currently open, thereby hiding all
new graphics from the screen display until normal operation resumes.
The /UPDATE keyword will force the screen display to be updated and
normal operation to resume. (This keyword may not be specified with
the FOPEN instruction.)

Arguments: None

Default: /UPDATE

Attribute: /V_ARROWINC

Explanation:
FSET-V_ARROWWINC

Sets the change in the position of the scroll handle in the vertical scroll
bar that will be caused by clicking on the arrow buttons in the vertical
scroll bar. (This keyword is valid only when the event
GRAB_V_SCROLL is enabled [see the GETEVENT instruction].)

Arguments: Number of units (see V_RANGE) to move the handle for each click on
an arrow button (the value must be greater than or equal to zero)

Default: Pixel height of the current font cell

Attribute: /V_HANDLE

Explanation:
FSET-V_HANDLE

Sets the displayed position of the scroll handle in the vertical scroll bar.
(This keyword is valid only when the event GRAB_V_SCROLL is
enabled [see GETEVENT].)

Arguments: Relative position along bar (note that this is not a pixel count; 0 =
top-most end; bottom-most end may be set with /V_RANGE)

Default: Current scroll position

Attribute: /V_RANGE

Explanation:
FSET-V_RANGE

Sets the value of the bottom-most position of the scroll handle in the
vertical scroll bar. (This keyword is valid only when the event
GRAB_V_SCROLL event is enabled [see GETEVENT].)

Arguments: Value associated with bottom-most position of the scroll handle (the
value must be greater than or equal to 0; if n handle positions are
desired, use the value n–1)

Default: Total number of pixels that the window can be scrolled (not the height
of the window)

Table 2-9. FSET Graphics Window Attributes (Continued)
268 V+ Language Reference Guide, Rev A

Program Instruction FSET
Using FSET with Serial Lines

The following specifications can be used as arguments to directly ATTACH a
serial line:

LOCAL.SERIAL:nLocal serial line n on the local CPU. For Adept CPU boards, n =
1 or 2.

SERIAL:n Global serial line n on the Adept SIO board. For Adept SIO
board, n = 1, 2, 3, 4 (4 cannot be used if MCP is installed).

As a convenience, the following synonyms may be used:

KERMIT The serial line currently configured for Kermit protocol.

MONITOR The serial line currently configured for use as the monitor
terminal.

The keywords listed in Table 2-10 may appear in the keyword list string.

Attribute: /V_SCROLL

Explanation:
FSET-V_SCROLL

Sets the vertical scroll position of the displayed contents of the window.
(This keyword is ignored if it is specified with FOPEN and the window
already exists.)

Arguments: Vertical offset (in pixels) in the bitmap to the first row to display (the
value must be greater than or equal to zero)

Default: /V_SCROLL 0

Table 2-10. FSET Serial Line Attributes

Attribute Argument Description

FSET-PARITY/PARITY

NONE No parity generation

EVEN Use even parity

ODD Use odd parity
FSET-STOP_BITS/STOP_BITS 1 or 2 Use 1 or 2 stop bits per byte
FSET-LENGTH/BYTE_LENGTH 7 or 8 Use 7 or 8 bits per byte

Table 2-9. FSET Graphics Window Attributes (Continued)
V+ Language Reference Guide, Rev A 269

FSET Program Instruction
Drivers for KERMIT, DDCMP, and NETWORK do not support all modes
indicated by the keywords; they ignore those that are not supported.

Using FSET with NFS and TCP

The following AdeptNet devices may be referenced with the FSET instruction:

NFS Network File System

TCP Transmission Control Protocol

You can use the attributes listed in Table 2-11 when accessing these devices with
the FSET instruction.

FSET-FLOW/FLOW

NONE No flow control

XON_XOFF Detect and generate XON/XOFF (turn off
modem)

MODEM Use modem control RTS/CTS (turn off
XON_XOFF)

FSET-DTR/DTR
OFF Turn off the DTR modem signal

ON Turn on the DTR modem signal

FSET-MULTIDROP/MULTIDROP
OFF Do not use multi-drop mode

ON Use multidrop mode (Only valid for
LOCAL.SERIAL:1 on Adept CPUs)

FSET-FLUSH/FLUSH

OFF Disable recognition of Ctrl+O for flushing
output

ON Enable recognition of Ctrl+O for flushing
output

FSET-SPEED/SPEED

110, 300, 600,
1200, 2400,
4800, 7200,
9600, 19200,
38400

Select the indicated baud rate.

For current Adept boards, a baud rate of
19200 is incompatible with a baud rate of 7200
or 38400 on a pair-wise basis. The pairs are:

(LOCAL.SERIAL:1, LOCAL.SERIAL:2)

(SERIAL:1, SERIAL:4)

(SERIAL:2, SERIAL:3)

Table 2-10. FSET Serial Line Attributes (Continued)

Attribute Argument Description
270 V+ Language Reference Guide, Rev A

Program Instruction FSET
You may define new nodes on the network using the FSET program instruction to
access a logical unit that has been attached to the TCP device. The string used
with the FSET instruction has the same format as that used with the NODE
statement in the V+ configuration file (see the later example).

You may also define new remote mounts, using the FSET program instruction to
access a logical unit that has been attached to the NFS device. The string used
with the FSET instruction has the same format as that used with the MOUNT
statement in the V+ configuration file (see the later example).

Examples

Graphics

The following FSET instruction causes a pull-down menu to be displayed under
the menu-bar item just selected by the user (assuming that the array element
event[2] has been set by a GETEVENT instruction that detected a menu event):

FSET (lun) "/PULLDOWN", event[2], $menu[event[2]]

This instruction requires that string array elements $menu[n] be defined for each
of the menu items displayed on the menu bar. The following line shows how a
pull-down list with four items could be defined for the first item on the menu bar.
(Note that the menu items can have different lengths, they can consist of multiple
words, and there is a space between the single quotes delineating items.)

$menu[1] = "'Item #1' 'Second Item' 'One more item' 'Last
item'"

The following instruction takes control of the vertical scroll bar away from the
window manager. The vertical scroll bar is set to return values from 0 to 10. The
initial position of the scroll-bar handle is at the top (zero) and each time the
up-arrow or down-arrow icon is clicked, the value of the scroll-bar handle
position changes by 2 units.

Table 2-11. FSET Attributes for AdeptNet

Attribute Description
FSET-ADDRESS/ADDRESS IP address. (Applies only to the TCP device.)

FSET-MOUNT/MOUNT Defines the name to be used for an NFS server remote
disk. (Applies only to the NFS device.)

FSET-NODE/NODE Node name.

FSET-PATH/PATH Path for NFS server remote disk. (Applies only to the
NFS device.)
V+ Language Reference Guide, Rev A 271

FSET Program Instruction
FSET (lun) "EVENT GRAB_V_SCROLL/V_RANGE 10/V_HANDLE
0/V_ARROWINC 2"

The following example attaches to serial line 2 and sets the baud rate to 2400:

ATTACH (slun, 4) SERIAL:2

FSET (slun) "SPEED 2400"

AdeptNet

Define a new node called SERVER2 with the IP address 192.168.144.102:

ATTACH (lun, 4) "TCP"
FSET (lun) "/NODE 'SERVER2' /ADDRESS 192 168 144 102"

Define a new NFS mount with the disk name DISK2 to access the exported
directory /a of the node (server) called SERVER1:

ATTACH (lun, 4) "NFS"
FSET (lun) "/MOUNT 'DISK2' /NODE 'SERVER1' /PATH '/a'"

Related Keywords

FOPEN (program instruction)

IOSTAT (real-valued function)
272 V+ Language Reference Guide, Rev A

Program Instruction GAIN.SET
Syntax

GAIN.SET-I

GAIN.SET set, motor

Function

Select a set of feedback gain parameters for one or more motors of the currently
selected robot.

Usage Considerations

This instruction currently applies only to motor 4 of the AdeptOne-MV and
AdeptThree-MV robots. For the other motors of these robots and for all other
robots, this instruction has no effect (and causes no error).

This instruction affects the robot currently selected with a SELECT program
instruction. The GAIN.SET instruction takes effect immediately and is not
synchronized with robot motion segments. A task does not have to be attached to
the robot to issue this instruction.

Parameters

set Optional real expression that specifies the gain set to use. The
default set is selected if this parameter is zero or omitted.

motor Optional real expression that specifies the motor of the selected
robot. If this parameter is zero or omitted, the gain set for all
motors of the selected robot is selected. Otherwise, only the
specified motor is affected.

Details

The gain set must be one of several that are predefined.

This instruction changes some servo-tuning values, specifically those for
feedforward gain, for certain axes. You can select the most suitable values
depending on payload mass, payload inertia, and application requirements. If
necessary, you can use this instruction every time the payload changes (for
example, before and after the robot picks up a heavy object). Your robot
instruction handbook may have additional information specific to your robot.

You can use the PAYLOAD instruction to adjust feedforward gains in a
predetermined way, just as you can use the GAIN.SET instruction to adjust
feedback gains in a predetermined way. Because GAIN.SET does not affect the
feedforward, there is no conflict between these two instructions. That is, the order
of their execution is unimportant.
V+ Language Reference Guide, Rev A 273

GAIN.SET Program Instruction
Related Keywords

ACCEL (program instruction)

PAYLOAD (program instruction)

SPEED (monitor command and program instruction)
274 V+ Language Reference Guide, Rev A

Program Instruction GARC
Syntax

GARC-I

GARC (lun , mode) xc, yc, radius , ang0, angn

Function

Draw an arc or a circle in a graphics window.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as a bit
field) specifying how the instruction is to operate. Zero is
assumed if the parameter is omitted. The bit interpretations are
given below.

Bit 1 (LSB)Empty (0) vs. Filled (1)Mask value = 1

If this bit is set, the arc or circle is filled with the current
foreground color. (Not implemented.)

Bit 2Use (0) vs. Ignore (1) anglesMask value = 2

If this bit is set, a full circle is drawn regardless of the values of
the ang0 and angn parameters.

xc, yc Real values, variables, or expressions (interpreted as integers)
specifying the coordinates (in pixels) of the center of the circular
arc. The origin for the coordinate system (0,0) is the top left
corner of the window, with positive X directed to the right and
positive Y directed toward the bottom.

radius Real value, variable, or expression (interpreted as an integer)
specifying the radius (in pixels) of the circular arc. If the value is
zero, a point is drawn. Nothing is drawn if the value is negative.
V+ Language Reference Guide, Rev A 275

GARC Program Instruction
ang0, angn Optional real values, variables, or expressions specifying
starting and stopping angles (in degrees) for the arc. A circle is
drawn if both parameters are omitted or both parameters have
the same value. The angles are measured counterclockwise from
a line pointing to the right.

Details

The arc or circle is drawn with the current graphics foreground color (see
GCOLOR), texture (see GTEXTURE), and logical operation (see GLOGICAL).
Opaque textures are always used, regardless of the current opaque/transparent
mode setting (see GTEXTURE).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Examples

In the window open on graphics logical unit 20, draw an arc centered at
coordinates (10,15) with 50-pixel radius, starting at angle 90 (top of circle) and
moving counterclockwise to angle 0 (right side of circle):

GARC (20) 10, 15, 50, 90, 0

In the window open on graphics logical unit 20, draw a complete circle centered
at coordinates (10,15) with 50-pixel radius (ignore the angle arguments):

GARC (20,2) 10, 15, 50, 90, 0

In the window open on graphics logical unit 20, draw a complete circle centered
at coordinates (10,15) with 50-pixel radius:

GARC (20) 10, 15, 50

Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLOGICAL (program instruction)

GTEXTURE (program instruction)

GTRANS (program instruction)
276 V+ Language Reference Guide, Rev A

Program Instruction GCHAIN
Syntax

GCHAIN-I

GCHAIN (lun) x, y, points, direction[index]

Function

Draw a chain of points in a graphics window to form a complex figure.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

x, y Optional real values, variables, or expressions (interpreted as
integers) specifying the starting point for the chain. If both
parameters are omitted, the chain is continued from the last
chain point drawn since the last FOPEN instruction (or from
[0,0] if there has been no previous GCHAIN since the last
FOPEN). If either value is omitted, the other value must also be
omitted.

points Real value, variable, or expression (interpreted as an integer)
specifying the number of points in the chain, not counting the
starting point. The starting point is drawn, except when x and y
are omitted. The acceptable range of points is 0 to 1008,
inclusive.

direction[] Real array that contains direction codes for the respective points
in the chain. The values indicate the directions to the successive
pixels in the chain, as follows (angles are measured
counterclockwise from a line pointing to the right):

value Direction value Direction

0 0 degrees 4 180 degrees

1 45 degrees 5 225 degrees

2 90 degrees 6 270 degrees

3 135 degrees 7 315 degrees
V+ Language Reference Guide, Rev A 277

GCHAIN Program Instruction
index Optional real value, variable, or expression (interpreted as an
integer) specifying the first array element to be accessed.
Element zero is accessed first if no index is specified.

Details

This instruction draws a chain of pixels to form an arbitrary shape. The chain is
drawn with the current graphics foreground color (see GCOLOR), texture (see
GTEXTURE), and logical operation (see GLOGICAL). Opaque textures are always
used, regardless of the opaque/transparent mode setting (see GTEXTURE).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Example

In the window open on graphics logical unit 20, draw a chain of 30 pixels starting
at location (25,10). The relative position of each pixel is found in elements dir[0]
through dir[29]:

GCHAIN (20) 25, 10, 30, dir[]

In the window open on graphics logical unit 20, draw a chain of 25 pixels, starting
where the previous chain left off. The relative position of each pixel is in array
elements dir[6] through dir[30]:

GCHAIN (20) , , 25, dir[6]

Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLOGICAL (program instruction)

GPOINT (program instruction)

GTEXTURE (program instruction)

GTRANS (program instruction)
278 V+ Language Reference Guide, Rev A

Program Instruction GCLEAR
Syntax

GCLEAR -I

GCLEAR (lun)

Function

Clear an entire graphics window to the background color.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameter

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

Details

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

This instruction also deletes all slide bars (see GSLIDE) in the window that is
currently open.

Example

Set the entire window open on graphics logical unit 20 to the background color,
erasing any current display and deleting any slide bars in that window:

GCLEAR (20)

Related Keywords

FOPEN (program instruction)

GCOLOR (program instruction)
V+ Language Reference Guide, Rev A 279

GCLIP Program Instruction
Syntax

GCLIP-I

GCLIP (lun) x, y, dx, dy

Function

Set the clipping rectangle for all graphics instructions (except GFLOOD), to
suppress all subsequent graphics that fall outside the rectangle.

Usage Considerations

This instruction is available only with an graphics-based system.

If the rectangle is set improperly, all subsequent graphics may be suppressed.

The clipping rectangle is canceled for the specified logical unit when a window is
opened on the logical unit with the FOPEN instruction.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

x, y Optional real values, variables, or expressions (interpreted as
integers) specifying the (pixel) coordinates of the top left corner
of the clipping rectangle. Omitted parameters default to zero.

dx, dy Optional real values, variables, or expressions (interpreted as
integers) specifying the (pixel) width and height, respectively, of
the clipping rectangle. Zero is assumed for an omitted
parameter, unless all parameters are omitted or zero—see below.

Details

This instruction defines a clipping rectangle that limits the portion of the window
affected by all the V+ graphics instructions, except for the GFLOOD instruction.
That is, the graphics manager automatically suppresses any graphics output that
would fall outside the clipping rectangle.

If all parameters are omitted or specified to be zero, the clipping rectangle is set to
be the entire window. If the clipping rectangle is specified to extend beyond the
window boundary, the rectangle will be limited to the window boundary.
280 V+ Language Reference Guide, Rev A

Program Instruction GCLIP
This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Example

The following instruction sets the clipping rectangle (for the current window
open on graphics logical unit 20) to have its top left-hand corner at location
(10,15). The width is 100 pixels, and the height is 200 pixels. All subsequent
graphics output for the logical unit that falls outside this rectangle will be
suppressed:

GCLIP (20) 10, 15, 100, 200

Related Keywords

FOPEN (program instruction)

GARC (program instruction)

GCHAIN (program instruction)

GCOPY (program instruction)

GICON (program instruction)

GLINE (program instruction)

GLINES (program instruction)

GPANEL (program instruction)

GPOINT (program instruction)

GRECTANGLE (program instruction)

GSCAN (program instruction)

GSLIDE (program instruction)

GTYPE (program instruction)
V+ Language Reference Guide, Rev A 281

GCOLOR Program Instruction
Syntax

GCOLOR-I

GCOLOR (lun) foregrnd, backgrnd

Function

Set the foreground and background colors for subsequent graphics output.

Usage Considerations

This instruction is available only with an graphics-based system.

The foreground and background colors are reset for the specified logical unit
when a window is opened on the logical unit with FOPEN.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

foregrnd Optional real value, variable, or expression (interpreted as an
integer) specifying the foreground color. Color values range
from 0 to 15. The color is not changed if the parameter is omitted
or if it has the value –1.

backgrnd Optional real value, variable, or expression (interpreted as an
integer) specifying the background color. Color values range
from 0 to 15. The color is not changed if the parameter is omitted
or if it has the value –1.

Details

The GCOLOR instruction sets the foreground and background colors for
subsequent graphics output from any of the following instructions:

For 16-color windows, the full range of color values (0 to 15) specify different
colors. For 2-color windows, all even values (including 0) specify light blue, and
all odd values specify black.

GARC GLINE GRECTANGLE

GCHAIN GLINES GSCAN

GCLEAR GPANEL GTYPE

GFLOOD GPOINT
282 V+ Language Reference Guide, Rev A

Program Instruction GCOLOR
The standard color values are shown in Table 2-12. These colors may be changed
by using the /LUT attribute for the FSET instruction.

This instruction operates on the window that is currently open for the specified
logical unit. The effect of this instruction will apply to all subsequent output to the
window. (Note, however, that if the window is open in buffered mode, the effect
will not be displayed until the buffer fills or an FEMPTY instruction is executed.)

Examples

For the window open on graphics logical unit 20, set the foreground color to black
(1) and the background color to white (15) for subsequent graphics instructions:

GCOLOR (20) 1, 15

Table 2-12. Standard Graphics Color Values

Number Color

0 Vision Video

1 Black

2 Dark gray

3 Blue

4 Blue gray

5 Light blue

6 Green

7 Dark green

8 Yellow

9 Orange

10 Red

11 Maroon

12 Pink

13 Medium gray

14 Light gray

15 White
V+ Language Reference Guide, Rev A 283

GCOLOR Program Instruction
For the window open on graphics logical unit 20, set the foreground color to
green (6) for subsequent graphics instructions (and do not change the background
color):

GCOLOR (20) 6

Related Keywords

FOPEN (program instruction)

GARC (program instruction)

GCHAIN (program instruction)

GFLOOD (program instruction)

GLINE (program instruction)

GLINES (program instruction)

GPANEL (program instruction)

GPOINT (program instruction)

GRECTANGLE (program instruction)

GSCAN (program instruction)

GTYPE (program instruction)
284 V+ Language Reference Guide, Rev A

Program Instruction GCOPY
Syntax

GCOPY-I

GCOPY (lun) x, y = src_x, src_y, dx, dy

Function

Copy one region of a window to another region in the same window.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

x, y Real values, variables, or expressions (interpreted as integers)
specifying the coordinates (in pixels) of the top left corner of the
destination region.

src_x Real values, variables, or expressions (interpreted as integers)
specifying src_y the coordinates (in pixels) of the top left corner
of the source region from
 which bitmap information is to be obtained.

dx, dy Real values, variables, or expressions (interpreted as integers)
specifying the width and height, respectively, of the region to
copy. Both of these values must be greater than zero.

Details

The specified region of the window is copied directly to the destination region
with the current logical operation applied (see GLOGICAL).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Example

The following instruction copies, in the window open on graphics logical unit 20,
a 5-by-7 region from the rectangle with its top left corner at (10,15) to the rectangle
with its top left corner at (0,2):
V+ Language Reference Guide, Rev A 285

GCOPY Program Instruction
GCOPY(20) 0, 2 = 10, 15, 5, 7

Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GLOGICAL (program instruction)
286 V+ Language Reference Guide, Rev A

Real-Valued Function GETC
Syntax

GETC-R

GETC (lun, mode)

Function

Return the next character (byte) from a device or input record on the specified
logical unit.

Usage Considerations

The logical unit must be attached by the program for normal, variable-length
record input/output.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that identifies the device to be accessed. (See the ATTACH
instruction for a description of the unit numbers.)

mode Real value, variable, or expression (interpreted as an integer)
that specifies the mode of the read operation. Currently, the
mode is used only for the terminal and serial I/O logical units.
The value is interpreted as a sequence of bit flags as detailed
below. (All bits are assumed to be clear if no mode value is
specified.)

Bit 1 (LSB) Disable waiting for input (mask value = 1)

If this bit is clear, program execution will be suspended until the
next byte is received. If the bit is set and no bytes are available,
the function will immediately return the error code for *No data
received* (–526).

NOTE: A –526 error may be returned by the first no-wait GETC
even if there are bytes queued.

Bit 2 Disable echo (mask value = 2)

If this bit is clear, input from the terminal is echoed back to the
source. If the bit is set, characters are not echoed back to the
source. (This bit is ignored for the serial lines.)
V+ Language Reference Guide, Rev A 287

GETC Real-Valued Function
Details

The next byte from the device is returned. When reading from a record-oriented
device such as the system terminal or a disk file, the carriage-return and line-feed
characters at the end of records are also returned. When the end of a disk file is
reached, a Ctrl+Z character (26 decimal) is returned.

When reading from the terminal, GETC will return the next character entered at
the keyboard. All control characters will be read, except Ctrl+S, Ctrl+Q, Ctrl+O,
and Ctrl+W, which will have their normal terminal control functions.

When reading from the serial line, GETC will return the next data byte
immediately, unmodified. (Note that if the serial line is configured to recognize
Ctrl+S and Ctrl+Q automatically as control characters, then those characters will
not be returned by the GETC function.)

Normally, the byte value returned is in the range 0 to 255 (decimal). If an input
error occurs, a negative error code number is returned. The meanings of the error
codes are listed in Appendix B.

Example

The following program segment reads characters from a disk file until a comma (,)
character, a control character, or an I/O error is encountered. The characters are
appended to the string variable $field. (The disk file must have already been
opened for accessing variable-length records.)

$field = ""
c = GETC(5)

WHILE (c > ^H1F) AND (c <> ',) DO
$field = $field+$CHR(c)
c = GETC(5)

END

IF c < 0 THEN
TYPE $ERROR(c)
HALT

END

Related Keywords

ATTACH (program instruction)

READ (program instruction)
288 V+ Language Reference Guide, Rev A

Real-Valued Function GET.EVENT
Syntax

GET.EVENT-R

GET.EVENT (task)

Function

Return events that are set for the specified task.

Usage Considerations

Do not confuse GET.EVENT with the GETEVENT program instruction, which
returns information from a graphics window or the terminal.

Parameter

task Optional real value, variable, or expression (interpreted as an
integer) that specifies the task for which events are to be
returned. The valid range is –1 to 6 or –1 to 27, inclusive.1 If the
parameter is omitted, or has the value –1, the current task is
referenced.

Details

The events are returned in a value that should be interpreted as a sequence of bit
flags, as detailed below.

Bit 1 (LSB) I/O Completion (mask value = 1)

This bit being set indicates that a system input/output operation has completed.

See the descriptions of SET.EVENT and WAIT.EVENT for more details.

Related Keywords

CLEAR.EVENT (program instruction)

SET.EVENT (program instruction)

WAIT.EVENT (program instruction)

1 The basic system allows 7 tasks (0 - 6). The V+ Extensions option allows 28 tasks (0 - 27).
V+ Language Reference Guide, Rev A 289

GETEVENT Program Instruction
Syntax

GETEVENT-I

GETEVENT (lun , mode) events[index]

Function

Return information describing input from a graphics window or input from the
terminal.

Usage Considerations

A graphics window must be open for read access on the specified logical unit. If
keyboard input is being read, the terminal must be attached.

NOTE: Do not confuse GETEVENT with the GET.EVENT
real-valued function, which returns events for a specified task.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as a bit
field) specifying how the instruction is to operate. Zero is
assumed if the parameter is omitted. The bit interpretations are
given below.

Bit 1 (LSB)Wait (0) vs. No wait (1) (mask value = 1)

If this bit is clear, program execution will be suspended until the
next event is received. If the bit is set and no events are available,
the array will contain the error code for *No data received*
(–526) (see note below).

NOTE: A –526 error may sometimes be returned by a no-wait
GETEVENT instruction even if there are already events queued.
Subsequent GETEVENT instructions will return these events.

events[] Real array that receives the event code number and data if any
event is available. The format of the event information is
described below.

index Optional real value, variable, or expression (interpreted as an
integer) specifying the first array element to receive data.
Element zero is accessed first if no index is specified.
290 V+ Language Reference Guide, Rev A

Program Instruction GETEVENT
Details

The GETEVENT instruction operates on the window that is currently open for the
specified logical unit. If the window is open for write-only access, an error will be
reported and no event information will be available.

All input from a window—including movement of the pointing device, button
presses, keyboard input, and window status changes—can be received in the
form of events. Recognition of the various events is enabled for a window with
the /EVENT attribute keyword for the FOPEN and FSET instructions (see below).
Whenever an enabled event occurs for a window, the event is placed in an event
queue for that window.

The GETEVENT instruction allows an application program to read events from
the queues and process them. The information returned in the events[] array
indicates the success or failure of the instruction and, if successful, which events
occurred. The format of the events[] array is as follows:

After a GETEVENT instruction is executed, the real-valued function
IOSTAT(logical_unit, 2) returns the number of values placed in the events[]
array, including the event code and any arguments.

The FCMND program instruction (with command code #102) can be used to
discard all the events waiting to be processed.

If keyboard events are enabled for a window, all keypresses (except Crtl+W,
Crtl+S, and Ctrl+Q) are returned whenever the window is selected.

Array
element Description of contents

index+0 Error code or event code

If this value is less than zero, the instruction has failed
and the value is a standard V+ error number. In this case,
no other elements are significant.

If this value is zero or positive, the value is a code that
indicates which event has occurred. (See below for
descriptions of the event codes.)

index+1 Event argument #1 (if any, see below)

...

index+N Event argument #N (if any, see below)
V+ Language Reference Guide, Rev A 291

GETEVENT Program Instruction
GETEVENT can also be used to intercept keyboard input to the monitor window
simply by ATTACHing the terminal and specifying the terminal LUN in the
GETEVENT instruction (a window does not have to be open and events do not
have to be enabled).

Event Codes

Each event is identified by an integer called the event code. This code tells which
event has occurred. Events may have a number of associated arguments, and the
application program must interpret them. Table 2-13. shows, for each event, the
event code and the arguments. (Each argument listed below is a 16-bit integer
value.)

Table 2-13. Graphics Events Codes

Code Description Arguments (see notes below)

0 Keypress key = ASCII value of key pressed

1 Button down button_mask, x, y (See note 1)

2 Button up button_mask, x, y (See note 1)

3 Double click button_mask, x, y (See notes 1
& 2)

4 Pointer moved button_mask, x, y (See note 1)

5 Window select

6 Window deselect

7 Slide bar button down ID, position, max_pos (See note 3)

8 Slide bar pointer move ID, position, max_pos (See note 3)

9 Slide bar button up ID, position, max_pos (See note 3)

10 Size button down dummy (zero), dx, dy (See note 4)

11 Size pointer move dummy (zero), dx, dy (See note 4)

12 Size button up dummy (zero), dx, dy (See note 4)

13 Not used

14 Menu selected menu, item (See note 5)

15 Pointer enter window

16 Pointer exit window
292 V+ Language Reference Guide, Rev A

Program Instruction GETEVENT
The following notes apply to Table 2-13:

Note 1: The button bit mask consists of a bit for each button on the
pointing device. The mask values are 1 for button 1, 2 for button
2, and 4 for button 3. On three-button pointing devices, button 1
is the left button, 2 is the middle button, and 3 is the right button.
On two-button devices (such as the Adept integrated keyboard),
the left button is #2 and the right button is #3. For button down,
button up, and double-click events, only a single bit is set in the
mask, corresponding to the button that generated the event. For
pointer-moved events, the bit mask reflects the current state of
all three pointer device buttons. A set bit indicates that the
corresponding button is pressed.

Note 2: A double-click event occurs in addition to all of the four other
button events that created it. The complete sequence is: button
down, button up, button down, double click, button up.

Note 3: These events are returned by the slide bars (see the GSLIDE
instruction) contained in the window, as well as the horizontal
and vertical scroll bars belonging to the window.

For user-defined slide bars, the ID number is supplied by the
user in the GSLIDE instruction that creates the slide bar. The
position is in the range 0 to max_pos (which is also supplied by
the user in the GSLIDE instruction).

The ID number for the window vertical scroll bar is –1. If vertical
scroll is not being grabbed (see the GRAB_V_SCROLL keyword
below), the position is the actual vertical scroll in pixels.
max_pos is the maximum possible vertical scroll in pixels. If
vertical scroll is being grabbed, max_pos may be previously set
by the user (see /V_RANGE under the FSET instruction).
position may also be set by the user, although it will be modified
by pointer device activity (see the attributes /V_HANDLE and
/V_ARROWINC for the FSET instruction).

17 Close window

18 Open window

20 Connected to a PC

21 Disconnected from a PC

Table 2-13. Graphics Events Codes (Continued)

Code Description Arguments (see notes below)
V+ Language Reference Guide, Rev A 293

GETEVENT Program Instruction
The ID number for the window horizontal scroll bar is –2. If
horizontal scroll is not being grabbed (see the
GRAB_H_SCROLL keyword below), the position is the actual
horizontal scroll in pixels. max_pos is the maximum possible
horizontal scroll in pixels. If horizontal scroll is being grabbed,
max_pos may be previously set by the user (see /H_RANGE
under the FSET instruction). position may also be set by the user,
although it will be modified by pointer device activity (see the
attributes /H_HANDLE and /H_ARROWINC for the FSET
instruction).

Note 4: All the sizing events return the new window width (dx) and
height (dy). At the time either or both of the NTFY_SIZE and
GRAB_SIZE events are enabled (see /EVENT keywords below),
a size button down event followed by a size button up event are
returned with the current window size.

Note 5: The arguments for the menu-selected event should be
interpreted as follows:

Enabling Event Recognition

In order to improve system efficiency and minimize memory requirements, only
events that are actually needed should be enabled. Events that are not enabled do
not appear in any queue and are simply ignored.

Event recognition is controlled with the /EVENT attribute keyword specified in
an FOPEN or FSET instruction. The argument for the /EVENT keyword is a list of
event keywords, each of which identifies an event to be enabled or disabled. In
general, each event keyword can be prefixed with NO to disable the event. If
conflicting event keywords are encountered, the later keyword takes precedence.

The /EVENT keywords are shown below along with the names of the events they
control. When a window is created, no events are enabled. Thus, the desired
events must all be specified with the /EVENT keyword in an FOPEN or FSET
instruction. Each of the keywords may be abbreviated as long as the abbreviation
cannot be confused with another keyword’s.

Menu Description Item

0 Menu-bar
item selected

Item number of menu-bar item selected.
(The program should issue an FSET
/PULLDOWN ... in response.)

>0 Pull-down
item selected

Row number of pull-down item selected,
counting from 1.
294 V+ Language Reference Guide, Rev A

Program Instruction GETEVENT
NOTE: Adept recommends that keywords not be abbreviated, to
ensure that programs will be compatible with future releases of V+.

Keyword Description & effect when enabled
Events
enabled

GETEVENT-BUTTONBUTTON

Pointer button change (see Note 1 below) Button down

Button up

Double click

GETEVENT-GRAB_H_SCROLLGRAB_H_SCROLL Horizontal scroll events go to program and
do not change window (see Note 2 below)

Scroll
horizontal

GETEVENT-GRAB_OPENGRAB_OPEN
Window open and close events go to
program and do not change the window

Open
window
Close window

GETEVENT-GRAB_SIZEGRAB_SIZE Size change events go to program and do
not change window (see Note 3 below)

Size change

GETEVENT-GRAB_V_SCROLLGRAB_V_SCROLL Vertical scroll events go to program and do
not change window (see Note 2 below)

Scroll vertical

GETEVENT-KEYPRESSKEYPRESS Keyboard input processed if the window is
selected

Keypress

GETEVENT-MENUMENU Pull-down menu selections Menu selected

GETEVENT-MOVE_ANYMOVE_ANY Pointer-move event any time (not
implemented)

Pointer move

GETEVENT-MOVE_B1MOVE_B1 Pointer move while button 1 down (see
Note 1 below)

Pointer move

GETEVENT-MOVE_B2MOVE_B2 Pointer move while button 2 down (see
Note 1 below)

Pointer move

GETEVENT-MOVE_B3MOVE_B3 Pointer move while button 3 down (see
Note 1 below)

Pointer move

GETEVENT-NONENONE Disable all events (may not be preceded
with NO)

None

GETEVENT-NTFY_H_SCROLLNTFY_H_SCROLL Horizontal scroll—events go to program
and also change window

Scroll
horizontal
V+ Language Reference Guide, Rev A 295

GETEVENT Program Instruction
The following notes apply to the information above:

Note 1: If the OBJECT keyword is specified together with the BUTTON
and MOVE_B2 keywords, the slide bar events may be returned
as well as pointer-2 move and button-2 events. All events caused
by button 2 that do not cause a slide bar event will be returned as
pointer-move or button-2 events. On the other hand, if the cursor
is within an active slide bar, only slide bar events will be
returned.

Note 2: (The following paragraphs apply equally to the horizontal and
vertical scroll bars. For the horizontal bar, substitute the
keywords GRAB_H_SCROLL, /H_RANGE, /H_HANDLE, and
/H_ARROWINC for GRAB_V_SCROLL, /V_RANGE,
/V_HANDLE, and /V_ARROWINC, respectively.)

The vertical scroll bar operates in essentially two modes. In the
first mode (in which the GRAB_V_SCROLL event has not been
enabled), the vertical scroll bar is under the control of the
window manager. In this mode, the maximum value of the

GETEVENT-NTFY_OPENNTFY_OPEN
Window open and close—events go to
program and also change window

Open
window
Close window

GETEVENT-NTFY_SIZENTFY_SIZE Size change—events go to program and
also change window (see Note 3 below)

Size change

GETEVENT-NTFY_V_SCROLLNTFY_V_SCROLL Vertical scroll—events go to program and
also change window

Scroll vertical

GETEVENT-OBJECTOBJECT
Event occurs when clicking and dragging
within a slide bar (see Notes 1 and 4
below)

Slide bar

GETEVENT-POINTER_CHANGEPOINTER_CHANGE

Event occurs when pointer crosses
window boundaries (not implemented)

Pointer enter
window

Pointer exit
window

GETEVENT-SELECT_WINDOWSELECT_WINDOW
Event occurs when select status of the
window changes

Window select
Window
deselect

Keyword Description & effect when enabled
Events
enabled
296 V+ Language Reference Guide, Rev A

Program Instruction GETEVENT
position returned by the vertical scroll bar is equal to the total
possible window scroll (in pixels).

In the second mode, the vertical scroll bar is under the control of
the application program. This occurs when the
GRAB_V_SCROLL event has been enabled. In this mode, the
maximum value of the position returned by the scroll bar can be
set by using the FSET instruction with the /V_RANGE attribute.
Additionally, the vertical scroll handle position and the position
increment due to the arrow buttons can be set (see /V_HANDLE
and V_ARROWINC attributes for the FSET instruction).

At the time the GRAB_V_SCROLL event is disabled, the vertical
scroll bar will return to the control of the window manager. The
maximum value of the position returned by the vertical scroll
bar will again be equal to the total possible window scroll in
pixels. The information set by /V_RANGE, /V_HANDLE, and
/V_ARROWINC will be lost.

Note 3: At the time a GRAB_SIZE or NTFY_SIZE event is enabled, a size
button down event and a size button up event are sent to the
window. In this manner, a user program may obtain the size of a
window as soon as either of these events is enabled.

Note 4: The slide-bar events can be caused only by button 2. Clicking
and/or dragging on a slide bar with any other button will cause
only pointer-move or button events (if they are enabled).

Example

Get the next event from the window currently open for read on graphics logical
unit 20. Stores the event code and arguments in array elements events[0],
events[1], etc.

GETEVENT (20) events[]

Related Keywords

FCMND (program instruction)

FOPEN (program instruction)

FSET (program instruction)
V+ Language Reference Guide, Rev A 297

GFLOOD Program Instruction
Syntax

GFLOOD-I

GFLOOD (logical_unit) x, y

Function

Flood a region in a graphics window with color.

Usage Considerations

This instruction is available only with an graphics-based system.

This instruction is fairly slow and should be avoided in time-critical applications.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

x, y Real values, variables, or expressions (interpreted as integers)
specifying the (pixel) coordinates of the seed point from which
the flooding is to proceed.

Details

This instruction floods any region enclosing the given point (x,y) with the current
graphics foreground color (see GCOLOR). The output from the GFLOOD
instruction is not affected by the current texture or logical operation.

The flooding starts with the assumption that the color of the specified seed pixel
at (x,y) is the old color that is to be replaced with the new color specified. As
GFLOOD floods the area around (x,y) with the new color, it looks for region
boundaries to stop the flood. Any pixel different from the initial old color is
treated as a region boundary.

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.
298 V+ Language Reference Guide, Rev A

Program Instruction GFLOOD
Example

In the window currently open on graphics logical unit 20, change the pixel at
coordinates (100,120) to the current foreground color, and propagate that change
to all surrounding pixels that have the original color of pixel (100,120).

GFLOOD (20) 100, 120

Related Keywords

FOPEN (program instruction)

GCOLOR (program instruction)
V+ Language Reference Guide, Rev A 299

GGETLINE Program Instruction
Syntax

GGETLINE-I

GGETLINE (logical_unit) $data[index] , num.pix = x, y, nx

Function

Return pixel information from a single pixel row in a graphics window.

Usage Considerations

Older versions of V+ provided the instruction GGET.LINE, which has a similar
function. GGET.LINE is supported in V+ version 11.0, but will become obsolete in
a future version. New code should use the syntax presented here. Existing code
should be updated to use the new instruction name.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

$data[] String array that receives the returned pixel information. The
format of the pixel information is described below.

index Optional real value, variable, or expression (interpreted as an
integer) specifying the first array element to receive data.
Element zero is accessed first if no index is specified.

num.pix Returns the number of pixels in the $data[] array. This will be
less than the number of pixels requested if the edge of the
window is encountered before nx pixels can be returned.

x, y Real values, variables, or expressions (interpreted as integers)
specifying the (pixel) coordinates of the starting point of the row
of pixels to return.

nx Real value, variable, or expression (interpreted as an integer)
specifying the number of pixels to return.

Details

The GGETLINE instruction operates on the window that is currently open for the
specified logical unit.
300 V+ Language Reference Guide, Rev A

Program Instruction GGETLINE
This instruction allows an application program to retrieve pixel information from
a graphics window. The information returned in the string array describes nx
pixels in row y of the graphics window, starting at column x . The format of the
string array is as follows:

• For windows with 4 bits per pixel (/COLORS 16):

• For windows with 1 bit per pixel (/COLORS 2):

If more than 128 bytes of data are returned, the 129th data byte is returned as the
first byte of $data[index+1], the 257th data byte is returned as the first byte of
$data[index+2], and so forth.

All the elements of $data[] filled with data will be 128 bytes long, except for the
last element filled (which will be from zero to 127 bytes long). This fact can be
used to determine the number of bytes actually containing pixel data (see the
example below).

Table 2-14. String Arrays with 4 Bits per Pixel

Byte 1 of $data[index] Byte 2 of $data[index] etc.

Bit #: 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 etc.

Pixel #: x x+1 x+2 x+3 etc.

Table 2-15. String Arrays with 1 Bit per Pixel

Byte 1 of $data[index] Byte 2 of $data[index] etc.

Bit: 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 etc.

Pixel #: x x
+
1

x
+
2

x
+
3

x
+
4

x
+
5

x
+
6

x
+
7

x
+
8

x
+
9

x
+
1
0

x
+
1
1

x
+
1
2

x
+
1
3

x
+
1
4

x
+
1
5

etc.
V+ Language Reference Guide, Rev A 301

GGETLINE Program Instruction
Example

The following instruction will access the window opened on logical unit number
20. Pixel data from the window will be placed in array elements $data[0] and
$data[1], starting from the pixel at coordinates (100,50). Data for 250 pixels will be
returned (unless the right margin of the window is encountered first).

GGETLINE (20) $data[] = 100, 50, 250

The following program segment shows how to compute the actual number of
bytes of pixel data returned in the array $data[] .

index = 0 ;First array index
bytes = 0 ;Number of data bytes

DO
length = LEN($data[index]) ;Length of this element
bytes = bytes+length ;Total the bytes
index = index+1 ;On to the next element

UNTIL length < 128 ;Partial string signals end

Related Keyword

FOPEN (program instruction)
302 V+ Language Reference Guide, Rev A

Program Instruction GGET.LINE
Syntax

GGET.LINE-I

GGET.LINE (logical_unit) $data[index] , num.pix = x, y, nx

Function

Return pixel information from a single pixel row in a graphics window.

Usage Considerations

GGET.LINE is supported in V+ version 12.1, but will become obsolete in a future
version. New code should use the syntax presented here. Existing code should be
updated to use GGETLINE.

Parameters

See the GGETLINE program instruction

Details

See the GGETLINE program instruction

Example

See the GGETLINE program instruction

Related Keyword

FOPEN (program instruction)

GGETLINE (program instruction)
V+ Language Reference Guide, Rev A 303

GICON Program Instruction
Syntax

GICON-I

GICON (lun , mode) x, y, $name , index

Function

Draw a predefined graphic symbol (icon) in a graphics window.

Usage Considerations

This instruction is available only with an graphics-based system.

The specified icon must be either a predefined system icon or a defined user icon.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as an
integer) specifying the icon drawing mode. The mode values are
as follows:

0 = Draw a static icon using the actual icon colors, overwriting
the display. (This is the default.)

1 = Draw a static icon using the actual icon colors, overwriting
the display, but draw only every other pixel. (The resulting icon
image looks like it has vertical, transparent stripes.)

2 = Draw a static icon in complement mode—the icon image is
exclusive ORed with the current window contents. (Note that
drawing an icon a second time in this mode will restore the
previous background.)

3 = Erase the current movable icon, if any. The x , y, $name, and
index parameters are ignored in this mode.

4 = After erasing any previous movable icon, draw the icon in
complement mode. The new icon becomes the current movable
icon.
304 V+ Language Reference Guide, Rev A

Program Instruction GICON
x, y Real values, variables, or expressions (interpreted as integers)
specifying the (pixel) coordinates of where the icon is to be
drawn. The icon reference point is placed at these coordinates.
The location of the reference point in the icon depends upon the
particular icon, but it is normally the top left corner or the center
of the icon.

$name String value, variable, or expression specifying the name of the
icon to be drawn. (Icon names follow the same convention as
normal V+ variable names.)

index Optional real value, variable, or expression (interpreted as an
integer) specifying which element is to be drawn from an array
of icons. The value may range from 0 to 255. Element zero is
drawn if no index is specified, or if the specified index is larger
than the last array element defined.

Details

This instruction draws a system-defined or user-defined graphic symbol in the
current window associated with the indicated logical unit number. The symbol,
called an icon, consists of a rectangular region of pixels with arbitrary colors. The
symbol is referenced by name, and may be either a standard system icon (see the
list below) or a user-defined icon.

Icon name Max index Description

CHECK_BOX 3 Check box for on/off selection

CURSOR 0 Pointing-device cursor

RADIO_BUTTON 3 Push button for on/off selection

SYSTEM_ADEPT Adept icon in screen upper left

SYSTEM_CLOSE 2 Close icon in window upper left

SYSTEM_CURSOR 6 Cursors

SYSTEM_DOWN 1 Down arrow

SYSTEM_H_HANDLE 1 Handle for horizontal scroll bar

SYSTEM_LEFT 1 Left arrow

SYSTEM_MINMAX 1 Min/max icon above vert. scroll
bar

SYSTEM_NULL Null icon
V+ Language Reference Guide, Rev A 305

GICON Program Instruction
Custom icons can be developed and stored in disk files with the Adept Icon
Editing Utility program.1 At runtime, your application program can call the
program load.icon to read the data files and define the icons in graphics memory.
Once they are loaded into graphics memory, the icons can be displayed with the
GICON instruction.

Custom icons also can be created directly by using the FOPEN instruction to open
an icon (see the FOPEN instruction for a description of the /ICON attribute) and
then using the WRITE instruction to write image data into graphics memory.
After an icon has been opened for definition, the WRITE instruction must be used
repeatedly to define each row of the icon bitmap. The string supplied to the
WRITE instruction must contain the following items in the order listed:

1. A 16-bit integer indicating the index of the icon being defined [for example,
defined by $INTB(index)]

2. A 16-bit integer indicating the row of the icon being defined [for example,
defined by $INTB(row)]

3. Enough four-bit pixel values to define a row of the icon—data in excess of that
needed to define a row will be ignored. For example, the value for a pair of
pixels could be defined by an expression like:

$CHR(^H10*first_pixel+second_pixel)

4. The /S format control specifier—to prevent carriage-return and line-feed
characters from being appended to the string

A one-bit-per-pixel version of the icon also will be defined automatically. All zero
pixels in the four-bit-per-pixel icon will appear as 0 pixels in the one-bit-per-pixel
icon, and all nonzero pixels will appear as 1 pixels.

User-defined icons can be deleted from the graphics memory by using the /ICON
qualifier in an FDELETE instruction. See FDELETE for details.

1 The Icon Editing Utility is available in AIM software packages and on the Adept Applications
Disk. Contact Adept Applications Dept. at (800) 232-3378.

SYSTEM_RIGHT 1 Right arrow

SYSTEM_SCROLL 2 Scroll bar display/suppress icon

SYSTEM_SIZE 1 Size icon in window lower right

SYSTEM_UP 1 Up arrow

SYSTEM_V_HANDLE 1 Handle for vertical scroll bar

Icon name Max index Description
306 V+ Language Reference Guide, Rev A

Program Instruction GICON
Icons may be stored and referenced as arrays. Then the optional index parameter
indicates which of the array elements is to be displayed. All the icons in an array
have the same size. For arrays of icons that are to be selected via a mouse button
press, the Adept convention is to use an even numbered array index (for example,
0) for the icon displayed when the button is not pressed, and the next index (for
example, 1) for the corresponding button-down icon.

If there is no icon defined with the specified name and index, the system icon
SYSTEM_NULL is displayed and no error is returned. This icon appears (when
mode is 0) as a large red question mark.

Icons are not affected by the current logical operation, texture, or pattern.
Depending on the mode parameter, icons may be either static or movable. Static
icons are drawn in normal mode, using the actual icon colors, or in complement
mode (see below). Movable icons are always drawn in complement mode. V+
keeps track of the movable icon in each window, and erases it (restoring the
background) in modes 3 and 4. Only one movable icon is available in each
window.

When an icon is drawn in complement mode, the bitmap for the icon is exclusive
ORed with the bitmap for the window (using the current GLOGICAL planes
mask), so the colors displayed will normally be different from the actual icon
colors.

Pixel color zero is assumed to be transparent and allows the background to show.
Thus, live video cannot be displayed within an icon unless the background is
already live video.

The GICON instruction operates on the window that is currently open for the
specified logical unit. If the window is open in nonbuffered mode, the instruction
sends a request to the window manager and takes effect immediately. If the
window is open in buffered mode, the icon will be displayed when the buffer fills
or an FEMPTY instruction is executed.
V+ Language Reference Guide, Rev A 307

GICON Program Instruction
Example

The following instructions draw system-defined icons in the window currently
open on logical unit number 20. The first instruction draws the system-defined
up-arrow icon (named SYSTEM_UP), with its upper left-hand corner at location
(10,15). The second instruction draws the button-down version of the same icon,
in complement mode, to the right of the first icon:

GICON (20) 10, 15, "SYSTEM_UP"

GICON (20, 2) 50, 15, "SYSTEM_UP", 1

Related Keywords

FDELETE (program instruction)

FOPEN (program instruction)

GCLIP (program instruction)
308 V+ Language Reference Guide, Rev A

Program Instruction GLINE
Syntax

GLINE-I

GLINE (lun) x0, y0, xn, yn

Function

Draw a single line segment in a graphics window.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

x0, y0 Real values, variables, or expressions (interpreted as integers)
specifying the (pixel) coordinates of the starting point of the line.

xn, yn Real values, variables, or expressions (interpreted as integers)
specifying the (pixel) coordinates of the ending point of the line.

Details

The line is drawn with the current graphics foreground color (see GCOLOR),
texture (see GTEXTURE), and logical operation (see GLOGICAL).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Example

In the window currently open on graphics logical unit 20, draw a line from
coordinates (100,110) to (400,450), using the current foreground color:

GLINE (20) 100, 110, 400, 450
V+ Language Reference Guide, Rev A 309

GLINE Program Instruction
Related Keywords

FOPEN (program instruction)

GARC (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLINES (program instruction)

GLOGICAL (program instruction)

GTEXTURE (program instruction)

GTRANS (program instruction)
310 V+ Language Reference Guide, Rev A

Program Instruction GLINES
Syntax

GLINES-I

GLINES (logical_unit , mode) points, coord[offset,index]

Function

Draw multiple line segments in a graphics window.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as a bit
field) specifying how the instruction is to operate. Zero is
assumed if the parameter is omitted. The bit interpretations are
given below.

Bit 1 (LSB)Empty (0) vs. Filled (1)Mask value = 1

If this bit is set and bit #2 is set, the polygon is filled with the
foreground color. (Not implemented)

Bit 2 Open (0) vs. Closed (2)Mask value = 2

If this bit is set, a line is drawn from the last point to the first to
form a closed polygon.

points Real value, variable, or expression (interpreted as an integer)
specifying the number of points to connect with lines.
V+ Language Reference Guide, Rev A 311

GLINES Program Instruction
coord[,] Real array containing pairs of position coordinates (in pixels) for
the points. The array indexes are described below. The array
elements are interpreted as follows:

offset Optional real value, variable, or expression (interpreted as an
integer) specifying the left-hand array index value that accesses
the X components of the coordinates for the points to be
connected. Zero is assumed if this parameter is omitted—in
which case index also must be omitted.

The X value is accessed using a left-hand index equal to offset .
The Y value is accessed using a left-hand index equal to
(offset+1).

index Optional real value, variable, or expression (interpreted as an
integer) specifying the array elements to access for the first point
in the series. Zero is assumed if this parameter is omitted. The
maximum number of elements allowed is 127.

Details

This instruction draws a series of lines between the specified points. The mode
parameter provides the option of having the last point automatically connected to
the first point, forming a closed polygon. The lines are drawn with the current
graphics foreground color (see GCOLOR), texture (see GTEXTURE), and logical
operation (see GLOGICAL).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Array element Interpretation of value

coord[offset+0,index+0] X coordinate for first point

coord[offset+1,index+0] Y coordinate for first point

coord[offset+0,index+1] X coordinate for second
point

coord[offset+1,index+1] Y coordinate for second
point
312 V+ Language Reference Guide, Rev A

Program Instruction GLINES
Examples

The following instruction draws lines connecting a series of 10 points in the
window currently open on graphics logical unit 20, using the foreground color.
The endpoints of the first line have coordinates (lines[1,1],lines[2,1]) and
(lines[1,2], lines[2,2]). The endpoints of the last line are (lines[1,9],lines[2,9]) and
(lines[1,10],lines[2,10]):

GLINES (20) 10, lines[1,1]

The following instruction draws a closed polygon with 5 sides in the window
currently open on graphics logical unit 20, using the foreground color. The
endpoints of the first line have coordinates (lines[0,0], lines[1,0]) and
(lines[0,1],lines[1,1]). The endpoints of the last line are (lines[0,4],lines[1,4]) and
(lines[0,0], lines[1,0]):

GLINES (20, 2) 5, lines[,]

Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLINE (program instruction)

GLOGICAL (program instruction)

GRECTANGLE (program instruction)

GSCAN (program instruction)

GTEXTURE (program instruction)

GTRANS (program instruction)
V+ Language Reference Guide, Rev A 313

GLOBAL Program Instruction
Syntax

GLOBAL-I

GLOBAL type variable , ..., variable

Function

Declare a variable to be global and specify the type of the variable.

Parameters

type Optional parameter specifying the type of a variable. The
acceptable types are:

LOC Location variable (transformation, precision point, belt)

REAL Single-precision real variable

DOUBLE Double-precision real variable

See the Details section for the default type.

variable Variable name (belt, precision point, real-value, string, and
transformation). Each variable can be a simple variable or an
array. If the type parameter is specified, all the variables must
match the specified type. Array variables must have their
indexes specified explicitly, indicating the highest valid index for
the array.

Details

Variables that are not declared to be AUTO or LOCAL are GLOBAL by default.
Undeclared scalar variables default to single precision.

Thus, single-precision and location global variables do not need to be declared.
However, the only way to guarantee a double-precision global variable is with the
GLOBAL instruction.

Global variables can be seen by any program that does not declare a LOCAL or
AUTO variable of the same name. Thus, if program_a declares var1 to be a
GLOBAL variable and program_b declares var1 to be AUTO, program_b will not
be able to use or alter GLOBAL var1. A new copy of variable var1 that is specific
to program_b will be created each time program_b executes.

GLOBAL DOUBLEs must be declared in each program in which they are used.
314 V+ Language Reference Guide, Rev A

Program Instruction GLOBAL
Examples

GLOBAL $str_1, $str_2, str_3 ;create 2 string and 1 untyped
;variable

GLOBAL LOC #ppoint_1 ;create 1 global precision
;point variable

GLOBAL DOUBLE var_1, var_2 ;create 2 double prec. reals

Related Keywords

AUTO (program instruction)

LOCAL (program instruction)
V+ Language Reference Guide, Rev A 315

GLOGICAL Program Instruction
Syntax

GLOGICAL-I

GLOGICAL (logical_unit) code , planes

Function

Set the logical operation to be performed between new graphics output and
graphics data already displayed, and select which bit planes are affected by
graphics instructions.

Usage Considerations

This instruction is available only with an graphics-based system.

The logical operation and the bit-plane settings are reset for the specified logical
unit when a window is opened on the logical unit with the FOPEN instruction.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

code Optional real value, variable, or expression (interpreted as an
integer) specifying the function code of the logical operation to
be performed on graphics data as it is output to the display. The
specified operation, as described in the table below, is performed
with the new output (source) and any previous output already
in the window (dest). The value 3 is used if this parameter is
omitted. (Most of these logical operations are used only in
unusual circumstances.)

code Logical operation selected

0 0 [set dest bits to 0]

1 source AND dest

2 source AND (NOT dest)

3 source

4 (NOT source) AND dest

5 dest [do not change dest]

6 source XOR dest
316 V+ Language Reference Guide, Rev A

Program Instruction GLOGICAL
planes Optional real value, variable, or expression (interpreted as a 1-bit
or 4-bit field) specifying the bit planes that are to be accessed
during subsequent graphics output. For each bit that is set, the
corresponding bit plane is enabled for writing during
subsequent commands. All bit planes will be enabled if this
parameter is omitted.

Details

This instruction establishes the logical operation to be performed between the
output requested by a graphics instruction and the existing graphics output
already in the window. That is, the logical operation selected will be performed
for all subsequent graphics output, until another GLOGICAL instruction is
executed.

GLOGICAL also selects which bit planes are affected by graphics output. In a
16-color window, the color at each pixel is represented by 4 bits. The planes
parameter restricts graphics operations to changing only certain bits within each
pixel. The color of a pixel as seen on the screen then depends upon the
combination of previous unchanged bit values and any new bit values. Normally,
all bit planes should be written.

Output from all the following instructions is affected by the current GLOGICAL
settings:

7 source OR dest

8 (NOT source) AND (NOT dest)

9 (NOT source) XOR dest

10 NOT dest

11 source OR (NOT dest)

12 NOT source

13 (NOT source) OR dest

14 (NOT source) OR (NOT dest)

15 1 [set dest bits to 1]

GARC GCHAIN GFLOOD GLINE GLINES

GPOINT GRECTANGLE GSCAN GTYPE

code Logical operation selected
V+ Language Reference Guide, Rev A 317

GLOGICAL Program Instruction
This instruction operates on the window that is currently open for the specified
logical unit. The effect of this instruction will apply to all subsequent output to the
window. (Note, however, that if the window is open in buffered mode, the effect
will not be displayed until the buffer fills or an FEMPTY instruction is executed.)

Examples

For the window open on graphics logical unit 20, select the 3 low-order bits (mask
7) of each pixel to be written directly from the 3 low-order bits of the graphics
source (function code 3) for subsequent graphics instructions.

GLOGICAL (20) 3, 7

For the window open on graphics logical unit 20, specify that for subsequent
graphics output all bits of each pixel will be written as the exclusive OR of the
existing pixel value with the new value from the graphics output (function
code 6):

GLOGICAL (20) 6

For the window open on graphics logical unit 20, cancel any special logical
operation or bit plane selections, so that subsequent graphics instructions will
write all pixels normally:

GLOGICAL (20)

Related Keywords

FOPEN (program instruction)

GARC (program instruction)

GCHAIN (program instruction)

GCOPY (program instruction)

GLINE (program instruction)

GLINES (program instruction)

GLOGICAL (program instruction)

GPOINT (program instruction)

GRECTANGLE (program instruction)

GSCAN (program instruction)

GTYPE (program instruction)
318 V+ Language Reference Guide, Rev A

Program Instruction GOTO
Syntax

GOTO-I

GOTO label

Function

Perform an unconditional branch to the program step identified by the given
label.

Parameter

label Label of the program step to which execution is to branch. Step
labels are integer values that range in value from 0 to 65535.

Details

This instruction causes program execution to jump to the line that contains the
specified step label. Note that a step label is different from a line number. Line
numbers are the numbers automatically assigned by the V+ program editors to
assist the editing process. Step labels must be explicitly entered on program lines
where appropriate.

Modern, structured programming considers GOTO statements to be poor
programming practice. Adept suggests you use one of the other control structures
in place of GOTO statements.

Example

The following program segment asks the user to enter a number from 1 to 100. If
the number input is not in that range, the GOTO 10 instruction at line number 27
causes execution to jump to step label 10 (at line number 23).

21 ; Get a number from the user

22

23 10 PROMPT "Enter a number from 1 to 100: ", number

24

25 IF (number < 1) OR (number > 100) THEN

26 TYPE /B, /C1, *Invalid response*, /C1

27 GOTO 10

28 END
V+ Language Reference Guide, Rev A 319

GOTO Program Instruction
Related Keywords

DO (program instruction)

EXIT (program instruction

FOR (program instruction)

IF GOTO (program instruction)

IF ... THEN (program instruction)

NEXT (program instruction)

WHILE (program instruction)
320 V+ Language Reference Guide, Rev A

Program Instruction GPANEL
Syntax

GPANEL-I

GPANEL (lun , mode) x, y, dx, dy

Function

Draw a rectangular panel with shadowed or grooved edges.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as a bit
field) specifying how the instruction is to operate. Zero is
assumed if the parameter is omitted. The bit interpretations are
given below.

Bit 1 (LSB) Empty (0) vs. Filled (1) (mask value = 1)

If this bit is set, the panel area is filled with the current
foreground color.

Bit 2 Raised (0) vs. Sunken (1) (mask value = 2)

If this bit is set, the panel edges will be shaded to appear
depressed below, rather than raised above, the surrounding area.

Bit 3 Panel (0) vs. Groove (1) (mask value = 4)

If this bit is set, a rectangular groove or ridge (depending on bit
#2) two pixels wide will be drawn around the panel area instead
of a shaded edge.

x, y Real values, variables, or expressions (interpreted as integers)
specifying the coordinates (in pixels) of the interior pixel in the
top left corner of the rectangular panel. That is, these parameters
locate the top left-most pixel on the surface of the panel.
V+ Language Reference Guide, Rev A 321

GPANEL Program Instruction
dx, dy Real values, variables, or expressions (interpreted as integers)
specifying the width and height, respectively, of the panel
surface or the area within the grooves. Both of these values must
be greater than zero.

Details

This instruction draws a rectangular panel in the graphics window, similar to the
output from the GRECTANGLE instruction. The panel is drawn (and optionally
filled) with the current graphics foreground color (see GCOLOR). Unlike
GRECTANGLE, however, the GPANEL instruction has the following features:

• The edges of the rectangle are shadowed to make it appear raised or depressed
relative to the surrounding area.

• The edges of the rectangle can be made to appear as a groove or ridge
enclosing the rectangle, rather than raising or depressing the surface of the
rectangle.

• The current graphics logical operation (as set by GLOGICAL) is not performed.

• The current graphics texture settings (as set by GTEXTURE) are ignored.

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Examples

In the window currently open on graphics logical unit 20, draw a standard raised
panel at coordinates (10,15) with width 50 and height 20:

GPANEL (20) 10, 15, 50, 20

In the window currently open on graphics logical unit 20, draw a sunken panel,
filled with the foreground color, at coordinates (10,50) with width 60 and height
30:

GPANEL (20,3) 10, 50, 60, 30

In the window currently open on graphics logical unit 20, draw a ridge around a
rectangular area at coordinates (10,60) with width 40 and height 20:

GPANEL (20,6) 10, 60, 40, 20
322 V+ Language Reference Guide, Rev A

Program Instruction GPANEL
Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GRECTANGLE (program instruction)

GTRANS (program instruction)
V+ Language Reference Guide, Rev A 323

GPOINT Program Instruction
Syntax

GPOINT-I

GPOINT (lun) x, y

Function

Draw a single point in a graphics window.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

x, y Real values, variables, or expressions (interpreted as integers)
specifying the coordinates (in pixels) of the point to be output.

Details

The point is drawn with the current graphics foreground color (see GCOLOR)
and logical operation (see GLOGICAL).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Example

In the window currently open on graphics logical unit 20, draw a single point
with the foreground color at coordinates (100,110):

GPOINT (20) 100, 110
324 V+ Language Reference Guide, Rev A

Program Instruction GPOINT
Related Keywords

FOPEN (program instruction)

GCHAIN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLOGICAL (program instruction)

GTRANS (program instruction)
V+ Language Reference Guide, Rev A 325

GRECTANGLE Program Instruction
Syntax

GRECTANGLE-I

GRECTANGLE (lun, mode) x, y, dx, dy

Function

Draw a rectangle in a graphics window.

Usage Considerations

This instruction is available only if the system controller includes a graphics
system processor.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as a bit
field) specifying how the instruction is to operate. Zero is
assumed if the parameter is omitted. The bit interpretations are
given below.

Bit 1 (LSB)Empty (0) vs. Filled (1)(mask value = 1)

If this bit is set, the rectangle is filled with the foreground color.

x, y Real values, variables, or expressions (interpreted as integers)
specifying the coordinates (in pixels) of the top left corner of the
rectangle.

dx, dy Real values, variables, or expressions (interpreted as integers)
specifying the width and height, respectively, of the rectangle.
Both of these values must be greater than zero.

Details

The rectangle is drawn and/or filled with the current graphics foreground color
(see GCOLOR), texture (see GTEXTURE), and logical operation (see GLOGICAL).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.
326 V+ Language Reference Guide, Rev A

Program Instruction GRECTANGLE
Examples

In the window currently open on graphics logical unit 20, draw a solid rectangle
in the foreground color at coordinates (10,20), with width 30 and height 40:

GRECTANGLE (20,1) 10, 20, 30, 40

In the window currently open on graphics logical unit 20, draw a rectangle
outline in the foreground color at coordinates (75,80), with width 40 and height
50:

GRECTANGLE (20) 75, 80, 40, 50

Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLOGICAL (program instruction)

GPANEL (program instruction)

GTEXTURE (program instruction)

GTRANS (program instruction)
V+ Language Reference Guide, Rev A 327

GSCAN Program Instruction
Syntax

GSCAN-I

GSCAN (lun) lines, data[offset,index]

Function

Draw a number of horizontal lines in a graphics window to form a complex
figure.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

lines Real value, variable, or expression (interpreted as an integer)
specifying the number of scan lines to draw.

data[,] Real array containing sets of data values (in pixels) for the lines.
The array indexes are described below. The array elements are
interpreted as follows:

offset Optional real value, variable, or expression (interpreted as an
integer) specifying the left-hand array index value that accesses
the X components of the coordinates for the start points. Zero is
assumed if this parameter is omitted—in that case index must
also be omitted.

The X value is accessed using a left-hand index equal to offset .
The Y value is accessed using a left-hand index equal to

Array element Interpretation of value

data[offset+0,index+0] X coord. for 1st start point

data[offset+1,index+0] Y coord. for 1st start point

data[offset+2,index+0] Length of first line

data[offset+0,index+1] X coord. for 2nd start point

data[offset+1,index+1] Y coord. for 2nd start point

data[offset+2,index+1] Length of second line
328 V+ Language Reference Guide, Rev A

Program Instruction GSCAN
(offset+1). The length value is accessed using a left-hand index
equal to (offset+2).

index Optional real value, variable, or expression (interpreted as an
integer) specifying the array elements to access for the first line
in the series. Zero is assumed if this parameter is omitted.

Details

This instruction draws a number of horizontal lines in the window to form a
complex figure. The scan lines are drawn with the current graphics foreground
color (see GCOLOR), texture (see GTEXTURE), and logical operation (see
GLOGICAL).

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Examples

In the window currently open on graphics logical unit 20, draw 25 horizontal
lines in foreground color. The first line starts at (scan[0,0],scan[1,0]) and has length
scan[2,0]. The last line starts at (scan[0,24],scan[1,24]) and has length scan[2,24]:

GSCAN (20) 25, scan[,]

In the window currently open on graphics logical unit 20, draw 15 horizontal
lines in foreground color. The first line starts at (scan[2,3],scan[3,3]) and has length
scan[4,3]. The last line starts at (scan[2,17],scan[3,17]) and has length scan[4,17]:

GSCAN (20) 15, scan[2,3]
V+ Language Reference Guide, Rev A 329

GSCAN Program Instruction
Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLOGICAL (program instruction)

GTEXTURE (program instruction)
330 V+ Language Reference Guide, Rev A

Program Instruction GSLIDE
Syntax

GSLIDE-I

GSLIDE (lun , mode) id = x, y , length, max_pos, arrow_inc ,
handle

Function

Draw a slide bar in preparation for receiving slide events.

Usage Considerations

This instruction is available only with a graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as a bit
field) specifying how the instruction is to operate. Zero is
assumed if the parameter is omitted. The bit interpretations are
given below.

Bit 1 (LSB)Create/Update (0) vs. Delete (1)(mask value = 1)

The slide bar is deleted if this bit is set. Otherwise, the slide bar is
created, or it is updated if it already exists.

Bit2 Horizontal (0) vs. Vertical (1)(mask value = 2)

If this bit is set, the slide bar will be created as a vertical slide bar.
Otherwise, the slide bar will be horizontal. This bit is ignored if
the slide bar already exists.

id Real value, variable, or expression (interpreted as an integer)
specifying the ID number of the slide bar. This number is
returned with slide event data to identify the slide bar to which
the data applies. The value cannot be negative.

NOTE: All the following parameters (except for handle) must be
specified if the slide bar is being created. If the slide bar already
exists, these parameters can be omitted and (except for handle)
will be ignored if they are specified.
V+ Language Reference Guide, Rev A 331

GSLIDE Program Instruction
x, y Optional real values, variables, or expressions (interpreted as
integers) specifying the (pixel) coordinates of the top left corner
of the slide bar. Omitted values default to zero.

length Real value, variable, or expression (interpreted as an integer)
specifying the width of a horizontal slide bar or the height of a
vertical slide bar. The value cannot be negative.

max_pos Real value, variable, or expression (interpreted as an integer)
specifying the value to be associated with the maximum handle
position in the slide bar (which is the right end of a horizontal
slide bar and the bottom end of a vertical slide bar). This
parameter also determines how many positions the slide-bar
handle can have in the slide bar (see below). If max_pos is zero,
the slide bar will be drawn without a handle and the slide bar
will be inactive. The value cannot be negative. The maximum
value is 65,535.

arrow_inc Real value, variable, or expression (interpreted as an integer)
specifying the change in the position of the slide-bar handle that
will occur for each mouse click on one of the arrow buttons (see
below). The value cannot be negative.

handle Optional real value, variable, or expression (interpreted as an
integer) specifying the position of the handle (see below). The
slide-bar handle position will be set even if the slide bar already
exists. If handle is greater than max_pos , max_pos will be
used. Zero will be used if this parameter is omitted or its value is
negative.
332 V+ Language Reference Guide, Rev A

Program Instruction GSLIDE
Details

This instruction creates or adjusts a user-defined slide bar in a graphics window.
The slide bar has the same appearance as the scroll bars V+ displays on the edges
of windows.

If slide bar events are enabled (see the OBJECT event keyword described with the
GETEVENT instruction), the slide bar will return events caused by clicking
and/or dragging the mouse cursor on the slide bar. If slide bar events are disabled
(or the max_pos parameter is specified to be zero), the slide bar will be inactive.
That is, the slide-bar graphics will not reflect mouse cursor activity, and no events
will be returned.

When the slide bar is active, the slide-bar handle can be moved to discrete
positions in the slide bar, numbered from 0 to max_pos . If the user moves the
handle to a position between two discrete positions, the handle will automatically
jump to the nearest discrete position when the mouse button is released. The
parameter arrow_inc establishes how many discrete positions the handle will
move when the user clicks on one of the arrow buttons. The handle parameter
sets the discrete position at which the handle is to be drawn.

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the slide bar will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Related Keywords

FOPEN (program instruction)

FSET (program instruction)

GCLIP (program instruction)
V+ Language Reference Guide, Rev A 333

GTEXTURE Program Instruction
Syntax

GTEXTURE-I

GTEXTURE (lun) mode, pattern

Function

Set the opaque/transparent mode and the texture pattern for subsequent graphics
output.

Usage Considerations

This instruction is available only with an graphics-based system.

The texture mode and pattern are reset for the specified logical unit when a
window is opened on the logical unit with the FOPEN instruction.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as an
integer) specifying that graphics output will be opaque (mode =
0) or transparent (mode = 1). The value 1 is assumed if this
parameter is omitted.

pattern Optional real value, variable, or expression (interpreted as a
16-bit integer) specifying the texture pattern. A solid pattern
(corresponding to ^HFFFF) is assumed if this parameter is
omitted.

Details

When characters or textured graphics are drawn, the contents of the window in
the spaces behind the graphics can be left unchanged (transparent mode) or set to
the current background color (opaque mode). For nontextured, noncharacter
graphics, this mode has no effect. The interiors of filled geometric figures (drawn
with mode bit 1 set) are always drawn solid, regardless of the texture.

The texture pattern allows dotted or dashed graphics to be drawn. The specified
pattern is logically ANDed with the normal graphics output. This pattern is
repeated every 4 pixels (in 16-color windows) or 32 pixels (in 2-color windows)
along the geometric object drawn. The pixels that correspond to bits set in the
pattern are drawn with the foreground color. The pixels that correspond to bits
clear in the pattern are either set to the background color (in opaque mode) or are
unchanged (in transparent mode).
334 V+ Language Reference Guide, Rev A

Program Instruction GTEXTURE
The following instructions are affected by the GTEXTURE opaque/transparent
mode setting and texture pattern, with exceptions as noted.

GARC (always in opaque mode)
GCHAIN (always in opaque mode)
GLINE
GLINES
GRECTANGLE
GSCAN
GTYPE (not affected by pattern)

This instruction operates on the window that is currently open for the specified
logical unit. The effect of this instruction will apply to all subsequent output to the
window. (Note, however, that if the window is open in buffered mode, the effect
will not be displayed until the buffer fills or an FEMPTY instruction is executed.)

Examples

The following two instructions will draw a vertical dashed line, using the
foreground color, on the current contents of the window currently open on
graphics logical unit 20:

GTEXTURE (20) 1, ^HF0F0

GLINE (20) 50, 40, 50, 100

These two instructions draw a rectangle in the window currently open on
graphics logical unit 21 (dotted lines are drawn, alternating between the
foreground and background colors):

GTEXTURE (21) 0, ^H3333

GRECTANGLE(21) 30, 40, 150, 160
V+ Language Reference Guide, Rev A 335

GTEXTURE Program Instruction
Related Keywords

FOPEN (program instruction)

GARC (program instruction)

GCHAIN (program instruction)

GLINE (program instruction)

GLINES (program instruction)

GRECTANGLE (program instruction)

GSCAN (program instruction)

GTYPE (program instruction)
336 V+ Language Reference Guide, Rev A

Program Instruction GTRANS
Syntax

GTRANS-I

GTRANS (lun , mode) array[,]

Function

Scale, rotate, offset, and apply perspective correction to all subsequent graphics
instructions.

Usage Considerations

The mode values 1 and 2 can be used only in systems equipped with the
AdeptVision VXL option. With vision systems, this instruction allows you to
specify graphics output to the vision window in real-world millimeters.

Parameters

lun Integer specifying the graphics logical unit to apply the graphics
transformation to.

mode Integer specifying operational mode:

0 Use values in array[,] (default mode)

1 Use the camera calibration data in effect for the last camera that
altered the vision system display frame store. Do not use the
perspective distortion correction matrix.

2 Use the camera calibration data in effect for the last camera that
altered the vision system display frame store. Use the
perspective distortion correction matrix.

array[,] When mode = 0, the values in array[,] are used to transform
the position and orientation of subsequent graphics instructions.
V+ Language Reference Guide, Rev A 337

GTRANS Program Instruction
Details

If modeand array[,] are omitted, the vision transformation is canceled. When
mode = 0, the values in array[,] are used to transform the position and
orientation components of subsequent graphics instructions. The affected
instructions are listed in Table 2-16..

Table 2-16. Instructions Affected by GTRANS

Instruction and Parameters Parameters Affected

GARC
(lun, mode) xc, yc, radius, ang0,
angn

The variables xc and yc are transformed.
The value of radius is multiplied by the
scaling. The values of ang0 and angn are
changed by the rotation angle.

GCHAIN
(lun) x, y, n, points[n]

 Only x and y are transformed.

GFLOOD
(lun) x, y

Both x and y are transformed.

GICON
 (lun, mode) x, y, $name, index

x and y are transformed.

GLINE
(lun) x0, y0, xn, yn

x0, y0, xn, yn are transformed.

GLINES
(lun, mode) n, points[2,n]

Every array[0,n] and array[1,n] are
transformed in pairs.

GPANEL
(lun, mode) x, y, dx, dy

 Only x and y are transformed.

GPOINT
(lun) x, y

x and y are transformed.

GRECTANGLE
(lun, mode) x, y, dx, dy

 Only x and y are transformed.

GSCAN
(lun) n, array[3,n]

Every array[0,n] and array[1,n] are
transformed in pairs.

GSLIDE
(lun, mode) id = x, y, length,
num_pos, arrow_inc, handle

 Only x and y are transformed.

GTYPE
(lun, mode) x, y, $text, font_number,
path, rotation

 Only x and y are transformed.
338 V+ Language Reference Guide, Rev A

Program Instruction GTRANS
In modes 1 and 2, the camera calibration for the most recently used camera
supplies the transformation matrix. See the AdeptVision Reference Guide for
details on the transformation matrix.

The more common transformations are defined by the following arrays:

GCLEAR

GCLIP

GCOLOR

GCOPY

GLOGICAL

GTEXTURE

Not affected.

Table 2-17. Common Transformations

scale translate rotate

x 0 0 1 0 dx cosθ –sinθ 0

0 x 0 0 1 dy sinθ cosθ 0

0 0 1 0 0 1 0 0 1

Table 2-16. Instructions Affected by GTRANS (Continued)

Instruction and Parameters Parameters Affected
V+ Language Reference Guide, Rev A 339

GTRANS Program Instruction
Examples

This example doubles the size of all graphics:

FOR i = 0 to 2 ;Define 0 elements
FOR j = 0 to 2

ta[i,j] = 0
END

END

ta[0,0] = 2 ;Define scaling elements
ta[1,1] = 2
ta[2,2] = 1

GTRANS (20) ta[,] ;Assume window is attached

; Graphics instructions go here

GTRANS (20) ;Cancel transformation

The following example applies the basic camera calibration transformation to all
subsequent graphics instructions. Graphics output will be placed based on the
size of the field of view. In this example, the field of view is 30mm x 20mm, and an
X is placed in the middle of the vision window:

ATTACH (glun, 4) "GRAPHICS"
FOPEN (glun) "Vision /MAXSIZE 640 480"
GTRANS (glun,1)
GTYPE (glun) 15, 10, "X"
340 V+ Language Reference Guide, Rev A

Program Instruction GTYPE
Syntax

GTYPE-I

GTYPE (lun , mode) x, y, $text , font_numb, path, rotation

Function

Display a text string in a graphics window.

Usage Considerations

This instruction is available only with an graphics-based system.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional real value, variable, or expression (interpreted as an
integer). Bits 1 and 2 of the value control attributes of the output.
Bit 1 controls the relationship between the x, y parameters and
the origin of the text string. Bit 2 controls the overstrike
feature.The default is 0.

x, y Real values, variables, or expressions (interpreted as an integer)
specifying the X and Y coordinates (in pixels) of either the left
end of the baseline on which the characters are written (mode bit
1 = 0), or the top left corner of the text string (mode bit 1 = 1), as
shown in Chapter Figure 2-4..

$text String value, variable, or expression specifying the characters to
be output.

font_numb Optional real value, variable, or expression (interpreted as an
integer) specifying the number of the character font to be used.
The standard font (number 1) is assumed if this parameter is
omitted.

path Not currently used.

rotation Not currently used.
V+ Language Reference Guide, Rev A 341

GTYPE Program Instruction
Details

This instruction displays a text string at the specified coordinates. The text is
drawn with the current graphics foreground color (see GCOLOR) and logical
operation (see GLOGICAL). The current opaque/transparent mode is used, but
the current texture pattern is ignored (see GTEXTURE).

If mode bit 2 = 1, the overstrike is defeated (designated overstrike characters are
output to their own space).1 If mode bit 2 = 0, designated overstrike characters
will be displayed over the previous character.

This instruction operates on the window that is currently open for the specified
logical unit. If the window is open in nonbuffered mode, the instruction sends a
request to the window manager and takes effect immediately. If the window is
open in buffered mode, the effect will be displayed when the buffer fills or an
FEMPTY instruction is executed.

Figure 2-4. Effect of mode bit 1

1 When a font is defined, characters can be designated as overstrike characters that will normally
be printed on top of the previous character.

Dog
(x, y) when bit 1 = 1

Dog(x, y) when bit 1 = 0
342 V+ Language Reference Guide, Rev A

Program Instruction GTYPE
Examples

The following instruction draws, in the window currently open on graphics
logical unit 20, the characters Label in font #1. The top left corner of the character
string is at coordinates (10, 80):

GTYPE(20, 1) 10, 80, "Label", 1

The following instruction draws, in the window currently open on graphics
logical unit 20, the characters Abcdef in the standard font. The left end of the
baseline for the character string is at coordinates (50, 50).

GTYPE (20) 50, 50, "Abcdef"

Related Keywords

FOPEN (program instruction)

GCLIP (program instruction)

GCOLOR (program instruction)

GLOGICAL (program instruction)

GTEXTURE (program instruction)

GTRANS (program instruction)
V+ Language Reference Guide, Rev A 343

HALT Program Instruction
Syntax

HALT-I

HALT

Function

Stop program execution and do not allow the program to be resumed.

Usage Considerations

The PROCEED command cannot be used to resume program execution after a
HALT instruction causes the program to halt.

HALT forces an FCLOSE and/or DETACH on the disk and serial communication
logical units as required.

Details

Causes a BREAK and then terminates execution of the application program
regardless of any program loops remaining to be completed (see the EXECUTE
command and instruction). The message (HALTED) is displayed.

After termination by a HALT instruction, program execution cannot be resumed
with a PROCEED or RETRY command.

Related Keywords

PAUSE (program instruction)

RETURN (program instruction)

STOP (program instruction)
344 V+ Language Reference Guide, Rev A

Real-Valued Function HAND
Syntax

HAND-R

HAND

Function

Return the current hand opening.

Usage Considerations

The HAND function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the HAND function
will not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

The word hand cannot be used as a program name or variable name.

Details

This function returns 0 if the hand is closed or 1 if the hand is opened or relaxed.

Related Keywords

CLOSE and CLOSEI (program instructions)

OPEN and OPENI (program instructions)

RELAX and RELAXI (program instructions)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 345

HAND.TIME System Parameter
Syntax

HAND.TIME-S

... HAND.TIME

Function

Establish the duration of the motion delay that occurs during OPENI, CLOSEI,
and RELAXI instructions.

Usage Considerations

The current value of the HAND.TIME parameter can be determined with the
PARAMETER monitor command or real-valued function.

The value of the HAND.TIME parameter can be modified only with the
PARAMETER monitor command or program instruction.

The parameter name can be abbreviated.

If the V+ system is controlling more than one robot, the HAND.TIME parameter
controls the hand operation times for all the robots.

Details

The OPENI, CLOSEI, and RELAXI instructions are used to operate the hand after
the robot has stopped moving. The HAND.TIME parameter determines the time
allotted to the hand actuation before the next robot motion can be initiated.

The value for this parameter is interpreted as the number of seconds to delay. It
can range from 0 to 1018. Due to the way V+ generates time delays, the
HAND.TIME parameter is internally rounded to the nearest multiple of 0.016
seconds.

This parameter is set to 0.05 seconds when the V+ system is initialized.
346 V+ Language Reference Guide, Rev A

System Parameter HAND.TIME
Example

PARAMETER HAND.TIME = 0.5

Sets the hand operation delay time to 0.5 seconds.

Related Keywords

CLOSEI (program instruction)

OPENI (program instruction)

RELAXI (program instruction)

PARAMETER (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 347

HERE Program Instruction
Syntax

HERE-I

HERE location_var

Function

Set the value of a transformation or precision-point variable equal to the current
robot location.

Usage Considerations

The HERE instruction returns information for the robot selected by the task
executing the instruction.

If the V+ system is not configured to control a robot, executing the HERE
instruction will not generate an error due to the absence of a robot. However, the
location value returned may not be meaningful.

The word here cannot be used as a program name or variable name.

Parameter

location_var Transformation, precision point, or compound transformation
that ends with a transformation variable.

Details

This instruction sets the value of a transformation or precision-point variable
equal to the current robot location.1

If the location_var is a compound transformation, only the right-most
transformation is defined. An error message results if any of the other
transformations in the compound transformation are not already defined.

1 Normally, the robot location is determined by reading the instantaneous values of the joint
encoders. However, if the robot has either backlash or linearity compensation enabled, the
commanded robot location is used.
348 V+ Language Reference Guide, Rev A

Program Instruction HERE
Examples

Set the transformation part equal to the current robot location:

HERE part

Assign the current location of the robot to the precision point #part:

HERE #part

Related Keywords

HERE (monitor command and transformation function)

SELECT (program instruction and real-valued function)

SET (program instruction)
V+ Language Reference Guide, Rev A 349

HERE Transformation Function
Syntax

HERE-T

HERE

Function

Return a transformation value that represents the current location of the robot
tool point.

Usage Considerations

The current location is obtained by reading the instantaneous value of the joint
encoders so that it represents the actual location of the robot.1

The HERE function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the HERE function
does not generate an error due to the absence of a robot. However, the
information returned by the function may not be meaningful.

The word here cannot be used as the name of a program or variable.

Example

Calculate the distance between the current robot location and the location the
robot is currently moving to:

dist = DISTANCE(HERE, DEST)

Related Keyword

DEST (transformation function)

HERE (monitor command and program instruction)

SELECT (program instruction and real-valued function)

1 If the robot has either backlash or linearity compensation enabled, this function returns the
commanded robot location instead of the value determined from the joint encoder readings.
350 V+ Language Reference Guide, Rev A

Real-Valued Function HOUR.METER
Syntax

HOUR.METER-R

HOUR.METER

Function

Return the current value of the robot hour meter.

Usage Considerations

This function applies only to the AdeptOne-MV, AdeptThree-MV, and Adept 550
robots.

You can type listr hour.meter to display the current value of the robot hour meter.

The word hour.meter cannot be used as a program name or variable name.

Details

The robot hour meter records the number of hours that Robot Power has been
turned on. The meter is updated after one half hour of power-on time and hourly
thereafter.

The hour meter is maintained by the Robot Signature Card (RSC) in the base of
the robot. If the RSC does not respond, the HOUR.METER function returns the
value –1.

Examples

To display the current reading of the robot hour meter on the system terminal,
type

listr hour.meter

Assign the current reading of the robot hour meter to the real-valued variable
start:

start = HOUR.METER
V+ Language Reference Guide, Rev A 351

ID Real-Valued Function
Syntax

ID-R

ID (component , device , board)

Function

Return values that identify the configuration of the current system.

Parameters

component Real value, variable, or expression (interpreted as an integer)
whose value determines which component of identification
information is returned.

device Optional real value, variable, or expression (interpreted as an
integer) whose value selects the device to be identified. Device
#1 (the basic system) is assumed if this parameter is omitted.

board Optional integer specifying the CPU of interest when device =
4. Board #1 (the main CPU) is assumed if this parameter is
omitted.

Details

The ID function enables a program to access the information displayed by the ID
monitor command. The values of the components are the same as the fields
displayed by that command.

The function returns the value 0 for devices that do not exist.

Device number 1 refers to the basic system. The acceptable values for the
component parameter, and the corresponding values returned, are:

component Result of ID (component, 1)

1 Model designation of the system controller

2 Serial number of the system controller

3 Version number of the V+ software in use

4 Revision number of the V+ software in use

5 First option word for the V+ system (*)

6 Second option word for the V+ system (*)

7 Size of the system program memory (in kilobytes, K [1 K = 1024
8-bit bytes])
352 V+ Language Reference Guide, Rev A

Real-Valued Function ID
The value for the controller hardware configuration [returned by ID(11,1)] should
be interpreted as a bit field, as follows:

Bit 1 (LSB) Graphics system processor (mask = 1)

This bit is 1 if the system processor in the controller includes hardware
components for graphics output by the V+ system.

Bit 2 V+ monitor outputs to graphics monitor (mask = 2)

This bit is 1 if the system processor supports graphics output and the
configuration switches on the system processor are set to direct the V+ monitor
output to the graphics monitor. This bit is 0 if the V+ monitor output is directed to
a terminal connected to the system controller.

Bit 3 Not used

Bit 4 SIO board present(mask = 8)

This bit is set if the SIO board is present in the controller.

Device number 2 refers to the manual control pendant. The component
parameter must have the value 1. The value returned is the version number of the
pendant software.

Device number 3 refers to the AdeptVision system, if one is included in the
system. The acceptable values for the component parameter, and the
corresponding values returned, are listed below. (If the system has multiple vision
systems, the information returned is for the vision system that is currently
selected.)

8 Controller option word (*)

9 Controller product-type value

10 (Value for internal use by Adept)

11 Controller hardware configuration (see below)

*The system and controller option words are described in Appendix C.

component Result of ID (component, 1)
V+ Language Reference Guide, Rev A 353

ID Real-Valued Function
Device number 4 refers to the system CPUs.

Device numbers 5 through 7 are invalid and return the value 0, as do any other
specified devices that do not exist. For valid devices, an *Invalid argument* error
message is reported if the requested component is not valid.

Device number 8 returns information for the currently selected robot. The
acceptable values for the component parameter are the same as for a robot.

The values returned for device number 9 are for Adept’s internal use.

Device number 10 refers to the external encoders connected to the robot
controller. The acceptable values for the component parameter are the same as
for a robot.

component Result of ID (component, 3)

1 Model designation of the vision system

2 Serial number of the vision system

3 Version number of the vision software in use

4 Revision number of the vision software in use

5 Option word for the vision system

6 Size of the vision system RAM memory (in K)

component Result of ID (component, 4, board)

1 Number of the CPU

2 Not currently used

3 The CPU board version number

4 The CPU board revision number

5 CPU type: 1 = 68030; 0, 2 = 68040

6 Software modules active on the board: Bit field where bit 1
represents the V+ operating system, bit 2 represents the vision
sofware, and bit 3 represents the servo/motion software

7 Size of the random access memory (RAM) on the CPU board
(in K)
354 V+ Language Reference Guide, Rev A

Real-Valued Function ID
Device numbers 11, 12, ... refer to robot number 1, 2, ..., respectively, for each robot
connected to the controller. That is, a device number equal to 10+r refers to robot
number r, which can range from 1 to the value returned by the function
SELECT(ROBOT, –1). The acceptable values for the component parameter, and
the corresponding values returned, are listed below.

*The system and controller option words are described in Appendix C.

Device number 50 refers to the currently selected force sensor. Device numbers 51
to 66 refer to force sensors numbered 1 to 16, respectively.

component Result of ID (component, 10+r)

1 Model designation of the robot

2 Serial number of the robot

3 Number of motors configured for the robot. This normally is
equal to the number of configured joints.

4 Value interpreted as bit flags for the robot joints that are enabled:
bit 1 for joint 1, and so on. (The value is zero if the robot does not
have joints that can be disabled selectively. For example, this
value is defined for the X/Y/Z/Theta robot but is zero for the
4/5-axis SCARA module.)

5 Robot control-module identification number

6 Number for the robot control-module qualifier.

7 Number of robot joints configured for use

8 Robot option word (*)

9 Robot product-type value

10 Number of Cartesian axes used during motion planning. This
value specifies how many values must be defined in the robot
load-module arrays that specify the maximum Cartesian
velocities and accelerations.

11 Second robot option word (*)

12 Information on the robot module. Currently only bit 1 (mask 1) is
defined. If set, this bit indicates that the specified robot is an
Adept robot.
V+ Language Reference Guide, Rev A 355

ID Real-Valued Function
See the documentation for the SELECT program instruction for an explanation of
selecting among multiple force sensors. The acceptable values for the component
parameter, and the corresponding values returned, are listed below.

Related Keywords

ID (monitor command, see the V+Operating System Reference
Guide)

$ID (string function)

SELECT (monitor command, program instruction, and real-valued
function)

component Result of ID (component, 50)

1 Model number of force sensor (0 if no force sensor is connected)

2 Serial number of force sensor (0 if no force sensor is connected)

3 Version number of VME Force Interface (VFI) firmware

4 Version number of force sensing software

5 Option word for force system

6 Size of the data collection buffer (in K)
356 V+ Language Reference Guide, Rev A

String Function $ID

V+ Language Reference Guide, Rev A 357

Syntax

$ID-$

$ID (select)

Function

Return the system ID string.

Parameter

select Integer specifying the ID information to return. It may be:

Details

Return a string that identifies the release edition, date, and edit letter of the V+
system.

–1 Return the system edit message.

–2 Return the edit letter for the V+ system.

IDENTICAL Real-Valued Function
Syntax

IDENTICAL-R

IDENTICAL (location, location)

Function

Determine if two location values are exactly the same.

Parameter

location Transformation value that defines one of the locations of interest.
This can be a function, a variable, or a compound
transformation.

Details

This function returns the value TRUE if the positional and rotational components
of the two specified locations are exactly the same. Even a single-bit difference in
any of the components will result in the value FALSE being returned.

Example

The statement

x = IDENTICAL(base.1:loc,part)

will set the value of the real variable x to TRUE if the value of loc relative to the
base.1 frame is exactly the same as the value stored in the variable part.

Related Keyword

DISTANCE (real-valued function)
358 V+ Language Reference Guide, Rev A

Program Instruction IF GOTO
Syntax

IF GOTO-I

IF GOTO logical_expr label

Function

Branch to the specified label if the value of a logical expression is TRUE (nonzero).

Usage Considerations

In general, it is a better programming practice to use the IF ... THEN control
structure rather than this instruction.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE
(nonzero) or FALSE (zero).

label Program step label number of a step in the current program.

Details

If the value of the expression is nonzero, program execution branches and begins
executing the statement with a label matching the one specified. If the value of the
expression is zero, the next instruction is executed as usual.

If the specified statement label is not defined, an error will occur if the branch is
attempted.
V+ Language Reference Guide, Rev A 359

IF GOTO Program Instruction
Example

The most common use for IF...GOTO is as an exit-on-error instruction. The
following code checks each I/O operation and branches to a label whenever an
I/O error occurs:

ATTACH(dlun, 4) "DISK"
IF IOSTAT(dlun) < 0 GOTO 100

FOPENW(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100

...

FCLOSE(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100

DETACH(dlun)
IF IOSTAT(dlun) < 0 GOTO 100

100IF IOSTAT(dlun) < 0 THEN
TYPE $ERROR(IOSTAT(dlun))

END

Related Keywords

GOTO (program instruction)

IF ... THEN (program instruction)
360 V+ Language Reference Guide, Rev A

Program Instruction IF
Syntax

IF-I

IF logical_expr THEN

first_steps
ELSE

second_steps
END

Function

Conditionally execute a group of instructions (or one of two groups) depending
on the result of a logical expression.

Usage Considerations

There must be a matching END statement for every IF... THEN in a program.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE
(nonzero) or FALSE (zero).

first_steps Optional group of program instructions that are executed only if
the value of the logical expression is TRUE (nonzero).

second_steps Optional group of program instructions that are executed only if
the value of the logical expression is FALSE (zero).

The ELSE statement may be omitted if there are no steps in this
group.

Details

This control structure provides a means for conditionally executing one of two
groups of instructions. In detail, it is processed as follows:

1. logical_expr is evaluated. If the result is FALSE (zero), skip to item 4
below.

2. The first group of instruction steps is executed.

3. Skip to item 5 below.

4. If there is an ELSE step, the second group of instruction steps is executed.

5. Program execution continues at the first step after the END step.

The ELSE and END steps must be on lines by themselves as shown.
V+ Language Reference Guide, Rev A 361

IF Program Instruction
There are no restrictions on the instructions that can be in either group in the
structure. Thus, nested IF structures can be used.

Examples

Consider the following segment of a V+ program. If the value of row is greater
than 5, the expression row > 5 will be TRUE (–1.0), so step 22 will be executed and
24 will not be executed. Otherwise, step 22 will not be executed, but step 24 will
be executed:

21 IF row > 5 THEN
22 spacing = 10
23 ELSE
24 spacing = 20
25 END

The next program segment checks whether the variable input.signal has been
defined. If it has, the program checks the signal indicated by the value of
input.signal and types different messages depending on its setting. Note that the
outer IF does not include an ELSE clause:

71 IF DEFINED(input.signal) THEN
72 IF SIG(input.signal) THEN
73 TYPE "The input signal is ON"
74 ELSE
75 TYPE "The input signal is OFF"
76 END
77 END

Refer to the DEFINED function for details on testing nonreal arguments.

Related Keywords

CASE (program instruction)

IF GOTO (program instruction)
362 V+ Language Reference Guide, Rev A

Program Instruction IGNORE
Syntax

IGNORE-I

IGNORE signal

Function

Cancel the effect of a REACT or REACTI instruction.

Usage Considerations

Only digital I/O signals that are installed and configured as inputs are available
for reaction monitoring.

The IGNORE instruction must be executed by the same program task that
executed the REACT or REACTI instruction being canceled.

Parameter

signal Digital input signal number in the range 1001 to 1012, an internal
signal in the range 2001 to 2008, or 0.

Details

Disables continuous monitoring of the specified signal, canceling the effect of the
last REACT or REACTI for this signal.

This instruction has no effect if a value of zero is specified.

Example

IGNORE test

Stops monitoring of the digital input or soft signal identified by the value of test.

Related Keywords

LOCK (program instruction)

REACT (program instruction)

REACTI (program instruction)
V+ Language Reference Guide, Rev A 363

INRANGE Real-Valued Function
Syntax

INRANGE-R

INRANGE (location)

Function

Return a value that indicates if a location can be reached by the robot and, if not,
why not.

Usage Considerations

The INRANGE function returns information for the robot selected by the task
executing the function.

Parameter

location Transformation function, variable, or compound that specifies a
desired position and orientation for the robot tool tip.

Details

Returns system error bits that indicate whether the given location can be reached
by the robot. A value of zero indicates the specified location can be reached.

If the location cannot be reached, the returned value is a coded binary number
that identifies the error. A bit equal to 1 in the value indicates that the
corresponding robot constraint has been violated as shown in the table below:

Mask Value

Bit # Hex Decimal Indication if bit set

1 1 1 Joint 1 is limiting

2 2 2 Joint 2 is limiting

3 4 4 Joint 3 is limiting

4 8 8 Joint 4 is limiting

5 10 16 Joint 5 is limiting

6 20 32 Joint 6 is limiting

7 40 64 Joint 7 is limiting

8 80 128 Joint 8 is limiting

9 100 256 Joint 9 is limiting
364 V+ Language Reference Guide, Rev A

Real-Valued Function INRANGE
If your motion system is configured to return motor as well as joint limit errors,
bit 16 indicates whether a joint or motor is limiting the motion device move to
location. If bit 16 is set, a motor is limiting. Otherwise, a joint is limiting. Since
joints are checked first for limiting conditions, if bit 16 is set, all joints passed the
limit checks and a motor is the limiting factor.

The mask values indicated above can be used with the BAND operator to
determine if a corresponding bit is set.

10 200 512 Joint 10 is limiting

11 400 1024 Joint 11 is limiting

12 800 2048 Joint 12 is limiting

14 2000 8192 Location is too close in

15 4000 16384 Location is too far out

16 8000 32768 Joint vs. motor limiting, see below

Mask Value

Bit # Hex Decimal Indication if bit set
V+ Language Reference Guide, Rev A 365

INRANGE Real-Valued Function
Example

INRANGE(pallet:hole)

Returns a zero value if the robot can reach the location defined by the compound
transformation pallet:hole.

If both joints 2 and 3 prevent the motion from being made, the value returned will
be 6.

Related Keywords

BAND (operator)

SELECT (program instruction and real-valued function)
366 V+ Language Reference Guide, Rev A

Program Instruction INSTALL
Syntax

INSTALL-I

INSTALL password, op

Function

Install or remove software options available to Adept systems.

Usage Considerations

You must have received the authorization password from Adept. INSTALL can
only be run on CPU #1 in multiple CPU systems.

Parameters

password A 15-character string assigned by Adept.

op Optional integer indicating the desired operation:

0 = install option (default)
1 = remove option

Details

When you purchase additional software options from Adept, the software is
delivered with a software license and authorization password that enables the
software for a particular controller. If the option is not enabled, the software will
not load correctly.

The password is keyed both to the software option and the serial number of your
controller. The password cannot be used on any controller other than the one for
which you purchased the software option.

NOTE: If you replace the SIO module in your controller, you must
reinstall the software options. Execute INSTALL for each system
option after the new SIO has been installed.
V+ Language Reference Guide, Rev A 367

INSTALL Program Instruction
Example

If you purchased the AIM MotionWare software from Adept and the password
provided with the option is 4EX5-23GH8-AY3F, the following instruction will
enable the software option:

INSTALL 4EX5-23GH8-AY3F

NOTE: Some options, such as AIM software, have additional
software disks that must be copied to the hard drive. Other options,
such as AdeptVision VXL, are already resident and need only to be
enabled.
368 V+ Language Reference Guide, Rev A

Real-Valued Function INT
Syntax

INT-R

INT (value)

Function

Return the integer part of the value.

Parameter

value Real-valued expression whose integer part is returned by this
function.

Details

Returns the portion of the value parameter to the left of the decimal point (when
the value is written without the use of scientific notation).

The value is not rounded before dropping the fraction.

The sign of the value parameter is preserved unless the result is zero.

Examples

INT(0.123) ;Returns 0.0

INT(10.8) ;Returns 10.0

INT(−5.462) ;Returns –5.0

INT(1.3125E+2) ;Returns 131.0

INT(cost+0.5) ;Returns the value of "cost",
;truncated to an integer.

INT(cost+0.5*SIGN(cost));Returns the value of "cost",
rounded

;to the nearest integer. (The SIGN
;function needs to be included to
;correctly round negative values of
;"cost".)

Related Keyword

FRACT (real-valued function)
V+ Language Reference Guide, Rev A 369

INTB Real-Valued Function
Syntax

INTB-R

INTB ($string , first_char)

Function

Return the value of two bytes of a string interpreted as a signed 16-bit binary
integer.

Parameters

$string String expression that contains the two bytes to be converted.

first_char Optional real-valued expression that specifies the position of the
first of the two bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first two
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second byte contains bits 9
to 16 and the third byte contains bits 1 to 8. An error is generated
if first_char specifies a byte pair that is beyond the end of the
input string.

Details

Two sequential bytes of a string are interpreted as being a 2’s-complement 16-bit
signed binary integer. The first byte contains bits 9 to 16, and the second byte
contains bits 1 to 8.

The main use of this function is to convert binary numbers from an input data
record to values that can be used internally by V+.

The expression

value = INTB($string, first_char)

is equivalent to the following instruction sequence:

value = ASC($string,first_char)*256 +
ASC($string,first_char+1)

IF value > 32767 THEN
value = value-65536

END

To compute an unsigned integer, use: INTB($string) BAND ^HFFFF.
370 V+ Language Reference Guide, Rev A

Real-Valued Function INTB
Examples

INTB($CHR(10)+$CHR(5)) ;Returns the value 2565

INTB($CHR(255)+$CHR(255)) ;Returns the value –1

Related Keywords

ASC (real-valued function)

DBLB (real-valued function)

FLTB (real-valued function)

$INTB (string function)

LNGB (real-valued function)

VAL (real-valued function)
V+ Language Reference Guide, Rev A 371

$INTB String Function
Syntax

$INTB-$

$INTB (value)

Function

Return a 2-byte string containing the binary representation of a 16-bit integer.

Parameter

value Real-valued expression, the value of which is converted to its
binary representation.

Details

The integer part of a real value is converted into its binary representation and the
low 16 bits of that binary representation are packed into a string as two 8-bit
characters. Bits 9-16 are packed first, followed by bits 1-8.

This function is equivalent to:

$CHR(INT(value/256) BAND ^HFF) + $CHR(INT(value) BAND ^HFF)

The main use of this function is to convert integers to binary representation
within an output record of a data file.

Example

$INTB(65*256+67) ;Returns the character string "AC".

Related Keywords

$CHR (string function)

$DBLB (real-valued function)

$FLTB (string function)

INTB (real-valued function)

$LNGB (real-valued function)
372 V+ Language Reference Guide, Rev A

System Switch INTERACTIVE
Syntax

INTERACTIVE-S

... INTERACTIVE

Function

Control the display of message headers on the system terminal and requests for
confirmation before performing certain operations.

Usage Considerations

The INTERACTIVE switch should be enabled for normal operation of V+ from
the system terminal.

NOTE: Disabling the INTERACTIVE switch is currently not
recommended. INTERACTIVE is usually disabled only when the
system is being controlled by a supervisory computer to relieve the
computer from having to process the text of messages.

Details

When this switch is disabled, the following changes to system operation occur:

• V+ does not ask for confirmation before performing certain operations (for
example, CALIBRATE).

• The text of error messages is not output.

• Headers on information messages are not output.

• Commands that normally produce continuous output (for example, STATUS,
WHERE 1, and IO) display their output only once.

• The SWITCH monitor command displays information differently. Each
requested switch is displayed as:

SWITCH_NAME [# elements displayed] [state of element
1]...[state of element n]

This switch is initially enabled.
V+ Language Reference Guide, Rev A 373

INTERACTIVE System Switch
Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
374 V+ Language Reference Guide, Rev A

Program Instruction INT.EVENT
Syntax

INT.EVENT-I

INT.EVENT source , level

Function

Send an event (as though from a SET.EVENT instruction) to the current task if an
interrupt occurs on a specified VMEbus vector or a specified digital I/O signed
transitions to positive.

Usage Considerations

VMEbus interrupts are available only on systems with the optional V+ Extensions
license.

Parameters

source Integer, expression, or real variable specifying:

a VME bus vector in the range 192 - 255

a digital I/O signal in the range 1001 - 1003

the value 0, which cancels monitoring

level Optional argument specifying the VME interrupt request level to
be used. Acceptable values are 1 and 2.

Details

The CPU running the task must be configured for VME interrupts. Only two CPU
boards within the system can be configured for interrupts.

If source is set to 0, signaling is canceled for the current task. When a task exits
normally, is killed, or is reexecuted, signaling is canceled.

The V+ system can connect only one fast digital input to an interrupt at any one
time. If you attempt to connect more than one, you get a *Device not ready*
error message.
V+ Language Reference Guide, Rev A 375

INT.EVENT Program Instruction
Example

INT.EVENT 201 ;Initiate monitoring of vector 201
.
.
.

WAIT.EVENT ;Wait until interrupt occurs

INT.EVENT 0 ;Cancel monitoring of interrupts

Related Keywords

GET.EVENT (program instruction)

SET.EVENT (program instruction)

WAIT.EVENT (program instruction)
376 V+ Language Reference Guide, Rev A

Transformation Function INVERSE
Syntax

INVERSE-T

INVERSE (transformation)

Function

Return the transformation value that is the mathematical inverse of the given
transformation value.

Parameter

transformation Transformation-valued expression.

Details

Mathematically, the value from this function is a transformation such that the
value of the compound transformation shown below is the identity
transformation (or NULL).

INVERSE(trans):trans

Stated another way, consider a transformation x that defines the location of object
A relative to object B. Then INVERSE(x) is the transformation that defines the
location of object B relative to A.

Example

Consider the case where the location part_1 is known in robot coordinates, and
you want to find the location hole_1 with respect to part_1. We can use the
compound expression:

part_1:hole_1

to represent the position of hole_1 in robot coordinates.

Suppose we move the robot to hole_1 and use the HERE command to define
hole_pos as the position of hole_1 in robot coordinates. In other words, we want
to find hole_1, knowing the values of part_1 and hole_pos, and knowing that:

part_1:hole_1is equal to hole_pos

We can then use the INVERSE function to determine hole_1 with the instruction:

SET hole_1 = INVERSE(part_1):hole_pos

Note that the SET instruction can be used without explicit use of INVERSE by
using a compound transformation on the left-hand side, with identical results.
That is, the instruction defines hole_1.

SET part_1:hole_1 = hole_pos
V+ Language Reference Guide, Rev A 377

IOGET_ Real-Valued Function
Syntax

IOGET-RIOGETB-RIOGETD-RIOGETF-RIOGETL-RIOGETW-R

IOGET_ (address , type, cpu)

Function

Return a value from global memory or from a device on the VME bus.

Usage Considerations

V+ does not enforce any memory protection schemes for global RAM or for
accessing third-party boards. It is the programmer’s responsibility to keep track
of memory usage.

The forms of IOGET_ are:

IOGETB Returns one unsigned byte

IOGETD Returns 64-bit double-precision floating-point value

IOGETF Returns 32-bit single-precision floating-point value

IOGETL Returns one longword (32 bits)

IOGETW Returns one unsigned word (16 bits)

Parameters

address Integer representing the address to be referenced. The acceptable
addresses are described below.

type Optional integer specifying the memory space to be referenced:

0 CPU global RAM (default)

1 VME bus standard address space

2 VME bus short address space

cpu Optional integer specifying the CPU to be accessed when type is
0. Acceptable values are 0 to the number of CPUs in the
controller. The default is 0 (local CPU).

Details

The IOGET_ functions can access global memory on Adept CPUs and third-party
boards. They can read only from a special section of CPU RAM and to the
unprotected part of the VME bus address space. Local CPU memory and standard
Adept devices cannot be accessed.
378 V+ Language Reference Guide, Rev A

Real-Valued Function IOGET_
The CPU RAM accessible to the IOGET_ functions can be used for any desired
purpose. For example, this RAM can be used as a global area shared by multiple
processors. Note, however, that it is the programmer’s responsibility to provide
any interlocks needed to assure the integrity of shared memory (see IOTAS).

CPU global RAM 0 to ^H1FFF

The VME bus specification defines three independent address spaces: standard,
short, and extended. Adept does not support the extended address space. The
IOGET_ functions can access addresses in the following ranges:

CAUTION: All third-party boards used in Adept controllers must
first be approved by Adept. Contact Adept applications support for
details. Not all boards support the full range of addresses listed
above.

Related Keywords

$IOGETS (string function)

IOPUT_ (program instructions)

IOTAS (real-valued function)

Standard 0 to ^H3FFFFF (0 to ^H7FFFFF on nonvision systems).
With a dual vision system, no user memory is available in
the standard space.

Short 0 to ^H7FFF
V+ Language Reference Guide, Rev A 379

$IOGETS String Function
Syntax

$IOGETS-$

$IOGETS (address, length , type , cpu)

Function

Return a string value from a device on the VME bus.

Usage Considerations

V+ does not enforce any memory protection schemes for global RAM or for
accessing third-party boards. It is the programmer’s responsibility to keep track
of memory usage.

Parameters

address Integer representing the address to be referenced. The acceptable
addresses are shown below.

length Integer specifying the length of the string to be read (1 - 128).

type Optional integer specifying the memory space to be referenced:

0 CPU RAM (default)

1 VME bus standard address space

2 VME bus short address space

cpu Optional integer specifying the CPU to be accessed when type
is 0. Acceptable values are 0 to the number of CPUs in the
controller. The default is 0 (local CPU).

Details

The $IOGETS function can access global memory on Adept CPUs and third-party
boards. It can only write to a special section of CPU RAM and from the
unprotected part of the VME bus address space. Local CPU memory and standard
Adept devices cannot be accessed.

The CPU RAM accessible to the $IOGETS function can be used for any desired
purpose. For example, this RAM can be used as a global area shared by multiple
processors. Note, however, that it is the programmer’s responsibility to provide
any interlocks needed to assure the integrity of shared memory (see IOTAS).

CPU global RAM 0 to ^H1FFF
380 V+ Language Reference Guide, Rev A

String Function $IOGETS
The VME bus specification defines three independent address spaces: standard,
short, and extended. Adept does not support the extended address space. The
IOGETS function can access addresses in the following ranges:

CAUTION: All third-party boards used in Adept controllers must
first be approved by Adept. Contact Adept applications support for
details. Not all boards support the full range of addresses listed
earlier

Related Keywords

IOGET_ (real-valued functions)

IOPUT_ (program instruction)

IOTAS (real-valued function)

Standard 0 to ^H3FFFFF (0 to ^H7FFFFF on nonvision systems). With a
dual vision system, no user memory is available in the
standard space.

Short 0 to ^H7FFF
V+ Language Reference Guide, Rev A 381

IOPUT_ Program Instruction
Syntax

IOPUT-IIOPUTB-IIOPUTD-IIOPUTF-IIOPUTL-IIOPUTS-IIOPUTW-I

IOPUT_ address , type , cpu = value

Function

Write a value to global CPU memory or to a device on the VME bus.

Usage Considerations

V+ does not enforce any memory protection schemes for global RAM or for
accessing third-party boards. It is the programmer’s responsibility to keep track
of memory usage.

The forms of IOPUT_ are:

IOPUTB Writes one unsigned byte

IOPUTD Writes 64-bit double-precision floating-point value

IOPUTF Writes 32-bit single-precision floating-point value

IOPUTL Writes one longword (32 bits)

IOPUTS Writes a string value (length determined by string value)

IOPUTW Writes one unsigned word (16 bits)

Parameters

address Integer representing the address to be referenced. The acceptable
values are described below.

type Optional integer specifying the memory space to be referenced:

0 CPU RAM (default)

1 VME bus standard address space

2 VME bus short address space

cpu Optional integer specifying the CPU to be accessed when type
is 0. Acceptable values are 0 to the number of CPUs in the
controller. The default is 0 (local CPU).

value Value to write (must agree with type indicated by the instruction
name—8-bit value for IOPUTB, string for IOPUTS, etc.).
382 V+ Language Reference Guide, Rev A

Program Instruction IOPUT_
Details

The IOPUT_ instructions can access global memory on Adept CPUs and
third-party boards. They can write only to a special section of CPU RAM and to
the unprotected part of the VME bus address space. Local CPU memory and
standard Adept devices cannot be accessed.

The CPU RAM accessible to the IOPUT_ instructions can be used for any desired
purpose. For example, this RAM can be used as a global area shared by multiple
processors. Note, however, that it is the programmer’s responsibility to provide
any interlocks needed to assure the integrity of shared memory (see IOTAS).

CPU global RAM0 to ^H1FFF

The VME bus specification defines three independent address spaces: short,
standard, and extended. Adept does not support the extended address space. The
IOPUT_ instructions can access addresses in the following ranges:

CAUTION: All third-party boards used in Adept controllers must
first be approved by Adept. Contact Adept applications support for
details. Not all boards support the full range of address listed above.

Related Keywords

IOGET_ (real-valued functions)

$IOGETS (string function)

IOTAS (real-valued function)

Standard 0 to ^H3FFFFF (0 to ^H7FFFFF on nonvision systems). With a
dual vision system, no user memory is available in the
standard space.

Short 0 to ^H7FFF
V+ Language Reference Guide, Rev A 383

IOSTAT Real-Valued Function
Syntax

IOSTAT-R

IOSTAT (lun , mode)

Function

Return status information for the last input/output operation for a device
associated with a logical unit.

Usage Considerations

IOSTAT returns information only for the most recent operation. If more than one
operation is performed, the status should be checked after each one.

Parameters

lun Real-valued expression whose integer value is the logical unit
number for the I/O device of interest. (See the description of
ATTACH for information on the logical unit numbers
recognized by the V+ system and how logical units are
associated with I/O devices.)

mode Optional expression that selects the type of I/O status to be
returned for the specified logical unit. The following table shows
the effects of the various mode values. (If the mode value is
omitted, the value zero is assumed.)

a When sequential-access mode is being used, the byte count returned by IOSTAT(...,2) includes the
carriage-return and line-feed characters at the end of each record.

Mode Value returned by IOSTAT

0 Status of the last complete I/O operation

1 Status of a pending pre-read request

2 Size in bytes of the last file opened or of the last record reada

3 Status of any outstanding write request
384 V+ Language Reference Guide, Rev A

Real-Valued Function IOSTAT
Details

Unlike most V+ instructions, I/O instructions do not force the program to stop
when an error is detected. Instead, the error status is stored internally for access
with the IOSTAT function. This feature allows the program to interpret and
possibly recover from many I/O errors.

When reading a file of unknown length, IOSTAT is the only method to determine
when the end of the file is reached.

The value returned for modes 0, 1, and 3 is one of the following:

1 = normal success
0 = operation not yet complete

<0 = standard V+ error number

For mode = 3, the value 1 is also returned if no write request is outstanding.

See Appendix B for a description of standard V+ error numbers.

Examples

Try to open a file for reading, and make sure the file exists. If the file does exist,
record its size (in bytes).

ATTACH (dlun, 4) "DISK"
FOPENR (dlun) "RECORD.DAT"
IF IOSTAT(dlun) < 0 THEN

TYPE "Error opening file"
HALT

END
file.size = IOSTAT(dlun,2)

Read and display records until the end of the file is reached.

ieeof = −504 ;End-of-file error code
READ (dlun) $record
WHILE IOSTAT(dlun) > 0 DO

TYPE $record
READ (dlun) $record

END
IF IOSTAT(dlun) == ieeof THEN

TYPE "Normal end of file"
ELSE

TYPE /B, "I/O error ", $ERROR(IOSTAT(dlun))
END
FCLOSE (dlun)
DETACH (dlun)
V+ Language Reference Guide, Rev A 385

IOSTAT Real-Valued Function
In the following example a TCP server program segment performs a no-wait read
and then checks the status to determine if a client connection or disconnection
was made.

ATTACH (lun,4) "TCP"
IF IOSTAT (lun) < 0 THEN

TYPE "Attach error: ", $ERROR(IOSTAT(lun))
END

no_wait = 1
READ (lun, handle, no_wait) $in.str
status = IOSTAT(lun)

CASE status OF
VALUE 100: ;New connection opened

TYPE "New connection established. Handle =", handle

VALUE 101: ;Connection closed
TYPE "Connection closed. Handle =", handle

VALUE −526: ;No data received
WAIT

ANY ;Some other error
TYPE "Error during READ: ", $ERROR(status)
GOTO 100

END

Related Keywords

ATTACH (program instruction)

FCLOSE (program instruction)

FCMND (program instruction)

FEMPTY (program instruction)

FOPEN_ (program instruction)

FSEEK (program instruction)

READ (program instruction)

WRITE (program instruction)
386 V+ Language Reference Guide, Rev A

Real-Valued Function IOTAS
Syntax

IOTAS-R

IOTAS (address , type , cpu)

Function

Control access to shared devices on the VME bus.

Usage Considerations

V+ does not enforce any memory protection schemes for global RAM or for
accessing third-party boards. It is the programmer’s responsibility to keep track
of memory usage.

Parameters

address Integer representing the address to be referenced. The acceptable
addresses are shown below.

type Optional integer specifying the memory space to be referenced:

0 CPU global RAM (default)

1 VME bus standard address space

2 VME bus short address space

cpu Optional integer specifying the CPU to be accessed when type is
0. Acceptable values are 0 to the number of CPUs in the
controller. The default is 0 (local CPU).

Details

The IOTAS function can access global memory on Adept CPUs and third-party
boards. It can access only a special section of CPU RAM and the unprotected part
of the VME bus address space. Local CPU memory and standard Adept devices
cannot be accessed.

This function sets the high-order (sign) bit of the byte at the specified address and
returns the original status of the high-order bit. The returned values are:

0 Undefined memory location

1 Positive (sign bit was clear)

–1 Negative (sign bit was set)
V+ Language Reference Guide, Rev A 387

IOTAS Real-Valued Function
This test-and-set operation is indivisible, which means that no other processor can
modify the byte between the time it is tested and the time it is set.

The IOTAS function performs a hardware-level read-modify-write (RMW) cycle
on the VME bus to make the test-and-set operation indivisible in a
multiprocessing environment. If multiple processors all access this byte by using
IOTAS, the byte can serve as an interlock between processors.

The CPU RAM accessible to the IOTAS function can be used for any desired
purpose. For example, this RAM can be used as a global area shared by multiple
processors. Note, however, that it is the programmer’s responsibility to provide
any interlocks needed to assure the integrity of shared memory.

CPU global RAM 0 to ^H1FFF

The VME bus specification defines three independent address spaces: short,
standard, and extended. Adept does not support the extended address space. The
IOPUT_ instructions can access memory addresses in the following ranges:

CAUTION: All third-party boards used in Adept controllers must
first be approved by Adept. Contact Adept applications support for
details. Not all boards will support the full range of address listed
above.

Standard 0 to ^H3FFFFF (0 to ^H7FFFFF on nonvision systems). With a
dual vision system, no user memory is available in the
standard space.

Short 0 to ^H7FFF
388 V+ Language Reference Guide, Rev A

Real-Valued Function IOTAS
Example

A common use of such an interlock is to allow, at most, one processor at a time to
gain access to a data structure.

; Wait until the byte at ^H1000 on CPU 1 is not set

 WHILE IOTAS(^H1000, 0, 1) == –1 DO
WAIT

END

; Perform critical operation which requires interlocking

; Release the byte so another CPU can interlock it.

IOPUTB(^H1000, 0, 1) = 0

If all processors use this means of interlocking, only one at a time may perform
the critical operation.

Related Keyword

IOGET_ (real-valued functions)

$IOGETS (string function)

IOPUT_ (program instructions)

TAS (real-valued function)
V+ Language Reference Guide, Rev A 389

IPS Conversion Factor
Syntax

IPS-I

SPEED VALUE IPS ALWAYS

Function

Specify the units for a SPEED instruction as inches per second.

Usage Considerations

IPS can be used only as a parameter for a SPEED program instruction.

The speed setting specified is scaled by the monitor speed in effect when the robot
motion occurs.

Speeds specified with the IPS parameter apply to straight-line motions.
Joint-interpolated motions will not maintain the specified tool speed.

Details

This is an optional parameter for the SPEED program instruction, which specifies
the units to be used for the speed value. That is, when IPS is specified in a SPEED
instruction, the speed value is interpreted as inches/second (for straight-line
motions).

See the description of the SPEED program instruction for further details on
setting motion speeds with the IPS conversion factor.

Example

Set the robot tool tip speed to 20 inches/second for the next straight-line robot
motion (assuming the monitor speed is set to 100):

SPEED 20 IPS

Related Keywords

MMPS (conversion factor)

SPEED (program instruction)
390 V+ Language Reference Guide, Rev A

System Parameter KERMIT.RETRY
Syntax

KERMIT.RETRY-P

... KERMIT.RETRY

Function

Establish the maximum number of times the (local) Kermit driver should retry an
operation before reporting an error.

Usage Considerations

The current value of the KERMIT.RETRY parameter can be determined with the
PARAMETER monitor command or real-valued function.

The value of the KERMIT.RETRY parameter can be modified only with the
PARAMETER monitor command or program instruction.

The parameter name can be abbreviated.

Details

The KERMIT.RETRY parameter determines the maximum number of times the V+
driver for the Kermit protocol will retry an operation when a communication
error occurs.

Examples of transmission errors are time-out errors and checksum errors
indicating bad packets.

NOTE: The setting of this parameter will not have the desired effect
if the remote Kermit server has a lower retry threshold.

If long pauses are expected between successive read or write operations, the
setting of this parameter should be increased. (The setting of the
KERMIT.TIMEOUT parameter should also be increased in this case.)

The value for this parameter is interpreted as an integer value, which can range
from 1 to 1000, inclusive.

This parameter is set to 15 when the V+ system is initialized.
V+ Language Reference Guide, Rev A 391

KERMIT.RETRY System Parameter
Example

PARAMETER KERMIT.RETRY = 5 ;Set the retry limit to 5.

Related Keywords

KERMIT.TIMEOUT (system parameter)

PARAMETER (monitor command, program instruction, and real-valued
function)
392 V+ Language Reference Guide, Rev A

System Parameter KERMIT.TIMEOUT
Syntax

KERMIT.TIMEOUT-P

... KERMIT.TIMEOUT

Function

Establish the delay parameter that the V+ driver for the Kermit protocol will send
to the remote server.

Usage Considerations

The current value of the KERMIT.TIMEOUT parameter can be determined with
the PARAMETER monitor command or real-valued function.

The value of the KERMIT.TIMEOUT parameter can be modified only with the
PARAMETER monitor command or program instruction.

The parameter name can be abbreviated.

Details

This parameter has no direct effect on the (local) V+ driver for the Kermit
communication protocol. The setting of this parameter is simply sent to the
remote server to request it to wait up to the number of seconds specified between
the packets sent by the local (V+) driver.

The time-out value should be increased any time long pauses are expected
between read or write operations to a file open over the Kermit line. This can
occur, for example, when debugging a program that has a file open over the
Kermit line. (The setting of the KERMIT.RETRY parameter should also be
increased in such cases.)

The value for this parameter is interpreted as a number of seconds. It can range
from 1 to 95, inclusive.

This parameter is set to 8 when the V+ system is initialized.

Example

;Set time-out limit to 15 seconds.
PARAMETER KERMIT.TIMEOUT = 15

Related Keywords

KERMIT.RETRY (system parameter)

PARAMETER (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 393

KEYMODE Program Instruction
Syntax

KEYMODE-I

KEYMODE first_key , last_key = mode , setting

Function

Set the behavior of a group of keys on the manual control pendant.

Usage Considerations

The pendant must be attached before KEYMODE can be processed.

Parameters

first_key Real-valued expression that defines the first key number in a set
of keys to be affected.

last_key Optional real-valued expression that defines the last key number
in a set of keys to be affected. If no value is provided, only one
key is affected.

mode Real-valued expression that defines the key mode to be set for
the specified set of keys. The mode must have one of the
following values (the modes are described below):

0 Keyboard mode
1 Toggle mode
2 Level mode
3 Special mode
4 Mask mode

setting Optional real-valued expression, which applies only when
toggle mode is selected. The value determines the initial setting
that will apply to the programmed keys. A zero value (the
default assumed if no value is provided) will cause the keys to
be off; any other value will cause them to be on.
394 V+ Language Reference Guide, Rev A

Program Instruction KEYMODE
Details

The various key modes are described below. See the description of the PENDANT
real-valued function for more information on interaction with the manual control
pendant.

0 - Keyboard Mode Keys programmed in this mode function similar to a
terminal keyboard. A program can use the function PENDANT(0) to request the
number of the next key pressed. The program will then wait until one of the keys
programmed in KEYBOARD MODE is pressed. The number of the key is
returned. Type-ahead is not possible—the program will not see any keys that are
pressed while there is no PENDANT(0) function pending.

1 - Toggle Mode The state of the key may be read back on the fly. When the
user presses a key that is in this mode, the internal state maintained by V+ is
toggled. Also, the LED on the key (if any) is toggled. The LED is on when the
key’s state is ON. The state of the key is available even when the pendant is not in
USER mode, but only if the pendant is attached.

2 - Level Mode The key’s current level is maintained by the pendant and may
be read on the fly. If the pendant is not in USER mode, the level returned for the
key is zero. The key’s state is ON only when it is actually being held down. This is
useful, for example, for cursor control. The value returned is not valid if the
pendant is not attached.

Whenever a key is programmed in level mode, its repeat mode is turned off.

3 - Special Mode Special mode is not implemented. It should not be used.

4 - Mask Mode Disables pendant keys in the specified range . When
setting = 0, the key(s) are reenabled. For instance:

KEYMODE 25 = 4,1

causes the Run/Hold key to be ignored, and

KEYMODE 25 = 0

causes the Run/Hold key to have effect again.
V+ Language Reference Guide, Rev A 395

KEYMODE Program Instruction
Attach/Detach Requirements

The pendant must be attached (with the ATTACH program instruction) before the
program can read keys using the PENDANT function, set the modes of any of the
keys, or send text to the display.

Additionally, the pendant must be in USER mode for most input and output
operations. The USER LED on the pendant lights when the pendant is in that
mode. The LED blinks when a program request is pending because the pendant is
not in USER mode.

Defaults

The key modes default to keyboard mode when the pendant is attached.

See the V+ Language User’s Guide for details on programming the MCP.

Example

;Set the manual control soft keys to level mode.

KEYMODE 1,5 = 2

Related Keywords

ATTACH (program instruction)

PENDANT (real-valued function)

396 V+ Language Reference Guide, Rev A

Program Instruction KILL
Syntax

KILL-I

KILL task_number

Function

Clear a program execution stack and detach any I/O devices that are attached.

Usage Considerations

KILL cannot be used while the specified program task is executing.

KILL has no effect if the specified task execution stack is empty.

Parameter

task_number Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be cleared. (See
below for the default. See the V+ Language User’s Guide for
information on tasks.)

Details

This operation clears the selected program execution stack, closes any open files,
and detaches any I/O devices that may have been left attached by abnormal
program termination.

This situation can occur if a program executes a PAUSE instruction or is
terminated by an ABORT command or instruction, or an error condition, while an
I/O device is attached or a file is open. If a limited-access I/O device (such as the
serial I/O device) is left attached, no other program task can use that device until
it is detached.

If the task number is not specified, the KILL command accesses task number 0 if
the system is not in DEBUG mode; the current debug task is assumed if the
system is in DEBUG mode. The KILL instruction always accesses task #0 if the
task number is omitted.

Related Keywords

ABORT (monitor command and program instruction)

EXECUTE (monitor command and program instruction)

STATUS (monitor command, see the V+Operating System Reference
Guide)
V+ Language Reference Guide, Rev A 397

LAST Real-Valued Function
Syntax

LAST-R

LAST (array_name[])

Function

Return the highest index used for an array (dimension).

Usage Considerations

If an automatic variable is referenced (see the AUTO instruction), this function
returns the highest index allocated for the array, regardless of which elements have
been assigned values.

Parameter

array_name[] Name of the array to be tested. Any type of V+ array variable can
be specified: real-value, location, string, or belt. At least one
array index must be omitted (see below).

Details

This function can be used to determine which elements of an array have already
been defined. For one-dimension arrays (for example, part[]), this function
returns the largest array index for which an element is defined. (See the first
example below.)

For multiple-dimension arrays (for example, $names[,]), this function returns the
largest array index for which an element is defined for the (left-most) dimension
that is omitted from the array specification. (See the second example below.)
There cannot be an index specified to the right of an omitted index.

Note that the value returned by this function is an index, not an array element.
Furthermore, the value is not a count of the array elements that are defined—it is
the largest index for which an array element is defined.

The value –1 is returned if the array does not have any elements defined for the
requested dimension. That is, –1 is returned if any of the following situations
occur:

• The array does not exist.

• The array has more or fewer dimensions than the number indicated in the
function call. (For example, LAST(a[]) will return –1 if the array a has two
dimensions.)

• The specified dimension in a multiple-dimension array has not been defined at
all. (For example, LAST(a[20,]) returns –1 if LAST(a[,]) returns 19. That is, no
elements a[20,i] exist.)
398 V+ Language Reference Guide, Rev A

Real-Valued Function LAST
The error *Illegal array index* results if there is not at least one blank index in the
array specification supplied to this function, or if there is an index specified to the
right of a blank index.

Examples

LAST(part[])

If the array part[] has all its elements defined from part[0] through part[10], this
example returns the value 10 (not 11, the number of elements defined).

LAST($names[2,])

If the given two-dimension array has elements [2,0], [2,3], and [2,5] defined, this
example returns the value 5 (regardless of the status of elements [i,j] for i other
than 2).
V+ Language Reference Guide, Rev A 399

LATCH Transformation Function
Syntax

LATCH-T

LATCH (select)

Function

Return a transformation value representing the location of the robot at the
occurrence of the last external trigger or AdeptForce guarded-mode trigger.

Usage Considerations

LATCH(0) returns information for the robot selected by the task executing the
function. If the V+ system is not configured to control a robot, use of the
LATCH(0) function will not generate an error due to the absence of a robot.
However, the information returned by the function may not be meaningful.

LATCH(1) requires the AdeptForce VME option.

Parameter

select Optional integer, expression, or real variable specifying:

0 Robot postion latch (default)
1 AdeptForce guarded-mode trigger

Details

LATCH(0) returns a transformation value that represents the location of the robot
when the last external trigger occurred. The LATCHED real-valued function
should be used to determined when an external trigger has occurred and a valid
location has been recorded.

Operation of the external trigger can be configured with the Adept controller
configuration program (in the file CONFIG_C.V2 on the Utility Disk). This trigger
may originate from the vision processor or an external source.

LATCH(1) returns the location of the robot at the last AdeptForce guarded-mode
trigger. The LATCHED(1) real-valued function can be used to determine if an
AdeptForce guarded-mode trigger has occurred.

See the AdeptForce VME User’s Guide for details of the AdeptForce option.

Related Keywords

LATCHED (real-valued function)

#PLATCH (precision-point function)
400 V+ Language Reference Guide, Rev A

Real-Valued Function LATCHED
Syntax

LATCHED-R

LATCHED (select)

Function

Return the status of the external trigger and/or an AdeptForce guarded-mode
trigger.

Parameter

select Integer, expression, or real variable specifying:

0 Returns TRUE if the position of the currently
selected robot was latched since the last time the
function LATCHED(0) was executed. (Default)

–n Where n refers to belt n, returns TRUE if the
external encoder positions were latched since the
last time the function LATCHED(–1) was executed.

1 Returns the number of the last AdeptForce
guarded-mode trip condition trigger. If trip
condition 1 has triggered, the value 1 is returned; if
trip condition 2 has triggered, the value 2 is
returned. If a guarded-mode trigger has not
occurred since the last time the LATCHED(1)
function was used, the value 0 is returned.
V+ Language Reference Guide, Rev A 401

LATCHED Real-Valued Function
Details

This function returns a nonzero value if an external or guarded-mode trigger has
occurred and the robot location or encoders have been latched since the function
was last used. Otherwise, the function returns the value FALSE. When this
function returns a nonzero value, a robot location and/or valid external encoder
position(s) have been recorded due to the occurrence of the trigger.

NOTE: After a nonzero value is returned by this function,
subsequent uses of the function will return the value FALSE until
the next occurrence of the trigger.

When this functions returns a nonzero value, the following functions can be used
to access the latched information:

DEVICE Returns position of external encoder

LATCH Returns robot location as a transformation

#PLATCH Returns robot location as a precision point

Operation of the external trigger can be configured with the Adept controller
configuration program (in the file CONFIG_C.V2 on the Utility Disk). This trigger
may originate from the vision processor or an external source.

For details of the AdeptForce option, see the AdeptForce VME User’s Guide. For
hardware details about LATCH and TRIGGER, see the Adept MV Controller
User’s Guide.

Related Keywords

DEVICE (real-valued function)

LATCH (transformation function)

#PLATCH (precision-point function)
402 V+ Language Reference Guide, Rev A

Program Instruction LEFTY
Syntax

LEFTY-I

LEFTY

Function

Request a change in the robot configuration during the next motion so that the
first two links of a SCARA robot resemble a human’s left arm.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a left-handed configuration, this instruction
is ignored by the robot.

The LEFTY instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the LEFTY
instruction will cause an error.

Figure 2-5. shows the LEFTY/RIGHTY configurations (top view of robot).

Figure 2-5. LEFTY/RIGHTY

RIGHTYLEFTY

Joint-2
Hardstops
V+ Language Reference Guide, Rev A 403

LEFTY Program Instruction
Related Keywords

CONFIG (real-valued function)

RIGHTY (program instruction)

SELECT (program instruction and real-valued function)
404 V+ Language Reference Guide, Rev A

Real-Valued Function LEN
Syntax

LEN-R

LEN (string)

Function

Return the number of characters in the given string.

Parameter

string String constant, variable, or expression whose length is to be
computed.

Example

Return the number of characters in the string $str:

$str = "Hello"
str.len = LEN($str)
V+ Language Reference Guide, Rev A 405

LNGB Real-Valued Function
Syntax

LNGB-R

LNGB ($string , first_char)

Function

Return the value of four bytes of a string interpreted as a signed 32-bit binary
integer.

Usage Considerations

Since single-precision numbers are stored internally with only 24 bits of
significance, input values that contain more than 24 significant bits will be
converted with some loss in precision.

Double-precision numbers are stored with 32 bits of significance with the MSB
being the sign bit. Doubles are converted with no loss of precision.

Parameters

$string String constant, variable, or expression that contains the four
bytes to be converted.

first_char Optional real value, variable, or expression (interpreted as an
integer) that specifies the position of the first of the four bytes in
the string. An error results if first_char specifies a series of
four bytes that goes beyond the end of the input string.

If first_char is omitted or has the value 0 or 1, the first four
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first byte (see
below).
406 V+ Language Reference Guide, Rev A

Real-Valued Function LNGB
Details

Four sequential characters (bytes) of a string are interpreted as being a
2’s-complement 32-bit signed binary integer. The first of the four bytes contains
bits 25 to 32 of the integer, the second of the four bytes contains bits 17 to 24, etc.

For example, if first_char has the value 9, then the ninth character (byte) in the
input string contains bits 25 to 32 of the integer, the tenth byte of the string
contains bits 17 to 24, and so forth.

The main use of this function is to convert binary numbers from an input data
record to values that can be used internally by V+.

Example

LNGB($INTB(1)+$INTB(5)) ;Returns the value 65541

Related Keywords

ASC (real-valued function)

DBLB (real-valued function)

FLTB (real-valued function)

INTB (real-valued function)

$LNGB (string function)

TRANSB (real-valued function)

VAL (real-valued function)
V+ Language Reference Guide, Rev A 407

$LNGB String Function
Syntax

$LNGB-$

$LNGB (value)

Function

Return a 4-byte string containing the binary representation of a 32-bit integer.

Parameter

value Real value, variable, or expression whose value is to be
converted to its binary representation.

Details

The integer part of a real value is converted into its binary representation; the low
32-bits of that binary representation are packed into a string as four 8-bit
characters. Bits 25 to 32 are packed into the first byte, followed by bits 17 to 24 in
the second byte, and so forth.

The main use of this function is to convert integer values to binary representation
within an output record of a data file.

The operation performed by this function is equivalent to the following
expression:

$CHR(INT(value/^H1000000) BAND ^HFF)

+ $CHR(INT(value/^H10000) BAND ^HFF)

+ $CHR(INT(value/^H100) BAND ^HFF)

+ $CHR(INT(value) BAND ^HFF)

Example

$LNGB(67*65536+12345) ;Returns the value
$INTB(67)+$INTB(12345)

Related Keywords

$CHR (string function)

$FLTB (string function)

$INTB (string function)

LNGB (real-valued function)

$TRANSB (string function)
408 V+ Language Reference Guide, Rev A

Program Instruction LOCAL
Syntax

LOCAL-I

LOCAL type variable , ..., variable

Function

Declare permanent variables that are defined only within the current program.

Usage Considerations

Subroutines can be called simultaneously by multiple program tasks and
recursively by a single task. Local and global variables could be corrupted if such
calls occur inadvertently. Thus, the use of automatic variables in place of local
variables is recommended.

LOCAL statements must appear before any executable statement in the
program—only the .PROGRAM statement, comments, blank lines, AUTO
statements, and other LOCAL statements may precede a LOCAL statement.

If a variable is listed in a LOCAL statement, any global variable with the same
name cannot be accessed directly by that program.

The values of local variables are not saved (or restored) by the STORE (or LOAD)
monitor command.

Parameters

type Optional parameter specifying the type of a variable. The
acceptable types are:

LOC Location variable (transformation or precision point)

REAL Single-precision real variable

DOUBLE Double-precision real variable

See the description of the GLOBAL program instruction for
details on the default type.

variable Variable name (belt, precision point, real-value, string, or
transformation). Each variable can be a simple variable or an
array. Array variables must not have their indexes specified. If a
type is specified, all variables must be of that type.
V+ Language Reference Guide, Rev A 409

LOCAL Program Instruction
Details

This instruction is used to declare variables to be defined only within the current
program. That is, a local variable can be referenced only within its own program.
Also, the names of local variables can be selected without regard for the names of
local variables defined in other programs.

Local variables are allocated only once during program execution, and their
values are preserved between successive subroutine calls. These values are also
shared if the same program is executed by multiple program tasks.

If a program that uses LOCAL (or global) variables is called by several different
program tasks, or called recursively by a single task, the values of those variables
can be modified by the different program instances and cause very strange
program errors. Therefore, automatic variables should be used for all temporary
local variables to minimize the chance of errors. (See the AUTO instruction.)

Variables can be defined as automatic, global, or local. Once a variable has been
assigned to a class, an attempt to assign the variable to a different class will result
in the error *Attempt to redefine variable class*.

Variables can be defined only once within the same context (automatic, local, or
global). Attempting to define a variable more than once (that is, with a different
type) will yield the error ∗Attempt to redefine variable type∗.1

Local variables can be referenced with monitor commands such as BPT,
DELETE_, DO, HERE, LIST_, POINT, TEACH, TOOL, and WATCH by using the
optional context specifier @. The general syntax is:

command @task:program command_arguments

See the V+ Language User’s Guide for more information on specifying program
context.

Example

Declare the variables loc.a, $ans, and i to be local to the current program:

LOCAL loc.a, $ans, i

Related Keywords

AUTO (program instruction)

GLOBAL (program instruction)

1 See the chapter Data Types and Operators in the V+ Language User’s Guide.
410 V+ Language Reference Guide, Rev A

Program Instruction LOCK
Syntax

LOCK-I

LOCK priority

Function

Set the program reaction lock-out priority to the value given.

Usage Considerations

LOCK 0 is assumed whenever program execution is initiated and when a new
execution cycle begins.

Changing the priority may affect how reactions will be processed. Before using
this instruction, be sure you know what reactions are active (and their priorities).

Parameter

priority Real-valued expression with a value from 0 to 127, which will
become the new reaction lock-out priority.

Details

When a program is EXECUTEd, it is placed on the execution stack. When the
program’s task becomes the highest priority task in a time slice, the program’s
priority is set to 0 and it begins execution. During actual execution, a program’s
task can be suspended at the end of a time slice, in which case the task waits until
the next time it is the highest priority task in a time slice. The LOCK instruction
does not affect the task priority value within a time slice: It only changes the
program priority of an executing program.

Program priority becomes important when a reaction routine (REACT, REACTE,
REACTI) is invoked. A program can defer execution of a REACT or REACTI
routine by setting the temporary program priority to a value higher than the
REACT or REACTI program priority. This is the function of a LOCK instruction.
For example, if a LOCK instruction changes the temporary program priority to 20,
any REACT or REACTI interrupts with lower priority values are deferred.
(REACTE routines cannot be deferred by priority considerations.)

Deferred reactions are not ignored. Every time a new LOCK instruction is
processed, any deferred reaction programs are checked to see if their priority is
high enough for them to execute. As soon as the program priority is lowered, all
pending reaction routines with a higher priority are run according to their relative
priority.
V+ Language Reference Guide, Rev A 411

LOCK Program Instruction
The PRIORITY real-valued function can be used to determine the program
priority at any time.

NOTE: Although a LOCK instruction can be used to change the
program priority within a reaction program, the priority will still be
returned to its prereaction value when a RETURN is executed in the
program. This occurs only when executing a RETURN from a
reaction program.

Example

LOCK PRIORITY+10 ;Increase the program priority by 10.

Related Keywords

PRIORITY (real-valued function)

REACT (program instruction)

REACTI (program instruction)

412 V+ Language Reference Guide, Rev A

Real-Valued Function MAX
Syntax

MAX-R

MAX (value , ..., value)

Function

Return the maximum value contained in the list of values.

Parameter

value Each value in the list can be specified as a real-valued constant,
variable, or expression.

Details

The list of values provided is scanned for the largest value, and that value is
returned by the function.

The sign of each value is considered. Thus, for example, the value –10 is
considered larger than –100.

Example

The program instruction:

max.value = MAX(x, y, z, 0)

sets max.value to the largest value of the variables x, y, and z, or to zero if all three
variables have values less than zero.

Related Keyword

MIN (real-valued function)
V+ Language Reference Guide, Rev A 413

MC Program Instruction
Syntax

MC-I

MC monitor_command

Function

Introduce a monitor command within a command program.

Usage Considerations

The MC instruction can be contained only within a command program.
(Command programs can contain only MC instructions, blank lines, and comment
lines.)

Parameter

monitor_command Any valid V+ monitor command.

Details

Command programs are created using one of the V+ editors. To indicate to the
editor that a command program, rather than a normal program, is being created.
Every operation line of a command program must begin with the letters MC (that
is, for Monitor Command follows) followed by one or more spaces. As with
regular application programs, command programs can contain blank lines and
comment lines to add clarity.

Every nonblank line of a command program must contain a monitor command
(or a comment). Monitor commands and program instructions cannot be mixed.
Program instructions can be included, however, by using the DO command. That
is, to include an instruction in a command program, you can type a line with the
form mc do instruction. See the V+ Operating System Reference Guide for details
on monitor commands.
414 V+ Language Reference Guide, Rev A

Program Instruction MC
Example

The following command program loads disk files, prepares for execution of a
program, and begins the execution. Note that a DO command is used to include a
MOVE instruction:

1 .PROGRAM setup()

2 MC LOAD C:project

3 MC LOAD B:project.lc

4 MC SPEED 50

5 MC DO MOVE safe.loc

6 MC EXECUTE motion, −1

7 .END

Related Keywords

COMMANDS (monitor command, see the V+ Operating System Reference
Guide)

MCS (program instruction)
V+ Language Reference Guide, Rev A 415

MCP.MESSAGE System Switch
Syntax

MCP.MESSAGE-S

... MCP.MESSAGE

Function

Conrol how system error messages are handled when the controller keyswitch is
not in the MANUAL position.

Usage Considerations

Systems without an external front panel assume that the keyswitch in the AUTO
position.

Details

If this switch is enabled, all system error messages are output to the manual
control pendant regardless of the setting of the controller keyswitch. In that case,
the system operator must press CLR ERR on the manual control pendant to clear the
error condition before system operation can continue.

By default, this switch is disabled. That is, error messages are output only to the
device selected by the controller keyswitch.

Related Keywords

MCS.MESSAGE (system switch)

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real function)
416 V+ Language Reference Guide, Rev A

Program Instruction MCS
Syntax

MCS-I

MCS string

Function

Invoke a monitor command from an application program.

Parameter

string String value, variable, or expression that defines one of the V+
monitor commands listed below.

Details

Normally, monitor commands can be invoked only from the system terminal or
from command programs (which contain only monitor commands). The MCS
instruction can be used to invoke the following monitor commands from an
application program:

Using these commands, an application program can store, load, and copy
programs to and from disk, and also delete programs from memory to make room
for other programs. Similarly, variables can be deleted from memory when they
are no longer needed. Also, vision prototypes can be renamed.

NOTE: If the monitor command specified in the string parameter
contains a blank program context (that is, it contains @), any
variables listed in the command will be treated as though they are
referenced within the program containing the MCS instruction. (See
the V+ Language User’s Guide for more information on program
context.)

Program execution will not be stopped if an error occurs while processing the
monitor command. The ERROR real-valued function can be used after the MCS
instruction to check for the occurrence of an error.

NOTE: If a DELETE_ command is used within a subroutine to
delete one of the subroutine parameters (that is, one of the variables
in the .PROGRAM statement), the variable will not be deleted and
no error condition will be recorded.

DELETE DELETEL DELETEP DELETER DELETES

FCOPY LOAD STORE STOREL STOREM

STOREP STORER STORES VRENAME
V+ Language Reference Guide, Rev A 417

MCS Program Instruction
Normal output by the monitor command to the system terminal will be done if
the MCS.MESSAGE system switch is enabled. For example, the LOAD command
would output the .PROGRAM lines from each program loaded. (The
MCS.MESSAGE switch is normally disabled.)

If the FCOPY option is used, logical units 5 (disk #1) and 6 (disk #2) must be
available. If LOAD or STORE_ are used, logical unit # 5 must be available.

Example

The following program loads a disk file, executes the program in the file, and
deletes the program from the system memory. Then another program file is
loaded into memory and executed. (Although this simple example could also be
implemented with a command program, the following demonstrates use of the
MCS instruction in a normal program.)

.PROGRAM admin()

MCS "LOAD C:setup"

CALL setup

MCS "DELETEP setup"

MCS "LOAD C:demo_1"

CALL demo_main

.END

Related Keywords

MC (program instruction)

MCS.MESSAGE (system switch)
418 V+ Language Reference Guide, Rev A

System Switch MCS.MESSAGE
Syntax

MCS.MESSAGE-S

... MCS.MESSAGE

Function

Enable or disable output to the system terminal from monitor commands
executed with the MCS instruction.

Details

If this switch is enabled, output from monitor commands executed with the MCS
instruction is displayed on the system terminal. Otherwise, output is suppressed.

For example, when this switch is disabled, a LOAD command invoked with the
MCS instruction does not output .PROGRAM information lines or error
messages.

By default, this switch is disabled, suppressing output from commands invoked
with the MCS instruction.

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

MCP.MESSAGE (system switch)

MCS (program instruction)

MESSAGES (system switch)

SWITCH (monitor command, program instruction, and real function)
V+ Language Reference Guide, Rev A 419

MESSAGES System Switch
Syntax

MESSAGES-S

... MESSAGES

Function

Enable or disable output to the system terminal from TYPE instructions.

Details

If this switch is enabled, output from TYPE instructions is displayed on the
system terminal. Otherwise, output is suppressed.

By default, this switch is enabled, allowing output to occur.

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

MCS.MESSAGE(system switch)

SWITCH (monitor command, program instruction, and real-valued
function)

TYPE (program instruction)
420 V+ Language Reference Guide, Rev A

String Function $MID
Syntax

$MID-$

$MID (string, first_char , num_chars)

Function

Return a substring of the specified string.

Parameters

string String variable, constant, or expression from which the substring
is to be extracted.

first_char Optional real-valued expression that specifies the first character
of the substring.

num_chars Real-valued expression that specifies the number of characters to
be copied to the substring.

Details

If first_char is omitted or has a value less than or equal to 1, the substring
starts with the first character of string . If first_char is larger than the length
of the input string, the function will return an empty string.

If there are fewer than num_chars characters from the specified starting
character position to the end of the input string, the output string will consist of
only the characters up to the end of the input string. That is, no error results and
the output string is not extended to the requested length.

Example

The instructions below result in the string variable $substring containing the
string cd, since cd is the 2-character string that starts at character position 3 of the
string abcde contained in the string variable $string:

$string = "abcdef"

$substring = $MID($string, 3, 2)

Related Keyword

$UNPACK (string function)
V+ Language Reference Guide, Rev A 421

MIN Real-Valued Function
Syntax

MIN-R

MIN (value , ..., value)

Function

Return the minimum value contained in the list of values.

Parameter

value Each value in the list can be specified as a real-valued constant,
variable, or expression.

Details

The list of values provided is scanned for the smallest value, and that value is
returned by the function.

The sign of each value is considered. Thus, for example, the value –100 is
considered smaller than –10.

Example

The program instruction:

min.value = MIN(1000, x, y, z)

will set min.value to the smallest value of the variables x, y, and z, or to the value
1000 if all three variables have values greater than 1000.

Related Keyword

MAX (real-valued function)
422 V+ Language Reference Guide, Rev A

Conversion Factor MMPS
Syntax

MMPS-I

SPEED value MMPS ALWAYS

Function

Specify the units for a SPEED instruction as millimeters per second.

Usage Considerations

MMPS can be used only as a parameter for a SPEED program instruction.

The speed setting specified is scaled by the monitor speed in effect when the robot
motion occurs.

Speeds specified with the MMPS parameter apply to straight-line motions.
Joint-interpolated motions will not maintain the specified tool speed.

Details

This is an optional parameter for the SPEED program instruction, which specifies
the units to be used for the speed value. That is, when MMPS is specified in a
SPEED instruction, the speed value is interpreted as millimeters/second (for
straight-line motions).

See the description of the SPEED program instruction for further details on
setting motion speeds with the IPS conversion factor.

Example

Set the default program speed for straight-line motions to 10 millimeters per
second (assuming the monitor speed is set to 100):

SPEED 10 MMPS ALWAYS

Related Keywords

IPS (conversion factor)

SPEED (program instruction)
V+ Language Reference Guide, Rev A 423

MOD Operator
Syntax

MOD-I

... value MOD value ...

Function

Compute the modulus of two values.

Details

The MOD operator operates on two values, resulting in a value that is the
remainder after dividing the first value by the second value. (The second value
cannot be zero.)

See the V+ Language User’s Guide for the order in which operators are evaluated
within expressions.

Examples

5 MOD 2 ;Returns 1 (5/2 is 2 with a remainder of 1)

81 MOD 27 ;Returns 0 (81/27 is 3 with a remainder of 0)
424 V+ Language Reference Guide, Rev A

System Switch MONITORS
Syntax

MONITORS-S

... MONITORS

Function

Enable or disable selecting of multiple monitor windows.

Usage Considerations

This switch is used with systems configured for multiple V+ system processors
(requires the optional V+ Extensions software).

Details

When enabled, monitor windows for the auxiliary CPUs can be selected from the
adept pull-down menu on the top-level menu bar. When disabled, windows for
the auxiliary CPUs have their names dimmed and cannot be selected.

Default is OFF.
V+ Language Reference Guide, Rev A 425

MOVE Program Instruction
Syntax

MOVE-IMOVES-I

MOVE location

MOVES location

Function

Initiate a robot motion to the position and orientation described by the given
location.

Usage Considerations

MOVE causes a joint-interpolated motion.

MOVES causes a straight-line motion, during which no changes in configuration
are permitted.

These instructions can be executed by any program task so long as the task has
attached a robot. The instructions apply to the robot selected by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Parameter

location Transformation, precision point, location function, or compound
transformation that specifies the destination to which the robot
is to move.

Details

The MOVE instruction causes a joint-interpolated motion. That is, intermediate
set points between the initial and final robot locations are computed by
interpolating between the initial and final joint positions. Any changes in
configuration requested by the program (for example, by a LEFTY instruction) are
executed during the motion.

The MOVES instruction causes a straight-line motion. During such a motion the
tool is moved along a straight-line path and is smoothly rotated to its final
orientation. No changes in configuration are allowed during straight-line
motions.
426 V+ Language Reference Guide, Rev A

Program Instruction MOVES
Examples

MOVE #pick Move by joint-interpolated motion to the location described by
the precision point #pick.

MOVES ref:place Move along a straight-line path to the location described by the
compound transformation ref:place.

Related Keywords

APPRO and APPROS (program instructions)

DEPART and DEPARTS (program instructions)

MOVEF and MOVESF (program instructions)

MOVET and MOVEST (program instructions)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 427

MOVEF Program Instruction
Syntax

MOVEF-I

MOVEF location, depart_clr , appro_clr , depart_tqe,
horiz_accel_tqe, horiz_decel_tqe, appro_tqe, model

MOVESF-I

MOVESF location, depart_clr , appro_clr , depart_tqe,
horiz_accel_tqe, horiz_decel_tqe, appro_tqe, model

Function

Initiate a three-segment pick-and-place robot motion to the specified destination,
moving the robot at the fastest allowable speed.

Usage Considerations

These instructions are available only if your system controls an Adept robot that
supports optimized moves (version 11.1 or later).

MOVEF causes a joint-interpolated motion during the horizontal motion
segment.

MOVESF causes a straight-line motion during the horizontal motion segment. For
the entire motion, no changes in configuration are permitted.

Unlike the DEPART, DEPARTS, APPRO, and APPROS instructions, which move
the robot along the tool-Z axis, the departure and approach motion segments
initiated by these instructions move only joint 3 (the linear Z axis), and those
motions are independent of the TOOL transformation.

Before these instructions can be executed, the SFUTIL utility program must be
used to compute the coefficients for the dynamic model of the robot.

These instructions can be executed by any program task, so long as the task has
attached a robot. The instructions apply to the robot selected by the task.

If the V+ system is not configured to control a robot, an attempt to execute one of
these instructions causes an error.
428 V+ Language Reference Guide, Rev A

Program Instruction MOVESF
Parameters

location Transformation, precision point, location function, or
compound transformation that specifies the destination to
which the robot is to move.

depart_clr Optional real-valued expression that specifies the minimum
clearance distance (in millimeters) that joint 3 is to be moved
relative to its initial location during the first segment of the
motion.

A positive distance retracts (lifts up) joint 3 from the initial
location. A negative distance extends (drops down) joint 3
from the initial location. The distance zero eliminates the first
segment of the pick and place motion.

Unlike the DEPART and DEPARTS instructions, which
specify the full length of the vertical excursion, this
parameter specifies the minimum desired clearance height
before the horizontal motion is initiated. Based upon the
dynamic characteristics of joint 3 and the horizontal motion,
the V+ system automatically computes the total length of the
departure motion. For many high-speed motions, the
minimum clearance height should be set to a fraction (for
example, 1/6th) of the distance that would normally be
specified as the depart height.

appro_clr Optional real-valued expression that specifies the minimum
clearance distance (in millimeters) that joint 3 is to be posed
above the final destination at the time the horizontal motion
is concluded.

A positive distance indicates that joint 3 should be posed
above the final destination. A negative distance places joint 3
below its final destination. The distance zero eliminates the
final segment of the pick and place motion so that the robot
moves directly to the destination from the departure point.

As with the depart_clr parameter, the approach clearance
height specifies the minimum clearance distance, rather than
the total length of the vertical excursion.

depart_tqe Optional real-valued expression that specifies the percentage
of maximum torque that should be utilized to accelerate joint
3 during the departure motion. This parameter must be
specified if depart_clr is nonzero. However, this parameter is
ignored if depart_clr is zero.
V+ Language Reference Guide, Rev A 429

MOVESF Program Instruction
If this parameter is specified, its value must be in the range
30.0 to 100.0, where 100.0 indicates that all the available
torque should be applied.

horiz_accel_tqe Real-valued expression that specifies the percentage of
maximum torque that should be utilized to accelerate the
robot during the start of the second (horizontal) motion
segment.

During the second motion segment, all the joints of the robot
are moved from their depart positions to their approach
positions. Thus, in general, this parameter controls the torque
applied to accelerate all the axes during the major segment of
the motion. However, in many cases, the second motion
segment is primarily a horizontal sweeping motion. Thus,
typically, this parameter controls the maximum torque
applied to accelerate joints 1 and 2 during the pick-and-place
motion.

The value of this parameter must be in the range 30.0 to
100.0, where 100.0 indicates that all the available torque
should be applied.

horiz_decel_tqe Real-valued expression that specifies the percentage of
maximum torque that should be utilized to decelerate the
robot during the end of the second (horizontal) motion
segment. This parameter is the deceleration counterpart of
the horiz_accel_tqe parameter.

The value of this parameter must be in the range 30.0 to
100.0, where 100.0 indicates that all the available torque
should be applied.

appro_tqe Optional real-valued expression that specifies the percentage
of maximum torque that should be utilized to decelerate joint
3 during the motion from the approach position to the final
destination. This value must be specified if appro_clr is
nonzero. However, this parameter is ignored if appro_clr is
zero.

If this parameter is specified, its value must be in the range
30.0 to 100.0, where 100.0 indicates that all the available
torque should be applied.

model Real-valued expression (interpreted as an integer) that
specifies which set of dynamic coefficients should be used in
430 V+ Language Reference Guide, Rev A

Program Instruction MOVESF
the dynamic model to predict the performance of the robot
during the pick-and-place motion.

The dynamic model is evaluated to determine the fastest
speed at which the robot can be moved to the destination
without violating the specified torque limits. As with most
mechanical systems, the values of the dynamic coefficients
are a function of the robot tooling and payload. Therefore, a
different set of coefficient values must be specified each time
the tooling or payload changes. Up to six sets of dynamic
coefficients can be stored per robot. Thus, the value of model
can range from 1 to 6.

Details

The MOVEF and MOVESF instructions initiate the execution of a three-segment
pick-and-place motion, and automatically compute the fastest speed, acceleration,
and deceleration rates for each motion segment.

The three-segment motion is roughly equivalent to executing a DEPART motion,
followed by an APPRO motion, followed by a final MOVE to the destination. For
simplicity, the depart motion and the move from the approach point to the final
destination affect only the position of the linear Z axis of the SCARA robot.
However, the second segment, which moves from the depart position to the
approach position, is a general joint-interpolated (for MOVEF) or straight-line
motion (for MOVESF). Thus that segment can affect all the axes of the robot.

In order to automatically compute the fastest speed, acceleration, and
deceleration rates at which to move the robot, these instructions analyze a
dynamic model of the robot that is built into the V+ system. The model allows the
system to predict the motor torques required to move the robot and to select the
motion times that drive the robot in the shortest amount of time without violating
the maximum torque specifications. For applications that are sensitive to speed,
this allows application programs to be written that operate the robot at near
optimum cycle times without the need of special, manual, speed tuning.

Although the dynamic model of the robot is fixed by the design of the robot, the
coefficients for the model depend on the robot, its tooling, and its payload. In
order to simplify the determination of the coefficient values, Adept provides a
utility program (SFUTIL) to automatically compute the coefficient values. The
utility program does this by moving the robot within a small section of the
workspace and analyzing the resulting dynamic response. Thus, the SFUTIL
program must be executed prior to using the MOVEF and MOVESF instructions,
and it must be run once for each set of coefficients that is required.
V+ Language Reference Guide, Rev A 431

MOVESF Program Instruction
Since the motion times are computed automatically by these instructions, the
settings of the ACCEL and DURATION instructions are ignored during the
pick-and-place motion. However, as a convenience during system setup, the
SPEED monitor command and the SPEED program instruction can be used to
scale down the motion speeds. If the combination of the monitor SPEED and the
program SPEED is 100.0 or greater, the MOVEF and MOVESF instructions drive
the robot to the maximum allowable torque levels (that is, as specified by the
instruction parameters). However, if the combined speed is below 100.0, the
duration of each of the motion segments is proportionally increased. While
debugging an application, this allows the operator to see the exact motion that
will be performed, but at a reduced speed. Note that unlike other
multiple-segment paths generated by V+, reducing the value set by the SPEED
program instruction does not cause the path generated by MOVEF or MOVESF
instructions to be different from that followed at full speed.

Example

The instruction below generates a three-part motion to the destination pick. The
robot will begin by retracting the Z axis 10 millimeters, using 99% of the torque
available in motor 3. Upon reaching the depart clearance height, the robot will
immediately start moving to an approach position 15 millimeters above pick.
During this second segment, 100% of the motor torques will be applied to
accelerate the robot. However, to reduce the deceleration impulse imparted to the
robot, only 90% of available torque will be used to stop the horizontal motion.
Finally, after the approach clearance position is achieved, the Z axis will be
decelerated using 98% of available torque to come to rest at the final destination.
To compute the motion speeds, the system will utilize the dynamic coefficients
that were stored into model set number 1 by the SFUTIL utility program.

MOVEF pick, 10, 15, 99, 100, 90, 98, 1

NOTE: The torque values 99 and 98 are used only to clarify the
relationship between the example instruction and the text above.
For an actual application, these torque values would likely be set to
100.

Related Keywords

APPRO and APPROS (program instructions)

DEPART and DEPARTS (program instructions)

MOVE and MOVES (program instructions)

MOVET and MOVEST (program instructions)

SELECT (program instruction and real-valued function)
432 V+ Language Reference Guide, Rev A

Program Instruction MOVET
Syntax

MOVET-I

MOVET location, hand_opening

MOVEST-I

MOVEST location, hand_opening

Function

Initiate a robot motion to the position and orientation described by the given
location and simultaneously operate the hand.

Usage Considerations

These instructions are usually entered into programs with the V+ editor teach
modes (see EDIT monitor command).

MOVET causes a joint-interpolated motion.

MOVEST causes a straight-line motion, during which no changes in configuration
are permitted.

These instructions can be executed by any program task so long as the task has
attached a robot. The instructions apply to the robot selected by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Parameters

location Transformation, precision point, location function, or compound
transformation that specifies the destination to which the robot
is to move.

hand_opening Real-valued expression that specifies whether the hand is to be
closed (value zero) or opened (value nonzero).

Details

These instructions are similar to MOVE and MOVES, respectively.

One difference with these instructions is that the hand opening is controlled
during the robot motion. The pneumatic-control system receives an open signal if
hand opening is greater than zero. Otherwise, it receives a close signal. The hand
opening is changed to hand opening millimeters during the motion if a
servo-controlled hand is used.
V+ Language Reference Guide, Rev A 433

MOVEST Program Instruction
Another difference with these instructions is that they can be entered into
programs with the editor teach modes. While in T teach mode, every time the
REC/DONE button on the manual control is pressed a MOVET instruction is
entered in the program being edited. The specified location variable is set equal to
the location of the robot at that instant and the hand opening is recorded similarly.

MOVEST instructions can be entered in the same way using the editor TS teach
mode.

Examples

Move by joint-interpolated motion to the location described by the transformation
part1, opening the hand during the motion:

MOVET part1, 1

Move along a straight-line path to the location described by the transformation
part[7], closing the hand during the motion:

MOVEST part[7], 0

Related Keywords

APPRO and APPROS (program instructions)

DEPART and DEPARTS (program instructions)

MOVE and MOVES (program instructions)

MOVEF and MOVESF (program instructions)

SELECT (program instruction and real-valued function)
434 V+ Language Reference Guide, Rev A

Program Instruction MULTIPLE
Syntax

MULTIPLE-I

MULTIPLE ALWAYS

Function

Allow full rotations of the robot wrist joints.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

This is the default state of the V+ system. MULTIPLE ALWAYS is assumed
whenever program execution is initiated and when a new execution cycle begins.

The MULTIPLE instruction can be executed by any program task so long as the
robot selected by the task is not attached by any other task. The instruction
applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the MULTIPLE
instruction will cause an error.

Parameter

ALWAYS Optional qualifier that establishes MULTIPLE as the default
condition. That is, if ALWAYS is specified, MULTIPLE will
remain in effect continuously until disabled by a SINGLE
instruction. If ALWAYS is not specified, the MULTIPLE
instruction will apply only to the next robot motion.

Details

While MULTIPLE is in effect, full rotations of the wrist joints are used as required
during motion planning and execution.

Related Keywords

CONFIG (real-valued function)

SELECT (program instruction and real-valued function)

SINGLE (program instruction)
V+ Language Reference Guide, Rev A 435

NETWORK Real-Valued Function
Syntax

NETWORK-R

NETWORK (component,code)

Function

Return network status and IP address information

Usage Considerations

This function is intended for Adept MV controllers fitted with the AdeptNet
option. It does, however, return correct status information when the AdeptNet
option is not present.

Parameters

component Real-valued expression that identifies the component of the
AdeptNet system that is of interest.

1 = TCP
2 = NFS
3 = FTP

code Real-valued expression that further identifies the information
desired. This value is ignored for NFS and FTP. For TCP:

0 = Return status value as described later (default).
1 = Return AD1*256 + AD2
2 = Return AD3*256 + AD4

where ADn is the nth byte of the IP address

Details

This function returns one of the following values if status is requested (that is, if
the code argument is omitted or set to 0):

Value Meaning

0 Hardware not present, or license not
installed

–1 Hardware present and license detected

1 Driver is running
436 V+ Language Reference Guide, Rev A

Program Instruction NEXT
Syntax

NEXT-I

NEXT count

Function

Branch to the END statement of the nth nested loop, perform the loop test, and
loop if appropriate.

Usage Considerations

This instruction can be used with the FOR, WHILE, and DO control structures.

Parameter

count Optional integer specifying the number of nested structures to
branch to the END of (expressions and variables are not
acceptable).

Details

When a NEXT instruction is processed with count = 1, execution continues at the
END of the control structure. If count > 1, execution continues at the END of
count number of nested control structures.

Example

If error = 1, branch to the END of the innermost control structure. If error = 2,
branch to the END of the outermost control structure:

45 FOR i = 1 to 20
46 FOR j = 1 to 10
47 FOR k = 10 to 50
48 IF error == 1 THEN
49 NEXT ;branch to step 54
50 END
51 IF error == 2 THEN
52 NEXT 3 ;branch to step 56
53 END
54 END
55 END
56 END
57
V+ Language Reference Guide, Rev A 437

NEXT Program Instruction
Related Keywords

DO...UNTIL (program instruction)

EXIT (program instruction)

FOR (program instruction)

WHILE...DO (program instruction)
438 V+ Language Reference Guide, Rev A

Program Instruction NOFLIP
Syntax

NOFLIP-I

NOFLIP

Function

Request a change in the robot configuration during the next motion so that the
pitch angle of the robot wrist has a positive value.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a no-flip configuration, this instruction is
ignored by the robot.

The NOFLIP instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the NOFLIP
instruction causes an error.

See Figure 2-3 on page 224.

Related Keywords

CONFIG (real-valued function)

FLIP (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 439

NONULL Program Instruction
Syntax

NONULL-I

NONULLALWAYS

Function

Instruct the V+ system not to wait for position errors to be nulled at the end of
continuous-path motions.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

NULL ALWAYS is assumed whenever program execution is initiated and when a
new execution cycle begins.

The NONULL instruction can be executed by any program task so long as the
robot selected by the task is not attached by any other task. The instruction
applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the NONULL
instruction will cause an error.

Parameter

ALWAYS Optional qualifier that establishes NONULL as the default
condition. That is, when ALWAYS is included in a NONULL
instruction, NONULL will remain in effect continuously until
disabled by a NULL instruction. If ALWAYS is not specified, the
NONULL instruction will apply only to the next robot motion.

Details

When NONULL is in effect and a BREAK in the robot motion occurs, V+ does not
wait for the electronics to signal that all moving joints have reached their specified
positions before it begins the next motion. That is, at the end of the allotted time,
V+ assumes that the joints have all reached their final positions and starts
commanding the next motion.

Like COARSE mode, this mode allows faster motion if high final-position
accuracy is not required. However, since no position-error checking is done, large
position errors can occur.
440 V+ Language Reference Guide, Rev A

Program Instruction NONULL
Related Keywords

COARSE (program instruction)

CONFIG (real-valued function)

FINE (program instruction)

NULL (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 441

NOOVERLAP Program Instruction
Syntax

NOOVERLAP-I

NOOVERLAP ALWAYS

Function

Generate a program error if a motion is planned that will cause selected multiturn
axes to turn more than ± 180 degrees (the long way around) in order to avoid a
limit stop.

Usage Considerations

NOOVERLAP affects only the operation of joints 1, 4, and 6 of the PUMA robot
module and joint 4 of all SCARA robot modules.

Parameter

ALWAYS Optional qualifier that establishes NOOVERLAP as the default
condition. That is, if ALWAYS is specified, NOOVERLAP
remains in effect continuously until disabled by an OVERLAP
instruction. If ALWAYS is not specified, the NOOVERLAP
instruction applies only to the next robot motion.

Details

When NOOVERLAP is set, and the transformation destination of the next
joint-interpolated or straight-line motion requires that a multiple-turn axis rotate
more than ± 180 degrees, the motion is not executed and a program error is
generated. If the destination is specified as a precision point, this test is not
performed.

In general, given a transformation destination, a multiple-turn axis normally
attempts to move to a new position that is within ± 180 degrees of the previous
motion’s destination. The only conditions that force an axis to make a larger
change is if SINGLE is specified (see following paragraph), or if a software limit
stop would be violated.

When NOOVERLAP is set, the setting of SINGLE or MULTIPLE mode is ignored.

As with other user program errors, the error condition generated as a result of the
NOOVERLAP test can be trapped by a standard REACTE subroutine if desired.
442 V+ Language Reference Guide, Rev A

Program Instruction NOOVERLAP
Related Keywords

MULTIPLE (program instruction)

OVERLAP (program instruction)

SINGLE (program instruction)
V+ Language Reference Guide, Rev A 443

NORMAL Transformation Function
Syntax

NORMAL-T

NORMAL transformation_value)

Function

Correct a transformation for any mathematical round-off errors.

Usage Considerations

For most robot programs, transformation normalizing never has to be performed.

Parameter

transformation_value Transformation, transformation valued function, or
compound transformation whose value is to be
normalized.

Details

Use this function after a lengthy series of computations that modifies a
transformation value. For instance, a procedural motion that incrementally
changes the orientation of a transformation should occasionally normalize the
resultant value. Within a transformation, the orientation of the robot is
represented by three perpendicular unit vectors. Due to the small inaccuracies
that occur in computer computations, after being incrementally modified many
times, these vectors can become nonperpendicular or not of unit length.

The NORMAL function returns a transformation value that is essentially the same
as the input argument but has the orientation portion of the value corrected for
any small buildup of computational errors that may have occurred.
444 V+ Language Reference Guide, Rev A

Operator NOT
Syntax

NOT-I

... NOT value ...

Function

Perform logical negation of a value.

Usage Considerations

The word not cannot be used as a program name or variable name.

Details

The NOT operator operates on a single value, converting it from logically true to
false, and vice versa. If the single value is zero, a –1.0 (TRUE) is returned.
Otherwise, a 0.0 (FALSE) value is returned.

Refer to the V+ Language User’s Guide for the order in which operators are
evaluated within expressions.

Examples

IF NOT initialized THEN ;If the variable "initialized" has a
CALL appl.setup() ; FALSE value, the instructions in the
initialized = TRUE ;IF structure will be executed.

END
V+ Language Reference Guide, Rev A 445

NOT.CALIBRATED System Parameter
Syntax

NOT.CALIBRATED-P

... NOT.CALIBRATED

Function

Indicate (or assert) the calibration status of the robots connected to the system.

Usage Considerations

The current value of the NOT.CALIBRATED parameter can be determined with
the PARAMETER monitor command or real-valued function.

You can modify the value of this parameter at any time; refer to the next section
for details.

The parameter name can be abbreviated.

Details

The value of this parameter, which can range from –1 to 32767, should be
interpreted as a bit mask. Bits 1 through 15 correspond to robots 1 through 15,
respectively. For example, the following values have the following
interpretations:

On power-up, this parameter is set to indicate that all installed robots are not
calibrated. If a robot is not connected or not defined, its NOT.CALIBRATED bit is
always off.

The CALIBRATE command and instruction attempt to calibrate any enabled
ROBOT that has its NOT.CALIBRATED bit set.

Value of
parameter Interpretation

0 All robots are calibrated.

1 Robot 1 is not calibrated.

3 Robots 1 and 2 are not calibrated.

7 Robots 1 through 3 are not calibrated.
446 V+ Language Reference Guide, Rev A

System Parameter NOT.CALIBRATED
When the calibration operation completes, the NOT.CALIBRATED bits are
updated as appropriate. For example, lets consider a system that has only one
robot installed. If the CALIBRATE command is issued, and it succeeds, then
NOT.CALIBRATED is set to 0. If three robots are connected, and the CALIBRATE
command succeeds in calibrating robots 1 and 2, but not robot 3, then
NOT.CALIBRATED is set to 4 (binary 100—robots 1 and 2 calibrated, 3 not
calibrated).

The purpose of this parameter is to allow one of the bits to be set to force the
corresponding robot to be calibrated the next time a CALIBRATE command or
instruction is executed. This parameter can also be used to determine the
calibration status of the robot(s).

The parameter value can be changed at any time. The following rules describe
how a new asserted value is treated:

• If the new value asserts that a robot is not calibrated, the V+ system acts as if
the robot is not calibrated whether or not the servo software believes that the
robot is not calibrated.

• If the new value asserts that a robot is calibrated, the servo software is
checked and V+ tracks the calibrated/not calibrated state indicated by the
servo software for that robot. (Note that it is usually not meaningful to use
PARAMETER NOT.CALIBRATED to clear a bit.)

Examples

Mark all installed robots as uncalibrated:

PARAMETER NOT.CALIBRATED = −1

Mark only robots 1 and 2 as uncalibrated:

PARAMETER NOT.CALIBRATED = 3

Related Keywords

CALIBRATE (monitor command and program instruction)

PARAMETER (monitor command, program instruction, and real-valued
function)

ROBOT (system switch)
V+ Language Reference Guide, Rev A 447

NULL Program Instruction
Syntax

NULL-I

NULL ALWAYS

Function

Instruct the V+ system to wait for position errors to be nulled at the end of
continuous path motions.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

This is the default state of the V+ system. NULL ALWAYS is assumed whenever
program execution is initiated and when a new execution cycle begins.

The NULL instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the NULL
instruction will cause an error.

The word null cannot be used as a program name or variable name.

Parameter

ALWAYS Optional qualifier that establishes NULL as the default
condition. That is, if ALWAYS is specified, NULL will remain in
effect continuously until disabled by a NONULL instruction. If
ALWAYS is not specified, the NULL instruction will apply only
to the next robot motion.

Details

When NULL is in effect and a BREAK in the robot motion occurs, V+ waits for the
electronics to signal that all moving joints have reached their specified positions
before it begins the next motion. The accuracy to which the electronics verify that
all joints have reached their destination positions is determined by the COARSE
and FINE program instructions.
448 V+ Language Reference Guide, Rev A

Program Instruction NULL
Related Keywords

COARSE (program instruction)

FINE (program instruction)

NONULL (program instruction)

NULL (transformation function)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 449

NULL Transformation Function
Syntax

NULL-T

NULL

Function

Return a null transformation value—one with all zero components.

Usage Considerations

The word null cannot be used as a program name or variable name.

Details

A null transformation corresponds to a null vector (X = Y = Z = 0) and no rotation
(yaw = pitch = roll = 0). Such a transformation is useful, for example, with a
SHIFT function to create a transformation representing a translation with no
rotation.

Example

Define a new transformation (new.loc) to be the result of shifting an existing
transformation (old.loc) in the World coordinate directions.

new.loc = SHIFT(NULL BY x.shift,y.shift,z.shift):old.loc

Determine the length of the vector described by the transformation test.loc.

dist = DISTANCE(NULL, test.loc)

Related Keywords

CONFIG (real-valued function)

NULL (program instruction)
450 V+ Language Reference Guide, Rev A

Real-Valued Function OFF
Syntax

OFF-R

OFF

Function

Return the value used by V+ to represent a logical false result.

Usage Considerations

The word off cannot be used as a program name or variable name.

Details

This named constant is useful for situations where on and off conditions need to
be specified. The value returned is 0.

This function is equivalent to the FALSE function.

Related Keywords

FALSE (real-valued function)

ON (real-valued function)
V+ Language Reference Guide, Rev A 451

ON Real-Valued Function
Syntax

ON-R

ON

Function

Return the value used by V+ to represent a logical true result.

Usage Considerations

The word on cannot be used as a program name or variable name.

Details

This named constant is useful for situations where on and off conditions need to
be specified. The value returned is –1.

This function is equivalent to the TRUE function.

Related Keywords

OFF (real-valued function)

TRUE (real-valued function)
452 V+ Language Reference Guide, Rev A

Program Instruction OPEN
Syntax

OPEN-I

OPEN

OPENI-I

OPENI

Function

Open the robot gripper.

Usage Considerations

OPEN causes the hand to open during the next robot motion.

OPENI causes a BREAK in the current continuous-path motion and causes the
hand to open immediately after the current motion completes.

The OPEN instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

The OPENI instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Details

These instructions cause the control valves for the pneumatic hand to receive a
signal to open. If the OPEN instruction is used, the signal will be sent when the
next robot motion begins.1

The OPENI instruction differs from OPEN in the following ways:

• A BREAK occurs if a continuous-path robot motion is in progress.

• The signal is sent to the control valves at the conclusion of the current motion
or immediately if no motion is in progress.

• Robot motions are delayed for a brief time to allow the hand actuation to
complete. The length of the delay (in seconds) is the current setting of the
HAND.TIME system parameter.

1 You can use the Robot Configuration Utility program to set the digital signals that control the
pneumatic hand. The utility program is in the file CONFIG_R.V2 on the Adept Utility Disk. See
the manual Instructions for Adept Utility Programs for information on use of the program.
V+ Language Reference Guide, Rev A 453

OPENI Program Instruction
Examples

During the next robot motion, cause the pneumatic control valves to assume the
open state:

OPEN

Cause the pneumatic control values to assume the open state at the conclusion of
the current motion:

OPENI

Related Keywords

CLOSE and CLOSEI (program instructions)

HAND.TIME (system parameter)

RELAX and RELAXI (program instructions)

SELECT (program instruction and real-valued function)
454 V+ Language Reference Guide, Rev A

Operator OR
Syntax

OR-I

... value OR value ...

Function

Perform the logical OR operation on two values.

Details

The OR operator operates on two values, resulting in their logical OR
combination. For example, during the OR operation

c = a OR b

the following four situations can occur:

That is, the result is TRUE if either (or both) of the two operand values is logically
TRUE.

Refer to the V+ Language User’s Guide for the order in which operators are
evaluated within expressions.

a b c

FALSE FALSE ➡ FALSE

FALSE TRUE ➡ TRUE

TRUE FALSE ➡ TRUE

TRUE TRUE ➡ TRUE
V+ Language Reference Guide, Rev A 455

OR Operator
Example

In the following sequence, the instructions immediately following the IF
instruction are executed if either ready is TRUE (that is, nonzero) or count equals
1. The instructions are not executed if both ready is FALSE and count is not equal
to 1.

IF ready OR (count == 1) THEN
.
.
.

END

Related Keywords

AND (operator)

BOR (operator)

XOR (operator)
456 V+ Language Reference Guide, Rev A

Real-Valued Function OUTSIDE
Syntax

OUTSIDE-R

OUTSIDE (low, test, high)

Function

Test a value to see if it is outside a specified range.

Parameters

low Real value, expression, or variable specifying the lower limit of
the range to be tested.

test Real value, expression, or variable to test against the range.

high Real value, expression, or variable specifying the upper limit of
the range to be tested.

Details

Returns TRUE (–1) if test is less than low or greater than high . Returns FALSE
(0) otherwise.

Related Keywords

MAX (real-valued function)

MIN (real-valued function)
V+ Language Reference Guide, Rev A 457

OVERLAP Program Instruction
Syntax

OVERLAP-I

OVERLAPALWAYS

Function

Disable the NOOVERLAP limit-error checking either for the next motion or for all
subsequent motions.

Usage Considerations

OVERLAP applies only to the operation of joints 1, 4, and 6 of the PUMA robot
module and joint 4 of all SCARA robot modules.

Parameter

ALWAYS Optional qualifier that establishes OVERLAP as the default
condition. That is, if ALWAYS is specified, OVERLAP remains in
effect continuously until disabled by a NOOVERLAP
instruction. If ALWAYS is not specified, the OVERLAP
instruction applies only to the next robot motion.

Details

When OVERLAP is set, and the transformation destination of the next
joint-interpolated or straight-line motion requires that a multiple-turn axis rotate
more than ± 180 degrees, the motion is executed without generating a program
error message.

OVERLAP disables the limit-error checking of NOOVERLAP. The overlap
condition is set when the V+ system is loaded from disk.

Related Keyword

NOOVERLAP (program instruction)
458 V+ Language Reference Guide, Rev A

Program Instruction PACK
Syntax

PACK-I

PACK string_array[index], first_char, num_chars = string

PACK string_var, first_char, num_chars = string

Function

Replace a substring within an array of (128-character) string variables, or within a
(nonarray) string variable.

Parameters

string_array String array variable that is modified by the substring on the
right-hand side of the equal sign. Each element within the string
array is assumed to be 128 characters long (see below).

index Optional integer value that identifies the first array element to be
considered. The first_char value is interpreted relative to the
element specified by this index. If no index is specified, element
zero is assumed.

string_var String variable that is modified by the substring on the
right-hand side of the equal sign.

first_char Real-valued expression that specifies the position of the first
character of the substring within the string array. A value of 1
corresponds to the first character of the specified string array
element. This value must be greater than zero.

The value of first_char can be greater than 128. In that case
the array element accessed will follow the element specified in
the function call. For example, a value of 130 corresponds to the
second character in the array element following that specified by
index .

num_chars Real-valued expression that specifies the number of characters to
be copied from the string to the array. This value can range from
0 to 128.

string String variable, constant, or expression from which the substring
is to be extracted. The string must be at least num_chars long.
V+ Language Reference Guide, Rev A 459

PACK Program Instruction
Details

This instruction replaces a substring within an array of strings or within a string
variable. When an array of strings is being modified, the substring is permitted to
overlap two elements of the string array. For example, a 10-character substring
whose first character is to replace the 127th character in element [3] will supersede
the last two characters in element [3] and the first eight characters of element [4].

If the array element to be modified is not defined, the element will be created and
filled with ASCII NUL characters (^H00) up to the specified start of the substring.
Similarly, if the array element to be modified is too short, the string will be
padded with ASCII NUL characters to the start of the substring.

In order to efficiently access the string array, this function assumes that all of the
array elements, from the start of the array until the element before the element
accessed, are defined and are 128 characters long. For multidimensional arrays,
only the right-most array index is incremented to locate the substring. Thus, for
example, element [2,3] is followed by element [2,4].

When a string variable is modified, the replacement is done in a manner similar to
that for an individual element. However, in this case, there are two differences to
the operation of the instruction:

• If the initial value of the string variable is shorter than first_char
characters, the string is not extended with ASCII NUL characters. That is, the
replacement string is simply appended to the value of the variable.

• An error results if the operation would cause the string to be longer than 128
characters.

Example

The instruction below replaces 11 characters within the string array $list[]. The
replacement is specified as starting in array element $list[3]. However, since the
first character replaced is to be number 130, the 11-character substring will
actually replace the second through 12th characters of $list[4].

PACK $list[3], 130, 11 = $string

Related Keywords

$MID (string function)

$UNPACK (string function)
460 V+ Language Reference Guide, Rev A

Program Instruction PARAMETER
Syntax

PARAMETER-I

PARAMETER parameter_name = value

PARAMETER parameter_name[index] = value

Function

Set the value of a system parameter.

Usage Considerations

If the specified parameter accepts an index qualifier and the index is zero or
omitted (with or without the brackets), all the elements of the parameter array are
assigned the value given.

Parameters

parameter_name Name of the parameter whose value is to be modified.

index For parameters that can be qualified by an index, this is an
optional real value, variable, or expression that specifies the
specific parameter element of interest (see above).

value Real value, variable, or expression defining the value to be
assigned to the system parameter.

Details

This instruction sets the given system parameter to the value on the right. The
parameter name can be abbreviated to the minimum length that identifies it
uniquely.

NOTE: A regular assignment statement cannot be used to set the
value of a system parameter.

The parameter names acceptable with the standard V+ system are summarized in
the V+ Language User’s Guide. The Parameter entry in the index for this
document directs you to the detailed descriptions of these parameters.

Other system parameters are available when options are installed. Refer to the
option documentation for details. For example, the parameters associated with
the AdeptVision options are described in the AdeptVision Reference Guide.
V+ Language Reference Guide, Rev A 461

PARAMETER Program Instruction
Example

;Set the TERMINAL system parameter to 4.

PARAMETER TERMINAL = 4

Related Keywords

BELT.MODE (system parameter)

HAND.TIME (system parameter)

KERMIT.RETRY (system parameter)

KERMIT.TIMEOUT (system parameter)

NOT.CALIBRATED (system parameter)

PARAMETER (monitor command and program instruction)

SCREEN.TIMEOUT (system parameter)

TERMINAL (system parameter)
462 V+ Language Reference Guide, Rev A

Real-Valued Function PARAMETER
Syntax

PARAMETER-R

PARAMETER (parameter_name)

PARAMETER (parameter_name[index])

Function

Return the current setting of the named system parameter.

Parameters

parameter_name Name of the system parameter whose value is to be returned.

index For parameters that can be qualified by an index, this is a
(required) real value, variable, or expression that specifies the
specific parameter element of interest.

Details

This function returns the current setting of the given system parameter. The
parameter name can be abbreviated to the minimum length that identifies it
uniquely.

Other system parameters are available when options are installed. Refer to the
option documentation for details. For example, the parameters associated with
the AdeptVision options are described in the AdeptVision Reference Guide.

Examples

The following example illustrates how the current setting of the TERMINAL
parameter can be displayed on the system terminal during program execution:

TYPE "The TERMINAL parameter is set to", PARAMETER(TERMINAL)

The PARAMETER function can also be used in any expression to include the
value of a parameter. For example, the following program statement could be
used to increase the time delay for hand actuation:

PARAMETER HAND.TIME = PARAMETER(HAND.TIME) + 0.15

Note that the left-hand occurrence of PARAMETER is the instruction name and the
right-hand occurrence is the function name.
V+ Language Reference Guide, Rev A 463

PARAMETER Real-Values Function
Related Keywords

BELT.MODE (system parameter)

HAND.TIME (system parameter)

KERMIT.RETRY (system parameter)

KERMIT.TIMEOUT (system parameter)

NOT.CALIBRATED (system parameter)

PARAMETER (monitor command and program instruction)

SCREEN.TIMEOUT (system parameter)

TERMINAL (system parameter)
464 V+ Language Reference Guide, Rev A

Program Instruction PAUSE
Syntax

PAUSE-I

PAUSE

Function

Stop program execution but allow the program to be resumed.

Usage Considerations

Unlike HALT and STOP, the PAUSE instruction does not force FCLOSE or
DETACH on the disk or serial communication logical units. If the program has a
file open and you decide not to continue execution of the current program, you
should issue a KILL command (with the appropriate task number) to close all files
and detach all logical units.

Details

Causes a BREAK and then terminates execution of the application program,
displaying the message (PAUSED). Execution can subsequently be continued by
typing proceed and the appropriate task number, and pressing the RETURN key.

When debugging a program, a PAUSE instruction can be inserted to stop program
execution temporarily while the values of variables are checked.

NOTE: Any robot motion in progress when a PAUSE instruction is
processed will complete normally.

Related Keywords

HALT (program instruction)

KILL (monitor command and program instruction)

PROCEED (monitor command, see the V+Operating System Reference
Guide)

STOP (program instruction)
V+ Language Reference Guide, Rev A 465

PAYLOAD Program Instruction
Syntax

PAYLOAD-I

PAYLOADvalue , motor

Function

Adjust the feedforward compensation for a specified motor by setting a
percentage of the maximum payload assumed for that motor.

Usage Considerations

This instruction affects the robot currently selected with a SELECT program
instruction.

A task does not have to be attached to the robot to issue this instruction.

With Adept robots, this instruction is supported only on motors 3 and 4 of the
AdeptOne-MV, the AdeptThree-MV, and the PackOne-MV robots. The instruction
is useful primarily for tuning motor 4 performance as a function of end-effector
inertia. With AdeptMotion VME robots, the instruction defaults to no effect and
must be enabled with the SPEC utility.

Parameters

value An optional real-valued expression interpreted as a percentage
of the maximum payload. If omitted, the value –1 is used, which
is interpreted as the default payload percentage.

motor An optional real-valued expression that specifies to which motor
this instruction applies. If the parameter is omitted or zero, the
payload percentage applies to all motors of the selected robot.

Details

The PAYLOAD instruction takes effect immediately and is not synchronized with
robot-motion segments.

If the PAYLOAD instruction is used to indicate that a very large payload is on the
robot motor when in fact a small payload is on the robot motor, the motor can run
away any time the commanded acceleration is nonzero. The degree of run-away
depends upon the range between minimum and maximum acceleration
feedforward, the degree to which the payload is in error, and the size of the
acceleration and deceleration during the motion being attempted. In particular,
this is a concern for motor 4 of the AdeptOne-MV, the AdeptThree-MV, and the
PackOne-MV robots. Take care to ensure that the value used with the PAYLOAD
instruction correctly reflects the true payload.
466 V+ Language Reference Guide, Rev A

Program Instruction PAYLOAD
On the AdeptOne-MV, the AdeptThree-MV, the PackOne-MV, and the Adept 550
robots:

• Only motor 3 drives joint 3.

• Motor 4 drives joint 4 with a small contribution from motor 3.

You can use the PAYLOAD instruction to adjust feedforward gains in a
predetermined way, just as you can use the GAIN.SET instruction to adjust
feedback gains in a predetermined way. Because GAIN.SET does not affect the
feedforward, there is no conflict between these two instructions. That is, the order
of their execution is unimportant.

The value parameter specifies a value of the acceleration feedforward gain
(inertia estimate) that is interpolated between two factory preset values. These are
the minimum no-load acceleration feedforward gain and the maximum
acceleration feedforward gain.

On AdeptMotion VME robots, this instruction defaults to no effect. Using the
SPEC utility program, you can enable it for a particular AdeptMotion VME motor
by setting the maximum and minimum acceleration feedforward values for that
motor to nonzero values (with the maximum greater than the minimum). The
PAYLOAD instruction assumes the use of current-mode (torque-mode)
amplifiers.

The benefit of the instruction depends upon the mechanical design of the
mechanism. Motors with low gear ratios and high variations in payload benefit
more. Motors with high gear ratios and low variations in payload benefit less. The
instruction is not useful with velocity-mode amplifiers.

Related Keywords

ACCEL (program instruction and real-valued function)

DURATION (program instruction and real-valued function)

GAIN.SET (program instruction)

SPEED (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 467

#PDEST Precision-Point Function
Syntax

#PDEST-#

#PDEST

Function

Return a precision-point value representing the planned destination location for
the current robot motion.

Usage Considerations

The #PDEST function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the #PDEST function
will not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

The name pdest cannot be used for a variable or a program.

Details

The #PDEST function can be used to determine where the robot was moving to
after its motion is interrupted for some reason.

The #PDEST function is equivalent to the DEST transformation function and can
be used interchangeably with DEST, depending upon the type of location
information that is desired. Please refer to the description of the DEST function
for more information on the use of both the #PDEST and DEST functions.

Related Keywords

DEST (transformation function)

HERE (transformation function)

SELECT (program instruction and real-valued function)
468 V+ Language Reference Guide, Rev A

Real-Valued Function PENDANT
Syntax

PENDANT-R

PENDANT (select)

Function

Return input from the manual control pendant.

Usage Considerations

The manual control pendant logical unit must be attached, and the pendant must
be in USER mode, before keys can be read or output to the pendant can be done.
Thus, the application program should use the PENDANT function to check these
conditions before performing pendant I/O.

Parameter

select Real-valued expression whose value selects what type of
pendant information is returned (see below).

Details

The value returned depends upon the select parameter as follows:

select > 0 Immediately returns a value that reflects the actual state of the
key with the given key number at the instant the function is
called. The state of the key depends upon the key mode setting
for that key. See the KEYMODE program instruction for
information about setting key modes and for a table of the key
numbers. The value returned is meaningful only if the pendant
is connected. (The pendant logical unit does not need to be
attached for this mode of operation.)

If a key is in keyboard mode, the value ON (–1) indicates that the
key is pressed. The value OFF (0) indicates that the key is not
pressed.

If a key is in level mode, the value ON (–1) indicates that the
pendant is attached in USER mode and that the key is pressed.
The value OFF (0) indicates that the pendant is not in USER
mode, or that the key is not pressed.

If a key is in toggle mode, the value ON (–1) indicates that the
key is on and the value OFF (0) indicates that the key is off. If the
pendant is not in USER mode, the value returned still accurately
reflects the state of the toggled key.
V+ Language Reference Guide, Rev A 469

PENDANT Real-Valued Function
NOTE: When select is equal to 36 (indicating the SLOW key), the
value returned indicates the current state of slow mode, as indicated
by the LED on the key. (The SLOW key is always in toggle mode
and is not affected by the KEYMODE command.)

select = 0 Returns the key number of the next keyboard mode key pressed.
Program execution is suspended until a keyboard mode key is
pressed. If no key is programmed in this mode, an error occurs.
The pendant logical unit must be attached for this mode of
operation. (See the ATTACH program instruction.)

select = –1 Returns the key number of the next special mode key pressed.
Program execution is suspended until a key of the requested
mode is pressed. If no key is programmed in this mode, an error
occurs. The pendant logical unit must be attached for this mode
of operation. (See the ATTACH program instruction.)

select = –2 Returns the current value from the speed potentiometer, in the
range of –128 (decimal) to 127 (decimal). (The pendant logical
unit does not need to be attached for this mode of operation.)

select = –3 Returns the current display mode active on the manual control.
This can be used, for example, to determine the state of the
manual control before attempting to write to it. (The pendant
logical unit does not need to be attached for this mode of
operation.)

The display modes should be interpreted as follows:

select = –4 Returns the version number of the manual control software. This
is the same is the value returned by the real-valued function
ID(1,2). The value –1 is returned if the manual control pendant is
not connected to the system.

Display
mode Interpretation

1 Function display (e.g., DISP)

2 Background display

3 Error display

4 USER mode
470 V+ Language Reference Guide, Rev A

Real-Valued Function PENDANT
Examples

This example sets the manual control soft keys to keyboard mode, and then waits
for one of them to be pressed (also see the V+ Language User’s Guide).

ATTACH (1) ;Attach the pendant LUN

KEYMODE 1,5 = 0 ;Set soft keys to keyboard mode

key = PENDANT(0) ;Wait and return next key hit

TYPE "Soft key #", key, " pressed"

DETACH (1) ;Detach the pendant LUN

This example sets the DONE key to level mode and loops until the key is pressed.

ATTACH (1) ;Attach the pendant LUN

KEYMODE 8 = 2 ;Set DONE key (8) to level mode

WAIT PENDANT(8) ;Pause until DONE key is pressed

DETACH (1) ;Detach the pendant LUN

Related Keywords

ATTACH (program instruction)

KEYMODE (program instruction)
V+ Language Reference Guide, Rev A 471

PI Real-Valued Function
Syntax

PI-R

PI

Function

Return the value of the mathematical constant pi (3.141593).

NOTE: TYPE, PROMPT, and similar instructions display the result
of the above example as a single-precision value. However, pi is
actually stored and manipulated as a double-precision value. The
LISTR monitor command displays real values to full precision.

Usage Considerations

The word pi cannot be used as a program name or variable name.
472 V+ Language Reference Guide, Rev A

Precision-Point Function #PLATCH
Syntax

#PLATCH-#

#PLATCH (select)

Function

Return a precision-point value representing the location of the robot at the
occurrence of the last external trigger or AdeptForce guarded-mode trigger.

Usage Considerations

The function name #PLATCH is considered to be a precision-point name. Thus,
the # character must precede all uses of the function.

#PLATCH() returns information for the robot selected by the task executing the
function. If the V+ system is not configured to control a robot, use of the
#PLATCH function will not generate an error due to the absence of a robot.
However, the information returned by the function may not be meaningful.

Parameter

select Optional integer, expression, or real variable specifying:

0 External trigger (default)
1 AdeptForce guarded mode-trigger

Details

#PLATCH() returns a precision-point value that represents the location of the
robot when the last trigger occurred. The LATCHED real-valued function should
be used to determine when an external trigger has occurred and a valid location
has been recorded.

Operation of the external trigger can be configured with the Adept controller
configuration program (in the file CONFIG_C.V2 on the Utility Disk). This trigger
may originate from the vision processor or a digital input signal.

See the AdeptForce VME User’s Guide for details of the AdeptForce option.

Related Keywords

LATCH (transformation function)

LATCHED (real-valued function)
V+ Language Reference Guide, Rev A 473

POS Real-Valued Function
Syntax

POS-R

POS (search_string, sub_string , start)

Function

Return the starting character position of a substring in a string.

Parameters

search_string String expression to be searched for the occurrence of a
substring.

sub_string String expression containing the substring to be searched for
within the search string.

start Optional expression indicating the character position within the
search string where searching is to begin.

Details

Returns the character position in search_string where sub_string begins. If
the substring does not occur within the search string, a value of 0 is returned.

If start is provided, it indicates the character position within search_string
where searching will begin. A value of 1 indicates the first character. If start is
omitted or less than 1, searching begins with the first character. If start is greater
than the length of search_string , a value of 0 is returned.

When checking for a matching substring, uppercase and lowercase letters are
considered to be the same.

Examples

POS("file.ext", ".") ;Returns 5

POS("file", ".") ;Returns 0

POS("abcdefgh", "DE") ;Returns 4

POS("1-2-3-4", "-", 5) ;Returns 6
474 V+ Language Reference Guide, Rev A

System Switch POWER
Syntax

POWER-S

... POWER

Function

Control or monitor the status of high power.

Usage Considerations

From the system terminal or with a program, the POWER switch can be used to
turn off high power or to start the process to turn it on.

Only CPU #1 can enable and disable power.

WARNING: For systems operating under V+ versions prior to 11.3
and not subject to European certification, Adept recommends that
this switch not be used to turn on high power from within a
program.

Using this switch to turn on high power is potentially dangerous
when performed from a program because the robot can be activated
without direct operator action. Turning on high power from the
terminal can be hazardous if the operator does not have a clear view
of the robot workspace or does not have immediate access to an
Emergency Stop button.

For systems operating under V+ 11.3 with or without the Manual
Mode Safety Package (MMSP), turning on high power from the
terminal can be hazardous if the operator does not have a clear view
of the robot workspace or does not have immediate access to an
Emergency Stop button.

Details

Enabling this switch is equivalent to pushing the COMP/PWR button on the
manual control pendant to turn on high power. If there is no error condition that
prevents power from coming on, the enabling process proceeds to the second
step, in which you must press the HIGH POWER ON/OFF button on the VFP.
(Systems operating under V+ versions prior to 11.3 do not require the second
step.)

Disabling this switch requests the robot to perform a controlled deceleration and
power-down sequence. This sequence consists of:
V+ Language Reference Guide, Rev A 475

POWER System Switch
1. Decelerating all robots according to the user-specified parameters.1

2. Turning on the brakes.

3. Waiting for the user-specified brake-delay interval.1

4. Turning off the amplifiers and power.

5. Asserting the backplane Emergency Stop signal and deasserting the High
Power Enable (HPE) signal.

Note that DISABLE POWER may take an arbitrarily long time due to long
deceleration times and long brake turn-on delays. (Use the ESTOP command or
program instruction when you desire an immediate shutdown.) The value of this
switch can be checked at any time with the SWITCH real-valued function to
determine if high power is on or off.

To disable power from a robot program without generating an error condition, the
program either must be in DRY.RUN mode or it must DETACH the robot from
program control. See the DRY.RUN switch or DETACH program instruction for
details.

Example

The following program segment detaches the robot, turns high power off, and
waits for the operator to turn high power back on.

DETACH ;Detach robot from program

DISABLE POWER ;Turn off power

TYPE "Press the COMP/PWR button to continue"

ATTACH ;Wait for power on and attach

TYPE "Robot program continuing..."

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

ESTOP (program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)

1 You set user-specified parameters with the SPEC utility program. Robot manufacturers set these
parameters for some robots; if so, you cannot change them.
476 V+ Language Reference Guide, Rev A

Precision Point Function #PPOINT
Syntax

#PPOINT-#

#PPOINT (j1_value, j2_value, j3_value, j4_value, j5_value,
j6_value)

Function

Return a precision-point value composed from the given components.

Usage Considerations

The #PPOINT function name is considered to be a precision-point name. Thus,
the # character must precede all uses of the function.

Parameters

Details

Returns a precision-point value composed from the given components, which are
the positions of the first through last robot joints, respectively.

A zero value is assumed for any parameter that is omitted.

Examples

Assume that you want to perform a coordinated motion of joints 2 and 3 of a
robot with 4 joints, starting from its current location. The following program
segment will perform such a motion:

HERE #ref ;Define current location
DECOMPOSE x[] = #ref ;Fill array with components

;Move to new precision point defined with modified
;components

MOVE #PPOINT(x[0], x[1]+a, x[2]-a/2, x[3])

j1_value Optional real-valued expressions for the respective
robot joint positions. (If more values are specified
than the number of robot joints, the extra values are
ignored.)

j2_value

j3_value

...

j6_value
V+ Language Reference Guide, Rev A 477

#PPOINT Precision Point Function
The following steps would lead to the same final location, but the robot joints
would not be moved simultaneously with this method.

DRIVE 2, a, 100 ;Drive joint 2

DRIVE 3, -a/2, 100 ;Drive joint 3

Related Keyword

TRANS (transformation function)
478 V+ Language Reference Guide, Rev A

Real-Valued Function PRIORITY
Syntax

PRIORITY-R

PRIORITY

Function

Return the current reaction lock-out priority for the program.

Usage Considerations

The name priority cannot be used as a program name or variable name.

This function returns the reaction lock-out priority, not the program priority of the
executing program.

Details

The reaction lock-out priority for each program task is set to zero when execution
of the task is initiated. The priority can be changed by the program at any time
with the LOCK instruction, or the priority is set automatically when a reaction
occurs as prescribed by a REACT or REACTI instruction.

The PRIORITY function can be used to determine the current setting of the
reaction lock-out priority for the task executing the function.

Example

This example raises the priority, performs some operation that requires a reaction
routine to be locked out, and then restores it to its previous value.

save = PRIORITY ;Save the current priority

IF save < 10 THEN ;Raise priority to at least 10

LOCK 10

END

; Access data shared by a reaction routine.

LOCK save ;Set priority to original value

Related Keywords

LOCK (program instruction)

REACT (program instruction)

REACTI (program instruction)
V+ Language Reference Guide, Rev A 479

.PROGRAM Program Instruction
Syntax

.PROGRAM-I

.PROGRAM program_name(argument_list) ;comment

Function

Define the arguments a program will be passed when it is invoked.

Usage Considerations

This instruction is inserted automatically by the V+ editors when a new program
is edited.

This special instruction must be the first line of every program.

The .PROGRAM statement cannot be deleted from a program.

Parameters

program_name Name of the program in which this instruction is found.

argument_list Optional list of variable names, separated by commas. Each
variable can be any one of the data types available with V+ (belt,
precision point, real-value, string, and transformation). Each
variable can be a simple variable or an array with all of its
indexes left blank.

;comment Optional comment that will be displayed when the program is
loaded from a disk file and when the DIRECTORY command is
processed. (The semicolon [;] should be omitted if no comment is
included.)

Details

The V+ editors automatically enter a .PROGRAM line when you edit a new
program. They will also prevent you from deleting the line or changing the
program name. You can, however, edit the line to add, delete, or modify the
argument list. (The RENAME monitor command must be used to change the
program name.)

The variables in the argument list will be considered automatic variables for the
named program. (See the AUTO instruction.)

When a program begins execution (for example, via an EXECUTE command or
instruction or a CALL instruction), the arguments in the .PROGRAM instruction
are associated with those in the EXECUTE or CALL. This association allows
values to be passed between a program and its caller.
480 V+ Language Reference Guide, Rev A

Program Instruction .PROGRAM
See the description of the CALL instruction for an explanation of how the
program arguments receive their values from a calling program and return their
values to the calling program. The following rules apply to any program
argument that is undefined when the program executes:

• Real-valued scalar parameters can be assigned a value within a program if
they are undefined.

• Location, string, and belt (scalar or array) parameters, and real-valued array
parameters, cannot be assigned a value within a program if they are
undefined. (AUTO variables can be used to work around this restriction, as
shown in the example below.)

NOTE: If a program attempts to assign a value to one of these
undefined variables, the error *Undefined value* will result. In that
case, the error refers to the variable on the left side of the assignment
instruction.

• If an undefined parameter is passed on to another program in a CALL
instruction, and the type (real-valued or location) of the variable is
ambiguous, the parameter will be assumed to be real-valued.

• Elements of an undefined array parameter cannot be passed by reference in a
CALL instruction.

The DEFINED real-valued function can be used within a program to check
whether or not a program parameter is defined. The example below shows how a
program can be written to accommodate undefined parameters.

A comment can be included on the .PROGRAM line, which will be displayed
when the program is loaded from the disk and by the DIRECTORY command.

Examples

Define a program that expects no arguments to be passed to it:

.PROGRAM get()

Define a program that expects a string-valued argument and either a location or
real-valued argument (the type of the second argument will be determined by its
use in the program):

.PROGRAM test($n, dx)
V+ Language Reference Guide, Rev A 481

.PROGRAM Program Instruction
The following program segment shows how a program can be written to deal
with undefined parameters. The example shows part of the program example,
which has a real-valued parameter and a string parameter.

.PROGRAM example(real, $string)
AUTO $internal.var

; Check for undefined real-valued scalar parameter.

IF NOT DEFINED(real) THEN ;If parameter is undefined
real = 1 ;assignment of desired

END ;default value is okay

; Check for undefined string parameter.

IF DEFINED($string) THEN ;If parameter is defined,
$internal.var = $string ;use the parameter value

ELSE ;Otherwise,
$internal.var = "default" ;use default value

END

; (Program continues...)

Refer to the DEFINED function for more details and for testing nonreal
arguments.

Related Keywords

CALL and CALLS (program instructions)

EXECUTE (monitor command and program instruction)

PRIME (monitor command)

SSTEP and XSTEP (monitor commands)

See the V+Operating System Reference Guide for details on monitor commands.
482 V+ Language Reference Guide, Rev A

Program Instruction PROMPT
Syntax

PROMPT-I

PROMPToutput_string , variable_list

Function

Display a string on the system terminal and wait for operator input.

Parameters

output_stri ng Optional string expression that is output to the system
terminal. The cursor is left at the end of the string.

variable_list A list of real-valued variables, or a single string variable, that
will receive the data.

Details

Displays the text of the output string on the system terminal, and waits for the
user to type in a line terminated by pressing the RETURN key.

The input line can be processed in either of two ways:

1. If a list of real-valued variables is specified as the variable list, the line is
assumed to contain a list of numbers separated by space characters and/or
commas. Each number is converted from text to its internal representation,
and its value is stored in the next variable contained in the variable list. If
more values are read than the number of variables specified, the extra values
are ignored. If fewer values are read, the remaining variables are set to zero. If
data is read that is not a number, an error occurs and program execution
stops. It is recommended that only one value be requested by each PROMPT
instruction to avoid confusion and to reduce the possibility of error.

2. If a single string variable is specified as the variable list, the entire input line is
stored in the string variable. The program must then process the string as
appropriate.

If the user just presses the RETURN key, or presses CTRL+C, an empty line is
read. That results in all the real variables being set to zero, or the string variable
being assigned an empty string.

If the user presses CTRL+Z, an end-of-file error condition results. If there is no
REACTE instruction active, program execution is terminated and an error
message is displayed. Thus, CTRL+Z can be a useful way to abort program
execution at a PROMPT.
V+ Language Reference Guide, Rev A 483

PROMPT Program Instruction
Examples

Consider the instruction:

PROMPT "Enter the number of parts: ", part.count

The result of executing this instruction will be display of the message

Enter the number of parts:

on the system terminal to ask the operator to type in the desired value. After the
user types a number and presses the RETURN key, the variable part.count will be
set equal to the value typed, and program execution will resume.

Consider changing the above instruction to:

PROMPT "Enter the number of parts: ", $input

Even if the user enters characters that are not valid for numeric input, V+ will not
output an error message. The application program can use the various string
functions to extract numeric values from the input string.

If you want to include format specifications in the string output to the terminal
(such as /Cn to skip lines), you can use either the $ENCODE function or the TYPE
instruction. For example, the instruction

PROMPT $ENCODE(/B,/C1,/X10)+"Enter the number of parts: ",
$input

will beep the terminal, space down a line, space over ten spaces, output the string,
and wait for the user’s input. (Note that a + sign has to be used between the
$ENCODE function and the quoted string because the entire output_string
parameter must be a single string expression.)

The following pairs of instructions are equivalent to the previous example:

TYPE /B, /C1, /X10, /S

PROMPT "Enter the number of parts: ", $input

or

TYPE /B, /C1, /X10, "Enter the number of parts: ", /S

PROMPT , $input

Note that /S must be included in the TYPE instructions as shown to have the
prompt string output on one line, and to have the cursor remain on that line.
484 V+ Language Reference Guide, Rev A

Program Instruction PROMPT
Related Keywords

READ (program instruction)

TYPE (program instruction)
V+ Language Reference Guide, Rev A 485

RANDOM Real-Valued Function
Syntax

RANDOM-R

RANDOM

Function

Return a pseudorandom number.

Usage Considerations

The word random cannot be used as a program name or variable name.

Details

Returns a pseudorandom number in the range 0.0 to 1.0, inclusive. Thus, each
time the RANDOM function is evaluated, it returns a different value.

The numbers generated by this function are pseudorandom because the sequence
will repeat after this function has been called 224 (16,777,216) times.
486 V+ Language Reference Guide, Rev A

Program Instruction REACT
Syntax

REACT-I

REACT signal_num, program , priority

Function

Initiate continuous monitoring of a specified digital signal and automatically
trigger a subroutine call if the signal properly transitions.

Usage Considerations

The REACT (and REACTI) instruction can be executed by any of the program
tasks. That is, each task can have its own, independent reaction definition.

Any of the first twelve external input signals (1001 to 1012) can be simultaneously
monitored.

Reactions are triggered by signal transitions and not levels. Thus, if a signal is
going to be monitored for a transition from off to on and the signal is already on
when a REACT (or REACTI) instruction is executed, then the reaction will not
occur until the signal goes off and then on again.

A signal must remain stable for at least 18 milliseconds to assure detection of a
transition.1

The requested signal monitoring will be enabled as soon as a REACT (or REACTI)
instruction is executed. Because of the way V+ processes program instructions,
this could result in an effect on the motion initiated by the motion instruction
preceding the REACT (or REACTI) instruction in the program. (See the V+
Language User’s Guide for a discussion of robot motion processing.)

Parameters

signal_num Real-valued expression representing the signal to be monitored.
The signal number must be in the range 1001 to 1012 (external
input signals) or 2001 to 2008 (internal software signals). (The
software signals can thus be used by one program task to
interrupt another task.) If the signal number is positive, V+ looks
for a transition from off to on; if signal_num is negative, V+
looks for a transition from on to off.

program Name of the subroutine that is to be called when the signal
transitions properly.

1 If software signals are being used to trigger reactions, the WAIT instruction (with no argument)
should be used as required to ensure that the signal state remains constant for the required time
period.
V+ Language Reference Guide, Rev A 487

REACT Program Instruction
priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value of this
expression is interpreted as an integer value and can range from
1 to 127. See the LOCK instruction for additional details on
priority values. The default value is 1.

Details

When the specified signal transition is detected, V+ reacts by checking the priority
specified with the REACT instruction against the program priority setting at that
time. (The program priority is always set to 0 when execution begins. It can be
changed with the LOCK instruction.) If the REACT priority is greater than the
program priority, the normal program execution sequence is interrupted and the
equivalent of a CALL program instruction is executed. Also, the program priority
is temporarily raised to the REACT priority, locking out any reactions of equal or
lower importance. When a RETURN instruction is executed in a reaction
subroutine, the program priority is restored to the value it had before the reaction
program was invoked.

If the REACT priority is less than or equal to the program priority when the signal
transition is detected, the reaction is queued and will not occur until the program
priority is lowered. Therefore, depending upon the relative priorities, there can be
a considerable delay between the time a signal transition is noticed by V+ and the
time the reaction program is actually invoked.

If multiple reactions are pending because of a priority lockout, the reaction with
the highest priority will be serviced first when the locking priority is lowered. If
multiple pending reactions have the same priority, the one associated with the
highest signal number will be processed first.

The subroutine call to program is performed such that when a RETURN
instruction is encountered, the next instruction to be executed will be the one that
follows the last instruction processed before the reaction program was initiated. If
there is a sequence of instructions that you do not want interrupted by a reaction
program, you should use the LOCK instruction to raise the program priority
during that sequence.

The signal monitoring continues until one of the following occurs:

• An IGNORE instruction is executed for the signal.

• A reaction occurs (in which case IGNORE signal_number is automatically
performed).

• A REACT (or REACTI) instruction is executed that refers to the same signal.
That is, if the signal specified in a REACT instruction is already being
monitored by a previous REACT or REACTI instruction, the old instruction
will be canceled when the new REACT instruction is executed.
488 V+ Language Reference Guide, Rev A

Program Instruction REACT
Example

The instruction below monitors the external input signal identified by the value of
the variable test. If the desired signal transition occurs (as specified by the sign of
the value of test), program execution will branch to program delay as soon as the
program priority drops to 0 (since no priority is specified in the instruction). (The
program priority will be raised to 1 [the default value] when the subroutine is
invoked; the program priority returns to 0 when the program returns.)

REACT test, delay

Related Keywords

IGNORE (program instruction)

LOCK (program instruction)

PRIORITY (real-valued function)

REACTE (program instruction)

REACTI (program instruction)

SIG.INS (real-valued function)
V+ Language Reference Guide, Rev A 489

REACTE Program Instruction
Syntax

REACTE-I

REACTE program_name

Function

Initiate the monitoring of errors that occur during execution of the current
program task.

Usage Considerations

The main purpose for the REACTE instruction is to allow for an orderly
shutdown of the system if an unexpected error occurs. If a robot hardware error
occurs, for example, a REACTE program can set external output signal lines to
shut down external equipment. Using the REACTE instruction for other purposes
requires extreme caution.

The REACTE instruction can be executed by any of the program tasks. That is,
each task can have its own, independent REACTE definition. (A task cannot
directly trap errors caused by another task, but tasks can signal each other via
global variables or software signals.)

See the list below for other considerations.

Parameter

program_name Optional name of the program that is to be called when a
program error occurs. If no program is specified, the previous
REACTE is canceled, and any pending error message is
discarded.

Details

If an error occurs after a REACTE instruction has been executed, the specified
program will be invoked, rather than stopping normal program execution. (The
program is invoked as though by the instruction CALL program.) The ERROR
real-valued function can be used within the error-handling program to determine
what error caused the program to be invoked.

There are several special considerations that must be kept in mind when using
this facility:

• The program priority is raised to 254 when the error-handling program is
invoked, locking out all reaction programs.

• Execution of the program task will stop if an error occurs while the system is
processing a previous error.
490 V+ Language Reference Guide, Rev A

Program Instruction REACTE
• There must be room on the user program stack for one more subroutine.
Therefore, the error *Too many subroutine calls* cannot be processed. (See the
STACK monitor command.)

• The error-handling program can contain a RETURN instruction. When it is
executed, the program will try to reexecute the instruction that caused the
error. Note that this could cause an endless loop if the error continues to
occur.

• If the reaction program exits at a RETURNE instruction, execution of the
last-suspended program will resume at the step following the instruction that
caused the program to be invoked.

• Once triggered (by an error), error processing is automatically disabled. Thus,
another REACTE instruction must be executed if error handling is to
continue.

• Before the error-handling program is entered, a DETACH instruction for the
robot (logical unit number 0) is effectively executed. Thus, an ATTACH
instruction must be executed for the robot before program control of the robot
can resume.

• If a STOP, HALT, or PAUSE instruction is executed within the error-handling
program, the original error message will be output unless the error-handling
program contains a REACTE instruction with no argument.

• Unlike REACT and REACTI, execution of the REACTE error-handling
program is never deferred because of priority considerations.

Example

Initiate monitoring of errors so that the program error.trap will be executed if any
error should occur during execution of the current program task:

REACTE error.trap

Related Keywords

ERROR (real-valued function)

REACT (program instruction)

REACTI (program instruction)

RETURNE (program instruction)
V+ Language Reference Guide, Rev A 491

REACTI Program Instruction
Syntax

REACTI-I

REACTI signal_num, program , priority

Function

Initiate continuous monitoring of a specified digital signal. Automatically stop
the current robot motion if the signal transitions properly and optionally trigger a
subroutine call.

Usage Considerations

For most applications, the REACTI instruction should be used only in a robot
control program. (See below for more information.)

When a REACTI triggers, the robot that is stopped is the one selected by the task
at the time of the trigger, regardless of which robot was selected at the time the
REACTI instruction was executed.

Also see the considerations listed for the REACT program instruction.

Parameters

signal_num Real-valued expression representing the signal to be monitored.
The signal number must be in the range 1001 to 1012 (external
input signals) or 2001 to 2008 (internal software signals). (The
software signals can thus be used by a secondary program to
interrupt the robot control program, and vice versa.)

If the signal number is positive, V+ looks for a transition from off
to on; if signal is negative, V+ looks for a transition from on to
off.

program Optional name of the subroutine that is called when the signal
transitions properly.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value of this
expression is interpreted as an integer value and can range from
1 to 127. If this argument is omitted, it defaults to 1. See the
LOCK instruction for additional details on priority values.
492 V+ Language Reference Guide, Rev A

Program Instruction REACTI
Details

When the specified signal transition is detected, V+ reacts by immediately
stopping the current robot motion. If a program is specified, V+ then continues
processing the reaction just as it would for a REACT instruction. (See the
description of the REACT instruction for a full explanation of this processing).

When REACTI is used by a program task that is not actually controlling the robot,
care must be exercised to make sure the robot control program does not nullify
the intended effect of the reaction subroutine. That is, if your application has one
program task monitoring the signal and a different program task controlling the
robot, you should keep the following points in mind when planning for
processing of the reaction:

• The robot motion in process at the time of the reaction will be stopped, as if a
BRAKE instruction were executed, but execution of the robot control program
will not be directly affected.

• If a reaction subroutine is specified, that routine will be executed by the task
that is monitoring the reaction (not by the task controlling the robot).

The signal monitoring continues until one of the following occurs:

• An IGNORE instruction is executed for the signal.

• A reaction occurs (in which case IGNORE signal_number is automatically
performed).

• A REACTI (or REACT) instruction is executed that refers to the same signal.
That is, if the signal specified in a REACTI instruction is already being
monitored by a previous REACTI or REACT instruction, the old instruction
will be canceled when the new REACTI instruction is executed.

If you do not want the robot motion to stop until the reaction program is actually
called, you should use a REACT instruction and put a BRAKE instruction in the
reaction program.

Example

The instruction below initiates monitoring of external input signal #1001. The
robot motion will be stopped immediately if the signal ever changes from on to
off (since the signal is specified as a negative value). A branch to program alarm
will then occur when the program priority falls below 10 (if it is not already at or
below that level).

REACTI −1001, alarm, 10
V+ Language Reference Guide, Rev A 493

REACTI Program Instruction
Related Keywords

IGNORE (program instruction)

LOCK (program instruction)

PRIORITY (real-valued function)

REACT (program instruction)

REACTE (program instruction)

SIG.INS (real-valued function)
494 V+ Language Reference Guide, Rev A

Program Instruction READ
Syntax

READ-I

READ (lun , record_num, mode) var_list

Function

Read a record from an open file or from an attached device that is not file
oriented. For an AdeptNet device, read a string from an attached and open TCP
connection.

Usage Considerations

The logical unit referenced by this instruction must have been attached
previously.

For file-oriented devices, a file must already have been opened with an FOPEN_
instruction.

The AdeptNet features of this instruction apply only to Adept MV controllers
with the AdeptNet Ethernet option and the AdeptTCP/IP Protocol Access option
license.

Parameters

lun Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

 record_num Optional real-valued expression that specifies the record to read
for file-oriented devices opened in random-access mode (see the
FOPEN_ instructions). For nonfile-oriented devices or for
sequential access of a file, this parameter should be 0 or omitted.
Records are numbered from one to a maximum of 16,777,216.

When accessing the TCP device with a server program, this
parameter is an optional real variable that returns the client
handle number. The handle can be used to identify the client
accessing a multiple-client server.
V+ Language Reference Guide, Rev A 495

READ Program Instruction
mode Optional real-valued expression that specifies the mode of the
read operation. Currently, the mode is used only for the terminal
and serial I/O logical units. The value is interpreted as a
sequence of bit flags as detailed below. (All bits are assumed to
be clear if no mode value is specified.)

Bit 1 (LSB) Wait (0) vs. No-wait (1) (mask value = 1)

If this bit is clear, program execution is suspended until the read
operation is completed. If the bit is set and the requested data is
not available, program execution continues immediately and the
IOSTAT function returns the error code for *No data received*
(–526).

NOTE: For a no-wait READ to access a serial line, the line must be
configured to use DDCMP.

Bit 2 Echo (0) vs. No-echo (1) (mask value = 2)

If this bit is clear, input from the terminal is echoed back to the
source. If the bit is set, characters are not echoed back to the
source. (This mode bit is ignored for the serial lines.)

var_list Either a list of real-valued input variables or a list of string
variables, which will receive the data (see following details).

Details

This is a general-purpose data input instruction that reads a record from a
specified logical unit. A record can contain an arbitrary list of characters but must
not exceed 512 characters in length. For files that are opened in fixed-length
record mode, this instruction continues to read characters until it has read exactly
the number of characters specified during the corresponding FOPEN_
instruction.

For variable-length record mode (with most devices), this instruction reads
characters until the first carriage-return (CR) and line-feed (LF) character
sequence (or Ctrl+Z) is encountered. Thus, for example, if you perform a
variable-length record mode read from the disk, you receive all the characters
until a CR and LF are encountered.

The special character Ctrl+Z (26 decimal) indicates the logical end of the file,
which is reported as an error by the IOSTAT function. No input characters can be
read beyond that point.
496 V+ Language Reference Guide, Rev A

Program Instruction READ
READ operations from the terminal, the manual control pendant, and the serial
lines are always assumed to be in variable-length record mode. Except as noted
below, the records are terminated by CR and LF (which are not returned as part of
the record). Thus, a READ from these devices will not be complete until a CR and
LF are received as input. For example, if you perform a READ from the terminal,
you receive all the characters until the RETURN key is pressed.1

NOTE: The GETC real-valued function can be used instead of the
READ instruction if you want to receive the CR and LF characters at
the end of a record.

When a READ instruction accesses a serial line configured to use
DDCMP, the record may contain arbitrary data, including CR and
LF characters.

If bit 1 is set in the mode value, a read operation that is not complete will not cause
the program to wait, but will return immediately with the error ∗No data
received∗ (error code –526). Then, additional READ instructions must be
executed, until one is complete, in order to obtain the data in the variable list. The
IOSTAT function can be used to determine when such a READ is complete.

Once a record has been read, it is processed in one of the following two ways:

1. If the var_list parameter is a list of real-valued variables, the record is
assumed to contain a list of numbers separated by space characters and/or
commas. Each number is converted from text to its internal representation,
and its value is stored in the next variable contained in the variable list. If
more values are read than the number of variables specified, the extra values
are ignored. If fewer values are read, the remaining variables are set to zero. If
data is read that is not a number, an error occurs and program execution
stops.

1 When a CR is received from the system terminal, V+ automatically adds a LF. Similarly, the
pendant’s DONE key is interpreted as CR and LF.
V+ Language Reference Guide, Rev A 497

READ Program Instruction
2. If the var_list parameter is a list of string variables, the entire record is
stored in the string variables as follows. The first 128 bytes in the record are
copied to the first string variable. If there are more than 128 bytes in the record,
the second string variable is filled with the next 128 bytes. This continues until
the entire record has been processed or all the string variables have been filled.

If there is not enough data to fill all the string variables, the unused string
variables will be set to the empty string (). If there is too much data for the
number of string variables specified, an error will be reported by IOSTAT.

When a READ is performed in variable-length record mode, the strings will
contain all the characters up to, but not including, the terminating CR and LF,
which are discarded.

Any error in the specification of this instruction (such as attempting to read from
an invalid unit) will cause a program error and will halt program execution.
However, errors associated with performing the actual read operation (such as
end of file or device not ready) will not halt program execution since these errors
may occur in the normal operation of a program. These normal errors can be
detected by using the IOSTAT function after performing the read. In general, it is
good practice always to test whether each read operation completed successfully
by testing the value from IOSTAT.

When accessing the AdeptNet device, the record_num parameter allows a
server to communicate with multiple clients on a single logical unit. In this
context, the parameter provides a handle number that you can use to identify the
client from which the READ data was received. Handles are allocated when a
client connects to the server and then are deallocated when the client disconnects.
In order to determine when the client connection or disconnection is done, you
must use the IOSTAT real-valued function after the READ. Refer to the
documentation for IOSTAT.

The READ instruction with TCP/IP reads data until either the input string is full
or the buffer is empty, at which point the instruction returns. READ with TCP/IP
does not allow fixed-length records and does not terminate when encountering a
delimiter.
498 V+ Language Reference Guide, Rev A

Program Instruction READ
Example

Read a line of text from the disk and store the record in the string variable
$disk.input:

READ (5) $disk.input

For an example of using the READ instruction with the TCP device, refer to the
Example section for the IOSTAT real-valued function.

Related Keywords

ATTACH (program instruction)

FOPEN_ (program instruction)

FSEEK (program instruction)

GETC (real-valued function)

IOSTAT (real-valued function)

PROMPT (program instruction)
V+ Language Reference Guide, Rev A 499

READY Program Instruction
Syntax

READY-I

READY

Function

Move the robot to the READY location above the workspace, which forces the
robot into a standard configuration.

Usage Considerations

Before executing this instruction with the DO monitor command (DO READY),
make sure that the robot will not strike anything while moving to the READY
location.

The READY instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing the READY
instruction causes an error.

Details

This instruction will always succeed, regardless of where the robot is located at
the time.

An Adept SCARA robot has the following configuration when it is at the READY
location:

• Joint 2 is at 90 degrees

• The axis of joint 3 is in the World X-Z plane (that is, Y = 0)

• If the optional joint 5 is installed, it is pointed straight down (AdeptOne and
AdeptThree only)

• The alignment keyway in the end-effector flange is directed along the positive
X axis (that is, the tool X axis is parallel to the world X axis)

Chapter Table 2-18. lists the joint positions for the READY locations for the
AdeptOne, PackOne, and AdeptThree SCARA robots and the Adept UltraOne
Cartesian robot.
500 V+ Language Reference Guide, Rev A

Program Instruction READY
For devices controlled by the AdeptMotion VME, the READY location depends
upon the device module being used.

Related Keyword

SELECT (program instruction and real-valued function)

Table 2-18. Approximate Joint Positions for READY Location

Joint
AdeptOne
Rt-handed

PackOne
Rt-handed

AdeptThree
Rt-handed

1 –41.4° –45.0° –42.3°

2 90.0° 90.0° 90.0°

3 25.0 mm 25.0 mm 25.0 mm

4 48.6° 45.0° 47.7°

5 0.0° N.A. 0.0°
V+ Language Reference Guide, Rev A 501

RELAX Program Instruction
Syntax

RELAX-I

RELAX

RELAXI-I

RELAXI

Function

Limp the pneumatic hand.

Usage Considerations

RELAX causes the hand to limp during the next robot motion.

RELAXI causes a BREAK in the current continuous-path motion and causes the
hand to limp immediately after the current motion completes.

The RELAX instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

The RELAXI instruction can be executed by any program task so long as the task
has attached a robot. The instruction applies to the robot selected by the task.

If the V+ system is not configured to control a robot, executing these instructions
will cause an error.

Details

These instructions turn off both the open and close pneumatic control solenoid
valves, causing the pneumatic hand to become limp. If the RELAX instruction is
used, the signal will be sent when the next robot motion begins.1

The RELAXI instruction differs from RELAX in the following ways:

• A BREAK occurs if a continuous-path robot motion is in progress.

• The signals are sent to the control valves at the conclusion of the current
motion or immediately if no motion is in progress.

• Robot motions are delayed for a brief time to allow the hand actuation to
complete. The length of the delay (in seconds) is the current setting of the
HAND.TIME system parameter.

1 Use theSPEC Utility program to set the digital signals that control the pneumatic hand. See the
Instructions for Adept Utility Programs for information on use of the program.
502 V+ Language Reference Guide, Rev A

Program Instruction RELAXI
Related Keywords

CLOSE and CLOSEI (program instructions)

HAND.TIME (system parameter)

OPEN and OPENI (program instructions)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 503

RELEASE Program Instruction
Syntax

RELEASE-I

RELEASE task

Function

Allow the next available program task to run.

Parameter

task Optional argument specifying the task to release control to. The
range of acceptable values is from –1 to the number of tasks
configured for the current system. The default value is –1.

If the specified task does not exist, the current task resumes.

Details

If task is omitted, the instruction releases control to the highest priority task
within the time slice that is ready to run and is not in the same round-robin group
as the current task. See the V+ Language User’s Guide.

If task = –1, the instruction releases control to another task, and V+ scans as
follows:

• Ιf the current task is explicitly scheduled in this time slice, begin scanning
with the next lower priority task in this slice. When the end of the slice is
reached, wrap around to the beginning of this slice and search until the
current task is found again. Ignore the current task and any task in the current
task’s round-robin group.

• Ιf the current task is not scheduled in this slice, scan this slice from the top to
the bottom. Ignore any task in the current task’s round-robin group.

• If no ready task is found in the current slice, search ahead in all other slices
until a task is found that is ready to run. Accept tasks in the current task’s
round-robin group. If no other ready task is found, resume the current task.

If task >= 0, control is released to the specified task, provided that task is ready
to run. If the task is not ready to run, the current task continues executing. This
release bypasses the normal time slice and priority checking.

NOTE: If two high-priority tasks perform releases in the same time
slice, they pass control back and forth to each other, effectively
locking out any lower-priority tasks in the slice.
504 V+ Language Reference Guide, Rev A

Program Instruction RELEASE
This instruction can be used in place of the WAIT instruction (with no arguments)
in cases where other tasks must be given an opportunity to run, but a delay until
the next 16-millisecond cycle is not desired.

Related Keyword

WAIT (program instruction)
V+ Language Reference Guide, Rev A 505

RESET Program Instruction
Syntax

RESET-I

RESET

Function

Turn off all the external output signals.

Details

The RESET program instruction is useful in the initialization portion of a program
to ensure that all the external output signals are in a known state.

WARNING: Before issuing this instruction, make sure all devices
connected to the output signals can safely be turned off. Be
especially careful of signals that start an action when they are
turned off.

Related Keywords

BITS (monitor command, program instruction, and real-valued
function)

IO (monitor command)

RESET (monitor command)

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (monitor command and program instruction)

See the V+Operating System Reference Guide for details on monitor commands.
506 V+ Language Reference Guide, Rev A

System Switch RETRY
Syntax

RETRY-S

... RETRY

Function

Control whether the PROGRAM START button causes a program to resume.

Usage Considerations

This switch has no effect on systems that do not have a PROGRAM START button
on the controller front panel.

Your controller must be attached to either an optional Adept front panel or a user
supplied external front panel.

Details

When the RETRY switch is disabled, the controller front-panel PROGRAM START
button will not resume execution of the robot control program. (See the
description of the RETRY monitor command for all the conditions that must be
satisfied in order to use the PROGRAM START button to invoke a RETRY
command.)

This switch has no effect on the operation of the WAIT.START monitor command.

The RETRY switch is initially disabled.

Related Keywords

DISABLE (monitor command)

ENABLE (monitor command)

RETRY (monitor command)

SWITCH (monitor command, program instruction, and real-valued
function)
V+ Language Reference Guide, Rev A 507

RETURN Program Instruction
Syntax

RETURN-I

RETURN

Function

Terminate execution of the current subroutine, and resume execution of the
last-suspended program at the step following the CALL or CALLS instruction
that caused the subroutine to be invoked.

Details

A RETURN instruction in a main program has the same effect as a STOP
instruction.

A RETURN instruction is assumed if program execution reaches the last step of a
subroutine. However, it is not good programming style to use this feature—an
explicit RETURN instruction should be included as the last line of each
subroutine.

The effect of a RETURN instruction in an error reaction subroutine differs slightly.
In that case, if the reaction subroutine was invoked because of a program error (as
opposed to an asynchronous servo error or PANIC button press), the statement
that caused the error will be executed again. That is, the error could occur again
immediately. The RETURNE instruction should be used in error reaction
subroutines to avoid that situation.

Related Keywords

CALL (program instruction)

CALLS (program instruction)

RETURNE (program instruction)
508 V+ Language Reference Guide, Rev A

Program Instruction RETURNE
Syntax

RETURNE-I

RETURNE

Function

Terminate execution of an error reaction subroutine and resume execution of the
last-suspended program at the step following the instruction that caused the
subroutine to be invoked.

Details

The RETURNE instruction is intended for use in error reaction subroutines. That
is, subroutines that are invoked, through the REACTE mechanism, as a result of
an error during program execution.

When a RETURNE instruction is executed in an error reaction subroutine, then
execution continues with the statement following the one executing when the
error occurred. (Note that in this situation, a RETURN instruction would result in
the statement that generated the error being executed again, possibly causing an
immediate repeat of the error.)

NOTE: Due to the forward processing ability of V+, the instruction
that is the source of an error may not be the one executing when the
error is actually registered. For example, when a MOVE instruction
is processed, the robot begins moving, but during the motion
several additional instructions may be processed. If an envelope or
similar error occurs after this forward processing, the RETURNE
will be based on the instruction processing when the error occurs,
not the MOVE instruction.

It may be helpful to note that the RETURNE instruction behaves similarly to the
PROCEED command. The RETURN instruction behaves similarly to the RETRY
command (except that with RETURN an interrupted robot motion will not be
restarted).

A RETURNE instruction in a program that is not executed in response to an error
has the same effect as a RETURN instruction. RETURNE, however, takes slightly
longer to execute than does RETURN.

Related Keywords

REACTE (program instruction)

RETURN (program instruction)
V+ Language Reference Guide, Rev A 509

RIGHTY Program Instruction
Syntax

RIGHTY-I

RIGHTY

Function

Request a change in the robot configuration during the next motion so that the
first two links of the robot resemble a human’s right arm.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a right-handed configuration, this
instruction is ignored by the robot.

The RIGHTY instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the RIGHTY
instruction will cause an error.

See Figure 2-5 on page 403.

Related Keywords

CONFIG (real-valued function)

LEFTY (program instruction)

SELECT (program instruction and real-valued function)
510 V+ Language Reference Guide, Rev A

System Switch ROBOT
Syntax

ROBOT-S

... ROBOT [index]

Function

Enable or disable one robot or all robots.

Usage Considerations

The ROBOT system switches may be modified only when both of the following
conditions are satisfied:

1. The POWER system switch is OFF.

2. When the V+ system was booted from disk, at least one robot started up
without reporting a fatal error.

Parameter

index Optional real value, variable, or expression (interpreted as an
integer) that specifies the robot to be enabled or disabled. The
value should be 1, 2, or 3 (corresponding to robots 1, 2, or 3,
respectively). All three elements of the ROBOT switch are
modified when this parameter is omitted.

Details

When the V+ system starts up (after booting from disk), all the robots that started
up without reporting a fatal error are enabled by default, and all the
corresponding ROBOT switches are enabled. After start-up, the ROBOT switches
can be used to selectively disable robots. For example, this can aid in the
debugging of individual robots.

The ROBOT switches may be modified only for robots that are present, and that
started up without a fatal error.

When a robot is disabled by use of the ROBOT switch, that robot will be bypassed
when:

• Power is enabled for all robots with the COMP/PWR button on the manual
control pendant, or with the POWER system switch.

• All the robots are calibrated via the CALIBRATE monitor command or
program instruction.

Motion instructions should not be executed for a robot that has been disabled.

The settings of these switches can be checked at any time with the SWITCH
monitor command or real-valued function to determine which robots are enabled.
V+ Language Reference Guide, Rev A 511

ROBOT System Switch
Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
512 V+ Language Reference Guide, Rev A

Program Instruction ROBOT.OPR
Syntax

ROBOT.OPR-I

ROBOT.OPR(function_code) value, value, ..., value

Function

Execute operations that are specific to the currently selected robot or robot
module.

Usage Considerations

ROBOT.OPR is a general-purpose instruction whose interpretation varies from
one robot type to another.

Parameters

function_code Optional real value that specifies a function for the selected
robot module.

value Optional expression whose interpretation is determined by
the selected robot module.

Details

This instruction executes operations that are specific to the currently selected
robot or robot module. If the selected robot does not support any special
operations, this instruction has no effect. Currently, it applies only to the
X/Y/3(Z/Theta) robot module. For that module function_code = 0 enables
selection of the primary and slaved axes, and function_code = 1 enables
definition of the position-offset values that are added to the commanded Z and
RZ positions for each slave axis. For details about the applicability and use of this
instruction, refer to the documentation for your specific robot module.
V+ Language Reference Guide, Rev A 513

RUNSIG Program Instruction
Syntax

RUNSIG-I

RUNSIG signal_num

Function

Turn on (or off) the specified digital signal as long as execution of the invoking
program task continues.

Usage Considerations

Only one RUNSIG signal can be in effect for each program task.

Parameter

signal_num Optional real-valued expression that specifies one of the digital
output signals (or an internal software signal) that is to be
controlled.

The signal will be set to on during program execution if the
value is positive. A negative value will result in the signal being
set to off during program execution, and turned on when
execution stops.

If no signal is specified, any RUNSIG in effect for the task will be
canceled.

Details

This instruction causes the specified digital signal to be turned on (or off) as soon
as the instruction is executed. The signal will be turned off (or on) as soon as
execution of the invoking program task stops (or the STOP instruction is
executed).

This instruction is useful in an application where auxiliary equipment must be
stopped if an error occurs during program execution.

Only one signal can be activated by a RUNSIG instruction at any one time (for
each program task). An error condition will result unless a program cancels the
first RUNSIG before attempting to initiate a second.

If program execution is interrupted after a RUNSIG instruction has been
executed, the specified signal will return to the selected state again if a PROCEED
or RETRY command is issued. If an SSTEP or XSTEP command is issued, the
signal will return to the specified state during execution of the instruction that is
invoked. Similarly, processing of a DO command temporarily activates the
RUNSIG signal for the corresponding program task. (The EXECUTE command
and instruction cancel any previous RUNSIG for the specified program task.)
514 V+ Language Reference Guide, Rev A

Program Instruction RUNSIG
Example

RUNSIG run.signal

Turns on the digital signal identified by the value of the variable run.signal
(assuming the value is positive). The signal will remain on throughout execution
of the current program. The signal will go off when execution ends.

Related Keywords

IO (monitor command)

RESET (monitor command)

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (monitor command and program instruction)

See the V+Operating System Reference Guide for details on monitor commands.
V+ Language Reference Guide, Rev A 515

RX Transformation Function
Syntax

RX-T

RX (angle)

RY-T

RY (angle)

RZ-T

RZ (angle)

Function

Return a transformation describing a rotation.

Parameter

angle Real-valued expression that represents the rotation angle in
degrees.

Details

These functions generate a transformation whose value consists of a rotation
about the axis associated with the function name and a zero displacement
(X, Y, Z = 0).

Example

RX(30) Produces a transformation that describes a pure 30-degree
rotation about the World X axis.

Related Keyword

DX DY DZ (real-valued functions)
516 V+ Language Reference Guide, Rev A

Transformation Function SCALE
Syntax1

SCALE-T

SCALE (transformation BY scale_factor)

Function

Return a transformation value equal to the transformation parameter with the
position scaled by the scale factor.

Parameters

transformation Transformation expression that is to be scaled.

scale_factor Real-valued expression that is used to scale the transformation
parameter value.

Details

The value returned is equal to the value of the input transformation parameter
value except that the X, Y, and Z position components are multiplied by the scale
factor parameter. The rotation components have their values unchanged.

Example

If the transformation x has the value:

(200, 150, 100, 10, 20, 30)

then executing the instruction:

SET y = SCALE(x BY 1.25)

will result in the transformation y receiving the value:

(250, 187.5, 125, 10, 20, 30)

Related Keyword

SHIFT (transformation function)
V+ Language Reference Guide, Rev A 517

SCALE.ACCEL System Switch
Syntax

SCALE.ACCEL-S

... SCALE.ACCEL [robot_num]

Function

Enable or disable the scaling of acceleration and deceleration as a function of
program speed when program speed is below a preset value.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected.

Details

If robot_num is omitted or zero in an ENABLE or DISABLE command or
instruction, the settings for all robots are altered. Otherwise, only the setting for
the specified robot is affected. If robot_num is omitted or zero when the switch is
accessed with the SWITCH real-valued function, the setting of the switch for
robot #1 is returned.

With the SPEC utility you can set the speed limit below which the acceleration
and deceleration rates are scaled. If the threshold parameter is set to 100% or
greater speed, enabling SCALE.ACCEL has no effect. When this switch is
enabled, all robot modules have the SCALE.ACCEL speed limit set by default to a
very large value, effectively forcing the scaling of accelerations for all speeds.

When this switch is enabled and the program speed is below the preset value, the
effective acceleration or deceleration is calculated as follows:

• Effective acceleration = program_speed * acceleration

• Effective deceleration = program_speed * deceleration

where the acceleration and deceleration are values set by the ACCEL
instruction.

This switch is enabled when the V+ system is initialized.

CAUTION: For program speeds over 100%, if the default setting
for the SCALE.ACCEL limit is used and SCALE.ACCEL is enabled,
the robot is driven at much higher rates of acceleration and
deceleration, as compared to V+ 11.0.
518 V+ Language Reference Guide, Rev A

System Switch SCALE.ACCEL
Example

DISABLE SCALE.ACCEL[2]

;Turn off acceleration scaling for robot #2

Related Keywords

ACCEL (program instruction and real-valued function)

SPEED (monitor command and program instruction)
V+ Language Reference Guide, Rev A 519

SCALE.ACCEL.ROT System Switch
Syntax

SCALE.ACCEL.ROT-S

... SCALE.ACCEL.ROT [robot_num]

Function

Specify whether or not the SCALE.ACCEL switch takes into account the
Cartesian rotational speed during straight-line motions.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected.

Details

Prior to V+ version 11.3, during straight-line motions the lesser of the Cartesian
linear and rotational speeds was used to scale acceleration and deceleration. If
SCALE.ACCEL.ROT is enabled for a selected robot, the effect of SCALE.ACCEL
is the same as in previous versions of the V+ language. However, if
SCALE.ACCEL.ROT is disabled for a selected robot, only the Cartesian linear
speed is considered when SCALE.ACCEL is in effect. The SCALE.ACCEL.ROT
switch is enabled for all robots by default when the V+ system is initialized.

Example

DISABLE SCALE.ACCEL.ROT[2] ;Cause SCALE.ACCEL not to use
;Cartesion rotational speed
;for robot #2

Related Keywords

ACCEL (program instruction and real-valued function)

SPEED (monitor command and program instruction)
520 V+ Language Reference Guide, Rev A

System Parameter SCREEN.TIMEOUT
Syntax

SCREEN.TIMEOUT-P

... SCREEN.TIMEOUT

Function

Establish the time-out period for blanking the screen of the graphics monitor.

Usage Considerations

The SCREEN.TIMEOUT system parameter is ignored by Adept S-series
controllers.

The current value of the SCREEN.TIMEOUT parameter can be determined with
the PARAMETER monitor command or real-valued function.

The value of the SCREEN.TIMEOUT parameter can be modified only with the
PARAMETER monitor command or program instruction.

The parameter name can be abbreviated.

Details

The SCREEN.TIMEOUT parameter sets the number of seconds of inactivity it
takes to trigger screen blanking. That is, when the pointing device, keyboard, and
graphics screen have been idle for the specified time, the monitor screen is
blanked.

The screen is refreshed at the next occurrence of any of the following events:

• The pointer device is moved

• Any key on the keyboard is pressed.

• Any graphics or text is written to the screen.

• Any button on the pointer device is clicked.

NOTE: Because the system can be waiting for input from the user,
take care when waking up the screen. For example, pressing the
SHIFT key or moving the mouse does not actually generate any
input, and thus they are safe to use to restore the screen.

The value of this parameter is interpreted as an integer. It can range from 0 to
16383, inclusive. Screen blanking is disabled if this parameter is set to 0.

This parameter is set to 0 when the V+ system is initialized.
V+ Language Reference Guide, Rev A 521

SCREEN.TIMEOUT System Parameter
Example

Set the time-out limit to 600 seconds (10 minutes):

PARAMETER SCREEN.TIMEOUT = 600

Related Keyword

PARAMETER (monitor command, program instruction & real-valued function)
522 V+ Language Reference Guide, Rev A

Program Instruction SEE
Syntax

SEE-I

SEE (lun) prog_spec , step

Function

Invoke the screen-oriented program editor to allow a program to be created,
viewed, or modified.

Usage Considerations

Programs that are being edited in read-write mode cannot be executed. If an
active program attempts to CALL a program that is being thus edited, the
executing program will be terminated with an error.

Programs that are being executed cannot be edited in read-write access mode.
This restriction also applies to suspended programs in the stack of an executing
program task.

Programs that are executing and read-only programs are automatically edited in
read-only mode. In that mode programs can be viewed, but no commands are
accepted that would modify the program. Protected programs cannot be edited at
all. (See the DIRECTORY command for an explanation of protected and read-only
programs.)

Program output to the specified logical unit is blocked during an edit session (see
below).

The editor invoked with this instruction does not access (or affect) the
user-specified information retained by the command SEE editor.

Parameters

lun Real value, variable, or expression (interpreted as an integer)
that identifies the serial line connected to the terminal to be used
for editing, or the graphics window to be used for editing. (See
the ATTACH instruction for a description of unit numbers.)

NOTE: The logical unit must have been attached by the program.

If a graphics window is specified, the window must be open and
must satisfy the size constraints described below.
V+ Language Reference Guide, Rev A 523

SEE Program Instruction
prog_spec String variable, constant, or expression that specifies the name of
the program to be edited. Unlike the SEE monitor command, a
program name must be specified.

If the program is to be accessed in read-only mode, the string
specifying the program name must end with /R.

step Optional number specifying the program step at which editing is
to begin. If the step number is omitted, editing will begin at the
second step of the program.

Details

This instruction is used to start an editing session with the V+ screen editor. The
instruction SEE editor can be used at the same time as the command SEE editor.
Thus, for example, it is possible for more than one person to be editing programs
on the V+ system at the same time.

Details of the SEE editor, including descriptions of all the commands it accepts,
are presented in the V+ Language User’s Guide.

The SEE program instruction differs from the SEE monitor command in the
following ways:

1. For a system that has a graphics system processor, the SEE monitor command
always initiates editing with the Monitor window and the system keyboard.
The SEE program instruction can be used to initiate editing of a program in a
different graphics window, or with a terminal connected to one of the USER
serial ports.

2. For a system that does not have a graphics system processor, the SEE monitor
command always initiates editing with the system terminal. The SEE program
instruction can be used to initiate editing of a program with a terminal
connected as the system terminal or to one of the USER serial ports.

3. A program name must be specified in the SEE instruction.

4. A step number can be specified with the SEE program instruction.

5. The program debugger cannot be invoked during a session invoked with the
SEE instruction.

6. When initiated with the SEE program instruction, user-specified settings (such
as extended-command settings and macros) are not retained between editing
sessions. (User-specified settings entered during a session initiated with the
SEE instruction do not affect the corresponding information accessed by the
SEE monitor command.)
524 V+ Language Reference Guide, Rev A

Program Instruction SEE
If the lun parameter refers to a graphics window, the window must be at least 7
lines (105 pixels) high, and cannot be higher than 64 lines (960 pixels). The
window must be 82 characters (656 pixels) wide.

Related Keywords

DEBUG (monitor command)

EDIT (monitor command)

SEE (monitor command)

See the V+ Operating System Reference Guide for details on monitor commands.
V+ Language Reference Guide, Rev A 525

SELECT Program Instruction
Syntax

SELECT-I

SELECT device_type = unit

Function

Select a unit of the named device for access by the current task.

Usage Considerations

The SELECT instruction needs to be used only if there are multiple devices of the
same type connected to your system controller. This option is available only if
your Adept system is equipped with the V+ Extensions option.

The SELECT instruction affects only the task in which the instruction is executed.

The instruction SELECT ROBOT can be executed only if there is no robot attached
to the current task. (If there is any doubt about whether or not a robot is attached,
a program should execute a DETACH instruction before executing the SELECT
instruction.)

Parameters

device_type Keyword that identifies the type of device that is to be selected.
Valid device types are ROBOT, VISION, and FORCE (which
must be specified without quotation marks). The device-type
keyword can be abbreviated.

unit Real value, variable, or expression (interpreted as an integer)
that specifies the particular unit to be selected. The values that
are accepted depend on the configuration of the system.

Details

SELECT ROBOT

In a multiple-robot system, this program instruction selects the robot with which
the current task is to communicate. (The SELECT monitor command specifies
which robot the V+ monitor is to access.) The program instruction specifies which
robot will receive motion instructions (for example, APPROACH and MOVE) and
will return robot-related information (for example, for the HERE function).

Each time a program task begins execution, robot #1 is automatically selected. If a
robot is selected, information about the robot (for example, its current position)
can be accessed. In order for a program to move a robot, however, the robot must
be selected and attached (with the ATTACH instruction).
526 V+ Language Reference Guide, Rev A

Program Instruction SELECT
As an example, if robot #2 is selected by a SELECT instruction, all motion
instructions executed by the current task will be directed to that robot (until
another SELECT instruction is issued). Also, all robot-related functions (such as
HERE) will return information about robot #2.

NOTE: As a convenience, when task #0 is executed, robot #1 is
automatically selected and attached when program execution
begins.

In order for any task to change its selected robot, no robot can be attached by the
task. More than one task can have a particular robot selected, but only one task
can have a robot attached. If a robot is already attached to a different task, an
ATTACH will wait or generate an error (depending on the mode parameter for
the ATTACH instruction).

SELECT VISION

In a system with multiple vision systems, this instruction selects the vision system
with which the current task is to communicate. (The SELECT monitor command
specifies which vision system the V+ monitor is to access.) This program
instruction specifies which vision system will receive vision instructions (for
example, ENABLE VISION) and also which system will return vision-related
information (for example, from the VSTATUS function).

Vision system #1 is automatically selected each time a program begins execution.

SELECT FORCE

In a system with multiple force sensors, this monitor command or program
instruction selects the force sensor with which the current task is to communicate.
The SELECT monitor command specifies which force sensor the V+ monitor is to
access. The program instruction specifies which force sensor will receive force
instructions (for example, FORCE.READ) and will return force sensor-related
information (for example, for the LATCH function).

Each time a program task begins execution, force sensor #1 is automatically
selected.
V+ Language Reference Guide, Rev A 527

SELECT Program Instruction
Example

SELECT ROBOT

The following program selects robot #3 and moves it. This program would
normally not be executed by task #0, since that task is attached to robot #1 by
default.

.PROGRAM test()

SELECT ROBOT = 2 ;Select robot 3

ATTACH (0,1) ;Get control of robot 3 without waiting
IF IOSTAT(0) < 0 THEN

TYPE /B, "Error attaching robot: ", $ERROR(IOSTAT(0))
PAUSE

END

MOVE x ;Move robot 3 to location "x"
MOVE y ;Move robot 3 to location "y"

DETACH ;Detach robot 3

.END

SELECT VISION

The following program segment selects vision system #2 and accesses that
system.

PROGRAM vision.2()
SELECT VISION = 2 ;Select vision system #2
ENABLE VISION ;Enable that vision system
VSTATUS(1,0) status[] ;Get status information
IF status[0] == 0 THEN;If vision system is idle,
VPICTURE(1) ;take a picture

END
528 V+ Language Reference Guide, Rev A

Program Instruction SELECT
SELECT FORCE

The following program selects force sensor #2 and reads the current forces from it.

.PROGRAM test()

SELECT FORCE = 2 ;Select force sensor 2
FORCE.READ f[] ;Read sensor 2 forces
TYPE Current forces on sensor, SELECT(FORCE), /S
TYPE are , /F0.1, f[0], /X1, f[1], /X1, f[2]

.END

Related Keywords

ATTACH (program instruction)

SELECT (real-valued function)
V+ Language Reference Guide, Rev A 529

SELECT Real-Valued Function
Syntax

SELECT-R

SELECT (device_type , mode)

Function

Return the unit number that is currently selected by the current task for the device
named.

Parameter

device_type Keyword that identifies the type of device that is to be selected.
Valid device types are ROBOT, VISION, and FORCE (which
must be specified without quotation marks). The device-type
keyword can be abbreviated.

mode Optional real value, variable, or expression (interpreted as an
integer) that specifies the mode for the function. If this
parameter is omitted or has the value 0, the function returns the
number of the unit currently selected, or 0 if no unit is selected. If
mode has the value –1, the function returns the total number of
units available for the specified device.

Details

This function returns either the number of the specified device that is currently
selected, or the total number of devices connected to the system controller.
Multiple devices of the same type are supported only if your system includes the
optional V+ Extensions software.

If the V+ system is not configured to control a robot, the selected robot is always
#1, and the total number of robots is zero.

SELECT(ROBOT) returns the number of the currently selected robot.
SELECT(ROBOT,−1) returns the maximum robot number in a V+ system.1
SELECT(VISION) returns the number of the currently selected vision system.
SELECT(FORCE) returns the number of the currently selected force sensor.

A particular FORCE sensor is associated with one VFI (VME Force Interface),
which in turn has a number associated with it through the system configuration.
With the default configuration, FORCE sensor number 1 corresponds to the VFI
configured as servo board number 8.

1 The older syntax, SELECT(ROBOT,1), is still supported but may be made obsolete in the future.
530 V+ Language Reference Guide, Rev A

Real-Valued Function SELECT
Examples

;Return the unit number of the robot selected for the current
;task

our.robot = SELECT(ROBOT)

;Return the unit number of the force sensor selected for the
;current task

our.force = SELECT(FORCE)

;Return the total number of robots connected to the
;controller

num.robots = SELECT(ROBOT, −1)

;Return the total number of vision systems installed in the
;controller

num.vision = SELECT(VISION, −1)

Related Keyword

SELECT (monitor command and program instruction)
V+ Language Reference Guide, Rev A 531

SET Program Instruction
Syntax

SET-I

SET location_var = location_value

Function

Set the value of the location variable on the left equal to the location value on the
right of the equal sign.

Parameters

location_var Single location variable or compound transformation that ends
with a transformation variable.

location_value Location value of the same type as the location variable on
the left of the equal sign, defined by a variable or function (or
compound transformation).

Details

An error message is generated if the right-hand side is not defined or is not the
same type of location representation (that is, transformation or precision point).

If a compound transformation is specified to the left of the equal sign, only its
right-most relative transformation is defined. An error condition results if any
other transformation in the compound transformation is not already defined.

If a transformation variable is specified on the left-hand side, the right-hand side
can contain a transformation, a compound transformation, or a transformation
function.

Examples

Set the value of the transformation pick equal to the location of corner plus the
location of shift relative to corner:

SET pick = corner:shift

Set the value of the precision point #place equal to that of the precision point
#post:

SET #place = #post
532 V+ Language Reference Guide, Rev A

Program Instruction SET
Set the value of loc1 to X = 550,Y = 450, Z = 750, y = 0, p = 180, r = 45:

SET loc1 = TRANS(550, 450, 750, 0, 180, 45)

Related Keywords

HERE (monitor command and program instruction)

POINT (monitor command, see the V+ Operating System Reference
Guide)
V+ Language Reference Guide, Rev A 533

SET.EVENT Program Instruction
Syntax

SET.EVENT-I

SET.EVENT task , flag, processor

Function

Set an event associated with the specified task.

Parameters

task Real value, variable, or expression (interpreted as an integer)
that specifies the task for which the event is to be set. The valid
range is 0 to 27, inclusive.1

flag Not used, defaults to 1.

processor Optional real value, variable, or expression that specifies the V+
processor running the task to be signaled. The default value is 0
which indicates the local processor. The maximum value
depends on the software and hardware configuration. (This
option is available only if your Adept system is equipped with
the V+ Extensions option.)

Details

This instruction sets the event associated with the specified task. For example, if a
task had been suspended by a WAIT.EVENT 1 instruction, executing the
SET.EVENT instruction for that task will cause it to resume execution (during the
next available time slice for which it is eligible).

Related Keywords

CLEAR.EVENT (program instruction)

GET.EVENT (real-valued function)

INT.EVENT (program instruction)

WAIT.EVENT (program instruction)

1 All 28 tasks are available only in systems equipped with the optional V+ Extension.
534 V+ Language Reference Guide, Rev A

Precision-Point Function #SET.POINT
Syntax

#SET.POINT-#

#SET.POINT

Function

Return the commanded joint-angle positions computed by the trajectory
generator during the last trajectory-evaluation cycle.

Details

For each trajectory-evaluation cycle, joint-angle positions are computed,
converted to encoder counts, and sent to the servos as the commanded motor
positions. You can use this function to capture these positions.
V+ Language Reference Guide, Rev A 535

SET.SPEED System Switch
Syntax

SET.SPEED-S

... SET.SPEED

Function

Control whether or not the monitor speed can be changed from the manual
control pendant. The monitor speed cannot be changed when the switch is
disabled.

Details

Priming a program from the manual control pendant normally sets the monitor
speed. The speed is not changed when the SET.SPEED switch is disabled.
Therefore, the operator cannot affect the program speed from the pendant.

Related Keywords

SPEED (monitor command, see the V+ Operating System Reference
Guide)

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
536 V+ Language Reference Guide, Rev A

Program Instruction SETBELT
Syntax

SETBELT-I

SETBELT %belt_var = expression

Function

Set the encoder offset of the specified belt variable equal to the value of the
expression.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The BELT switch must be enabled for this instruction to be executed.

SETBELT cannot be executed while the robot is moving relative to the specified
belt variable.

The belt variable referenced must have been defined already using a DEFBELT
instruction.

Parameters

%belt_var Name of belt variable associated with the encoder offset to be
set.

expression Real-valued expression that specifies a signed 24-bit encoder
offset value.

Details

When computing the position of a belt associated with a belt variable, V+
subtracts the offset value from the current belt position value and uses the
difference, modulo 16,777,216.

The expression value is normally a signed number in the range –8,388,608 to
8,388,607. If the number is outside this range, its value modulo 16,777,216 is used.

Frequently, SETBELT is used in conjunction with the BELT real-valued function to
set the effective belt position to zero.

For systems with the AdeptVision VME option, the SETBELT instruction can be
used to synchronize robot motion with the encoder value reported by the vision
system (via the VFEATURE real-valued function).
V+ Language Reference Guide, Rev A 537

SETBELT Program Instruction
Example

The following example waits for a digital signal and then sets the belt position to
zero. That is done by setting the belt offset equal to the current belt position.
Finally, the robot is moved onto the belt.

WAIT sig(1001)
SETBELT %belt1 = BELT(%belt1)
MOVES %belt1:pickup

Related Keywords

BELT (system switch and real-valued function)

DEFBELT (program instruction)

WINDOW (program instruction and real-valued function)
538 V+ Language Reference Guide, Rev A

Program Instruction SETDEVICE
Syntax

SETDEVICE-I

SETDEVICE (type, unit, error, command) p1, p2, ...

Function

Initialize a device or set device parameters. (The actual operation performed
depends on the device referenced.)

Usage Considerations

The syntax contains optional parameters that apply only to specific device types
and commands.

Parameters

type Real value, variable, or expression (interpreted as an integer)
that indicates the type of device being referenced.

unit Real value, variable, or expression (interpreted as an integer)
that indicates the device unit number. The value must be in the
range 0 to (max –1), where max is the maximum number of
devices of the specified type. The value should be 0 if there is
only one device of the given type.

error Optional real variable that receives a standard system error
number that indicates if this instruction succeeded or failed. If
this parameter is omitted, any device error stops program
execution. If an error variable is specified, the program must
explicitly check it to detect errors.

command Real value, variable, or expression that specifies which device
command or parameters are being set by this instruction. Some
commands are standard and recognized by all devices. Other
commands apply only to particular device types.

p1, p2, ... Optional real values, variables, or expressions, the values of
which are sent to the device as data for a command. The number
of parameters specified and their meanings depend upon the
particular device type being accessed.
V+ Language Reference Guide, Rev A 539

SETDEVICE Program Instruction
Details

SETDEVICE is a general-purpose instruction for initializing external devices. It
initializes the software and allows various parameters associated with the device
to be set.

Two standard SETDEVICE commands are recognized by all devices:

command = 0 Initialize device—This command should be issued once before
accessing the device with any other command. Normally, no
additional parameters are required, but some device types may
permit them.

command = 1 Reset device—This command resets the device. Normally no
additional parameters are required, but some device types may
permit them.

See the supplementary documentation for specific devices for details and
examples.

The V+ Language User’s Guide contains information on use of the SETDEVICE
instruction to access external encoders.

Related Keywords

DEVICE (program instruction and real-valued function)

DEVICES (program instruction)
540 V+ Language Reference Guide, Rev A

Transformation Function SHIFT
Syntax

SHIFT-T

SHIFT (transformation BY x_shift, y_shift, z_shift)

Function

Return a transformation value resulting from shifting the position of the
transformation parameter by the given shift amounts.

Parameters

Details

The value returned is equal to the value of the input transformation parameter
value except that the three shift parameter values are added to the X, Y, and Z
position components. If any shift parameter is omitted, its value is assumed to be
zero.

Example

If the transformation x has the value:

(200, 150, 100, 10, 20, 30)

then executing the instruction:

SET y = SHIFT(x BY 5,-5,10)

will result in the transformation y receiving the value:

(205, 145, 110, 10, 20, 30)

Related Keywords

SCALE (transformation function)

TRANS (transformation function)

transformation Transformation expression that is to be shifted. Optional
real-valued expressions that are added to the respective
position components of the transformation parameter.

x_shift

y_shift

z_shift
V+ Language Reference Guide, Rev A 541

SIG Real-Valued Function
Syntax

SIG-R

SIG (signal_num , ..., signal_num)

Function

Returns the logical AND of the states of the indicated digital signals.

Parameter

signal_num Real-valued expression that evaluates to a digital I/O or internal
signal number. A negative value indicates negative logic for that
signal.

Details

Returns a TRUE (–1) or FALSE (0) value obtained by performing a logical AND of
the states of all the indicated digital signals. That is, SIG will return TRUE if all the
specified signal states are TRUE. Otherwise, SIG will return FALSE.

The magnitude of each signal_num parameter determines which digital or
internal signal is to be considered. Signals 1 - 8 and 33 - 512 are digital outputs.
Signals 1001 - 1012 and 1033 - 1512 are digital inputs. Signals 2001 to 2512 are
internal (software) inputs or outputs. Only digital signals that are actually
installed can be used. You can use the IO monitor command (or the SIG.INS
function) to check your current digital I/O configuration.

If the sign of a signal_num parameter is positive, the signal is interpreted as
being TRUE if it has a high value. If the sign of a signal_num parameter is
negative, the signal is interpreted as being TRUE if it has a low value.

NOTE: SIG(0) returns a value of TRUE.
542 V+ Language Reference Guide, Rev A

Real-Valued Function SIG
Example

Assume that the following digital I/O signals are installed and have the indicated
values.

• Input signal 1001 is On

• Input signal 1004 is Off

• Input signal 33 is Off

The following SIG function references will then return the indicated values:

SIG(1001) ;Returns –1.0 (TRUE)
SIG(1004) ;Returns 0.0 (FALSE)
SIG(–1004) ;Returns –1.0 (TRUE)
SIG(1001,1004) ;Returns 0.0 (FALSE)
SIG(1001,–1004) ;Returns –1.0 (TRUE)

Related Keywords

BITS (monitor command, program instruction, and real-valued
function)

IO (monitor command, see the V+ Operating System Reference
Guide)

RESET (monitor command)

RUNSIG (program instruction)

SIG.INS (real-valued function)

SIGNAL (monitor command and program instruction)
V+ Language Reference Guide, Rev A 543

SIG.INS Real-Valued Function
Syntax

SIG.INS-R

SIG.INS (signal_num)

Function

Return an indication of whether or not a digital I/O signal is installed in the
system, or whether or not a software signal is available in the system.

Parameter

signal_num Real-valued expression that defines the number of the digital
I/O or software signal to check. (The absolute value is used, so
negative signal numbers are allowed.)

Details

This function returns TRUE (–1) if the specified digital I/O or software signal is
available for use by the system. Otherwise, FALSE (0.0) is returned. The function
always returns TRUE if signal_number is zero.

This function can be used to make sure the digital I/O signals are installed as
expected by the application program.

Example

The following program segment checks if digital I/O signal #12 is installed as an
input signal (referenced as signal #1012). A message is displayed on the system
terminal if the signal is not configured correctly:

in.sig = 1012

IF NOT SIG.INS(in.sig) THEN

TYPE "Digital I/O signal ", in.sig, "is not installed"

END
544 V+ Language Reference Guide, Rev A

Real-Valued Function SIG.INS
Related Keywords

BITS (monitor command, program instruction, and real-valued
function)

IO (monitor command, see the V+ Operating System Reference
Guide)

RESET (monitor command)

RUNSIG (program instruction)

SIG.INS (real-valued function)

SIGNAL (monitor command and program instruction)
V+ Language Reference Guide, Rev A 545

SIGN Real-Valued Function
Syntax

SIGN-R

SIGN (value)

Function

Return the value 1, with the sign of the value parameter.

Parameter

value Real-valued expression.

Details

This function returns –1.0 if the value of the parameter is less than zero. If the
parameter value is greater than or equal to zero, +1.0 is returned.

Example

SIGN(0) ;Returns 1.0

SIGN(0.123) ;Returns 1.0

SIGN(–5.462) ;Returns –1.0

SIGN(1.3125E+2);Returns 1.0
546 V+ Language Reference Guide, Rev A

Program Instruction SIGNAL
Syntax

SIGNAL-I

SIGNAL signal_num , ..., signal_num

Function

Turn on or off external digital output signals or internal software signals.

Parameter

signal_num Real-valued expression that evaluates to a digital output or
internal signal number. A positive value indicates turn on; a
negative value indicates turn off. (SIGNAL ignores parameters
with a zero value.)

Details

The magnitude of a signal_num parameter determines which digital or internal
signal is to be considered. Only digital output signals (numbered from 1 to 8 and
33 to 512) and internal (software) signals (numbered from 2001 to 2512) can be
specified. Only digital signals that are actually installed and configured as
outputs can be used. To check your current digital I/O configuration, use the IO
monitor command.

Note that software signal 2032 (brake solenoid) is a read-only signal. Attempting
to set this signal will result in a *Illegal digital signal* error.

If the sign of the signal_num parameter is positive, the signal is turned on. If the
sign of the signal_num parameter is negative, the signal is turned off.

Examples

Turn off the external output signal specified by the value of the variable reset
(assuming the value of reset is positive), and turn on external output signal #4:

SIGNAL –reset, 4

Turn external output signal #1 off, external output signal #4 on, and internal
software signal #2010 on:

SIGNAL –1, 4, 2010
V+ Language Reference Guide, Rev A 547

SIGNAL Program Instruction
Related Keywords

BITS (monitor command, program instruction, and real-valued
function)

IO (monitor command, see the V+ Operating System Reference
Guide)

RESET (monitor command)

RUNSIG (program instruction)

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (monitor command, see the V+ Operating System Reference
Guide)
548 V+ Language Reference Guide, Rev A

Real-Valued Function SIN
Syntax

SIN-R

SIN (value)

Function

Return the trigonometric sine of a given angle.

Usage Considerations

The angle parameter must be measured in degrees.

The parameter will be interpreted as modulo 360 degrees, but excessively large
values may cause a loss of accuracy in the returned value.

Parameter

value Real-valued expression that defines the angular value to be
considered.

Details

Returns the trigonometric sine of the argument, which is assumed to have units of
degrees. The resulting value will always be in the range of –1.0 to +1.0, inclusive.

Examples

SIN(0.123) ;Returns 2.146699E-03

SIN(–5.462) ;Returns –0.09518546

SIN(30) ;Returns 0.4999999

NOTE: TYPE, PROMPT, and similar instructions output the results
of the above examples as single-precision values. However, they are
actually stored and manipulated as double-precision values. The
LISTR monitor command will display real values to full precision.
V+ Language Reference Guide, Rev A 549

SINGLE Program Instruction
Syntax

SINGLE-I

SINGLE ALWAYS

Function

Limit rotations of the robot wrist joint to the range –180 degrees to +180 degrees.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not
specified.

MULTIPLE ALWAYS is assumed whenever program execution is initiated and
when a new execution cycle begins.

The SINGLE instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the SINGLE
instruction will cause an error.

Parameter

ALWAYS Optional qualifier that establishes SINGLE as the default
condition. That is, if ALWAYS is specified, SINGLE will remain
in effect continuously until disabled by a MULTIPLE instruction.
If ALWAYS is not specified, the SINGLE instruction will apply
only to the next robot motion.

Details

When moving to a transformation-specified location, the robot normally moves
the wrist joint the minimum distance necessary to achieve the required
orientation. In some cases, this action can move the wrist close to a limit stop so
that a subsequent straight-line motion will hit the stop.

Specifying SINGLE will force the wrist back to near the center of its range so that
straight-line motions will not fail in this way.

SINGLE is commonly specified during an APPRO to pick up an object whose
position and orientation were unknown at robot programming time. Once the
object is acquired, the wrist motion can be kept to a minimum.
550 V+ Language Reference Guide, Rev A

Program Instruction SINGLE
Related Keywords

CONFIG (real-valued function)

MULTIPLE (program instruction)

SELECT (program instruction and real-valued function)
V+ Language Reference Guide, Rev A 551

SOLVE.ANGLES Program Instruction
Syntax

SOLVE.ANGLES-I

SOLVE.ANGLES o.jts[o.idx], o.flags, error = trans,
i.jts[i.idx],i.flags

Function

Compute the robot joint positions (for the current robot) that are equivalent to a
specified transformation.

Usage Considerations

Since the computation performed by this instruction is a function of the geometry
of the robot (link dimensions, number of axes, tool offsets, base offsets), robots
with different geometric parameters will yield different results. In fact, since
robots of the same general type may differ slightly in their dimensions, this
instruction may return slightly different results when executed on two different
robot systems of the same type.

The SOLVE.ANGLES instruction returns information for the robot selected by the
task executing the instruction.

If the V+ system is not configured to control a robot, executing this instruction will
not generate an error due to the absence of a robot. However, the information
returned may not be meaningful.

Parameters

o.jts Real-valued array in which the computed joint angles are
returned. The first specified element of the array will contain the
position for joint #1, the second element will contain the value
for joint #2, etc. For rotating joints, the joint positions will be in
degrees. For translational joints, the joint positions will be in
millimeters.

If a computed joint position is outside the working range for the
joint, the limit stop closest to the initial joint position (as
indicated by i.jts[]) will be returned.

o.idx Optional real value, variable, or expression (interpreted as an
integer) that identifies the array element to receive the position
for joint #1. If no index is specified, array element zero will
contain the position for joint #1.

o.flags Real variable that receives a bit-flag value that indicates the
configuration of the robot corresponding to the computed joint
positions. The bit flags are interpreted as follows:
552 V+ Language Reference Guide, Rev A

Program Instruction SOLVE.ANGLES
Bit 1 (LSB) RIGHTY (mask value = 1)

If this bit is set, the position has the robot in a right-arm
configuration. Otherwise, the position has the robot in a left-arm
configuration.

Bit 2 BELOW (mask value = 2)

If this bit is set, the position has the robot configured with the
elbow below the line from the shoulder to the wrist. Otherwise,
the robot elbow is above the shoulder-wrist line. (This bit is
always 0 when a SCARA robot is in use.)

Bit 3 FLIP (mask value = 4)

If this bit is set, the position has the robot configured with the
pitch axis of the wrist set to a negative angle. Otherwise, the
pitch angle of the robot wrist has a positive value. (This bit is
always 0 when the robot does not have a three-axis wrist, which
is the case for a SCARA robot.)

error Real variable that receives a bit-flag value, which indicates if any
joint positions were computed to be outside of their working
range, or if the XYZ position of the destination was outside the
working envelope of the robot. The bit flags are interpreted as
follows:

Bits 1 - 12 If set, the computed value for the joint or motor was found to be
outside of its limit stops:

Bit Joint/Motor # Mask value

1 1 ^H1

2 2 ^H2

3 3 ^H4

4 4 ^H8

5 5 ^H10

6 6 ^H20

7 7 ^H40

8 8 ^H80

9 9 ^H100
V+ Language Reference Guide, Rev A 553

SOLVE.ANGLES Program Instruction
Bit 14 Too close (mask value = ^H2000)

The XYZ position of the destination could not be reached
because it was too close to the column of the robot.

Bit 15 Too far (mask value = ^H4000)

The XYZ position of the destination could not be reached
because it was too far away from the robot.

Bit 16 Joint vs. motor(mask value = ^H8000)

If set, a motor is limiting. Otherwise, a joint is limiting.

trans Transformation variable, function, or compound transformation
that defines the robot location of interest.

i.jts Real array that contains the joint positions representing the
starting location for the robot. These values are referenced: (1)
for multiple-turn joints to minimize joint rotations, and (2) when
a computed joint position is out of range to determine which
limit stop to return.

The first specified element of the array must contain the position
for joint #1. The second element must contain the value for joint
#2, etc. For rotating joints, the joint positions are assumed to be
in degrees. For translational joints, the joint positions are
assumed to be in millimeters.

i.idx Optional real value, variable, or expression (interpreted as an
integer) that identifies the array element that contains the
position value for joint #1. If no index is specified, element zero
must contain the position for joint #1.

i.flags Real value, variable, or expression whose value is interpreted as
bit flags that indicate: (1) the initial configuration of the robot, (2)
any changes in configuration that are to be made, and (3) special
operating modes. The bit flags are interpreted as follows:

10 10 ^H200

11 11 ^H400

12 12 ^H800

Bit Joint/Motor # Mask value
554 V+ Language Reference Guide, Rev A

Program Instruction SOLVE.ANGLES
Bit 1 (LSB) RIGHTY (mask value = 1)

If this bit is set, the robot is assumed initially to be in a right-arm
configuration. Otherwise, the robot is assumed to be in a
left-arm configuration.

Bit 2 BELOW (mask value = ^H2)

If this bit is set, the robot is assumed initially to have its elbow
below the line from the shoulder to the wrist. Otherwise, the
robot is assumed to have its elbow above that line. (This bit is
ignored for robots, like the SCARA configurations, that do not
have an elbow that moves in a vertical plane.)

Bit 3 FLIP (mask value = ^H4)

If this bit is set, the robot is assumed initially to have the pitch
axis of the wrist set to a negative value. Otherwise, the pitch
angle is assumed to be set to a positive value. This bit is ignored
if the robot does not have a three-axis wrist.

Bit 9 Change RIGHTY/LEFTY (mask value = ^H100)

If this bit is set, the instruction will attempt to compute a set of
joint positions corresponding to the RIGHTY/LEFTY
configuration specified by bit 10.

Bit 10 Change to RIGHTY (mask value = ^H200)

When bit 9 is set and this bit is set, the instruction will attempt to
compute joint positions for a right-arm configuration. If bit 9 is
set and this bit is 0, the instruction will attempt to compute a set
of joint positions for a left-arm configuration.

Bit 11 Change BELOW/ABOVE (mask value = ^H400)

If this bit is set, the instruction will attempt to compute a set of
joint positions corresponding to the BELOW/ABOVE
configuration specified by bit 12. This bit is ignored for robots,
like the SCARA configurations, that do not have an elbow that
moves in a vertical plane.
V+ Language Reference Guide, Rev A 555

SOLVE.ANGLES Program Instruction
Bit 12 Change to BELOW (mask value = ^H800)

When bit 11 is set and this bit is set, the instruction will attempt
to compute joint positions for an elbow-down configuration. If
bit 11 is set and this bit is 0, the instruction will attempt to
compute joint positions for an elbow-up configuration. This bit
is ignored for robots, like the SCARA configurations, that do not
have an elbow that moves in a vertical plane.

Bit 13 Change FLIP/NOFLIP (mask value = ^H1000)

If this bit is set, the instruction will attempt to compute a set of
joint positions corresponding to the FLIP/NOFLIP configuration
specified by bit 14. This bit is ignored if the robot does not have a
three-axis wrist.

Bit 14 Change to FLIP (mask value = ^H2000)

When bit 13 is set and this bit is set, the instruction will attempt
to compute joint positions for a FLIP wrist configuration. If bit 13
is set and this bit is 0, the instruction will attempt to compute
joint positions for a NOFLIP wrist configuration. This bit is
ignored if the robot does not have a three-axis wrist.

Bit 21 Avoid degeneracy (mask value = ^H100000)

When this bit is set, if the computed value of joint #2 is within 10
degrees of having the outer link straight out (that is, joint 2
between –10 and +10 degrees in value), an out-of-range error for
joint 2 will be signaled.

Bit 22 Single-turn joint 4 (mask value = ^H200000)

When this bit is set, the computed value of joint 4 will be
restricted to the range of –180 to +180 degrees.

Bit 23 Straight-line motion (mask value = ^H400000)

When this bit is set, the joint positions returned must correspond
to the same configuration as those initially specified. That is, no
change in robot configuration is allowed.
556 V+ Language Reference Guide, Rev A

Program Instruction SOLVE.ANGLES
Details

This instruction computes the joint positions that are equivalent to a specified
transformation value using the geometric data of the robot connected to the
system. The specified transformation is interpreted to be the position and location
of the end of the robot tool in the World coordinate system, taking into
consideration the current TOOL transformation and BASE offsets.

Example

The instructions below do not perform any useful function but are intended to
illustrate how the SOLVE.ANGLES instruction operates. After execution of these
instructions, both the jts2 and jts arrays will contain approximately the same
values. Any differences in the values are due to computational round-off errors:

HERE #cpos
DECOMPOSE jts[] = #cpos
SOLVE.TRANS new.t, error = jts[]
SOLVE.ANGLES jts2[], flags, error = new.t, jts[],
SOLVE.FLAGS(jts[])

Related Keywords

DECOMPOSE (program instruction)

SELECT (program instruction and real-valued function)

SOLVE.FLAGS (real-valued function)

SOLVE.TRANS (program instruction)
V+ Language Reference Guide, Rev A 557

SOLVE.FLAGS Real-Valued Function
Syntax

SOLVE.FLAGS-R

SOLVE.FLAGS (joints[index])

Function

Return bit flags representing the robot configuration specified by an array of joint
positions.

Usage Considerations

The SOLVE.FLAG function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the SOLVE.FLAGS
function will cause an error.

Parameters

joints Real array that contains the robot joint positions. The first
specified element of the array must contain the position for joint
#1, the second element must contain the value for joint #2, etc.
For rotating joints, the joint positions are assumed to have units
of degrees. For translational joints, the joint positions are
assumed to have units of millimeters.

index Optional real value, variable, or expression (interpreted as an
integer) that identifies the array element that contains the
position for joint #1. If no index is specified, element zero must
contain the position for joint #1.

Details

This function returns bit flags that indicate the configuration of the robot (for
example, RIGHTY or LEFTY) for a given set of joint positions. This function is
useful for providing the configuration data required by the SOLVE.ANGLES
program instruction.

The bits of the value returned by this function are interpreted as follows:

Bit 1 (LSB) RIGHTY (mask value = 1)

If this bit is set, the position has the robot in a right-arm configuration. Otherwise,
the position is for a left-arm configuration.
558 V+ Language Reference Guide, Rev A

Real-Valued Function SOLVE.FLAGS
Bit 2 BELOW (mask value = 2)

If this bit is set, the position has the robot configured with the elbow below the
line from the shoulder to the wrist. Otherwise, the robot elbow is above the
shoulder-wrist line. (This bit is always 0 when a SCARA robot is in use.)

Bit 3 FLIP (mask value = 4)

If this bit is set, the position has the robot configured with the pitch axis of the
wrist set to a negative angle. Otherwise, the wrist pitch angle has a positive value.
(This bit is always 0 when the robot does not have a three-axis wrist, as is the case
for a four- axis SCARA robot.)

Related Keywords

ABOVE/BELOW (program instructions)

DECOMPOSE (program instruction)

LEFTY/RIGHTY (program instructions)

FLIP/NOFLIP (program instructions)

SELECT (program instruction and real-valued function)

SOLVE.ANGLES (program instruction)

SOLVE.TRANS (program instruction)
V+ Language Reference Guide, Rev A 559

SOLVE.TRANS Program Instruction
Syntax

SOLVE.TRANS-I

SOLVE.TRANS transform, error = joints[index]

Function

Compute the transformation equivalent to a given set of joint positions for the
current robot.

Usage Considerations

Since the computation performed by this instruction is a function of the geometry
of the robot (link dimensions, number of axes, tool offsets, base offsets), robots
with different geometric parameters will yield different results. In fact, since
robots of the same general type may differ slightly in their dimensions, this
instruction may return slightly different results when executed on two different
robot systems of the same type.

The SOLVE.TRANS instruction refers to the robot selected by the task executing
the instruction.

If the V+ system is not configured to control a robot, executing the SOLVE.TRANS
instruction will not generate an error due to the absence of a robot. However, the
information returned may not be meaningful.

Parameters

transform Transformation variable or transformation array element in
which the result is stored.

error Real variable that is set to a V+ error code if a computational
error occurred during processing of the instruction. This variable
is set to 0 if no error occurs. (The only error that is currently
reported is arithmetic overflow [–409], so this parameter can be
considered as returning a TRUE or FALSE value.)

joints Real-valued array that contains the joint positions that are to be
converted to an equivalent transformation. The first specified
element of the array must contain the position for joint #1, the
second element must contain the value for joint #2, etc. For
rotating joints, the joint positions are assumed to have units of
degrees. For translational joints, the joint positions are assumed
to have units of millimeters.

index Optional integer value that identifies the array element that
contains the position for joint #1. If no index is specified, element
zero must contain the position for joint #1.
560 V+ Language Reference Guide, Rev A

Program Instruction SOLVE.TRANS
Details

This instruction converts a set of joint positions to an equivalent transformation
value using the geometric data of the robot connected to the system. The
computed transformation represents the position and orientation of the end of the
tool in the World coordinate system taking into consideration the current TOOL
transformation and BASE offsets.

Example

The series of instructions below computes the position and orientation that the
robot will be moved to if its current location is altered by rotating joint #1 by 10
degrees:

HERE #cpos

DECOMPOSE joints[1] = #cpos

joints[1] = joints[1]+10

SOLVE.TRANS new.trans, error = joints[1]

Related Keywords

DECOMPOSE (program instruction)

SELECT (program instruction and real-valued function)

SOLVE.ANGLES (program instruction)

SOLVE.FLAGS (real-valued function)
V+ Language Reference Guide, Rev A 561

SPEED Program Instruction
Syntax

SPEED-I

SPEED speed_factor , r_speed_factor units ALWAYS

Function

Set the nominal speed for subsequent robot motions.

Usage Considerations

SPEED 100,100 ALWAYS is assumed whenever program execution is started and
when a new execution cycle begins.

Motion speed has different meanings for joint-interpolated motions and
straight-line motions.

The speed of robot motions is determined by a combination of the program speed
setting and the monitor speed setting.

The SPEED instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the SPEED
instruction causes an error.

Parameters

speed_factor Real value, variable, or expression whose value is used as a
new speed factor. The value 100 is considered normal full
speed, 50 is 1/2 of full speed, and so on. If IPS or MMSPS is
specified for units , the value is considered the linear tool tip
speed.

r_speed_factor Optional real value, variable, or expression whose value is
used as a new straight-line motion rotational speed factor.
The value 100 is considered normal full speed, 50 is 1/2 of
full speed, etc.

units Optional keyword—either IPS (for inches per second),
MMPS (for millimeters per second), or MONITOR—that
determines how to interpret the speed_factor parameter.

ALWAYS Optional keyword. If specified, the program speed_factor
will be in effect until the next SPEED instruction changes
program speed. Otherwise, it will be in effect only for the
next motion instruction (including APPROaches and
DEPARTs).
562 V+ Language Reference Guide, Rev A

Program Instruction SPEED
Details

If the units parameter is omitted, this instruction determines the program
speed—the nominal robot motion speed assuming that the monitor speed factor
is 100%.

If MONITOR is specified for units , the monitor speed is set. In this case, the
parameter r_speed_factor is ignored and ALWAYS is assumed. The speed at
which motions are actually performed is determined by combining the values
specified in this instruction with the current program speed setting. Monitor
speed changes take place immediately, including the remaining portion of a
currently executing move.

If IPS or MMPS is specified in the units parameter, speed_factor is
interpreted as the absolute tool-tip speed for straight-line motions. In this case, the
speed_factor parameter has no direct meaning for joint-interpolated motions.

The effects of changing program speed and monitor speed differ slightly for
continuous-path motions. As the robot moves through a series of points, the robot
comes as close to the points as possible while maintaining the program speed and
specified accelerations. As program speed increases, the robot will make coarser
approximations to the actual point in order to maintain the program speed and
accelerations.

When the monitor speed is increased, the path of the robot relative to the
commanded destination points is not altered but the accelerations will be
increased. For applications where path following is important, the path can be
defined with the monitor speed set to a low value, and then accurately replayed at
a higher monitor speed.

Speed cannot be less than 0.000001 (1.0E−6).

During straight-line motions, if a tool with a large offset is attached to the robot,
the robot joint and flange speeds could be very large when rotations about the
tool tip are made. The r_speed_factor parameter permits control of the
maximum tool rotation speeds during straight-line motions.

If a rotational speed factor (r_speed_factor) is specified, it is interpreted as a
percentage of maximum Cartesian rotation speed to be used during straight-line
motions. If the r_speed_factor parameter is not specified, one of the following
results occurs:

1. If the units parameter is also omitted, the rotational speed is set to the value
of speed_factor .

2. If the units parameter is specified, the rotational speed is not changed.
V+ Language Reference Guide, Rev A 563

SPEED Program Instruction
When IPS or MMPS are specified, the speed_factor is converted internally to
the corresponding nominal speed. If the SPEED real-valued function is then used
to read the program speed, the value returned will be a percentage speed factor
and not an absolute speed setting.

Remember, the final robot speed is a combination of the monitor speed (SPEED
monitor command), the program speed (SPEED instruction), and the acceleration
or deceleration (ACCEL program instruction).

Examples

Set the program speed to 50% for the next motion (assuming the monitor speed
is 100):

SPEED 50

Set the nominal tool tip speed to 20 inches per second (assuming the monitor
speed is 100) for straight-line motions. Rotations about the tool tip will be limited
to 40% of maximum. The settings will remain in effect until changed by another
SPEED instruction.

SPEED 20, 40 IPS ALWAYS

Set the monitor speed to 50% of normal:

SPEED 50 MONITOR

Related Keywords

ACCEL (program instruction)

DURATION (program instruction)

IPS (conversion factor)

MMPS (conversion factor)

PAYLOAD (program instruction)

SCALE.ACCEL (system switch)

SELECT (program instruction and real-valued function)

SPEED (monitor command and real-valued function)
564 V+ Language Reference Guide, Rev A

Real-Valued Function SPEED
Syntax

SPEED-R

SPEED (select)

Function

Return one of the system motion speed factors.

Usage Considerations

The SPEED function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the SPEED function
will not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

Parameter

select Real-valued expression whose value determines which speed
factor should be returned (see below).

Details

This function returns the system motion speed factor corresponding to the select
parameter value. The acceptable parameter values, and the corresponding speed
values returned, are:

select Speed value returned

1 Monitor speed (set by SPEED monitor command)

2 Permanent program speed (set by a SPEED ... ALWAYS program
instruction)

3 Temporary program speed for the last or current motion

4 Temporary program speed to be used for the next motion

5 Permanent program rotation speed

6 Temporary program rotation speed for the last or current straight-line
motion

7 Temporary program rotation speed to be used for the next straight-line
motion

8 The maximum allowable setting for program speed
V+ Language Reference Guide, Rev A 565

SPEED Real-Valued Function
Note that the value returned should be interpreted as a percentage of normal
speed, even if the program speed was set by a SPEED program instruction that
specified a speed setting. (See the SPEED program instruction.)

Example

The following program segment makes one motion at 1/2 of the permanent
program speed:

new.speed = SPEED(2)/2 ;Compute 1/2 the permanent speed

SPEED new.speed ;Move at the new speed next time

MOVE pick.up ;Perform the actual motion

Note that the following instruction sequence is equivalent:

SPEED SPEED(2)/2 ;Reduce speed for the next motion

MOVE pick.up ;Perform the actual motion

Related Keywords

ACCEL (real-valued function)

DURATION (real-valued function)

SELECT (program instruction and real-valued function)

SPEED (monitor command and program instruction)
566 V+ Language Reference Guide, Rev A

Program Instruction SPIN
Syntax

SPIN-I

SPIN speeds[index]

Function

Rotate one or more joints of the selected robot at a specified speed.

Usage Considerations

This instruction currently can be used only with the Joints (JTS) robot device
module.

The acceleration and deceleration factors used for SPIN can be changed in the
normal way, using the V+ ACCEL instruction. Because SPIN uses a constant
acceleration rate, the optional profile parameter of the ACCEL instruction is
ignored by the SPIN instruction. V+ limits the acceleration rate and deceleration
rate to be less than or equal to the maximum values that are defined for the robot.
(These maximum values are specified by the system designer using the SPEC
utility program.)

The SPEED program instruction does not affect SPIN. However, the SPEED
monitor command does modify the SPIN speed.

Parameters

speeds[] The optional speeds[] array contains the rate at which each
joint of the selected robot is to be rotated. The rates are in units of
degrees/second or millimeters/second. Joints can be rotated in
either the positive or negative direction. V+ limits the spin
speeds to be less than or equal to the 100% joint-speed values
that are defined for the robot.

Other facts about the speeds[] array:

• If the array is omitted, all values default to zero.

• If the array is specified, all the expected elements must be
defined. Sparse arrays generate an *Undefined value* error
message.

• For all array types (AUTO, etc.), the highest element index
must be equal to or greater than what is required.

index Optional integer value that identifies which array element is
applied to joint1. Zero is assumed if omitted. Joint 2 uses the
value from element [index +1], and so on.
V+ Language Reference Guide, Rev A 567

SPIN Program Instruction
CAUTION: Take care to set the index value correctly, otherwise
unexpected joint speeds may result.

Details

The SPIN instruction uses a constant acceleration rate to accelerate each joint up
to its specified speed. Once each joint has reached its specified speed, it will
continue to rotate at a constant speed until one of the following occurs:

• Another SPIN instruction is executed that changes one or more of the SPIN
rates.

• A SPIN instruction is executed that decelerates all of the joints to a stop.

• An error occurs (PANIC, BRAKE, joint limit stop encountered, etc.) that
decelerates all joints to a stop.

To use the SPIN instruction to stop all of the joints, the SPIN instruction must be
executed with either no speeds[] array specified or with all of the array
elements set to 0.

If a SPIN operation has been abnormally terminated by a PANIC stop or other
error condition, the spin operation can be resumed by issuing a RETRY monitor
command.

SPIN movements cannot be blended with the standard motion instructions (such
as MOVE, MOVES, APPRO, DEPART). Therefore, a BREAK is implicitly executed
before a SPIN instruction to allow any standard motion to complete. (If there is
more than one SPIN instruction in a sequence, then an implicit BREAK is
executed only before the first SPIN instruction.)

Also, SPIN trajectories must be stopped with a SPIN instruction, BRAKE, etc.,
prior to executing a regular motion instruction. If a SPIN trajectory is being
executed, and a regular motion instruction is executed, the following error
message is generated:

Illegal while joints SPIN'ing

The SPIN instruction can only be used to move a joint that has been configured
with the continuous-rotation capability. If a SPIN instruction attempts to move a
joint that has not been so configured, or if the robot is currently tracking a belt or
moving under ALTER control, the following error message is generated:

SPIN motion not permitted
568 V+ Language Reference Guide, Rev A

Program Instruction SPIN
If any joints of the selected robot cannot rotate continuously, their corresponding
spin rates should always be specified as 0.

When a SPIN instruction is executed, the value of the DEST function is not
meaningful and the value of the #PDEST function returns the specified joint
speeds instead of the final joint angles.

Continous-Turn Axes

In order for a joint to rotate continuously, the following conditions must be
satisfied: (1) the robot device module must be designed to support one or more
continuous-turn joints, (2) the encoder roll-over value for the joint must be
nonzero, and (3) the joint stop limits must be set to values substantially greater
than the roll-over value.

Currently, only the joints (JTS) robot device module has been designed to support
continuous-turn joints, and any of its joints may be configured for continuous
turning. To set the roll-over value for a joint, the SPEC utility program must be
run.

V+ uses the roll-over value in the following manner: At selected times V+
compares the absolute value of the commanded position of the joint to its
roll-over value and, if the commanded position exceeds the roll-over value, the
roll-over value is subtracted from (or added to) the commanded position. This test
for joint roll-over is performed at the following times: (1) at the end of a
continuous-path motion; (2) whenever the robot is in
FREE/JOINT/WORLD/TOOL manual control modes; (3) whenever robot power
is disabled; and (4) whenever a joint is being moved via a SPIN instruction.

Example

Assign spin speeds for all joints of the currently selected robot which is assumed
to have four axes:

temp.speeds[1] = 0.5 ;Turn J1 at 30 rpm

temp.speeds[2] = 0.25 ;Turn J2 at 15 rpm

temp.speeds[3] = 0 ;Do not turn J3

temp.speeds[4] = 1.0 ;Turn J4 at 1 rps (30 rpm)

SPIN temp.speeds[1] ;Start the motion
V+ Language Reference Guide, Rev A 569

SQR Real-Valued Function
Syntax

SQR-R

SQR (value)

Function

Return the square of the parameter.

Parameter

value Real-valued expression whose value is to be squared.

Details

This is a convenience function that computes the square of a value. That is, the
result is equal to (value ∗ value).

Examples

SQR(0.123) ;Returns 0.015129

SQR(4) ;Returns 16

SQR(-5.462) ;Returns 29.83344

SQR(1.3125E+2) ;Returns 17226.56

NOTE: TYPE, PROMPT, and similar instructions output the results
of the above examples as single-precision values. However, they are
actually stored and manipulated as double-precision values. The
LISTR monitor command will display real values to full precision.
570 V+ Language Reference Guide, Rev A

Real-Valued Function SQRT
Syntax

SQRT-R

SQRT (value)

Function

Return the square root of the parameter.

Parameter

value Real-valued expression defining the value whose square root is
to be computed.

Details

Returns the square root of the argument if the argument is greater than zero. An
error results if the argument is less than zero.

The square root of a number is defined to be the number that, when multiplied by
itself, yields the original number.

Examples

SQRT(0.123) ;Returns 0.3507136

SQRT(4) ;Returns 2.0

SQRT(–5.462) ;Returns *Negative square root*

SQRT(1.3125E+2) ;Returns 11.45644

NOTE: TYPE, PROMPT, and similar instructions output the results
of the above examples as single-precision values. However, they are
actually stored and manipulated as double-precision values. The
LISTR monitor command will display real values to full precision.
V+ Language Reference Guide, Rev A 571

STATE Real-Valued Function
Syntax

STATE-R

STATE (select)

Function

Return a value that provides information about the robot system state.

Usage Considerations

The STATE function returns information for the robot selected by the task
executing the function.

Parameter

select Real value, variable, or expression (interpreted as an integer)
that selects the category of state information returned, as
described below.

Details

When select = 1, the function value returns information about the overall robot
state as follows:

When select = 2, the function value returns information about the current or
previous robot motion. These modes can change only when the robot is under
program control—that is, when STATE(1) = 7:

Value Interpretation (when select = 1)

0 Resetting system after robot power has been turned off.

1 A fatal error has occurred and robot power cannot be turned on.

2 Waiting for user to turn on robot power.

3 Robot power was just turned on; initialization is occurring.

4 Manual control mode is active.

5 A CALIBRATE command or instruction is executing.

6 Not used.

7 Robot is under program control.

8 Robot power is on; robot is not calibrated and cannot be moved.
572 V+ Language Reference Guide, Rev A

Real-Valued Function STATE
When select = 3, the function value returns information about the current
manual control mode as follows:

a A RETRY command has no effect.
b A RETRY command completes the previous motion

Value Interpretation (when select = 2)

0 No motion instructions executed yet.

1 Normal trajectory evaluation is in progress (including normal
acceleration, deceleration and segment transitions).

2 Motion stopped at a planned location.a

3 Position error is being nulled at unplanned final location.

4 Motion stopped at an unplanned location due to a belt window violation.b

5 Decelerating due to a triggered REACTI or BRAKE instruction.

6 Stopped due to a triggered REACTI or BRAKE instruction.b

7 Decelerating due to a hardware error, panic button, or ESTOP instruction.

8 Stopped due to a hardware error, panic button, or ESTOP instruction.b

9 Decelerating due to a stop-on-force condition.

10 Stopped due to a stop-on-force condition.

11 Nulling at completion of a SPIN motion.

12 Stopped after completion of a SPIN instruction.

Value Interpretation (select = 3)

0 Manual mode without selection.

1 Free-joint mode.

2 Individual joint control.

3 World coordinates control.

4 Tool coordinates control.

5 Computer control enabled.
V+ Language Reference Guide, Rev A 573

STATE Real-Valued Function
When select = 4, the function value returns information about the controller’s
front-panel control settings and other hardware status to be read by programs.
Interpret the value as a set of bit flags, each of which indicates a corresponding
condition. STATE(4) always returns with bit 1 set.

When select = 5, the function value indicates the settings of the controller
keyswitches on the external front panel (VFP). (For information on this panel,
refer to the Adept MV Controller User’s Guide.)

When select = 6, the function returns an indication of whether or not the
real-time path-modification facility (alter mode) is enabled. If zero is returned,
alter mode is disabled for the current motion. If a nonzero value is returned, alter
is enabled, and the low byte of this value contains bits that correspond to the
mode specified in the ALTON instruction that initiated the path modification.

When select = 7, the function returns an indication of whether or not the
real-time path-modification facility (alter mode) is enabled for the next planned
motion. If zero is returned, alter mode is disabled for the next motion. If a nonzero
value is returned, alter is enabled, and the low byte of this value contains bits that
correspond to the mode specified in the ALTON instruction that initiated the path
modification. (This option is available only if your Adept system is equipped with
the V+ Extensions option.)

Bit mask Interpretation when bit set (select = 4)

1 Front panel hardware is connected.

2 The PROGRAM START button is pushed.

4 A hardware panic button is pushed.

8 The HIGH POWER ON/OFF button is pushed.

Value Interpretation (select = 5)

0 The VFP is disconnected.

1 Both AUTO and LOCAL are set.

2 Both MANUAL and LOCAL are set.

3 Both AUTO and REMOTE are set.

4 Both MANUAL and REMOTE are set.
574 V+ Language Reference Guide, Rev A

Real-Valued Function STATE
When select = 8, the number of the robot selected by the manual control
pendant is returned.

When select = 9, the function returns the time (in seconds) left until completion
of the current motion. Zero indicates that no motion is in progress. For
continuous-path motions, the value of STATE(9) decreases during each motion
until the transition to the next motion, and then the value suddenly changes to the
time left in the next motion. That is, STATE(9) does not reach 0 before it is reset to
reflect the next motion.

When select = 10, the function returns the percentage of the current motion that
has completed. The value 100 indicates that no motion is in progress. For
continuous-path motions, the value of STATE(10) increases during each motion
until the transition to the next motion, and then the value suddenly changes to
close to 0 to reflect the start of the next motion. That is, STATE(10) does not reach
100 before it is reset to reflect the next motion.

When select = 11, the function returns detailed information on which portion of
the acceleration profile is currently being generated for the selected robot.

Value Interpretation (select = 11)

0 Idle, not evaluating trajectory

1 Ramping up acceleration for new segment

2 Constant acceleration section

3 Ramping down acceleration

4 Constant velocity section

5 Ramping up acceleration for the next motion during the transition
section between motions

6 Constant acceleration for the next motion during the transition
section between motions

7 Ramping down acceleration for the next motion during the
transition section between motions

8 Ramping up deceleration

9 Constant deceleration

10 Ramping down deceleration

11 Nulling final errors
V+ Language Reference Guide, Rev A 575

STATE Real-Valued Function
When select = 12, the function returns a flag that is set to nonzero when an
ALTER program instruction is executed for the currently selected robot, and
cleared after the trajectory generator processes the posted ALTER data. This flag
can be used to coordinate the execution of ALTER instructions with the
processing of the data by the trajectory generator.

When select = 13, the function returns the trajectory generator execution rate in
hertz. That is, if the trajectory generator is executed once each major V+ cycle, this
function returns the value 62.5.

When select = 14, the function returns the servo code execution rate in hertz.
That is, if the servos are executed each 1 msec, this function returns value 1000
(1kHz).

When select = 15, the function returns the number of the motion that is being
executed by the selected robot. This number is zeroed when a program that is
attached to the robot first begins executing. The counter is reset to 1 at the start of
each EXECUTE cycle. The value is incremented each time the trajectory generator
begins evaluating a new motion (or transitions to a new continuous-path motion).
The value of STATE(15) ranges from 0 to ^HFFFF. After reaching ^HFFFF, the
value rolls back to 0.

Example

The following example shows how the STATE function can be used to determine
whether or not a REACTI was triggered during a robot motion:

REACTI 1001 ;Setup the reaction
MOVES final ;Start the robot motion
BREAK ;Wait for the motion to complete

CASE STATE(2) OF ;Decide what happened

VALUE 2:
TYPE "Motion completed normally"

VALUE 6:
TYPE "Motion stopped by REACTI"

VALUE 8:
TYPE "Motion stopped by panic button"

END
576 V+ Language Reference Guide, Rev A

Real-Valued Function STATE
Related Keywords

CONFIG (real-valued function)

NETWORK (real-valued function)

SELECT (program instruction and real-valued function)

STATUS (monitor command and real-valued function)

TASK (real-valued function)
V+ Language Reference Guide, Rev A 577

STATUS Real-Valued Function
Syntax

STATUS-R

STATUS (program_name)

Function

Return status information for an application program.

Parameter

program_name String constant, variable, or expression that specifies the name of
the application program of interest. Letters in the name can be
uppercase or lowercase. The string can be empty () in order not
to specify a program name (see below), but the parameter cannot
be omitted.

Details

This function returns information about the execution status of the specified
program.

If no program name is specified (that is, the parameter string is empty []), the task
number of the program containing the function call is returned. This allows a
program to determine which system task it is executing as. (Tasks and task
numbers are described in the V+ Language User’s Guide.)

If a program name is specified as the function parameter, the status of that
program is returned as follows:

A program is considered write-interlocked when it is being copied, deleted,
renamed, or edited in read-write mode. A program is considered read-interlocked
when it is executing (by one or more tasks) or is being edited in read-only mode.

A program is considered not executable when it contains a structure error or a
bad line.

Value returned Program status

–1 Not executing.

–2 Not defined.

–3 Interlocked because of write.

–4 Not executable.

–5 Interlocked because of read.
578 V+ Language Reference Guide, Rev A

Real-Valued Function STATUS
NOTE: If a program is being executed by multiple tasks, the
STATUS function will return –5. There is no way to use the STATUS
function to determine when the program ceases to be executed by
one of those tasks. The STATUS function will not return –1 until all
the tasks stop executing the program.

The function will return not defined status if an invalid program name is
specified (for example, if the name does not start with a letter).

Example

The following program segment demonstrates how the STATUS function can be
used to decide whether or not to initiate execution of an application program:

IF STATUS("pc.main") == −1 THEN

EXECUTE 1 pc.main

END

NOTE: The STATUS function will not return –1 if the program is
being executed by any program task. Thus, this example may not be
appropriate for some situations. (See the example shown for the
EXECUTE instruction for another technique for initiating execution
of another program task.)

Related Keywords

DEFINED (real-valued function)

STATE (real-valued function)

STATUS (monitor command)

TASK (real-valued function)

TESTP (monitor command, see the V+ Operating System Reference
Guide)
V+ Language Reference Guide, Rev A 579

STOP Program Instruction
Syntax

STOP-I

STOP

Function

Terminate execution of the current program cycle.

Usage Considerations

STOP will not halt program execution if there are more program cycles to execute.

The PROCEED command cannot be used to resume program execution after a
STOP instruction causes the program to halt.

If program execution is halted by a STOP instruction, FCLOSE and/or DETACH
are forced on the disk and serial communication logical units as required.

Details

Counts one more program cycle as complete and one less remaining. If the result
is that no more cycles are remaining, program execution halts.

If more cycles are remaining, the internal robot motion parameters are
reinitialized, and program execution continues with the first step of the main
program (even if the STOP occurred within a subroutine or reaction program).

Terminates execution of the current program unless more program loops (see the
EXECUTE command and instruction) are to be completed, in which case
execution of the program continues at its first step. Thus, the STOP instruction is
used to mark the end of a program execution pass. Note that the HALT
instruction has a different effect—it cancels all remaining cycles.

A RETURN instruction in a main program has the same effect as a STOP
instruction. A main program is one that is invoked by an EXECUTE command or
instruction, or a PRIME or XSTEP command, whereas a subroutine is a program
that is invoked by a CALL or CALLS instruction (or a reaction) within another
program.

Related Keywords

ABORT (monitor command and program instruction)

HALT (monitor command and program instruction)

PAUSE (program instruction)

RETURN (program instruction)
580 V+ Language Reference Guide, Rev A

Real-Valued Function STRDIF
Syntax

STRDIF-R

STRDIF ($a, $b)

Function

Compare two strings byte by byte for the purpose of sorting.

Parameters

$a A string constant, variable, or expression that contains the bytes
to be compared with those in $b .

$b A string constant, variable, or expression that contains the bytes
to be compared with those in $a .

Details

This function compares strings byte by byte, using the unsigned byte values
without any case conversion. That is, the function ignores the setting of the
UPPER system switch. The two strings can have different lengths. The returned
values and their meanings are as follows:

Note that the value is FALSE (0) if the strings are the same.

Returned value Interpretation

−1 $a is less than $b.

0 $a is exactly the same as $b .

1 $a is greater than $b.
V+ Language Reference Guide, Rev A 581

STRDIF Real-Valued Function
Example

Sort two names in alphabetical order:

$name[0] = "Michael"

$name[1] = "MARK"

CASE STRDIF($name[0],$name[1]) OF

VALUE −1,0:

$list[0] = $name[0]

$list[1] = $name[1]

VALUE 1:

$list[0] = $name[1]

$list[1] = $name[0]

END

TYPE "Names in alphabetic order: ", $list[0], " ",
$list[1]
582 V+ Language Reference Guide, Rev A

Program Instruction SWITCH
Syntax

SWITCH-I

SWITCH switch_name = value

SWITCH switch_name[index] = value

Function

Enable or disable a system switch based on a value.

Usage Considerations

If the specified switch accepts an index qualifier and the index is zero or omitted
(with or without the brackets), all the elements of the switch array are set
according to the value given.

Parameters

switch_name Name of the switch whose setting is to be modified. The switch
name can be abbreviated to the minimum length that identifies it
uniquely.

index For switches that can be qualified by an index, this is an optional
real value, variable, or expression that specifies the specific
switch element of interest (see above).

value Real value, variable, or expression that determines if the switch
is to be enabled or disabled. The switch is enabled if the value is
TRUE (nonzero). The switch is disabled if the value is FALSE
(zero).

Details

Sets the given system switch to the setting implied by the value on the right of the
equal sign.

The switch name can be abbreviated to the minimum length that identifies it
uniquely.

The switch names acceptable with the standard V+ system are summarized in the
V+ Language User’s Guide. Each of the switches is described in detail elsewhere in
this appendix.

Other system switches are available when options are installed. Refer to the
option documentation for details. For example, the switches associated with the
AdeptVision options are described in the AdeptVision Reference Guide.
V+ Language Reference Guide, Rev A 583

SWITCH Program Instruction
Example

The following program statements show how the SWITCH real-valued function
and instruction can be used to save the setting of a system switch, and later
restore it, respectively:

old.upper = SWITCH(UPPER);Save the current setting
.
. ;Instructions that may change the

. ;setting of the UPPER switch.

SWITCH UPPER = old.upper ;Restore the initial setting

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command and real-valued function)
584 V+ Language Reference Guide, Rev A

Real-Valued Function SWITCH
Syntax

SWITCH-R

SWITCH (switch_name)

SWITCH (switch_name[index])

Function

Return an indication of the setting of a system switch.

Parameters

switch_name Name of the system switch of interest (see below).

index For switches that can be qualified by an index, this is a (required)
real value, variable, or expression that specifies the specific
switch element of interest.

Details

This function returns FALSE (0.0) if the specified switch is disabled. Otherwise,
TRUE (–1) is returned.

The switch name can be abbreviated to the minimum length that identifies it
uniquely.

The switch names acceptable with the standard V+ system are summarized in the
V+ Language User’s Guide.

Other system switches are available when options are installed. Refer to the
option documentation for details. For example, the switches associated with the
AdeptVision options are described in the AdeptVision Reference Guide.
V+ Language Reference Guide, Rev A 585

SWITCH Real-Valued Function
Example

This program segment checks whether the DRY.RUN switch is enabled. If it is, a
message is displayed on the system terminal:

IF SWITCH(DRY.RUN) THEN

TYPE "DRY RUN mode is enabled"

END

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command and program instruction)
586 V+ Language Reference Guide, Rev A

String Function $SYMBOL
Syntax

$SYMBOL-$

$SYMBOL(pointer)

Function

Determine the user symbol that is referenced by a pointer previously obtained
with the SYMBOL.PTR real-valued function.

Usage Considerations

The pointer value must have been obtained with the SYMBOL.PTR real-valued
function.

Parameter

pointer Real variable that identifies the symbol to be referenced.

Details

This function can be used to determine the user symbol (that is, program or
variable name) that is pointed at by a pointer previously determined with the
SYMBOL.PTR real-valued function.

A null string is returned if the pointer value is zero or invalid, or if the symbol has
been deleted since the pointer was defined.

Example

After the SYMBOL.PTR function has been used to set the values of elements of the
array my.pgm.ptr[] (for example, see the dictionary page for the CALLP
instruction), the following instruction can be used to display the program name
that is referenced by one of the pointers:

TYPE "Program", index, " is ", $SYMBOL(my.pgm.ptr[index])

Related Keyword

SYMBOL.PTR (real-valued function)
V+ Language Reference Guide, Rev A 587

SYMBOL.PTR Real-Valued Function
Syntax

SYMBOL.PTR-R

SYMBOL.PTR (string , type)

Function

Determine the value of a pointer to a user symbol in V+ memory.

Usage Considerations

The value returned by the function is meaningful only to the CALLP instruction
and the $SYMBOL string function.

Parameters

string String constant, variable, or expression that defines the symbol
to be referenced.

type Optional real value, variable, or expression that specifies the
type of symbol to be referenced. Currently the only value
supported is zero, which specifies that the string parameter
defines a program name. The value zero applies if the parameter
is omitted.

Details

The SYMBOL.PTR function can be used to obtain a pointer to a user symbol (that
is, a program or variable name) in V+ memory. Such a pointer can then be used
elsewhere in the program by the CALLP instruction and the $SYMBOL function.
Refer to the descriptions of those keywords for more information.

The function returns the value zero if the specified symbol is not defined.

Example

Refer to the dictionary page for the CALLP instruction.

Related Keywords

CALLP (program instruction)

$SYMBOL (string function)
588 V+ Language Reference Guide, Rev A

Real-Valued Function TAS
Syntax

TAS-R

TAS (variable, new_value)

Function

Return the current value of a real-valued variable and assign it a new value. The
two actions are done indivisibly so that no other program task can modify the
variable at the same time.

Parameters

variable Name of the real-valued variable to be tested and assigned the
new value given. (If the variable is not defined when the
function is executed, the function returns the value 0.)

new_value Real value, variable, or expression that defines the new value to
be assigned to the specified variable.

Details

Because the different program tasks execute simultaneously, time-sharing the
system processor, it is possible for any task to be interrupted by another in the
middle of performing some computation or storing data into variables. When
data is shared by two or more tasks, the programs must implement an interlock
scheme to prevent the data from being accessed when it is only partially updated.

The TAS function provides a means to implement such an interlock. A program
can use this function to set a control variable to a value that indicates (to the other
programs) that the data is being accessed. Then, after the data is stable, the
program can use TAS to set the control variable to a different value to indicate the
data is available.

Without the TAS function, a much more complicated polling scheme would be
needed to administer the control variable (to prevent more than one program
from setting the control variable simultaneously).

Example

The following example shows how the TAS real-valued function can be used to
insure exclusive access by an application program to data that is also used by
another program task. (A similar instruction sequence must be used in the other
application program when it wants to access the data.)
V+ Language Reference Guide, Rev A 589

TAS Real-Valued Function
The real-variable data.locked is set to FALSE when the data is not interlocked and
set to TRUE when the data is interlocked. This variable is set to TRUE with the
TAS function, so that we can detect if the other program task has already set it to
TRUE. Since TAS tests and sets the value indivisibly, there is no chance of both
programs setting data.locked to TRUE simultaneously without the conflict being
detected:

WHILE TAS(data.locked, TRUE) DO ;Wait until "data.locked" is
;FALSE and then set to TRUE

WAIT

END

; ... Perform desired operations with/to the data ...

data.locked = FALSE ;Release the data structure

The WHILE loop causes program execution to be blocked until the variable
data.locked has the value FALSE. Thus, the program will be blocked if the other
program is accessing the data array (and has locked the semaphore variable).

Once the program gains exclusive access to the data array, it can safely access the
data.

The last instruction releases the data for access by the application executing as the
other program task.

Related Keyword

IOTAS (real-valued function)
590 V+ Language Reference Guide, Rev A

Real-Valued Function TASK
Syntax

TASK-R

TASK (select , task_num)

Function

Return information about a program execution task.

Parameters

select Optional real-valued expression that has a value of 0, 1, or 2 and
selects the category of task information returned (see below).
The value 0 is assumed if the parameter is omitted.

task_num Optional integer value that specifies which system program task
is to be accessed (see below).

Details

This function returns various information about the system program execution
tasks. (See the V+ Language User’s Guide for an explanation of execution tasks.)

The select parameter determines the type of information that will be returned
as follows:

select = 0 Task number—The function returns the number of the task
executing the current program.

select = 1 Task run state—Returns the run state for the task specified by
the task_number parameter. The value returned should be
interpreted as follows:

Value Interpretation

–1 Invalid task number.

0 Idle.

1 Stopped due to program completion.

2 Stopped due to program execution error (for example, undefined
value).

3 Stopped due to ABORT, breakpoint, panic button pressed, robot
error, single-step execution, or watchpoint.

4 Executing.
V+ Language Reference Guide, Rev A 591

TASK Real-Valued Function
select = 2 Task status bits—Returns an integer value that should be
interpreted as a set of bit flags that indicate the following
information about the task specified by the task_number
parameter:

Examples

Display the task number the program is running in:

TYPE "This program is running as task number :" TASK()

The following program segment demonstrates how the TASK function can be
used to decide whether or not to initiate execution of a program (named pc.job.2)
with task #2:

IF TASK(1, 2) <> 4 THEN ;If task #2 not executing

IF STATUS("pc.job.2") == −1 THEN;and if program is okay

EXECUTE 2 pc.job.2 ;start it up

ELSE ;But if program not okay

TYPE /B, "Can't start task #2" ;output error message

END

END

Related Keywords

STATE (real-valued function)

STATUS (monitor command and real-valued function)

Bit # Bit mask Indication if bit is set

1 1 Debugger is accessing task

2 2 Task has robot attached
592 V+ Language Reference Guide, Rev A

System Parameter TERMINAL
Syntax

TERMINAL-P

... TERMINAL

Function

Determine how V+ will interact with the system terminal.

Usage Considerations

The current value of the TERMINAL parameter can be determined with the
PARAMETER monitor command or real-valued function.

The value of the TERMINAL parameter can be modified only with the
PARAMETER monitor command or program instruction.

The acceptable parameter values are 0 through 4. The default value is 4 on V+
system disks supplied by Adept.

The parameter name can be abbreviated.

Details

The possible TERMINAL parameter values are described below:

0 For TTY (hardcopy) terminals.

For such terminals, when the BACKSPACE, DEL, or RUBOUT
key is pressed to begin a typing correction, a backslash character
(\) is displayed along with the character that has been deleted.
Subsequent character deletions cause just the deleted character
to be displayed. When a nondeleting key is pressed, another
backslash is displayed along with the new character. Thus, after
the correction is completed, all the characters between the
backslashes will have been deleted.

Parameter value Terminal type
Treatment of
DEL & BS

Cursor-up
command

0 TTY \<echo\ None

1 CRT Erase <VT>

2 CRT Erase <SUB>

3 CRT Erase ~<FF>

4 CRT Erase <ESC>M
V+ Language Reference Guide, Rev A 593

TERMINAL System Parameter
Another characteristic of this setting is that the WHERE 1 and IO
commands will display their information only once.

If a CRT terminal is used with the appropriate one of the following settings, the
WHERE 1 and IO commands will continuously update the display of their
information until the user presses CTRL+C.

For all CRT terminals, when the BACK SPACE, DEL, or RUBOUT key is pressed,
the last character input is deleted and erased from the screen.

1. For CRT terminals that accept an ASCII VT character (11 decimal) as the
command to move the cursor up one line. (For example, use this value for
Soroc brand terminals.)

2. For CRT terminals that accept an ASCII SUB character (26 decimal) as the
command to move the cursor up one line. (For example, use this value for
ADDS brand terminals.)

3. For CRT terminals that accept an ASCII ~ character (126 decimal) followed by
an ASCII FF character (12 decimal) as the command to move the cursor up one
line. (For example, use this value for Hazeltine brand terminals.)

4. For ANSI-compatible CRT terminals that accept an ASCII ESC character (27
decimal) followed by an ASCII M character (115 decimal) as the command to
move the cursor up one line. (For example, use this value for
VT100-compatible terminals, such as the Wyse terminal available from
Adept.)

This value should be used when the Adept graphics system is in use.

Example

Set system terminal type to VT100/Wyse:

PARAMETER TERMINAL = 4

Related Keywords

IO (monitor command)

PROMPT (program instruction)

TYPE (program instruction)

WHERE (monitor command)

PARAMETER (monitor command, program instruction, and real-valued
function)

See the V+Operating System Reference Guide for details on monitor commands.
594 V+ Language Reference Guide, Rev A

Program Instruction TIME
Syntax

TIME-I

TIME time_string

Function

Set the date and time.

Parameter

time_string String expression whose value specifies the date and time to be
set. The value of the string must be in the format: dd-mmm-yy
hh:mm:ss or dd-mmm-yy hh:mm (see below).

Details

The system clock is set equal to the value of the string expression.

The system clock is maintained automatically and should be changed only when
its values are incorrect (e.g., the controller is moved to a different time zone).

The system clock is used in the following situations:

• The date and time are displayed when the V+ system is booted from disk.

• Whenever a new disk file is created, the date and time are recorded with the
file name. (The FDIRECTORY command displays the dates and times for files.)

• The date and time are appended to the message indicating that an application
program has terminated execution.

• The date and time are displayed by the TIME monitor command.

• The date and time are available to an application program by use of the $TIME
string function.
V+ Language Reference Guide, Rev A 595

TIME Program Instruction
The individual elements of the date and time specification are defined as follows:

dd The day of the month (1 to 31)

mmm The month, specified as a 3-letter abbreviation (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yy The year, where 80 to 99 represent 1980 through 1999,
respectively, and 00 to 79 represent 2000 through 2079,
respectively.

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0 assumed if :ss omitted)

Example

TIME "23-JUN-83 16:10:25"

Related Keywords

TIME (monitor command and real-valued function)

$TIME (string function)
596 V+ Language Reference Guide, Rev A

Real-Valued Function TIME
Syntax

TIME-R

TIME (string , select)

Function

Return an integer value representing either the date or the time specified in the
given string parameter.

Parameters

string Optional string variable, constant, or expression that specifies
the date and time in the format described below. (See below for
details.)

select Real value, variable, or expression (interpreted as an integer)
that selects the value to be returned. An error results if select
is not one of the following:

Details

This function can be used to encode the date and time into compact (unsigned
16-bit) integer formats. After the integer date and time values are obtained, they
can be arithmetically compared to other date and time values to determine before
and after conditions.

NOTE: You should not try to manipulate the encoded integer
values to perform date or time arithmetic. For example, you should
not attempt to add days to an encoded date value.

If the string parameter is supplied, both the date and the time must be specified
in the string. The format must be dd-mmm-yy hh:mm:ss or dd-mmm-yy hh:mm.
(The function returns the value –1 if the input string does not have an acceptable
format [see the example below].)

select Returned Defined ss

1 date (year-1980)∗512 + month∗32 + day

2 time hour∗2048 + minute∗32 + second/2

3 seconds time past the minute
V+ Language Reference Guide, Rev A 597

TIME Real-Valued Function
The individual date and time elements are defined as follows:

dd The day of the month (1 to 31)

mmm The month, specified as a 3-letter abbreviation (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yy The year, where 80 to 99 represent 1980 through 1999,
respectively, and 00 to 79 represent 2000 through 2079,
respectively.

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0 assumed if :ss omitted)

If the string parameter is not supplied and the select parameter is 1, the
current date of the system clock is returned. In addition, the current time of the
system clock is stored in the (internal) administrative data for the program task. If
the string parameter is not supplied and the select parameter is 2 or 3, the
selected time value is returned for the system-clock time previously saved.

Example

The following program segment shows how the TIME real-valued function can be
used to make sure a valid date and time are entered by the user after a prompt:

PROMPT "Enter the date and time (dd-mmm-yy hh:mm:ss): ", $time

WHILE (TIME($time,1)== −1) DO ;Make sure it’s valid

TYPE /B," Could not interpret date/time."

PROMPT "Try again (dd-mmm-yy hh:mm:ss): ", $time

END

TIME $time ;Set system time

Related Keywords

TIME (monitor command and program instruction)

$TIME (string function)
598 V+ Language Reference Guide, Rev A

String Function $TIME
Syntax

$TIME-$

$TIME (date, time)

Function

Return a string value containing either the current system date and time or the
specified date and time.

Parameters

date Optional integer value representing the year, month, and day
(see below). The value is interpreted as follows (month ranges
from 1 to 12):

date = (year-1980) ∗512 + month ∗32 + day

time Optional integer value representing the hour, minutes, and
seconds past midnight (see below). The value is interpreted as
follows (hour ranges from 0 to 23):

time = hour ∗2048 + minute ∗32 + second/2

NOTE: This function always returns a string containing both the
date and the time. That can result in an erroneous date string if the
date parameter is omitted when the time parameter is specified.

Details

If both the date and time parameters are omitted, this function returns the current
system date and time in the format described below. (An empty string is returned
if the system clock has not been initialized.)

If the date and time parameters are specified, their values are converted to an
ASCII string in the format described below, and the string is returned. This
operation is used to decode the output values generated by the TIME real-valued
function.
V+ Language Reference Guide, Rev A 599

$TIME String Function
The date and time are output in the format dd-mmm-yy hh:mm:ss, in which the
individual elements are defined as follows:

dd The day of the month (1 to 31)

mmm The month, specified as a 3-letter abbreviation (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yy The year, where 80 to 99 represent 1980 through 1999,
respectively, and 00 to 79 represent 2000 through 2079,
respectively.

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59)

NOTE: The $TIME function converts passed arguments (instead of
the system time) when either the date or the time parameter is
supplied. However, the function always tries to generate a string
representation of both parameters. You get a strange date if you do
not provide a date value. The time substring will be 00:00:00 if you
do not specify a time value. The following expressions can be used
to return only the date and the time, respectively:

$date = $MID($TIME(date,),1, 9)

$time = $MID($TIME(,time),11, 8)

Related Keyword

TIME (monitor command, program instruction, and real-valued
function)
600 V+ Language Reference Guide, Rev A

Program Instruction TIMER
Syntax

TIMER-I

TIMER timer_number = time_value

Function

Set the specified system timer to the given time value.

Usage Considerations

Times measured by V+ are precise only to within 1 millisecond (0.001 seconds);
shorter times cannot be measured.

System timer number 0 is the system clock and cannot be set with this instruction.

Parameters

timer_number Real-valued expression interpreted as the (integer) number of
the timer to be set. The value must range from 1 to 15.

timer_value Real-valued expression interpreted as the time, in seconds, to
which the timer is set. This parameter may specify fractions of a
second and may be negative.

Details

When this instruction is executed, the specified timer is immediately set to the
time specified. From then on, its value increases with time at the rate of 1 count
per second. The timer will begin to lose accuracy after 4.7 hours have elapsed.

Use the TIMER real-valued function to read the instantaneous value of a system
timer.

Example

The following examples show two ways to wait for a certain amount of time,
using the TIMER instruction and real-valued function. Each example first sets the
timer, and then waits until the timer value has changed by the delay period:

TIMER 1 = 0 ;Set timer to zero

WAIT TIMER(1) > delay ;Wait until timer > delay

TIMER 1 = -delay ;Set timer to -delay

WAIT TIMER(1) > 0 ;Wait until timer > zero

Related Keyword

TIMER (real-valued function)
V+ Language Reference Guide, Rev A 601

TIMER Real-Valued Function
Syntax

TIMER-R

TIMER (timer_number)

Function

Return the current time value (in seconds) of the specified system timer.

Usage Considerations

Times measured by V+ are precise only to within 1 millisecond (0.001 seconds);
shorter times cannot be measured. The timer will begin to lose accuracy after 4.7
hours have elapsed.

Parameter

timer_number Real value, variable, or expression (interpreted as an integer)
that specifies the number of the timer to be read. The value must
be in the range –2 to 15.

Details

The TIMER function can be used to read a system timer at any time. The
timer_number parameter selects which of the timers will be read.

Timers 1 through 15 can be set with the TIMER program instruction. Then, the
value read later will represent the sum of the value last set with a TIMER
instruction and the elapsed time (in seconds) since that instruction was executed.
(See the example below.)

Timer # 0 is the system clock and records the number of seconds that have elapsed
since the V+ system was started. (Timer number 0 cannot be set with the TIMER
instruction.)

Before a setable timer is set with a TIMER instruction, it has the same value as
timer number 0.

Timer # –1 provides a special interpretation of timer number 0. The function
TIMER(–1) returns a 24-bit value that represents an integer value of
16-millisecond ticks (not seconds) of the system timer. Since the value from this
TIMER function ranges from 0 to ^HFFFFFF, it can be used as a continuous,
full-precision timer. Times greater than 74.5 hours will begin to lose accuracy.

Timer # –2 provides another special interpretation of timer number 0. The
function TIMER(–2) returns a 24-bit value that represents an integer value of
1-millisecond ticks (not seconds) of the system timer. Since the value from this
TIMER function ranges from 0 to ^HFFFFFF, it can be used as a continuous,
full-precision timer. Times greater than 4.7 hours will begin to lose accuracy.
602 V+ Language Reference Guide, Rev A

Real-Valued Function TIMER
Timer #–3 provides the time in seconds since system startup. The function
TIMER(–3) returns this time as a double-precision value. The time resolution is 1
millisecond. Because double-precision values have 52 bits of precision, the timer
can run for more than 100,000 years before any precision is lost.

Example

The following example shows how the TIMER instruction and real-valued
function can be used to time the execution of a subroutine:

TIMER 1 = 0 ;Set timer to zero
CALL test.routine() ;Call the subroutine
TYPE "Elapsed time =", TIMER(1)," seconds"

Related Keyword

TIMER (program instruction)
V+ Language Reference Guide, Rev A 603

TOOL Program Instruction
Syntax

TOOL-I

TOOL transformation_value

Function

Set the internal transformation used to represent the location and orientation of
the tool tip relative to the tool mounting flange of the robot.

Usage Considerations

The TOOL instruction causes a BREAK in continuous-path motion.

The TOOL instruction can be executed by any program task so long as the robot
selected by the task is not attached by any other task. The instruction applies to
the robot selected by the task.

If the V+ system is not configured to control a robot, executing the TOOL
instruction will cause an error.

The word tool cannot be used as a program name or variable name.

Parameter

transformation_value Optional transformation variable or function, or
compound transformation expression, that will be the
new tool transformation. If the transformation value is
omitted, the tool is set to NULL.

Details

Causes a BREAK in the robot continuous-path motion and sets the value of the
tool transformation equal to the transformation value given.

Refer to the monitor TOOL command for a complete description of the effect of
this instruction. (See the V+ Language User’s Guide for information on how to
define a tool transformation.)

Related Keywords

SELECT (program instruction and real-valued function)

TOOL (monitor command and transformation function)
604 V+ Language Reference Guide, Rev A

Transformation Function TOOL
Syntax

TOOL-T

TOOL

Function

Return the value of the transformation specified in the last TOOL command or
instruction.

Usage Considerations

The command LISTL TOOL can be used to display the current tool setting.

The TOOL function returns information for the robot selected by the task
executing the function.

If the V+ system is not configured to control a robot, use of the TOOL function will
not generate an error due to the absence of a robot. However, the information
returned by the function may not be meaningful.

The name tool cannot be used as a program name or variable name.

Examples

Display the value of the current TOOL transformation from the system prompt:

LISTL TOOL

Save the value of the current TOOL:

SET save.tool = TOOL

Related Keywords

SELECT (program instruction and real-valued function)

TOOL (monitor command and transformation function)
V+ Language Reference Guide, Rev A 605

TPS Real-Valued Function
Syntax

TPS-R

TPS

Function

Return the number of ticks of the system clock that occur per second (Ticks Per
Second).

Usage Considerations

The name tps cannot be used as a program name or variable name.

Example

The following example shows how an event can be tested each system clock tick,
with a time-out of 5 seconds, using the TPS function and the WAIT instruction.

FOR ticks = 1 TO 5*TPS ;Loop 5*ticks/sec times
IF SIG(1001) THEN

TYPE "Signal ON"
HALT

END

WAIT ;Wait until next clock tick

END

TYPE "Time-out while waiting for signal 1001"
606 V+ Language Reference Guide, Rev A

System Switch TRACE
Syntax

TRACE-S

... TRACE

Function

Control the display of program steps on the system terminal during program
execution.

Usage Considerations

Protected programs will not generate trace output.

TRACE applies only to program task #0. Thus, this switch does not affect
programs executed as other program tasks.

Details

This system switch enables or disables a special mode of execution for program
task #0, in which each program step is displayed on the system terminal before it
is executed. This is useful while developing a program for checking the logical
flow of execution.

Initially this switch is disabled.

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

EXECUTE (monitor command)

SSTEP (monitor command)

SWITCH (monitor command, program instruction, and real-valued
function)

XSTEP (monitor command)

See the V+Operating System Reference Guide for details on monitor commands.
V+ Language Reference Guide, Rev A 607

TRANS Transformation Function
Syntax

TRANS-T

TRANS (X_value, Y_value, Z_value, y_value, p_value, r_value)

Function

Return a transformation value computed from the given X, Y, Z position
displacements and y, p, r orientation rotations.

Parameters

If any parameter is omitted, its value is taken to be zero.

Details

The input parameter values are used to compute a transformation value that can
be assigned to a location variable or used in a compound transformation or
motion request.

Examples

If r is the radius of a circle and angle is the angle of rotation about the circle, then
the transformation:

TRANS(r*COS(angle), r*SIN(angle), 0, 0, 0, 0)

will yield points on that circle.

If frame is a transformation defining the position of the center of the circle and the
plane in which it lies, the following program segment will move the robot tool
point around the circle in steps of 1 degree.

FOR angle = 0 TO 360 −1
MOVE frame:TRANS(r*COS(angle), r*SIN(angle), 0, 0, 0, 0)

END

X_value
Y_value
Z_value

Optional expressions for the X, Y, and Z displacement
components, respectively.

y_value
p_value
r_value

Optional expressions for the yaw, pitch, and roll orientation
components, respectively.
608 V+ Language Reference Guide, Rev A

Transformation Function TRANS
Related Keywords

DECOMPOSE (program instruction)

DX DY DZ (real-valued functions)

#PPOINT (precision-point function)

SET (program instruction)

SHIFT (program instruction)

TRANSB (transformation function)
V+ Language Reference Guide, Rev A 609

TRANSB Transformation Function
Syntax

TRANSB-T

TRANSB (string , first_char)

Function

Return a transformation value represented by a 48-byte string.

Parameters

string String expression that contains the 48 bytes to be converted.

first_char Optional real-valued expression that specifies the position of the
first of the 48 bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first 48
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second through 49th bytes
are extracted. An error is generated if first_char specifies 48
bytes that are beyond the end of the input string.

Details

Forty-eight sequential bytes of the given string are interpreted as being a set of
twelve single-precision (32-bit) floating-point numbers in the IEEE standard
format. (See the description of the FLTB function for details of the floating-point
format.) The twelve values are interpreted as the components of a 3-by-4
transformation matrix, stored by column.

The main use of this function is to convert the binary representation of a
transformation value from an input data record to values that can be used
internally by V+.

Related Keywords

FLTB (real-valued function)

TRANS (transformation function)

$TRANSB (string function)
610 V+ Language Reference Guide, Rev A

String Function $TRANSB
Syntax

$TRANSB-$

$TRANSB (transformation)

Function

Return a 48-byte string containing the binary representation of a transformation
value.

Parameter

transformation Transformation variable or function (or compound
transformation) that defines the value to be converted to a
string value.

Details

This function converts the given transformation value to the binary
representation of its twelve (internal) components. The twelve values defining the
transformation are the components of a 3-by-4 transformation matrix, stored by
column. Each of the twelve 32-bit values is packed as four successive 8-bit
characters in a string, resulting in a total of 48 characters. (The IEEE
single-precision standard floating-point format is used for the conversion. See the
FLTB real-valued function for a more detailed description of IEEE floating-point
format.)

The main use of this function is to convert a transformation value to its binary
representation in an output record of a data file.

Related Keywords

$FLTB (string function)

TRANSB (transformation function)
V+ Language Reference Guide, Rev A 611

TRUE Real-Valued Function
Syntax

TRUE-R

... TRUE ...

Function

Return the value used by V+ to represent a logical true result.

Usage Considerations

The word true cannot be used as a program name or variable name.

Details

This named constant is useful for situations where true and false conditions need
to be specified. The value returned is –1.

Example

The following program loop will execute continuously until the subroutine
process returns a TRUE value for the real variable error:

DO

CALL process(error)

UNTIL error == TRUE

The program loop below will execute indefinitely:

WHILE TRUE DO

CALL move.part()

END

Related Keywords

FALSE (real-valued function)

ON (real-valued function)
612 V+ Language Reference Guide, Rev A

String Function $TRUNCATE
Syntax

$TRUNCATE-$

$TRUNCATE (string)

Function

Return all characters in the input string until an ASCII NUL (or the end of the
string) is encountered.

Parameter

string String variable, constant, or expression that specifies the string to
be truncated.

Details

This function is similar to performing a $DECODE operation with an ASCII NUL
(^H00) specified as the break character. $TRUNCATE differs from such a
$DECODE operation in two ways:

• The input can be a string expression.

• The input string is not modified.

Because of its simplicity, the $TRUNCATE function executes much faster than the
$DECODE function.

Example

The instruction below sets the value of the string variable $substring equal to
abcdef. (Obviously, this is an artificial situation, since one would never want to
perform a $TRUNCATE operation when the result is apparent from the input.
However, it is presented to illustrate that this function can scan an arbitrary string
expression and return the first substring delimited by a NUL.)

$substring = $TRUNCATE("abcdef"+$CHR(0)+"ghijk")

Related Keyword

$DECODE (string function)
V+ Language Reference Guide, Rev A 613

TYPE Program Instruction
Syntax

TYPE-I

TYPE output_specification, ..., output_specification

Function

Display the information described by the output specifications on the system
terminal. A blank line is output if no argument is provided.

Usage Considerations

No output is generated if the MESSAGES system switch is disabled.

Program execution normally waits for the output to be completed before
continuing. There is an output specification described below that can be used to
prevent waiting if it is undesirable for execution to be delayed.

The output from a single TYPE instruction cannot exceed 512 characters. (The /S
format control specifier described below can be used to output longer messages.)

Parameter

An output_specification can consist of any of the following components (in
any order) separated by commas:

1. A string expression.

2. A real-valued expression, which is evaluated to determine a value to be
displayed.

3. Format-control information, which determines the format of the output
message.

Details

The following format-control specifiers can be used to control the way in which
numeric values are displayed. These settings remain in effect for the remainder of
the instruction, unless another specifier is used to change their effect.

For all these display modes, if a value is too large to be displayed in the specified
field width, the field is filled with asterisk characters (*).

 /D Use the default format, which displays values to full precision
with a single leading space. (Scientific notation is used for values
greater than or equal to 1,000,000.)

NOTE: The following format specifications accept a zero as the
field width (n). That causes the actual field size to vary to fit the
value, and causes all leading spaces to be suppressed. That is useful
when a value is displayed within a line of text or at the end of a line.
614 V+ Language Reference Guide, Rev A

Program Instruction TYPE
/En.m Output values in scientific notation (for example, –1.234E+2) in
fields n spaces wide with m digits the fractional parts. (If n is not
0 [see the note above], its value must be at least five larger than
the value of m.)

/Fn.m Output values in fixed-point notation (for example, –123.4) in
fields n spaces wide, with m digits in the fractional parts.

/Gn.m Output values in F format with m digits in the fractional parts if
the values are larger than 0.01 and will fit in fields n spaces wide.
Otherwise use /En.m format.

/Hn Output values as hexadecimal integers in fields n spaces wide.

/In Output values as decimal integers in fields n spaces wide.

/On Output values as octal integers in fields n spaces wide.

The following specifiers can be used to control the appearance of the output.

 /Cn Output the characters carriage return (CR) and line feed (LF) n
times. This will result in n blank lines if the control specifier is at
the beginning or end of an output specification; otherwise, n–1
blank lines will result.

/S Do not output a carriage return (CR) or line feed (LF) after
displaying the current line.

/Un Move the cursor up n lines. This will work correctly only if the
TERMINAL parameter is correctly set for the terminal being
used.

/Xn Output n spaces.

The following specifiers can be used to perform control functions.

/B Beep the terminal (nongraphics-based systems only).

/N Initiate output without having program execution wait for its
completion. A second output request will force program
execution to wait for the first output if it has not yet completed.
V+ Language Reference Guide, Rev A 615

TYPE Program Instruction
Example

Assume that the real variable i has the value 5 and that array element point[5] has
the value 12.666666. Then, the instruction

TYPE /B, "Point", i, " = " /F5.2, point[i]

will sound a beep at the system terminal (/B) and display the message

Point 5 = 12.67

If point[5] has the value 1000, the instruction will display

Point 5 = *****

because the value (1000.00) is too large to be displayed in the specified format
(/F5.2). (The instruction would be able to display any value for point[5] if the
format specification were /F0.5.)

Related Keywords

$ENCODE (string function)

MESSAGES (system switch)

PROMPT (program instruction)

WRITE (program instruction)
616 V+ Language Reference Guide, Rev A

Program Instruction UNIDIRECT
Syntax

UNIDIRECT-I

UNIDIRECT directions[index]

Function

Specify that a joint is turning only in a single direction.

Usage Considerations

This instruction currently applies only to the JTS (joints) robot device module.

Parameter

directions A real-valued array that contains directional information for
each configured joint in the robot. The element values are
interpreted as follows:

index Optional integer value identifying the array element that applies
to joint #1. Zero is assumed if the index is omitted.

Details

For joints that are configured for continuous turning, this instruction can be used
to specify when the joint is turning only in a single direction. Specifying
unidirectional motion is important for synchronizing motion planning and the
automatic rollover correction performed by the trajectory generator.

If a joint is specified as currently moving only in a positive direction, the motion
planning routines automatically correct the specified destination joint angle such
that the change in joint position (for any single motion) is less than the rollover
amount. This eliminates the problem that can occur if a user program is
generating a series of incremental motions and the trajectory generator
asynchronously corrects the joint’s position for rollover.

Element
value Interpretation

1 The joint is configured for unidirectional travel in a
positive joint-angle direction.

–1 The joint is configured for unidirectional travel in a
negative joint-angle direction.

0 The joint has no special processing for unidirectional
motion. This is the default state.
V+ Language Reference Guide, Rev A 617

UNIDIRECT Program Instruction
Once unidirectional mode is set, it remains in effect until another UNIDIRECT
instruction is executed or the system is rebooted.

Example

Assume the following conditions:

1. Joint #2 is configured to roll over every 3600 degrees.

2. The joint has been configured for positive unidirectional motion with these
instructions:

FOR jt = 1 TO ID(7, 8) ;Set joints 1, 2, ...
dir_array[jt] = 0 ;to default state

END

dir_array[2] = 1 ;Joint 2 isunidirectional

UNIDIRECT dir_array [1] ;Apply the settings

3. The previous motion left the joint positioned at 3600 degrees.

4. The trajectory generator rolls the internal joint position back to 0 degrees. (The
joint itself does not move.)

5. The next motion attempts to move the joint to 3700 degrees.

Given these conditions, the motion planner interprets the motion command in
step 5 as though it were a command to the position 100 degrees.

By comparison, if the joint is not configured for unidirectional motion, the motion
planner interprets the request to move the joint to 3700 degrees (step 5 above) as a
request for a 3700-degree motion. That is, the joint moves 10 revolutions plus 100
degrees.
618 V+ Language Reference Guide, Rev A

String Function $UNPACK
Syntax

$UNPACK-$

$UNPACK (string_array[index], first_char, num_chars)

Function

Return a substring from an array of 128-character string variables.

Parameters

string_array String array variable from which the substring is to be extracted.
It is assumed that each string within the array is defined and is
128 characters long.

index Optional integer value(s) that identifies the first array element to
be considered. The first_char value is interpreted relative to
the element specified by this index.

If no index is specified, element zero is assumed.

first_char Real-valued expression that specifies the position of the first
character of the substring within the string array. A value of 1
corresponds to the first character of the specified string array
element. This value must be greater than zero.

The value of first_char can be greater than 128. In that case
the array element accessed will follow the element specified in
the function call. For example, a value of 130 corresponds to the
second character in the array element following that specified by
index .

num_chars Real-valued expression that specifies the number of characters to
be returned by the function. This value can range from 0 to 128.

Details

This function extracts a substring from an array of strings. Substrings are
permitted to overlap two string array elements. For example, a 10-character
substring whose first character is the 127th character in element [3] will be
composed of the last two characters in element [3] followed by the first eight
characters of element [4].

In order to efficiently access the string array, this function assumes that all of the
array elements are defined and are 128 characters long. For multidimensional
arrays, only the right-most array index is incremented to locate the substring.
Thus, for example, element [2,3] is followed by element [2,4].
V+ Language Reference Guide, Rev A 619

$UNPACK String Function
Example

The instruction below sets the value of the string variable $substring equal to a
substring extracted from the string array $list[]. The substring is specified as
starting in element $list[3]. However, since the first character is to be number 130,
the 11-character substring will actually consist of the second through 12th
characters of $list[4]:

$substring = $UNPACK($list[3], 130, 11)

Related Keywords

$MID (string function)

PACK (program instruction)
620 V+ Language Reference Guide, Rev A

Program Instruction UNTIL
Syntax

UNTIL-I

UNTIL expression

Function

Indicate the end of a DO ... UNTIL control structure and specify the expression
that is evaluated to determine when to exit the loop. The loop continues to be
executed until the expression value is nonzero.

Usage Considerations

UNTIL must be used in conjunction with a DO control structure. See the
description of the DO instruction for details.

Parameter

expression Real-valued expression, constant, or relation that is interpreted
as either TRUE (nonzero) or FALSE (zero).

Details

If the expression in the UNTIL statement is zero, program execution continues
with the statement following the matching DO statement. If the expression is
nonzero, program execution continues with the statement following the UNTIL
statement.

Example

The following example is a loop that continues to prompt the operator to enter a
number until he/she enters one that is greater than or equal to zero:

DO

PROMPT "Enter a positive number: ", number

UNTIL number >= 0

Related Keyword

DO (program instruction)
V+ Language Reference Guide, Rev A 621

UPPER System Switch
Syntax

UPPER-S

... UPPER

Function

Control whether or not the case of each character is ignored when string
comparisons are performed.

Details

When this switch is enabled and two strings are compared using the operators <,
<=, ==, <>, >=, or >, all lowercase characters are treated as though they were
uppercase characters. That is, when UPPER is enabled, both of the following
comparisons will yield a TRUE value:

"a" == "A" and "A" == "A"

When UPPER is disabled, the case of characters is considered during string
comparisons. Then, for example, the comparison on the left above would result in
a FALSE value, while the comparison on the right would yield a TRUE value.

By default, UPPER is enabled, so that string comparisons are performed without
considering the case of the characters.

Related Keywords

DISABLE (monitor command and program instruction)

ENABLE (monitor command and program instruction)

SWITCH (monitor command, program instruction, and real-valued
function)
622 V+ Language Reference Guide, Rev A

Real-Valued Function VAL
Syntax

VAL-R

VAL (string)

Function

Return the real value represented by the characters in the input string.

Usage Considerations

The input string can be a number in scientific notation.

The input string can contain leading number base indicators (^H, for example).

Any character that cannot be interpreted as part of a number or as a base indicator
marks the end of the characters that are converted.

Parameter

string String constant, variable, or expression.

Examples

VAL("123 Elm Street") ;Returns the real value 123

VAL("1.2E-2") ;Returns the real value 0.012

VAL("^HFF") ;Returns the real value 255

Related Keywords

ASC (real-valued function)

$ENCODE (string function)

FLTB (real-valued function)

INTB (real-valued function)

LNGB (real-valued function)
V+ Language Reference Guide, Rev A 623

VALUE Program Instruction
Syntax

VALUE-I

VALUE expression_list:

Function

Indicate the values that a CASE statement expression must match in order for the
program statements immediately following to be executed.

Usage Considerations

VALUE must be part of a CASE control structure. See the description of the CASE
instruction for details.

Parameter

expression_list List of real values or expressions separated by commas.

Related Keywords

ANY (program instruction)

CASE (program instruction)
624 V+ Language Reference Guide, Rev A

Program Instruction WAIT
Syntax

WAIT-I

WAIT condition

Function

Put the program into await loop until the condition is TRUE.

Usage Considerations

An executing WAIT instruction in an application program can be canceled by
using the PROCEED monitor command. WAIT can consume large amounts of
CPU time.

Parameter

condition Optional real value, variable, or expression that is tested for a
TRUE (nonzero) or FALSE (zero) value.

Details

WAIT will suspend program execution until a desired condition exists. For
example, the state of one or more external signals can be used for the condition for
continuation.

If no condition is supplied, program execution is suspended until the next
system cycle. System cycles occur at 16 millisecond intervals. A WAIT with no
condition is especially useful in programs that need to perform an operation
only once each system cycle.

If the WAIT condition is FALSE, V+ enters an internal loop, checking the
condition and performing RELEASEs. It is equivalent to:

WHILE NOT condition DO
RELEASE

END

NOTE: If two high-priority tasks perform releases in the same time
slice, they pass control back and forth to each other, effectively
locking out any lower-priority tasks in the slice.

If you need to guarantee at least a 16-millisecond delay (for example, while
manipulating signals monitored by REACT or REACTI), you should execute two
consecutive WAIT instructions (with no arguments).
V+ Language Reference Guide, Rev A 625

WAIT Program Instruction
Examples

Stop program execution until external input signal #1001 is on and #1003 is off:

WAIT SIG(1001,–1003)

Stop program execution until the value of system timer #1 exceeds 10 (seconds).
(This is a convenient way to introduce a delay in program execution.)

WAIT TIMER(1) > 10

Related Keywords

RELEASE (program instruction)

WAIT.EVENT (program instruction)

WAIT.START (monitor command, see the V+Operating System Reference
Guide)
626 V+ Language Reference Guide, Rev A

Program Instruction WAIT.EVENT
Syntax

WAIT.EVENT-I

WAIT.EVENT mask, timeout

Function

Suspend program execution until a specified event has occurred, or until a
specified amount of time has elapsed.

Usage Considerations

If a WAIT.EVENT instruction in an application program has execution
suspended, the WAIT.EVENT can be canceled with the PROCEED monitor
command.

Parameters

mask Optional real value, variable, or expression that specifies the
events for which to wait. The value is interpreted as a sequence
of bit flags, as detailed below. (All the bits are assumed to be
clear if no mask value is specified.)

Bit 1 (LSB) Wait for I/O (mask value = 1)

If this bit is set, the desired event is the completion of any
input/output operation by the current task.

timeout Optional real value, variable, or expression that specifies the
number of seconds to wait. No time-out processing is performed
if the parameter is omitted, or the value is negative or zero (see
below for more details).

Details

This program instruction is used to suspend program execution until a specified
event has occurred, or until a specified amount of time has elapsed. The program
waits efficiently, because the occurrence of events and passage of time are checked
by the V+ operating system without the program task executing. (See the example
below for a comparison with the WAIT instruction.)

When the program resumes execution after a WAIT.EVENT instruction, the
GET.EVENT function could be used to check if the desired event has actually
occurred. This is the only way to distinguish between the occurrence of an event
and a time-out (if one was specified).

If the mask parameter has the value zero (or is omitted), this instruction becomes
a very efficient way to suspend program execution for the time period specified
by the timeout parameter.
V+ Language Reference Guide, Rev A 627

WAIT.EVENT Program Instruction
If the timeout parameter is omitted (or has a negative or zero value), this
instruction suspends program execution indefinitely until the specified event
occurs.

If both mask andtimeout are zero or omitted, this instruction does nothing.

WAIT.EVENT 1 waits for an event to be signaled for a task. Events are signaled
by either a SET.EVENT program instruction, or by a pending no-wait I/O
instruction when the I/O operation is completed.

In general, there is no way to tell why the event was set. It may have been set by
an I/O operation, a SET.EVENT program instruction, or an internal system
process (such as a triggered REACT condition). For this reason, it is necessary to
test for the desired condition after executing the WAIT.EVENT. For I/O, repeat
the no-wait I/O operation or use the IOSTAT() function. For SET.EVENT issued
by other tasks, define and check a global variable.

To avoid race conditions where the event is set or cleared between testing and
waiting, use the following loop in the waiting task (the statement order is critical).

1. CLEAR.EVENT

2. Issue no-wait I/O if appropriate

3. Check I/O status or check global variable.

4. Exit loop if operation complete.

5. WAIT.EVENT 1

6. GOTO step 1

If using SET.EVENT to signal another task, use the following sequence (the
statement order is critical).

1. Set the global variable

2. SET.EVENT for the appropriate task.
628 V+ Language Reference Guide, Rev A

Program Instruction WAIT.EVENT
Examples

Suspend program execution (efficiently) for 5.5 seconds. In contrast, it is not
efficient to use a WAIT instruction in conjunction with a system timer (as with the
instructionWAIT TIMER(1) > 5.5), because the program task continuously
executes, checking the value of the system timer:

WAIT.EVENT , 5.5

Suspend program execution until the completion of any system input/output, or
until another program task sets events using the SET.EVENT instruction:

WAIT.EVENT 1

Suspend program execution for five seconds, until the completion of any system
input/output, or until another program task uses the SET.EVENT instruction to
set events. (The current program should use the GET.EVENT function to decide
whether an event has occurred or five seconds has elapsed.)

WAIT.EVENT 1, 5

Related Keywords

CLEAR.EVENT (program instruction)

GET.EVENT (real-valued function)

INT.EVENT (program instruction)

SET.EVENT (program instruction)
V+ Language Reference Guide, Rev A 629

WHILE Program Instruction
Syntax

WHILE-I

WHILE condition DO

Function

Initiate processing of a WHILE structure if the condition is TRUE or skipping of
the WHILE structure if the condition is initially FALSE.

Usage Considerations

Every WHILE statement must be part of a complete WHILE ... DO ... END
structure.

Parameter

condition Real-valued expression that is evaluated and tested for a TRUE
(nonzero) or FALSE (zero) value.

Details

This structure provides another means for executing a group of instructions until
a control condition is satisfied (compare it with the DO structure). The complete
syntax for the WHILE structure is

WHILE condition DO

group_of_steps

END

Processing of the WHILE structure can be described as follows:

1. Evaluate the condition . If the result is FALSE, proceed to item 4.

2. Execute the group_of_steps .

3. Return to item 1.

4. Continue program execution at the first instruction after the END step.

Unlike the DO structure described elsewhere, the group of instructions within the
WHILE structure may not be executed at all. That is, if the condition has a FALSE
value when the WHILE is first executed, then the group of instructions will not be
executed at all.

When this structure is used, it is assumed that some action occurs within the
group of enclosed instructions that will change the result of the logical expression
from TRUE to FALSE when the structure should be exited.
630 V+ Language Reference Guide, Rev A

Program Instruction WHILE
Example

The following example uses a WHILE structure to monitor a combination of input
signals to determine when a sequence of motions should be stopped. In this
example, if the signal from either part feeder becomes zero (assumed to indicate
the feeder is empty), then the repetitive motions of the robot will stop and the
program will continue.

Note that if either feeder is empty when the WHILE structure is first encountered,
then execution will immediately skip to step 27:

20 feeder.1 = 1037
21 feeder.2 = 1038
22 .
23 WHILE SIG(feeder.1, feeder.2) DO
24 CALL move.part.1()
25 CALL move.part.2()
26 END
27
28 ; Either feeder #1 or feeder #2 is empty
29 .
30 .
31 .

Related Keywords

DO (program instruction)

END (program instruction)

EXIT (program instruction)

NEXT (program instruction)
V+ Language Reference Guide, Rev A 631

WINDOW Program Instruction
Syntax

WINDOW-I

WINDOW %belt_var = location, location , program, priority

Function

Set the boundaries of the operating region of the specified belt variable for
conveyor tracking.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The BELT switch must be enabled for this instruction to be executed.

The belt variable referenced must have already been defined using a DEFBELT
instruction.

Parameters

%belt_var Name of the belt variable whose window is being established.

location Compound transformation that, together with the direction of
the belt, defines one boundary of the operating window along
the belt.

The window boundaries are planes that are perpendicular to the
direction of belt travel and include the positions specified by the
two transformations. The order of the transformations is not
important—this instruction automatically determines which
transformation represents the upstream boundary and which is
for the downstream boundary.

program Optional program that is called if a window violation occurs
while tracking the belt, subject to the specified priority level and
the current priority level of the system.

priority Optional priority level of the window violation program. If no
priority is specified, a priority of 1 is set.

Details

The operating window defined by this instruction is used both at motion
planning time and motion execution time to determine if the destination of the
motion is within acceptable limits.
632 V+ Language Reference Guide, Rev A

Program Instruction WINDOW
When a motion is being planned, the destination of the motion is compared
against the operating window. If a window violation occurs, the window
violation program is ignored and a program error may be generated depending
upon the setting of the BELT.MODE parameter and the nature of the error.

When a motion relative to the belt is being executed or after the motion is
completed and the robot continues to track the destination, the destination is
compared against the window every 16 milliseconds. If a window violation
occurs and a program has been specified, the program is automatically invoked
subject to its priority level, and the robot continues to track the belt and follow its
continuous path motion. (The presumption is made that the specified program
will direct the robot as required to recover from the window violation.)

If no program has been specified, the robot is immediately stopped and a window
violation program error is signaled. If a REACTE has been posted, the REACTE
routine will be activated. Otherwise, program execution will be terminated.

Example

The working window for the belt variable %belt1 is defined by locations win1 and
win2. If a window violation ever occurs while the robot is tracking the belt, the
program belt.error will be executed as a subroutine:

WINDOW %belt1 = win1, win2, belt.error

Related Keywords

BELT (system switch and real-valued function)

BELT.MODE (system parameter)

BSTATUS (real-valued function)

DEFBELT (program instruction)

SETBELT (program instruction)

WINDOW (real-valued function)
V+ Language Reference Guide, Rev A 633

WINDOW Real-Valued Function
Syntax

WINDOW-R

WINDOW (transformation , time, mode)

Function

Return a value that indicates where the location described by the belt-relative
transformation value is relative to the predefined boundaries of the working
range on a moving conveyor belt.

Usage Considerations

This option is available only if your Adept system is equipped with the V+
Extensions option.

The BELT system switch must be enabled before this function can be used.

The belt variable referenced in the compound transformation must have already
been defined using a DEFBELT instruction.

Parameters

transformation Compound transformation value that is defined relative to a
belt. That is, the compound transformation must begin with a
belt variable.

time Optional real-valued expression that specifies the time to look
ahead when the transformation is evaluated. That is, the result of
the function will be the value predicted to apply time seconds in
the future, based on the current belt position and speed. This
parameter is used to test if a motion can be correctly completed
within an anticipated time period.

A time of zero (the default value) tests the instantaneous value of
the location. Negative times are converted to 0 and times greater
than 32,768/60 seconds are set equal to 32,768/60.

mode Optional real-valued expression that specifies whether the result
of the function represents a distance inside or outside the belt
window (see below).
634 V+ Language Reference Guide, Rev A

Real-Valued Function WINDOW
Details

The value returned, which is a distance in millimeters, should be interpreted as
described below. (Note that the definitions ofupstream anddownstream depend
on the value of the BELT.MODE system parameter.)

1. If the value of the mode expression is less than or equal to zero (the default),
the value returned is interpreted as follows (see Figure 2-6):

0 The location is outside the window.

<0 The location is inside the window, closest to the downstream window
boundary; the distance is ABS(value_returned).

>0 The location is inside the window, closest to the upstream window
boundary; the distance to the boundary is the returned value.

Figure 2-6. WINDOW Function for Mode Less Than or Equal to Zero

Upstream
Window
Boundary

Downstream
Window
Boundary

"distance" < 0 "distance" > 0

"distance" = 0
V+ Language Reference Guide, Rev A 635

WINDOW Real-Valued Function
2. If the value of the mode expression is greater than zero, the value returned is
interpreted as follows (see Figure 2-7):

0 Indicates the location is within the window.

<0 Indicates the location is upstream of the upstream window boundary;
the distance is ABS(value_returned).

>0 Indicates the location is downstream of the downstream window
boundary; the distance is the value returned.

Figure 2-7. WINDOW Function for Mode Greater Than Zero

Note that the value returned by the WINDOW function always becomes more
positive as the test location moves downstream (except for the discontinuity at the
middle of the window when the mode value is less than or equal to zero).

Upstream
Window
Boundary

Downstream
Window
Boundary

"distance" < 0 "distance" > 0

"distance" = 0
636 V+ Language Reference Guide, Rev A

Real-Valued Function WINDOW
Example

distance = WINDOW(%belt1:pick.up, 2, 1)

The distance will be nonzero if in two seconds the location will be outside the
operating window for %belt1. Otherwise, distance will be zero if the location will
be within the window.

Related Keywords

BELT (system switch and real-valued function)

BELT.MODE (system parameter)

BSTATUS (real-valued function)

DEFBELT (program instruction)

SETBELT (program instruction)

WINDOW (program instruction)
V+ Language Reference Guide, Rev A 637

WRITE Program Instruction
Syntax

WRITE-I

WRITE (lun , record_num, mode) format_list

Function

Write a record to an open file, or to an attached device that is file oriented. For an
AdeptNet device, write a string to an attached and open TCP connection.

Usage Considerations

The device to receive the output must have been attached. If the output is to a
disk file, the file must have been opened with an FOPENA or FOPENW
instruction.

Program execution waits for the write operation to complete unless there is a/N
format specifier in the format list.

The AdeptNet aspects of this instruction apply only to Adept MV controllers with
the AdeptNet Ethernet option and the AdeptTCP/IP Protocol Access option
license.

Parameters

lun Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_num Optional real-valued expression that represents the number of
the record to be written. This should be 0 (the default value) to
write the next sequential record. If the value is not zero, the
record is written in random-access mode (which requires that
the records all have the same length). In random-access mode,
records are numbered from one (to a maximum of 16,777,216).

When accessing the TCP device with a server program, this
parameter is an optional real value, variable, or expression
(interpreted as an integer) that defines the client handle. For
more information, refer to documentation for the READ
instruction and to the AdeptNet User’s Guide.

mode Optional real-valued expression that represents the mode of
operation. At present, this value is not used and can be omitted.
638 V+ Language Reference Guide, Rev A

Program Instruction WRITE
format_list Consists of a list of output variables, string expressions, and
format specifiers used to create the output record. The format list
is processed exactly like an output specification for the TYPE
instruction.

When accessing the TCP device, you can include the /N
specifier to prevent the V+ system from waiting for a write
acknowledgment.

Details

This is a general-purpose data output instruction that writes a record to a
specified logical unit. A record can contain an arbitrary list of characters, but must
not exceed 512 characters in length.

For files that are opened in fixed-length record mode, this instruction appends
NUL characters to the output record if it is shorter than the file records.

When accessing the TCP/IP device, the record_num parameter enables a server
to communicate with multiple clients on a single logical unit. Handles are
allocated when a client connects to the server and then deallocated when a client
disconnects. During a connection the READ instruction that receives data from
the TCP logical unit returns the client handle. A WRITE instruction then can use
the handle value to send data to the corresponding client. Refer to the example
program in the AdeptNet User’s Guide.

Examples

You can write a message to the manual control pendant with the following
instructions:

ATTACH (1) ;Attach the control pendant

WRITE (1) $message ;Output message to pendant

DETACH (1) ;Detach the pendant

A file with variable-length records can be written to the system disk drive with
instructions such as the following:

ATTACH (dlun, 4) "DISK" ;Attach the disk interface

FOPENW (dlun) "A:testfile.dat";Open a file on drive "A"

FOR i = 0 TO LAST($lines[]) ;Loop for all the elements
WRITE (dlun) $lines[i] ;to be written

END

FCLOSE (dlun) ;Close the file
DETACH (dlun) ;Release the disk interface
V+ Language Reference Guide, Rev A 639

WRITE Program Instruction
Attach to serial line 1 and write a greeting:

ATTACH (slun, 4) "SERIAL:1"

WRITE "Hello from serial line 1"

Write the string $str to the client defined by the handle, which must have been
defined previously when the a message was received. Do not wait for
acknowledgment:

WRITE (lun, handle) $str, /N

Related Keywords

ATTACH (program instruction)

DETACH (program instruction)

FCLOSE (program instruction)

FEMPTY (program instruction)

FOPEN_ (program instructions)

IOSTAT (real-valued function)
640 V+ Language Reference Guide, Rev A

Operator XOR
Syntax

XOR-I

... value XOR value ...

Function

Perform the logical exclusive-OR operation on two values.

Details

The XOR operator operates on two values, resulting in their logical exclusive-OR
combination. For example, during the exclusive-OR operation

c = a XOR b

the following four situations can occur:

That is, the result is TRUE if only one of the two operand values is logically
TRUE.

Refer to the V+ Language User’s Guide for the order in which operators are
evaluated within expressions.

Example

In the following sequence, the instructions immediately following the IF
instruction will be executed if ready is TRUE (that is, nonzero) or count equals 1.
The instructions will not be executed if both ready is FALSE and count is not
equal to 1, or if ready is TRUE and count equals 1.

IF ready XOR (count == 1) THEN

.

.

.

END

a b c

FALSE FALSE ➡ FALSE

FALSE TRUE ➡ TRUE

TRUE FALSE ➡ TRUE

TRUE TRUE ➡ FALSE
V+ Language Reference Guide, Rev A 641

XOR Operator
Related Keywords

AND (operator)

BXOR (operator)

OR (operator)

642 V+ Language Reference Guide, Rev A

V+ Language Quick Reference A

ABORT task_num

Terminate execution of an executing program
task.

ABOVE
Request a change in the robot configuration
during the next motion so that the elbow is
above the line from the shoulder to the wrist.

ABS (value)
Return absolute value.

ACCEL (profile) acceleration,
deceleration

Set acceleration and deceleration for robot
motions. Optionally, specify a defined
acceleration profile.

ACCEL (select)
Return the current setting for robot
acceleration or deceleration setting or return
the maximum allowable percentage limits set
by the SPEC utility program.

AIO.IN (channel , gain)
Read a channel from one of the analog IO
boards.

AIO.INS (channel)
Test whether an analog input or output
channel is installed.

AIO.OUT channel = value
Write to a channel on one of the analog IO
boards.

ALIGN
Align the robot tool Z axis with the nearest
world axis.

ALTER (control) Dx, Dy, Dz, Rx, Ry,
Rz

Specify the magnitude of the real-time path
modification that is to be applied to the robot
path during the next trajectory computation.

ALTOFF
Terminate real-time path-modification mode
(“alter” mode).

ALTON (lun) mode
Enable real-time path-modification mode
(“alter” mode), and specify the way in which
ALTER coordinate information will be
interpreted.

ALWAYS
Used with certain program instructions to
specify a long-term effect.

AND value ...
Perform the logical AND operation on two
values.

ANY
Signal the beginning of an alternative group of
instructions for the CASE structure.

APPRO location, distance
APPROS location, distance

Start a robot motion toward a location defined
relative to specified location.

ASC (string , index)
Return an ASCII character value from within a
string.

ATAN (value_, value_)
Return the size of the angle (in degrees) that
has its trigonometric tangent equal to
value_/value_.

ATTACH (lun, mode) $device
Make a device available for use by the
application program.

AUTO type variable , ..., variable
Declare temporary variables that are
automatically created on the program stack
when the program is entered.

AUTO.POWER.OFF
Control whether or not V+ disables high
power when certain motion errors occur.

BAND value ...
Perform the binary AND operation on two
values.
V+ Language Reference Guide, Rev A 643

V+ Language Quick Reference
BASE X_shift, Y_shift, Z_shift,
Z_rotation

Translate and rotate the World reference
frame relative to the robot.

BASE
Return the transformation value that
represents the translation and rotation set by
the last BASE command or instruction.

BCD (value)
Convert a real value to Binary Coded Decimal
(BCD) format.

BELOW
Request a change in the robot configuration
during the next motion so that the elbow is
below the line from the shoulder to the wrist.

BELT
Control the function of the conveyor tracking
features of the V+ system.

BELT (%belt_var , mode)
Return information about a conveyor belt
being tracked with the conveyor tracking
feature.

BELT.MODE
Set characteristics of the conveyor tracking
feature of the V+ system.

BITS first_sig , num_sigs = value
Set or clear a group of digital signals based on
a value.

BITS (first_sig , num_sigs)
Read multiple digital signals and return the
value corresponding to the binary bit pattern
present on the signals.

BMASK (bit , bit, ..., bit)
Create a bit mask by setting individual bits.

BOR value ...
Perform the binary OR operation on two
values.

BRAKE
Abort the current robot motion.

BREAK
Suspend program execution until the current
motion completes.

BSTATUS
Return information about the status of the
conveyor tracking system.

BXOR value ...
Perform the binary exclusive-OR operation on
two values.

BY (value)
BY (value, value, value)

Complete the syntax of the SCALE and SHIFT
functions.

CALIBRATE mode, status
Initialize the robot positioning system with the
robot’s current position.

CALL program(arg_list)
Suspend execution of the current program and
continue execution with a new program (that
is, a subroutine).

CALLP var(arg_list)
Call a program given a pointer to the program
in memory.

CALLS string(arg_list)
Suspend execution of the current program and
continue execution with a new program (that
is, a subroutine) specified with a string value.

CASE value OF
Initiate processing of a CASE structure by
defining the value of interest.

$CHR (value)
Return a one-character string corresponding
to a given ASCII value.

CLEAR.EVENT task , flag, processor
Clear an event associated with the specified
task.

CLOSE
CLOSEI

Close the robot gripper.

COARSE tolerance ALWAYS
Enable a low-precision feature of the robot
hardware servo.

COM value ...
Perform the binary complement operation on
a value.

CONFIG (select)
Return a value that provides information
about the robot’s geometric configuration, or
the status of the motion servo-control features.

COS (value)
Return the trigonometric cosine of a given
angle.

CP
Control the continuous-path feature.

CPOFF ALWAYS
Instruct the V+ system to stop the robot at the
completion of the next motion instruction (or
all subsequent motion instructions) and null
644 V+ Language Reference Guide, Rev A

V+ Language Quick Reference
position errors.

CPON ALWAYS
Instruct the V+ system to execute the next
motion instruction (or all subsequent motion
instructions) as part of a continuous path.

CYCLE.END task_num, stop_flag
Terminate the executing program in the
specified task the next time it executes a STOP
program instruction (or its equivalent).

Suspend processing of an executable program
until a program running in the specified task
completes execution.

DBLB ($string , first_char)
Return the value of eight bytes of a string
interpreted as an IEEE double-precision
floating-point number.

$DBLB (value)
Return an 8-byte string containing the binary
representation of a real value in
double-precision IEEE floating-point format.

DCB (value)
Convert BCD digits into an equivalent integer
value.

DECEL.100 [robot_num]
Enable or disable the use of 100 percent as the
maximum deceleration for the ACCEL
program instruction.

$DECODE ($string_var, string_exp ,
mode)

Extract part of a string as delimited by given
break characters.

DECOMPOSE array_name[index] =
location

Extract the (real) values of individual
components of a location value.

$DEFAULT ()
Return a string containing the current system
default device, unit, and directory path for
disk file access.

DEFBELT %belt_var = nom_trans,
belt_num, vel_avg, scale_fact

Define a belt variable for use with a conveyor
tracking robot.

DEF.DIO signal = address, type
Assign third-party digital I/O boards to
standard V+ signal numbers, for use by
standard V+ instructions, functions, and
monitor commands.

DEFINED (var_name)
Determine whether a variable has been
defined.

DELAY time
Cause robot motion to stop for the specified
period of time.

DEPART distance
DEPARTS distance

Start a robot motion away from the current
location.

DEST
Return a transformation value representing
the planned destination location for the
current robot motion.

DETACH (logical_unit)
Release a specified device from the control of
the application program.

DEVICE (type, unit , error, p, p,
...) out[i], in[j], out_trans,
in_trans

Send a command or data to an external device
and, optionally, return data back to the
program. (The actual operation performed
depends on the device referenced.)

DEVICE (type, unit , error, p, p,...)
Return a real value from a specified device.
The value may be data or status information,
depending upon the device and the
parameters.

DEVICES (type, unit , error, p, p,
...) $out, $in

Send commands or data to an external device
and optionally return data. The actual
operation performed depends on the device
referenced.

DISABLE switch , ..., switch
Turn off one or more system control switches.

DISTANCE (location, location)
Determine the distance between the points
defined by two location values.

DO
Introduce a DO program structure.

DOS string , error
Execute a program instruction defined by a
string expression.

DRIVE joint, change, speed
Move an individual joint of the robot.
V+ Language Reference Guide, Rev A 645

V+ Language Quick Reference
DRY.RUN
Control whether or not V+ communicates with
the robot.

DURATION time ALWAYS
Set the minimum execution time for
subsequent robot motions.

DURATION (select)
Return the current setting of one of the motion
DURATION specifications.

DX (location)
DY (location)
DZ (location)

Return a displacement component of a given
transformation value.

ELSE
Separate the alternate group of statements in
an IF ... THEN control structure.

ENABLE switch , ..., switch
Turn on one or more system control switches.

$ENCODE (output_specification ,
output_specification, ...)

Return a string created from output
specifications. The string produced is similar
to the output of a TYPE instruction.

END
Mark the end of a control structure.

.END
Mark the end of a V+ program.

ERROR (task_num , select)
Return the error number of a recent error that
caused program execution to stop or caused a
REACTE reaction.

$ERROR (error_code)
Return the error message associated with the
given error code.

ESTOP
Assert the emergency-stop signal to stop the
robot.

EXECUTE /C task_num
program(param_list), cycles,
step, priority[i]

Begin execution of a control program.

EXIT count
Branch to the statement following the nth
nested loop of a control structure.

FALSE
Return the value used by V+ to represent a
logical false result.

FCLOSE (logical_unit)
Close the disk file, graphics window, or
graphics icon currently open on the specified
logical unit.

FCMND (logical_unit, command_code)
$out_string , $in_string

Generate a device-specific command to the
input/output device specified by the logical
unit.

FDELETE (logical_unit) object
Delete the specified disk file, the specified
graphics window and all its child windows, or
the specified graphics icon.

FEMPTY (logical_unit)
Empty any internal buffers in use for a disk file
or a graphics window by writing the buffers to
the file or window if necessary.

FINE tolerance ALWAYS
Enable a high-precision feature of the robot
hardware servo.

FLIP
Request a change in the robot configuration
during the next motion so that the pitch angle
of the robot wrist has a negative value.

FLTB ($string , first_char)
Return the value of four bytes of a string
interpreted as an IEEE single-precision
floating-point number.

$FLTB (value)
Return a 4-byte string containing the binary
representation of a real value in
single-precision IEEE floating-point format.

FOPEN (logical_unit, mode)
attribute_list

Create and open a new graphics window or
TCP connection, or open an existing graphics
window for subsequent input or output.

FOPEN_ (lun , record_len, mode)
file_spec

Open a disk file for read-only, read-write,
read-write-append, or read-directory,
respectively, as indicated by the last letter of
the instruction name.

FOR loop_var = initial TO final STEP
increment

Execute a group of program instructions a
certain number of times.

FORCE._
AdeptForce option status and control
instructions.
646 V+ Language Reference Guide, Rev A

V+ Language Quick Reference
FRACT (value)
Return the fractional part of the argument.

FRAME (location_, location_,
location_, location_)

Return a transformation value defined by four
positions.

FREE (memory, select)
Return the amount of unused free memory
storage space.

FSEEK (logical_unit , record_number)
Position a file open for random access and
initiate a read operation on the specified
record.

FSET (logical_unit) attribute_list
Set or modify attributes of a graphics window,
serial line, or network device related to
AdeptNet.

GAIN.SET set, motor
Select a set of feedback gain parameters for
one or more motors of the currently selected
robot.

GARC (lun , mode) xc, yc, radius ,
ang, angn

Draw an arc or a circle in a graphics window.

GCHAIN (lun) x, y, points,
direction[index]

Draw a chain of points in a graphics window
to form a complex figure.

GCLEAR (lun)
Clear an entire graphics window to the
background color.

GCLIP (lun) x, y, dx, dy
Set the clipping rectangle for all graphics
instructions (except GFLOOD), to suppress all
subsequent graphics that fall outside the
rectangle.

GCOLOR (lun) foregrnd, backgrnd
Set the foreground and background colors for
subsequent graphics output.

GCOPY (lun) x, y = src_x, src_y, dx,
dy

Copy one region of a window to another
region in the same window.

GET.EVENT (task)
Return events that are set for the specified
task.

GETC (lun, mode)
Return the next character (byte) from a device
or input record on the specified logical unit.

GETEVENT (lun , mode) events[index]
Return information describing input from a
graphics window or input from the terminal.

GFLOOD (logical_unit) x, y
Flood a region in a graphics window with
color.

GGETLINE (logical_unit)
$data[index] , num.pix = x, y, nx

Return pixel information from a single pixel
row in a graphics window.

GGET.LINE (logical_unit)
$data[index] , num.pix = x, y, nx

Return pixel information from a single pixel
row in a graphics window.

GICON (lun , mode) x, y, $name , index
Draw a predefined graphic symbol (icon) in a
graphics window.

GLINE (lun) x, y, xn, yn
Draw a single line segment in a graphics
window.

GLINES (logical_unit , mode) points,
coord[offset,index]

Draw multiple line segments in a graphics
window.

GLOBAL type variable , ..., variable
Declare a variable to be global and specify the
type of the variable.

GLOGICAL (logical_unit) code,
planes

Set the logical operation to be performed
between new graphics output and graphics
data already displayed, and select which bit
planes are affected by graphics instructions.

GOTO label
Perform an unconditional branch to the
program step identified by the given label.

GPANEL (lun , mode) x, y, dx, dy
Draw a rectangular panel with shadowed or
grooved edges.

GPOINT (lun) x, y
Draw a single point in a graphics window.

GRECTANGLE (lun , mode) x, y, dx, dy
Draw a rectangle in a graphics window.

GSCAN (lun) lines,
data[offset,index]

Draw a number of horizontal lines in a
graphics window to form a complex figure.
V+ Language Reference Guide, Rev A 647

V+ Language Quick Reference
GSLIDE (lun , mode) id = x, y, length,
max_pos, arrow_inc , handle

Draw a slide bar in preparation for receiving
slide events.

GTEXTURE (lun) mode, pattern
Set the opaque/transparent mode and the
texture pattern for subsequent graphics
output.

GTRANS (lun , mode) array[,]
Scale, rotate, offset, and apply perspective
correction to all subsequent graphics
instructions.

GTYPE (lun , mode) x, y, $text ,
font_numb, path, rotation

Display a text string in a graphics window.

HALT
Stop program execution and do not allow the
program to be resumed.

HAND
Return the current hand opening.

HAND.TIME
Establish the duration of the motion delay that
occurs during OPENI, CLOSEI, and RELAXI
instructions.

HERE location_var
Set the value of a transformation or precision
point variable equal to the current robot
location.

HERE
Return a transformation value that represents
the current location of the robot tool point.

HOUR.METER
Return the current value of the robot hour
meter.

ID (component , device, board)
Return values that identify the configuration
of the current system.

$ID (select)
Return the system ID string.

IDENTICAL (location, location)
Determine if two location values are exactly
the same.

IF GOTO logical_expr label
Branch to the specified label if the value of a
logical expression is TRUE (nonzero).

IF logical_expr THEN
Conditionally execute a group of instructions
(or one of two groups) depending on the result
of a logical expression.

IGNORE signal
Cancel the effect of a REACT or REACTI
instruction.

INRANGE (location)
Return a value that indicates if a location can
be reached by the robot, and if not, why not.

INSTALL password, op
Install or remove software options available to
Adept systems.

INT (value)
Return the integer part of the value.

INTB ($string , first_char)
Return the value of two bytes of a string
interpreted as a signed 16-bit binary integer.

$INTB (value)
Return a 2-byte string containing the binary
representation of a 2-bit integer.

INTERACTIVE
Control the display of message headers on the
system terminal and requests for confirmation
before performing certain operations.

INT.EVENT source , level
Send an event (as though from a SET.EVENT
instruction) to the current task if an interrupt
occurs on a specified VMEbus vector or a
specified digital I/O signal transitions to
positive.

INVERSE (transformation)
Return the transformation value that is the
mathematical inverse of the given
transformation value.

IOGET_ (address , type, cpu)
Return a value from global memory or from a
device on the VME bus.

$IOGETS (address, length , type, cpu)
Return a string value from a device on the
VME bus.

IOPUT_ address , type, cpu = value
Write a value to global CPU memory or to a
device on the VME bus.

IOSTAT (lun , mode)
Return status information for the last
input/output operation for a device
associated with a logical unit.

IOTAS (address , type, cpu)
Control access to shared devices on the VME
bus.
648 V+ Language Reference Guide, Rev A

V+ Language Quick Reference
IPS ALWAYS
Specify the units for a SPEED instruction as
inches per second.

KERMIT.RETRY
Establish the maximum number of times the
(local) Kermit driver should retry an operation
before reporting an error.

KERMIT.TIMEOUT
Establish the delay parameter that the V+
driver for the Kermit protocol will send to the
remote server.

KEYMODE first_key , last_key = mode ,
setting

Set the behavior of a group of keys on the
manual control pendant.

KILL task_number
Clear a program execution stack and detach
any I/O devices that are attached.

LAST (array_name[])
Return the highest index used for an array
(dimension).

LATCH (select)
Return a transformation value representing
the location of the robot at the occurrence of
the last external trigger or AdeptForce
guarded-mode trigger.

LATCHED (select)
Return the status of the external trigger
and/or an AdeptForce guarded-mode trigger.

LEFTY
Request a change in the robot configuration
during the next motion so that the first two
links of a SCARA robot resemble a human’s
left arm.

LEN (string)
Return the number of characters in the given
string.

LNGB ($string , first_char)
Return the value of four bytes of a string
interpreted as a signed 32-bit binary integer.

$LNGB (value)
Return a 4-byte string containing the binary
representation of a 4-bit integer.

LOCAL type variable , ..., variable
Declare permanent variables that are defined
only within the current program.

LOCK priority
Set the program reaction lock-out priority to
the value given.

MAX (value , ..., value)
Return the maximum value contained in the
list of values.

MC monitor_command
Introduce a monitor command within a
command program.

MCP.MESSAGE
Conrol how system error messages are
handled when the controller keyswitch is not
in the MANUAL position.

MCS string
Invoke a monitor command from an
application program.

MCS.MESSAGE
Enable or disable output to the system
terminal from monitor commands executed
with the MCS instruction.

MESSAGES
Enable or disable output to the system
terminal from TYPE instructions.

$MID (string, first_char ,
num_chars)

Return a substring of the specified string.

MIN (value , ..., value)
Return the minimum value contained in the
list of values.

MMPS ALWAYS
Specify the units for a SPEED instruction as
millimeters per second.

MOD value ...
Compute the modulus of two values.

MONITORS
Enable or disable selecting of multiple
monitor windows.

MOVE location
MOVES location

Initiate a robot motion to the position and
orientation described by the given location.

MOVEF location, depart_clr,
appro_clr, depart_tqe,
horiz_accel_tqe,
horiz_decel_tqe, appro_tqe,
model

MOVESF location, depart_clr,
appro_clr, depart_tqe,
horiz_accel_tqe,
V+ Language Reference Guide, Rev A 649

V+ Language Quick Reference
horiz_decel_tqe, appro_tqe,
model

Initiate a three-segment pick-and-place robot
motion to the specified destination, moving
the robot at the fastest allowable speed.

MOVET location, hand_opening
MOVEST location, hand_opening

Initiate a robot motion to the position and
orientation described by the given location
and simultaneously operate the hand.

MULTIPLE ALWAYS
Allow full rotations of the robot wrist joints.

NETWORK (component, code)
Return network status and IP address
information.

NEXT count
Branch to the END statement of the nth nested
loop, perform the loop test, and loop if
appropriate.

NOFLIP
Request a change in the robot configuration
during the next motion so that the pitch angle
of the robot wrist has a positive value.

NONULL ALWAYS
Instruct the V+ system not to wait for position
errors to be nulled at the end of
continuous-path motions.

NOOVERLAP ALWAYS
Generate a program error if a motion is
planned that will cause selected multiturn
axes to turn more than ±180 degrees (the
“long way around”) in order to avoid a limit
stop.

NORMAL transformation_value)
Correct a transformation for any mathematical
round-off errors.

NOT value ...
Perform logical negation of a value.

NOT.CALIBRATED
Indicate (or assert) the calibration status of the
robots connected to the system.

NULL ALWAYS
Instruct the V+ system to wait for position
errors to be nulled at the end of continuous
path motions.

NULL
Return a null transformation value—one with
all zero components.

OFF
Return the value used by V+ to represent a
logical false result.

ON
Return the value used by V+ to represent a
logical true result.

OPEN
OPENI

Open the robot gripper.

OR value ...
Perform the logical OR operation on two
values.

OUTSIDE (low, test, high)
Test a value to see if it is outside a specified
range.

OVERLAP ALWAYS
Disable the NOOVERLAP limit-error
checking either for the next motion or for all
subsequent motions.

PACK string_array[index],
first_char, num_chars = string

PACK string_var, first_char,
num_chars = string

Replace a substring within an array of
(128-character) string variables, or within a
(nonarray) string variable.

PARAMETER parameter_name = value
PARAMETER parameter_name [index] =

value
Set the value of a system parameter.

PARAMETER (parameter_name)
PARAMETER (parameter_name[index])

Return the current setting of the named
system parameter.

PAUSE
Stop program execution, but allow the
program to be resumed.

PAYLOAD value, motor
Adjust the feedforward compensation for a
specified motor by setting a percentage of the
maximum payload assumed for that motor.

#PDEST

Return a precision-point value representing
the planned destination location for the
current robot motion.

PENDANT (select)
Return input from the manual control
pendant.
650 V+ Language Reference Guide, Rev A

V+ Language Quick Reference
PI
Return the value of the mathematical constant
pi.

#PLATCH (select)
Return a precision-point value representing
the location of the robot at the occurrence of
the last external trigger or AdeptForce
guarded-mode trigger.

POS (search_string, sub_string ,
start)

Return the starting character position of a
substring in a string.

POWER
Control or monitor the status of high power.

#PPOINT (j_value, j_value, j_value,
j_value, j_value, j_value)

Return a precision-point value composed
from the given components.

PRIORITY
Return the current reaction lock-out priority
for the program.

.PROGRAM
program_name(argument_list) ;comment

Define the arguments a program will be
passed when it is invoked.

PROMPT output_string , variable_list
Display a string on the system terminal and
wait for operator input.

RANDOM
Return a pseudorandom number.

REACT signal_num, program , priority
Initiate continuous monitoring of a specified
digital signal and automatically trigger a
subroutine call if the signal properly
transitions.

REACTE program_name
Initiate the monitoring of errors that occur
during execution of the current program task.

REACTI signal_num, program,
priority

Initiate continuous monitoring of a specified
digital signal. Automatically stop the current
robot motion if the signal transitions properly
and optionally trigger a subroutine call.

READ (lun , record_num, mode)
var_list

Read a record from an open file or from an
attached device that is not file oriented. For an
AdeptNet device, read a string from an
attached and open TCP connection.

READY
Move the robot to the READY location above
the workspace, which forces the robot into a
standard configuration.

RELAX
RELAXI

Limp the pneumatic hand.

RELEASE task
Allow the next available program task to run.

RESET
Turn “off” all the external output signals.

RETRY
Control whether the PROGRAM START
button causes a program to resume.

RETURN
Terminate execution of the current subroutine,
and resume execution of the last-suspended
program at the step following the CALL or
CALLS instruction that caused the subroutine
to be invoked.

RETURNE
Terminate execution of an error reaction
subroutine and resume execution of the
last-suspended program at the step following
the instruction that caused the subroutine to
be invoked.

RIGHTY
Request a change in the robot configuration
during the next motion so that the first two
links of the robot resemble a human’s right
arm.

ROBOT [index]
Enable or disable one robot or all robots.

ROBOT.OPR Execute operations that are
specific to the currently selected robot or robot
module.

RUNSIG signal_num
Turn on (or off) the specified digital signal as
long as execution of the invoking program
task continues.

RX (angle)
RY (angle)
RZ (angle)

Return a transformation describing a rotation.

SCALE (transformation BY

scale_factor)
Return a transformation value equal to the
transformation parameter with the position
scaled by the scale factor.
V+ Language Reference Guide, Rev A 651

V+ Language Quick Reference
SCALE.ACCEL [robot_num]
Enable or disable the scaling of acceleration
and deceleration as a function of program
speed when program speed is below a preset
value.

SCALE.ACCEL.ROT [robot_num]
Specify whether or not the SCALE.ACCEL
switch takes into account the Cartesian
rotational speed during straight-line motions.

SCREEN.TIMEOUT
Establish the time-out period for blanking the
screen of the graphics monitor.

SEE (lun) prog_spec , step
Invoke the screen-oriented program editor to
allow a program to be created, viewed, or
modified.

SELECT device_type = unit
Select a unit of the named device for access by
the current task.

SELECT (device_type , mode)
Return the unit number that is currently
selected by the current task for the device
named.

SET location_var = location_value
Set the value of the location variable on the left
equal to the location value on the right of the
equal sign.

SET.EVENT task , flag, processor
Set an event associated with the specified task.

#SET.POINT
Return the commanded joint-angle positions
computed by the trajectory generator during
the last trajectory-evaluation cycle.

SET.SPEED
Control whether or not the monitor speed can
be changed from the manual control pendant.
The monitor speed cannot be changed when
the switch is disabled.

SETBELT %belt_var = expression
Set the encoder offset of the specified belt
variable equal to the value of the expression.

SETDEVICE (type, unit, error,
command) p, p, ...

Initialize a device or set device parameters.
(The actual operation performed depends on
the device referenced.)

SHIFT (transformation BY x_shift,
y_shift, z_shift)

Return a transformation value resulting from
shifting the position of the transformation
parameter by the given shift amounts.

SIG (signal_num , ..., signal_num)
Returns the logical AND of the states of the
indicated digital signals.

SIG.INS (signal_num)
Return an indication of whether or not a
digital I/O signal is installed in the system, or
whether or not a software signal is available in
the system.

SIGN (value)
Return the value 1, with the sign of the value
parameter.

SIGNAL signal_num , ..., signal_num
Turn on or off external digital output signals
or internal software signals.

SIN (value)
Return the trigonometric sine of a given angle.

SINGLE ALWAYS
Limit rotations of the robot wrist joint to the
range –180 degrees to +180 degrees.

SOLVE.ANGLES o.jts[o.idx], o.flags,
error = trans,
i.jts[i.idx],i.flags

Compute the robot joint positions (for the
current robot) that are equivalent to a specified
transformation.

SOLVE.FLAGS (joints[index])
Return bit flags representing the robot
configuration specified by an array of joint
positions.

SOLVE.TRANS transform, error =
joints[index]

Compute the transformation equivalent to a
given set of joint positions for the current
robot.

SPEED speed_factor , r_speed_factor
units ALWAYS

Set the nominal speed for subsequent robot
motions.

SPEED (select)
Return one of the system motion speed factors.

SPIN speeds[index]
Rotate one or more joints of the selected robot
at a specified speed.
652 V+ Language Reference Guide, Rev A

V+ Language Quick Reference
SQR (value)
Return the square of the parameter.

SQRT (value)
Return the square root of the parameter.

STATE (select)
Return a value that provides information
about the robot system state.

STATUS (program_name)
Return status information for an application
program.

STOP
Terminate execution of the current program
cycle.

STRDIF ($a, $b)
Compare two strings byte by byte for the
purpose of sorting.

SWITCH switch_name = value
SWITCH switch_name[index] = value

Enable or disable a system switch based on a
value.

SWITCH (switch_name)
SWITCH (switch_name[index])

Return an indication of the setting of a system
switch.

$SYMBOL (pointer)
Determine the user symbol that is referenced
by a pointer previously obtained with the
SYMBOL.PTR real-valued function.

SYMBOL.PTR (string , type)
Determine the value of a pointer to a user
symbol in V+ memory.

TAS (variable, new_value)
Return the current value of a real-valued
variable and assign it a new value. The two
actions are done “indivisibly” so that no other
program task can modify the variable at the
same time.

TASK (select, task_num)
Return information about a program
execution task.

TERMINAL
Determine how V+ will interact with the
system terminal.

TIME time_string
Set the date and time.

TIME (string , select)
Return an integer value representing either
the date or the time specified in the given
string parameter.

$TIME (date, time)
Return a string value containing either the
current system date and time or the specified
date and time.

TIMER timer_number = time_value
Set the specified system timer to the given
time value.

TIMER (timer_number)
Return the current time value (in seconds) of
the specified system timer.

TOOL transformation_value
Set the internal transformation used to
represent the location and orientation of the
tool tip relative to the tool mounting flange of
the robot.

TOOL
Return the value of the transformation
specified in the last TOOL command or
instruction.

TPS
Return the number of ticks of the system clock
that occur per second (Ticks Per Second).

TRACE
Control the display of program steps on the
system terminal during program execution.

TRANS (X_value, Y_value, Z_value,
y_value, p_value, r_value)

Return a transformation value computed from
the given X, Y, Z position displacements and
y, p, r orientation rotations.

TRANSB (string , first_char)
Return a transformation value represented by
a 48-byte string.

$TRANSB (transformation)
Return a -byte string containing the binary
representation of a transformation value.

TRUE ...
Return the value used by V+ to represent a
logical true result.

$TRUNCATE (string)
Return all characters in the input string until
an ASCII NUL (or the end of the string) is
encountered.

TYPE output_specification, ...,
output_specification

Display the information described by the
output specifications on the system terminal.
A blank line is output if no argument is
provided.
V+ Language Reference Guide, Rev A 653

V+ Language Quick Reference
UNIDIRECT directions[index]
Specify that a joint is turning only in a single
direction.

$UNPACK (string_array[index],
first_char, num_chars)

Return a substring from an array of
128-character string variables.

UNTIL expression
Indicate the end of a DO ... UNTIL control
structure and specify the expression that is
evaluated to determine when to exit the loop.
The loop continues to be executed until the
expression value is nonzero.

UPPER
Control whether or not the case of each
character is ignored when string comparisons
are performed.

VAL (string)
Return the real value represented by the
characters in the input string.

VALUE expression_list:
Indicate the values that a CASE statement
expression must match in order for the
program statements immediately following to
be executed.

WAIT condition
Put the program into a “wait loop” until the
condition is TRUE.

WAIT.EVENT mask, timeout
Suspend program execution until a specified
event has occurred, or until a specified amount
of time has elapsed.

WHILE condition DO
Initiate processing of a WHILE structure if the
condition is TRUE or skipping of the WHILE
structure if the condition is initially FALSE.

WINDOW %belt_var = location,
location , program, priority

Set the boundaries of the operating region of
the specified belt variable for conveyor
tracking.

WINDOW (transformation , time, mode)
Return a value that indicates where the
location described by the belt-relative
transformation value is relative to the
predefined boundaries of the working range
on a moving conveyor belt.

WRITE (lun , record_num, mode)
format_list

Write a record to an open file, or to an attached
device that is file oriented. For an AdeptNet
device, write a string to an attached and open
TCP connection.

XOR value ...
Perform the logical exclusive-OR operation on
two values.
654 V+ Language Reference Guide, Rev A

System Messages B
Introduction . 672

Alphabetical Listing . 672

Numerical List . 763
V+ Language Reference Guide, Rev A 655

Appendix B Introduction
Introduction

While the V+ system is being used, it is possible for hardware and software errors
to occur. For example, if commands or instructions are not entered in the correct
way, V+ rejects the input. The usual response is to write an error message to the
system terminal indicating what is wrong so that the user can correct the error.

Alphabetical Listing

The following section contains all the error messages produced by V+, explains
what they mean, and indicates what should be done in response. This list also
includes a variety of informational messages that V+ displays under certain
circumstances.

Almost every V+ message has a numeric code that can be used to identify the
message within a V+ program. The ERROR and IOSTAT functions return this
error code. The $ERROR string function returns the error message corresponding
to an error code. The error code for each message appears at the right margin for
all those messages that have a code. For convenience, the second section in this
appendix lists all the V+ errors in order of their numerical codes.

All the V+ messages are described in this section. Each description includes the
text of the message, its error code, an explanation of the likely cause of the
message, and a suggestion of what action you should take.

NOTE: If the system has more than one robot connected and an
error is associated with a specific one of the robots, the robot
number is appended to the error message in the form (Robot #).
656 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Aborted (–400)

Explanation: The last command requested, or the program that was executing,
has been aborted at the operator’s request.

User action: None.

Already attached to logical unit (–515)

Explanation: A program has executed more than one ATTACH instruction for a
specific logical unit, without executing a DETACH in between. (The
program is still attached to the logical unit after this error occurs.)

User action: Check the program logic and remove redundant ATTACH instruc-
tions.

Ambiguous AUTO invalid (–477)

Explanation: When exiting from the program editor, V+ has encountered an auto-
matic variable with undetermined type. That is, the system cannot
determine if the variable is real-valued or a transformation. Auto-
matic variables cannot be ambiguous, since their storage require-
ments must be known before they are referenced.

User action: Include the REAL or LOC type specification parameter in the AUTO
statement that declares the variable, or reference the variable in a
program instruction in a manner that makes its type clear.

Ambiguous name (–453)

Explanation: The abbreviation used for the last command, instruction, or
system-defined name was not long enough to identify the operation
intended.

User action: Reenter the last line, using a longer abbreviation.

AOI not defined (–752)

Explanation: An attempt has been made to place a vision tool using an AOI
(area-of-interest) that has not been defined.

User action: Define the AOI using the VDEF.AOI instruction.

Are you sure (Y/N)? (10)

Explanation: The requested command will have a significant effect on the state of
the system, and V+ wants to know if you really want it to happen.
V+ Language Reference Guide, Rev A 657

Appendix B Alphabetical Listing
User action: To have V+ continue, type y followed by a carriage return. An n fol-
lowed by a carriage return or just a carriage return causes the com-
mand to be aborted.

Arithmetic overflow (–409)

Explanation: The result of a calculation was outside the allowable range for real
variables or V+ has encountered a number that is outside the
allowed range for integers while converting a real-valued number
to a decimal, hexadecimal, or octal integer, or logical value. Logical
values use 32-bit integers, but most program instructions that
require integer arguments allow only 16-bit integers. Also, real vari-
ables can have only magnitudes in the range from about 5.4E-20 to
9.2E+18.

User action: Modify the program as required.

A scratch frame store is needed (use VSELECT) (–756)

Explanation: VCORRELATE returns this error when performing a grayscale hier-
archical search or binary search and no scratch frame store is avail-
able.

User action: Use VSELECT to invalidate a virtual frame store in a physical frame
store that is different than the physical frame store being searched.

Attempt to modify active belt (–614)

Explanation: A program instruction has been executed that will modify the belt
variable that is currently being tracked by the robot.

User action: Change the program in order not to modify the variable while the
robot is tracking it.

Attempt to redefine variable class variable_name (–470)

Explanation: Upon exiting from the editor, the named variable was found in two
of the following places: the .PROGRAM argument list, an AUTO
statement, a LOCAL statement, or a GLOBAL statement.

User action: Modify the program to include the variable in only one of these
places.

Attempt to redefine variable type variable_name (–469)

Explanation: If a program is being edited, the line just entered contains a refer-
ence to a variable in a manner inconsistent with its use elsewhere in
658 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
the program. The most likely problem is confusing a location vari-
able with a real variable. If you just exited from the editor, the
named variable conflicts with a global variable that already exists.

User action: If the new use of the variable is correct, you must delete all refer-
ences to the incorrect variable and then reenter the statement that
caused the error. If the new use is incorrect, use a different variable
name. If there is a conflict with a global variable, either use a
DELETE_ command to delete that variable, or make the conflicting
variable AUTO or LOCAL to the current program.

Auto Startup... (None)

Explanation: The automatic start-up procedure has begun. (See the discussion of
command programs for more information.)

User action: None required for this message, but subsequent commands in the
auto-startup command program may require user action.

WARNING: The robot may begin to move during the automatic
start-up procedure. If necessary, you can stop the robot by pressing
EMERGENCY STOP on the controller or PANIC on the manual
control pendant.

Bad block in disk header (–523)

Explanation: While formatting a disk, a bad disk block has been found in the disk
header area. The format operation has failed, and the disk is not
usable.

User action: Enter the FORMAT command again—use a different diskette if the
error persists.

Bad camera calibration (–726)

Explanation: A VPUTCAL instruction has been used to pass vision calibration
data to the AdeptVision system, and one or more of the data ele-
ments is not valid.

User action: Make sure the program reads the calibration data from a valid data
file, or make sure valid values are asserted by the program.

Bad grip definition (–721)

Explanation: The DEFGRIP instruction was performed with incorrect parameters.
V+ Language Reference Guide, Rev A 659

Appendix B Alphabetical Listing
User action: Check the DEFGRIP parameter values. The locations specified by
the transformations must not be unreasonably far from the proto-
type, and the widths and heights of the grip rectangles must not be
unreasonably large. An unreasonable distance is one greater than a
couple of image widths.

Belt not enabled (–615)

Explanation: A robot operation that references a moving conveyor belt has been
attempted when the conveyor tracking feature is disabled.

User action: Enter an ENABLE BELT command and retry the operation.

Belt servo dead (–617)

Explanation: The belt processor isn’t responding to commands from V+.

User action: After saving the programs, power down the controller and power it
up again. If this error occurs repeatedly, contact Adept Customer
Service.

Belt window violation (–616)

Explanation: Either a robot motion has been planned that will move the robot
outside of the belt window, or the robot has moved outside of the
belt window while tracking the belt.

User action: Modify the program so that the robot will not move outside the belt
window. Consult the BELT.MODE parameter and the WINDOW
instruction for different ways to define the belt window.

Branch to undefined label Step nnn (–412)

Explanation: A program instruction references a program label that is not defined
in the program. Either the label is missing or was mistyped when
defined or in the reference.

User action: Check the label definition and reference.

Breakpoint at (task) program_name, step n (17)

Explanation: A breakpoint was encountered before the indicated step. (Any out-
put associated with the breakpoint is displayed after the message
shown above.)
660 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Enter a PROCEED (CTRL+P), RETRY, SSTEP (CTRL+Z), or XSTEP
(CTRL+X) command to resume program execution.1 Otherwise,
enter any other monitor command.

Breakpoint not allowed here (–380)

Explanation: An attempt has been made to set a breakpoint before the first exe-
cutable statement of a program.

User action: Enter a new BPT command specifying a step after the first execut-
able statement. That is, after the .PROGRAM statement, any AUTO
and LOCAL statements, and all comments and blank lines at the
start of the program.

Calibration program not loaded (–425)

Explanation: A program required for calibration has not been loaded from disk.
This error usually occurs if some of the calibration programs have
not been loaded into memory, and the CALIBRATE command or
instruction is issued with a input mode that does not allow them to
be loaded automatically.

User Action: Reissue the CALIBRATE command or instruction with the proper
mode. The default mode of zero causes CALIBRATE to automati-
cally load the required programs from disk, perform the calibration,
and then delete the programs.

Calibration sensor failure Mtr n (–1106)

Explanation: During calibration, the calibration sensor for the indicated motor
could not be read correctly. Either the robot is blocked from moving,
or a hardware error has occurred.

User action: Retry the CALIBRATE command or instruction after making sure
that the robot is not blocked. If the problem persists, contact Adept
Customer Service.

Camera already off (–719)

Explanation: A VPICTURE operation to turn the camera off has been processed
when the camera is already off (line vision only).

1 The command keys CTRL+P, CTRL+X, and CTRL+Z are accepted only while using the V+
program debugger in its monitor mode.
V+ Language Reference Guide, Rev A 661

Appendix B Alphabetical Listing
User action: Modify the program to remove redundant VPICTURE OFF instruc-
tions.

Camera already running (–714)

Explanation: A VPICTURE operation to turn the camera on has been processed
when the camera is already running (line vision only).

User action: Modify the program to remove redundant VPICTURE ON instruc-
tions, or insert a VPICTURE OFF instruction.

Camera disconnected (–710)

Explanation: The vision interface hardware indicates that the camera is not con-
nected.

User action: Check the camera and cabling to make sure they are connected
properly. If the problem persists, consult your vision system man-
ual.

Camera interface board absent (–722)

Explanation: The vision interface board is not responding to a command from the
vision system.

User action: Make sure that the vision interface board is installed properly. After
saving all the programs and prototypes in memory, power down the
controller and power it up again. Consult Adept Customer Service
if the problem persists.

Camera not running (–705)

Explanation: An attempt has been made to process a vision system operation
when the camera is not running (line vision only).

User action: Enter a VPICTURE ON command and retry the vision operation
that failed.

Cancelled (–358)

Explanation: An editor, debugger, or pendant operation has been terminated due
to operator intervention.

User action: This is usually an informative message to acknowledge the cancella-
tion of the operation.
662 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Can’t access protected or read-only program (–310)

Explanation: An attempt has been made to edit a protected or read-only program.
These programs cannot be edited.

User action: None.

Can’t ALTER and track belt (–626)

Explanation: Either a belt-relative motion was specified while ALTER mode was
enabled, or an attempt was made to enable ALTER mode while the
selected robot was tracking a belt. Both operations are prohibited
because belt-tracking and ALTER mode cannot be performed at the
same time.

User action: Either disable ALTER mode or stop tracking the belt.

Can’t change modes while task running (–361)

Explanation: A command was issued to change from debug monitor mode to
debug editor mode while the program task being debugged was
executing. You can change to debug editor mode only when the
associated task is stopped.

User action: Stop execution of the program task being debugged, or continue
without using debug editor mode.

Can’t create new slide bar (–557)

Explanation: An attempt has been made to create a graphic slide bar in the hori-
zontal or vertical scroll bar. Slide bars should be created only in the
main window, although they can appear in the title or menu bars.

User action: Modify the arguments for the GSLIDE instruction to have the slide
bar created within the window.

Can’t create program in read-only mode (–364)

Explanation: An attempt has been made to initiate editing of a program in
read-only access mode, but the program does not exist.

User action: If the program name was entered incorrectly, enter the command
again with the correct name. Do not select read-only access (with
/R) when creating a new program.
V+ Language Reference Guide, Rev A 663

Appendix B Alphabetical Listing
Can’t delete .PROGRAM statement (–350)

Explanation: An attempt has been made to delete the .PROGRAM statement
while editing a program.

User action: To change the .PROGRAM statement, replace it with another .PRO-
GRAM statement. To delete lines at the beginning of the program,
move down to line 2 before issuing delete commands.

Can’t execute from SEE program instruction (–362)

Explanation: An attempt has been made to use a SEE editor command that cannot
be used after the editor has been initiated with the SEE program
instruction.

User action: Enter another command or exit the editor and reenter from the V+
monitor.

Can’t exit while lines attached (–355)

Explanation: You attempted to terminate execution of the editor while lines were
present in the attach buffer. The attach buffer must be empty before
the editor can be exited.

User action: You can use SHIFT+Copy to deposit the contents of the attach buffer
into the current program. You can also use ESC+K to delete lines
from the attach buffer (99 ESC+K deletes up to 99 lines from the
buffer).

Can’t find calibration program file (–426)

Explanation: While processing a CALIBRATE command or instruction, the V+
system could not find the calibration utility program on the file
CAL_UTIL.V2.

User action: Restore the missing file from the V+ distribution disk to the direc-
tory \CALIB\ on the hard disk or working system disk.

Can’t go on, use EXECUTE or PRIME (–313)

Explanation: An attempt has been made to continue the execution of a program
that has completed or stopped because of a HALT instruction. Nor-
mally, an error results when a PROCEED, RETRY, or XSTEP com-
mand is entered (or the pendant RUN/HOLD button is pressed)
after a program has completed all its cycles.
664 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Use the EXECUTE or PRIME command, or the pendant PRIME
function, to restart the program from the desired instruction.

Can’t interpret line (–450)

Explanation: V+ could not interpret the last command or instruction entered.

User action: Check the spelling and usage, and reenter the line. In the case of an
error while loading from the disk, edit the affected programs to cor-
rect the indicated lines—they have been converted to bad lines.

Can’t mix MC & program instructions (–414)

Explanation: A program instruction has been encountered during processing of a
command program, or an MC instruction has been encountered in a
normal program.

User action: Edit the command program to use the DO command to include the
program instruction, or remove the MC instruction from the normal
program.

Can’t open vision window for read/write (–734)

Explanation: An attempt has been made to open the vision window in read/write
mode, but the vision system is performing some critical processing
that precludes it from releasing the window.

User action: Change the program to have it try the FOPEN again later; or specify
/WRITEONLY if no reading will be performed.

Can’t start while program running (–312)

Explanation: An attempt has been made to start execution of a program from the
manual control pendant while a program is already executing as
task #0.

User action: Stop the program currently executing and then retry the operation.

Cartesian control of robot not possible (–635)

Explanation: A program has attempted to perform a straight-line motion with a
robot that does not support such motions.

User action: Change the program to use joint-interpolated motion.
V+ Language Reference Guide, Rev A 665

Appendix B Alphabetical Listing
Cat3 diagnostic error Code n (–1108)

Because these message codes are related primarily to hardware,
refer to your Robot Instruction Handbook as your primary source of
information. If it does not answer your questions, contact Adept
Customer Service. The following table summarizes information
about the codes.

WARNING: The test procedures for these messages are for skilled
or instructed personnel only. Dangerous voltages are present,
including those on the Security Panel. Failure to exercise care can
result in death or injury.

Table B-1. Cat3 Diagnostic Error Message Codes

Code n Explanation User action

0 ESTOP board hardware
not responding, or
Parity error.

Check that the AC supply to the
Security Panel is on and that the
DC power supply is configured
correctly.

1 Hardware state 1 error.
An error has occurred in
the communication or
test sequence.

Try again. If the problem persists,
it may be caused by a faulty
ESTOP board. Make a note of the
error message and code number,
and contact Adept Customer
Service.

2 Hardware state 2 error.
An error has occurred in
the communication or
test sequence.

Try again. If the problem persists,
it may be caused by a faulty
ESTOP board. Make a note of the
error message and code number,
and contact Adept Customer
Service.

3 Hardware arm power
contactor AP1 error.

Consult your Robot Instruction
Handbook or contact Adept
Customer Service.

4 Hardware arm power
contactor AP2 error.

Consult your Robot Instruction
Handbook or contact Adept
Customer Service.
666 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
* Cat-3 external E-STOP* Code n (–1111)

Because these message codes are related to hardware, refer to your
Robot Instruction Handbook as your primary source of information.
If it does not answer your questions, contact Adept Customer Ser-
vice. The following table summarizes information about the codes.

5 Hardware cyclic check
relay, channel 1 (SR8)
error. An error has
occurred in the
communication or test
sequence.

Try again. If the problem persists,
it may be caused by a faulty
ESTOP board. Consult your Robot
Instruction Handbook or contact
Adept Customer Service. Make a
note of the error message and code
number before contacting Adept
Customer Service.

6 Hardware cyclic check
relay, channel 2 (SR9)
error. An error has
occurred in the
communication or test
sequence.

Try again. If the problem persists,
it may be caused by a faulty
ESTOP board. Consult your Robot
Instruction Handbook or contact
Adept Customer Service. Make a
note of the error message and code
number before contacting Adept
Customer Service.

Table B-2. Cat3 External E-STOP Error Message Codes

Code n Explanation User action

0 Adept E-stop, channel 1
error

Consult your Robot Instruction
Handbook.

1 Adept E-stop, channel 2
error

Consult your Robot Instruction
Handbook.

2 Customer E-stop,
channel 1 error

Consult your Robot Instruction
Handbook.

3 Customer E-stop,
channel 2 error

Consult your Robot Instruction
Handbook.

Table B-1. Cat3 Diagnostic Error Message Codes (Continued)

Code n Explanation User action
V+ Language Reference Guide, Rev A 667

Appendix B Alphabetical Listing
Cat3 external sensor fault Code n (–1109)

Because these message codes are related to hardware, refer to your
Robot Instruction Handbook as your primary source of information.
If it does not answer your questions, contact Adept Customer Ser-
vice.

If one of these message codes occurs, stand away from the robot and
attempt to enable power again. If the same error code occurs again
for no apparent reason, there may be a fault with the sensor. The fol-
lowing table summarizes information about the message codes.

WARNING: The test procedures for these messages are for skilled
or instructed personnel only. Dangerous voltages are present,
including those on the Security Panel. Failure to exercise care can
result in death or injury.

Table B-3. Cat3 External Sensor Fault Error Message Codes

Code n Explanation User action

0 Accelerometer, channel 1
error. The robot (joint 1
or 2) is moving or
accelerating too fast,
there is a fault with the
accelerometer system,
or the accelerometer’s
built-in test function
failed.

If the error occurred while a
program was moving the robot, try
changing the program to move the
robot less quickly or with a lower
rate of acceleration or deceleration.

For faults with cables or sensors,
consult your Robot Instruction
Handbook or contact Adept
Customer Service.

1 Accelerometer, channel 2
error. The robot (joint 1
or 2) is moving or
accelerating too fast,
there is a fault with the
accelerometer system,
or the accelerometer’s
built-in test function
failed.

If the error occurred while a
program was moving the robot, try
changing the program to move the
robot less quickly or with a lower
rate of acceleration or deceleration.

For faults with cables or sensors,
consult your Robot Instruction
Handbook or contact Adept
Customer Service.
668 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
2 Amplifier 3 voltage
restrict sensor, channel 1
error. The robot (joint 3)
is moving or
accelerating too fast,
there is a fault with the
voltage restrict sensor, or
the voltage restrict
sensor’s built-in test
function failed.

If the error occurred while a
program was moving the robot, try
changing the program to move the
robot less quickly or with a lower
rate of acceleration or deceleration.

For hardware faults, consult your
Robot Instruction Handbook or
contact Adept Customer Service.

3 Amplifier 3 voltage
restrict sensor, channel 2
error. The robot (joint 3)
is moving or
accelerating too fast,
there is a fault with the
voltage restrict sensor, or
the voltage restrict
sensor’s built-in test
function failed.

If the error occurred while a
program was moving the robot, try
changing the program to move the
robot less quickly or with a lower
rate of acceleration or deceleration.

For hardware faults, consult your
Robot Instruction Handbook or
contact Adept Customer Service.

4 Amplifier 4 voltage
restrict sensor, channel 1
error. The robot (joint 4)
is moving or
accelerating too fast,
there is a fault with the
voltage restrict sensor, or
the voltage restrict
sensor’s built-in test
function failed.

If the error occurred while a
program was moving the robot, try
changing the program to move the
robot less quickly or with a lower
rate of acceleration or deceleration.

For hardware faults, consult your
Robot Instruction Handbook or
contact Adept Customer Service.

5 Amplifier 4 voltage
restrict sensor, channel 2
error. The robot (joint 4)
is moving or
accelerating too fast,
there is a fault with the
voltage restrict sensor, or
the voltage restrict
sensor’s built-in test
function failed.

If the error occurred while a
program was moving the robot, try
changing the program to move the
robot less quickly or with a lower
rate of acceleration or deceleration.

For hardware faults, consult your
Robot Instruction Handbook or
contact Adept Customer Service.

Table B-3. Cat3 External Sensor Fault Error Message Codes (Continued)

Code n Explanation User action
V+ Language Reference Guide, Rev A 669

Appendix B Alphabetical Listing
Change? (11)

Explanation: You are being given an opportunity to modify the location value just
created by a HERE or POINT command.

User action: Enter any desired new components, separated by commas, or press
the RETURN key to indicate that no changes are desired.

..., change to: (None)

Explanation: While initiating a string replacement operation, the SEE editor is
prompting for the string to be used for the replacement.

User action: Enter the desired replacement string. Note that if you just press
RETURN, the string to be searched for will be erased (that is, an
empty string will be used for the replacement).

Character not in font (–742)

Explanation: In a string of characters to be recognized by, or trained for, optical
character recognition (OCR), one or more characters are not in the
current font definition.

User action: Redefine the font to include the missing character(s).

Collision avoidance dead-lock (–647)

Explanation: Two robots with collision detection enabled are simultaneously
blocking each other’s path. That is, neither robot can perform its
next motion until the other robot moves out of the way.

User action: Change the application program to prevent the deadlock situation.

6 Total E-stop, channel 1
(SR5) error

Consult your Robot Instruction
Handbook or contact Adept
Customer Service.

7 Total E-stop, channel 2
(SR4) error

Consult your Robot Instruction
Handbook or contact Adept
Customer Service.

Table B-3. Cat3 External Sensor Fault Error Message Codes (Continued)

Code n Explanation User action
670 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Command? (None)

Explanation: A SEE editor extended command has been initiated with the X com-
mand.

User action: Enter the desired extended command, or press RETURN to cancel
the request.

Communication time-out (–531)

Explanation: An I/O operation has not completed within the allotted time inter-
val. For data communications, the remote communications device
has not properly acknowledged data that was sent.

User action: Make sure the remote device is communicating. Make sure connec-
tions to the remote device are operating properly.

Communications overrun (–524)

Explanation: Data has been received on an I/O device faster than V+ is process-
ing it, and some data has been lost. This will happen only on the
serial interface line or the network.

User action: Modify the program to service the I/O device more often, add a
handshaking protocol, or slow down the transmission rate to V+.

COMP mode disabled (–603)

Explanation: The command attempted requires computer control of the robot, but
COMPUTER mode was not selected on the pendant.

User action: Select COMP mode on the pendant or enable DRY.RUN mode from
the terminal, then reissue the command.

Controller overheating (–631)

Explanation: The temperature sensor in the controller power supply has detected
an overheating condition. High power is switched off.

User action: Make sure the controller fans are operating and are not obstructed.
Make sure the fan filters are clean. Power down the controller to let
it cool off.

Control structure error (–473)

Explanation: An incomplete control structure has been encountered during pro-
gram execution.
V+ Language Reference Guide, Rev A 671

Appendix B Alphabetical Listing
User action: Edit the program to correct the control structure.

*Control structure error * Step nn (–472)

Explanation: V+ has detected an incomplete or inconsistent control structure at
the specified step when exiting the program editor, loading a pro-
gram, or processing a BPT command.

User action: Edit the program to correct the control structure. (Note that the
actual error may not be at the indicated step.) If the error occurs in
response to a BPT command, you can type dir /? to identify pro-
grams that are not executable and thus might contain the con-
trol-structure error.

Correlation template too big (–754)

Explanation: A vision correlation template has been defined that is too large.

User action: Redefine a smaller template

Cursor at column n (None)

Explanation: The SEE editor WHERE extended command is reporting the current
column position of the cursor.

User action: None. This is an informational message.

Database manager internal error (–859)

Explanation: This error indicates that the system has encountered an inconsis-
tency.

User action: Contact Adept Application Engineering. Please record the details of
exactly what you were doing at the time the error occurred.

Data checksum error (–510)

Explanation: An error was detected while transferring information to or from an
external device.

User action: Attempt the transfer again. If the problem persists, contact Adept
Customer Service.

Data error on device (–522)

Explanation: An error was detected while attempting to read information from an
external device, possibly because a diskette has been damaged or
was not formatted properly.
672 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Attempt the read again. Make sure the correct diskette is being
used, that it is properly installed in the drive, and that it is format-
ted. (Recall that formatting a diskette erases its contents.)

Data overflow (–755)

Explanation: The vision binary correlation hardware has found more matches
within the search area than it can process.

User Action: Search a smaller area or redefine your binary template so that it con-
tains more distinguishing features.

Device error (–660)

Explanation: An error was detected for an external device such as one specified in
the last DEVICE or SETDEVICE program instruction. The actual
error depends upon the type of device referenced.

User action: Check the instruction to make sure the parameters are valid. Refer
to the documentation for the device type referenced for information
on how to determine what has caused the error.

Device full (–503)

Explanation: There is no more space available on a device. If received for a disk
file, the disk is full (if there are many small files on the device, this
error indicates the disk directory is full). If received for a servo
device, an attempt has been made to assign too many servo axes to a
single CPU.

User action: Delete unneeded disk files, or use another drive or diskette. Recon-
figure your system so the maximum number of axes per CPU is not
exceeded.

Device hardware not present (–658)

Explanation: An attempt has been made to reference a device that is not present
in your system.

User action: Check that the device was correctly specified. Check that the device
hardware is present and is configured properly.

Device in use (–668)

Explanation: An attempt has been made to attach, assign, or configure a hard-
ware device (e.g., a VMI axis) which is already being used.
V+ Language Reference Guide, Rev A 673

Appendix B Alphabetical Listing
User action: Check the program code to make sure the requested device has not
already been attached.

Device not ready (–508)

Explanation: (1) The requested disk device (or remote network task) is not pre-
pared to communicate with the V+ system.

(2) A limited-access device like the terminal, the manual control
pendant, or a serial line is attached to a different program task.

(3) You have tried to write into a pull-down window while it is dis-
played.

User action: (1) If the intended device is a system microfloppy disk drive, make
sure the diskette is correctly inserted and formatted.

(2) If a limited-access device is specified, ABORT and KILL the pro-
gram task that has it attached, or wait for the program task to
release the device. If the intended device is on the network, check
that the proper connections are made and that the remote system is
operating correctly. (2) ABORT and KILL the program task that has
the device attached, or wait for the task to release the device.

(3) The pull-down menu should not be modified with the FSET
instruction while it is being displayed. A suitable time for modify-
ing the pull-down menu is immediately after receiving a
menu-selection event.

Device reset (–663)

Explanation: The device is busy processing a reset operation. The reset could
have been requested (with a SETDEVICE instruction) by another
program task that is accessing the device, or the device could have
initiated the reset on its own.

User action: Use software interlocks to prevent a second program task from
accessing the device after a reset operation has been requested.
(Note that the requesting SETDEVICE instruction will wait for the
reset to complete.) Refer to the documentation for the specific device
for information on its self-generated resets.

Device sensor error (–662)

Explanation: A hardware error occurred in the sensing system accessed with the
last DEVICE instruction.
674 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Refer to the documentation for the sensing system for information
on how to determine the cause of the error.

Device time-out (–659)

Explanation: The device has not responded within the expected time.

User action: Check the documentation for the device type referenced for how to
determine what has caused the error. Check that the device hard-
ware is configured properly.

Directory error (–509)

Explanation: An error occurred while accessing a disk directory, possibly because
the diskette was not formatted or the diskette has been damaged in
some way.

User action: Make sure the correct diskette is being used, that it is properly
installed in the drive, and that it is formatted. (Recall that formatting
a diskette erases its contents.)

Directory not empty (–571)

Explanation: The operation attempted to remove an NFS directory that was not
empty.

User action: Delete the directory’s contents before deleting the directory.

DO not primed (–302)

Explanation: A DO command was attempted without specifying a program
instruction to be executed and no previous DO had been entered.

User action: Provide the desired instruction with the DO command.

Driver internal consistency error (–519)

Explanation: An I/O device or servo has responded in an unexpected manner.

User action: Retry the operation that caused the error. If it persists, contact Adept
Customer Service.

Duplicate character in font (–740)

Explanation: A character appears more than once in the string that defines a font
for optical character recognition (OCR).
V+ Language Reference Guide, Rev A 675

Appendix B Alphabetical Listing
User action: Delete all but one occurrence of each character in the string of char-
acters being defined.

Duplicate model name (–760)

Explanation: You are attempting to name a new model with a name that already
exists.

User action: Either use a different model name or delete the model with the
name you want to use.

Duplicate .PROGRAM arguments (–468)

Explanation: At least two of the arguments in a .PROGRAM statement have the
same name.

User action: Edit the .PROGRAM line so all the arguments have unique names.
(With the V+ SEE editor, you can press the Undo (F6) function key or
press ESC+CTRL+C to cancel the changes you have made to a
.PROGRAM line.)

Duplicate prototype name (–718)

Explanation: The file specified in the current VLOAD command contains a proto-
type with the same name as one that already exists.

User action: VDELETE the conflicting prototype that already exists. As a precau-
tion, save the existing prototypes first with a VSTORE command.

Duplicate statement label (–464)

Explanation: The same program statement label is used more than once in a user
program.

User action: Change one of the duplicate labels.

Duty-cycle exceeded Mtr n (–1021)

Explanation: The indicated motor has been driven fast for too long a period of
time. The servo system has disabled Arm Power to protect the robot
hardware.

User action: Turn on Arm Power; reduce the speed and/or acceleration for the
motion that was in progress or for motions that preceded that
motion; and repeat the motion that failed.
676 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Encoder fault (–1025)

Explanation: The servo board has detected a broken encoder wire on the indi-
cated axis.

User Action: Inspect the encoder wiring for intermittent connections or broken
wires. Try swapping the encoder cable with another. You can dis-
able this error with the SPEC utility, but do so only as a last resort.

Encoder quadrature error Belt n (–1013)

Explanation: The position encoder signal from the specified conveyor belt is
sending information that is not phased correctly. The encoder or its
cabling may be defective. (Encoder error checking is initiated by the
DEFBELT instruction and by enabling the BELT switch while a belt
is defined.)

User action: Make sure the encoder cable is properly connected. Try to run the
conveyor at a slower speed. Contact Adept Customer Service if the
error persists.

Encoder quadrature error Mtr n (–1008)

Explanation: The position encoder signal from the specified motor is sending
information that is not phased correctly. The encoder or its cabling
may be defective.

User action: Turn on high power, calibrate the robot, and try to perform the
motion at a slower speed. If the error persists, contact Adept Cus-
tomer Service.

Enter new value: (None)

Explanation: The SEE editor’s TEACH command is requesting a new value to be
assigned to the selected variable, that is, the one last displayed in
the debug window.

User action: Enter the desired new value (as a valid expression for the type of
variable selected), or press RETURN to cancel the request.

Envelope error Mtr n (–1006)

Explanation: The indicated motor was not tracking the commanded position with
sufficient accuracy, indicating a failure in the hardware servo system
or something impeding the path of the robot.
V+ Language Reference Guide, Rev A 677

Appendix B Alphabetical Listing
User action: Turn on high power and try to perform the motion at a slower
speed. Make sure nothing is obstructing the robot motion. If the
error recurs, contact Adept Customer Service.

E-STOP from amplifier (–641)

Explanation: The motion interface board has detected an E-STOP condition gen-
erated by the motor amplifiers. It indicates that the amplifiers have
detected some fault condition.

User action: Check for a subsequent message. To determine if there was an unre-
ported RSC error, type listr error(task,4), where task is the number
of the task that received the error. If no additional information is
available, check that the amplifiers are plugged into the backplane
correctly, the fixing screws are tightened, and the motor and signal
cables are connected correctly.

E-STOP from backplane (–643)

Explanation: The motion interface board has detected an E-STOP due to the
BRAKE-ESTOP signal being asserted on the VMEbus.

User action: Check for a subsequent message. To determine if there was an unre-
ported RSC error, type listr error(task,4), where task is the number
of the task that received the error. If no additional information is
available, call Adept Customer Service.

E-STOP from robot (–640)

Explanation: The motion interface board has detected an E-STOP condition gen-
erated by the RSC in the robot. This error is probably due to low air
pressure, joint-1 overtravel, or motor overheating. A subsequent
error message may provide more information.

User action: Check for a subsequent message.To determine if there was an unre-
ported RSC error,type listr error(task,4), where task is the number of
the task that received the error. If no additional information is avail-
able, check for low air pressure, joint 1 overtravel, or motor over-
heating.

E-STOP from SYSFAIL (–642)

Explanation: The motion interface board has detected an E-STOP due to the SYS-
FAIL signal being asserted on the VMEbus.

User action: Check for a subsequent message. To determine if there was an unre-
ported RSC error, type listr error(task,4), where task is the number
678 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
of the task that received the error. If no additional information is
available, call Adept Customer Service.

Executing in DRY.RUN mode (50)

Explanation: The DRY.RUN switch is enabled and program execution has been
requested. Thus, no motion of the robot will occur.

User action: None unless motion of the robot is desired. In that case, abort execu-
tion of the program and disable the DRY.RUN switch.

Expected character(s) not found (–745)

Explanation: While training characters for subsequent optical character recogni-
tion (OCR), the number of characters in the given string did not cor-
respond to the number of characters found in the training window.
Character training has been aborted.

User action: Make sure the given string matches the characters in the training
window.

External E-STOP (–608)

Explanation: The hardware panic button on the controller or pendant has been
pressed, or the external panic circuit has been interrupted, causing
high power to be turned off. This message is also displayed if the
MANUAL button is pressed or the PANIC command is entered
while a robot control program is executing.

User action: If high power is off, release the panic button or restore the external
panic circuit. Then turn on high power. If high power is not off, rese-
lect COMP mode on the manual control pendant. Then resume pro-
gram execution.

[Fatal] Addr Err at aaaaaa m:n I=xxxx, A=aaaa, F=ff (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
V+ Language Reference Guide, Rev A 679

Appendix B Alphabetical Listing
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] Bus Err at aaaaaa m:n I=xxxx, t=aaaa, F=ff (None)

Explanation: A computer error occurred because of a bad read from memory,
because of noise on the internal data bus, or because of a hardware
problem.

User action: To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system. If the problem persists, contact Adept Customer
Service.

[Fatal] CHK Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] Emul 1010 Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.
680 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
[Fatal] Emul 1111 Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] Illeg Instr at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] OVF Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.
V+ Language Reference Guide, Rev A 681

Appendix B Alphabetical Listing
[Fatal] Priv Viol at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] Spurious Int at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] Uninit Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.
682 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
[Fatal] ZDIV Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the V+ software or with the
system hardware.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] DIV Instr Err at aaaaaa m:n (None)

Explanation: The V+ system has detected an error from a divide instruction. This
indicates a processor fault.

User action: Power down the controller and try starting it again. If the problem
persists, contact Adept Customer Service.

[Fatal Force Err] (None)

Explanation: The force processor has detected an error condition. You can con-
tinue to use the V+ system, but the force-sensing system cannot be
used until you act upon the error.

User action: None required if you do not intend to use the force-sensing system.
Otherwise, refer to the documentation for the force-sensing system
for information on how to respond to the error.

[Fatal] Graphics/display processor error (None)

Explanation: The graphics processing unit on the graphics system processor has
failed to respond to commands from the V+ system.

User action: Power down the controller and try starting it again. If the problem
persists, contact Adept Customer Service.

[Fatal] Initialization failure Mtr n (–1014)

Explanation: During initialization of a robot kinematic module, the indicated
motor failed initialization. The problem may be a missing or
improperly configured servo interface board, or an incorrect motor
mapping for this module.
V+ Language Reference Guide, Rev A 683

Appendix B Alphabetical Listing
User action: Verify that all servo interface boards are correctly installed and con-
figured (use the SPEC.V2 utility for motor mapping). If the problem
persists, contact Adept Customer Service.

[Fatal] Invalid serial I/O configuration (None)

Explanation: During initial start-up, V+ has detected that the configuration of the
hardware for serial communications is not valid. An attempt has
been made to configure a serial unit that is not installed, or an
invalid byte format or baud rate has been requested.

User action: Power down the controller and try starting it again. Make sure that
the boot disk you are using is valid for your controller. Use the
CONFIG_C utility program to make sure the serial I/O configura-
tion is correct. If the problem persists, contact Adept Application
Engineering.

[Fatal] Servo process dead CPU n (–1101)

Explanation: V+ failed to detect proper operation of the servo process on the indi-
cated CPU. V+ will continue to operate, but will not allow high
power to be turned on.

User action: Power down the controller and restart. Use the CONFIG_C.V2 util-
ity to verify that a servo process is enabled for this CPU. If the prob-
lem persists, contact Adept Customer Service.

[Fatal] Servo code incompatible CPU n (–1102)

Explanation: During initialization, V+ detected an improper version of servo soft-
ware on the indicated CPU. V+ will continue to operate, but will not
allow high power to be turned on.

User action: Power down the controller and restart. If the problem persists, con-
tact Adept Customer Service.

[Fatal] Servo dead Mtr n (–1104)

Explanation: The servo process for the indicated motor is not responding to com-
mands from V+. V+ will continue to operate, but will not allow high
power to be turned on.

User action: Power down the controller and restart. If the problem persists, con-
tact Adept Customer Service.
684 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
[Fatal] Servo init failure Board n (–1107)

Explanation: During system initialization the indicated servo interface board
could not be initialized. The problem may be an invalid servo con-
figuration, a missing or improperly configured servo interface
board, or a hardware failure.

User action: Power down the controller and restart, making sure you are using
the correct system disk. If the problem persists, contact Adept Cus-
tomer Service.

[Fatal] Stk Overflow at aaaaaa m:n (None)

Explanation: A storage stack within V+ has overflowed. If n is 1, the error indi-
cates the V+ monitor has encountered an expression that has paren-
theses nested too deeply. Any of the following values for n indicates
that the program task shown has attempted to evaluate an expres-
sion that is too complex to fit in the stack for that task. The value is a
hexadecimal number where ^H1 = monitor task and ^HD = task 0,
^HE = task 1,...^H27 = task 26, and ^H28 = task 27.

User action: If the n value is one of those listed above, reduce the complexity of
the offending expression. If the value is not one of those listed, an
internal problem with V+ is indicated. In that case, it would be
appreciated if you would report the error to Adept Application
Engineering. Please include the details of the error message and
what you were doing at the time the error occurred.

To save programs that are in memory, you can restart V+ tempo-
rarily by pressing CTRL+G. The robot servos will not function, but
you can STORE the programs. Then power down the controller and
restart the system.

[Fatal] System clock dead (None)

Explanation: During initial startup, V+ has failed to detect proper operation of the
system clock and timer hardware. V+ cannot run without the clock
operating properly.

User action: Power down the controller and try starting it again. If the problem
persists, contact Adept Customer Service.

[Fatal] System clock too fast (None)

Explanation: During initial startup, V+ has detected that the system hardware
clock is running too fast. V+ cannot run without the clock operating
properly.
V+ Language Reference Guide, Rev A 685

Appendix B Alphabetical Listing
User action: Power down the controller and try starting it again. If the problem
persists, contact Adept Customer Service.

File already exists (–500)

Explanation: There is already a disk file or a graphics window with the name
supplied to the last storage request.

User action: Reissue the storage request with a different file name, or delete the
old file.

File already open (–506)

Explanation: A disk file or graphics window is already open on a logical unit, and
another open request has been attempted.

User action: Modify the program to use a different logical unit number for the
file or window you want to open, or perform an FCLOSE operation
on the file or window currently open on the specified logical unit
number before performing the FOPEN operation.

File format error (–512)

Explanation: The requested disk file is not in a format acceptable to V+ because
either it was not created by V+ or the file has been corrupted.

User action: Use another diskette or reference another file.

File name too long (–570)

Explanation: The file name in an NFS operation was too long.

User action: Use a shorter file name.

File not opened (–513)

Explanation: A program request was made to read or write data from a disk
device when no file was open, or an attempt was made to access a
graphics window that is not open.

User action: Modify the program to open the file or graphics window before
attempting to read or write data.

File or subdirectory name error (–514)

Explanation: The specified file name or subdirectory was not a valid disk file
name, the directory path contained invalid syntax, or the directory
path was too long.
686 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Retry the operation with a correct file name or subdirectory name.
Verify that syntax of the directory path is correct. Check that any
default directory path specified by the DEFAULT command is cor-
rect. Check that the total directory path is not too long when the
default is combined with the current file specification.

File too large (–569)

Explanation: The NFS operation caused a file to grow beyond the server’s limit.

User action: Close the file, open a new file, and retry the previous operation.

Find: (None)

Explanation: While initiating a string search or replacement operation, the SEE
editor is prompting for the string to be found in the program.

User action: Enter the desired search string, or press RETURN to cancel the
request.

First statement must be .PROGRAM (–351)

Explanation: An attempt was made to insert or deposit a program statement
above the .PROGRAM statement, which must be the first statement
in the program.

User action: Move the cursor to below the .PROGRAM line of the program
before attempting to insert or deposit statements.

Font already defined (–737)

Explanation: An attempt has been made to VLOAD a font file (for subsequent
optical character recognition) that contains a font with the same
number as one already in memory. The load operation has been
aborted and none of the fonts in the file have been loaded.

User action: Rename or delete the font currently defined in memory.

Font not completely trained (–738)

Explanation: During planning of a font for optical character recognition (OCR),
some or all of the characters in the font have not been trained.

User action: Display the font (with VSHOW.FONT) to see which characters have
not been trained. Then train those characters or delete them from
the font.
V+ Language Reference Guide, Rev A 687

Appendix B Alphabetical Listing
Font not defined (–736)

Explanation: The font specified for optical character recognition (OCR) is not
defined.

User action: Use VDEF.FONT or VLOAD to define the font.

Font not loaded (–551)

Explanation: The specified font does not exist.

User action: Specify another font (font #1 is always loaded).

Force protect limit exceeded (–624)

Explanation: At least one force-sensor strain gauge reading has exceeded the pre-
set limit, causing a robot panic stop. This may happen due to high
forces experienced during an insertion, a crash, or high acceleration.

User action: If a crash occurred, ensure that the work area is cleared. If the limit
was exceeded in normal operation, the limit should be increased or
Protect mode should be disabled. Enable high power with the man-
ual control pendant and continue operation.

Function already enabled (–422)

Explanation: Certain functions or operations must not be enabled when they are
already enabled or active. ALTER mode is an example of such a
function.

User action: Avoid reenabling the function or operation.

Graphics processor timeout (–552)

Explanation: The graphics processor (on the system processor) failed to respond
to a command from V+ within five seconds.

User action: Save all your programs and variables on disk and then reboot the
system from disk. Contact Adept Customer Service if the problem
repeats.

Graphics software checksum error (–558)

Explanation: The code on the graphics board has been corrupted.

User action: Save new or modified programs, restart the controller, and reload
the programs. If the problem persists, contact Adept customer ser-
vice.
688 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Graphics storage area format error (–555)

Explanation: During execution of a FREE command, V+ has detected that the
information in graphic memory may have been corrupted. This may
have been caused by a momentary hardware failure or a software
error.

User action: Attempt to save as much as possible onto disk. Issue ZERO 1 and
ZERO 2 monitor commands to delete graphics data. If the error per-
sists, power down the controller and restart the system.

(HALTED) (8)

Explanation: A HALT instruction has been executed, and thus execution of the
current program has terminated.

User action: Any monitor command can be entered, but PROCEED cannot be
used to resume program execution.

Hard envelope error Mtr n (–1027)

Explanation: The indicated motor was not tracking the commanded position with
sufficient accuracy, indicating a failure in the hardware servo system
or something impeding the path of the robot. Because this is consid-
ered a serious error, high power was turned off.

User Action: Turn on high power and try to perform the motion at a slower
speed. Make sure that nothing is obstructing the robot’s motion. If
the error recurs, contact Adept Customer Service.

Hardware not in system (–805)

Explanation: An instruction has attempted to access optional hardware (such as a
FORCE board) that is not installed in the system.

User Action: Install the needed hardware or remove the instruction that
addresses the hardware.

HIGH POWER button on VFP not pressed (–646)

Explanation: You did not press the HIGH POWER ON/OFF button on the VFP
before the timeout period expired.

User action: If working from the keyboard, reissue the ENABLE POWER moni-
tor command and promptly press the HIGH POWER ON/OFF but-
ton when instructed to do so. If working from the MCP, follow the
procedure appropriate for enabling high power for the safety cate-
V+ Language Reference Guide, Rev A 689

Appendix B Alphabetical Listing

690 V+ Language Reference Guide, Rev A

gory of your system. Promptly press the HIGH POWER ON/OFF
button when instructed to do so. If the timeout period is too short,
adjust it by using the CONFIG_C utility to change the
POWER_TIMEOUT statement in the V+ configuration data.

This message also can result from a faulty cable, VFP, or SIO.

Illegal array index (–404)

Explanation: An attempt has been made to: (1) use a negative value as an array
index, (2) use a value greater than 32767 as an array index, (3) spec-
ify a simple variable where an array variable is required, (4) omit an
array index in a situation where it is required (for example, a
1-dimension array is specified when a 2- or 3-dimension array is
required), (5) specify an explicit index in an argument for a V+ oper-
ation that requires a null array, or (6) specify an index to the right of
a blank index for a multiple-dimension array.

User action: Correct the line.

Illegal assignment (–403)

Explanation: The assignment operation just attempted was invalid, possibly
because it attempted to assign a value to a variable name that is a
reserved word or a function.

User action: Reenter the line, using a different variable name if necessary.

Illegal camera number (–803)

Explanation: A vision command or instruction has specified a camera number
value that is invalid.

User action: Reenter the command or edit the program using the correct camera
number.

Illegal digital signal (–405)

Explanation: A number or bit field specifies a digital signal that is not in one of
the allowed ranges or that is not installed. Attempting to set soft-
ware signal 2032 (brake solenoid) will also give this error.

User action: Correct the signal number and check your digital I/O configuration.

Appendix B Alphabetical Listing
Illegal expression syntax (–458)

Explanation: While decoding a numeric or logical expression, a compound trans-
formation, or a string expression, V+ has encountered syntax that it
does not understand. Possible errors include unmatched parenthe-
ses, missing variables, or missing operators.

User action: Retype the line containing the expression, being careful to follow
the V+ syntax rules.

Illegal in debug monitor mode (–359)

Explanation: An operation was attempted that is not accepted in debug monitor
mode.

User action: Use a different command, change to debug editor mode, or exit
from the program debugger.

Illegal in read-write mode (–365)

Explanation: An editor function was attempted that cannot be performed while
accessing a program in read-write mode.

User action: Change to editing the program in read-only mode, or use a different
editor command.

Illegal I/O channel number (–518)

Explanation: An internal I/O channel number has been encountered that is
invalid. This indicates a V+ internal software problem.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred.

Illegal I/O device command (–502)

Explanation: A command to an I/O device was rejected by that device. Certain
devices will not accept all commands. For example, random access
I/O is illegal to the terminal or to the Kermit device; the GETC func-
tion cannot read from a disk file opened for random access. This
error may also indicate a hardware problem with the device control-
ler.
V+ Language Reference Guide, Rev A 691

Appendix B Alphabetical Listing
User action: Correct the I/O command as required to suit the device. If you con-
tinue to have difficulty, contact Adept Application Engineering for
assistance.

Illegal I/O redirection specified (–525)

Explanation: An unacceptable I/O redirection has been specified in a DEFAULT
monitor command, a disk I/O monitor command (LOAD or
STORE_), or in an ATTACH instruction. Either there is a syntax
error, or the requested redirection is not allowed for your I/O con-
figuration.

User action: Check the syntax of the offending statement. Check your I/O con-
figuration to make sure the requested redirection device is allowed.

Illegal joint number (–609)

Explanation: A joint number has been specified out of the allowed range.

User action: Correct the joint number.

Illegal memory reference (–418)

Explanation: An operation has attempted to reference an invalid memory
address. That is, one that is either out of the allowed range, or that is
not in use for any input/output module.

User action: Correct the address or install the missing module.

Illegal monitor command (–300)

Explanation: The name of the command just attempted was not recognized by the
system, possibly because it was mistyped or because it was a pro-
gram instruction and not a command.

User action: Check the spelling of the command name and enter the command
again. Use the DO command to invoke a program instruction from
the terminal.

Illegal motion from here (–613)

Explanation: The motion just attempted cannot be performed from the current
robot location. For example, NEST can be executed only immedi-
ately after a READY instruction; CALIBRATE can be executed only
after power-up, LIMP, or NEST; and only CALIBRATE or READY
can be executed when the robot is in the nest.
692 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Perform the appropriate operation sequence before retrying the
desired motion.

Illegal operation (–423)

Explanation: A program instruction has attempted to perform an operation that
is not possible.

User action: Check the instruction executing when the error occurred. Make sure
all conditions necessary for its successful completion are met.

Illegal .PROGRAM statement (–467)

Explanation: An attempt has been made to: (1) enter a line other than a
.PROGRAM statement as the first line of a program, or (2) enter a
.PROGRAM statement that contains a syntax error.

User action: Move below the first line of the program, or reenter the line cor-
rectly. (With the V+ SEE editor, you can press the Undo function key
or press ESC+CTRL+C to cancel the changes you have made to a
.PROGRAM line.)

Illegal record length (–528)

Explanation: An FOPEN instruction has specified a record length that is not
acceptable. For example, the value is negative or too large, or the
record length is zero with random-access mode specified.

User action: Edit the program to specify a correct record length or specify
sequential-access mode.

Illegal use of belt variable (–466)

Explanation: A belt variable has been used in a context where it is not allowed,
probably in a compound transformation but not at the left-most
position.

User action: Edit the program to use the belt variable correctly.

Illegal user LUN specified (–527)

Explanation: An I/O instruction has specified a logical unit number (LUN) that is
not defined in the V+ system, or cannot be accessed in the manner
attempted. (See the description of the ATTACH instruction for a list
of the valid logical unit numbers and the devices to which they
apply.)
V+ Language Reference Guide, Rev A 693

Appendix B Alphabetical Listing
User action: Edit the program to use a logical unit number appropriate for the
instruction.

Illegal value (–402)

Explanation: A numeric or expression value that is not in the allowed range was
specified within a command or instruction.

User action: Edit the program to use a legal value.

Illegal when command program active (–419)

Explanation: A command program is active and an attempt has been made to
execute a command that would interfere with operation of the com-
mand program. (For example, processing a ZERO command would
cause the command program to be deleted from the system mem-
ory.)

User action: Edit the command program and delete the command causing the
error.

Illegal when network enabled (–543)

Explanation: An attempt has been made to perform certain network functions
that require that the network be disabled, but the network is
enabled.

User action: Disable the network and retry the operation.

Illegal while joints SPIN'ing (–637)

Explanation: An attempt has been made to execute a regular motion instruction
while a SPIN trajectory is being executed.

User action: Stop the SPIN trajectory with a SPIN or BRAKE instruction before
executing a regular motion instruction.

Illegal while protocol active (–548)

Explanation: This message indicates that the user tried to enter passthru mode, or
did something unexpected on the serial line configured for use with
Kermit while a file was being processed.

User action: Make sure there is no file being accessed by Kermit, and retry the
failed operation.
694 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Image processing board failure (–728)

Explanation: The controller circuit board that processes vision images has failed
to respond while processing a request to grab a frame.

User action: After saving the programs, variables, and vision prototypes in
memory, power down the controller. Make sure the image processor
is firmly seated in the controller backplane. Contact Adept Cus-
tomer Service if the problem persists.

Incompatible robot and safety ID (–644)

Explanation: The robot and controller do not have the same safety options.

User action: Make sure that the correct robot and controller are being used
together. Install (or remove) the appropriate EN954 Safety Category
license in the controller.

Inconsistent hierarchy levels (–757)

Explanation: The VPLAN.FINDER vision instruction has attempted to combine
two or more object finder models that were not trained at the same
hierarchiacal (subsample) level.

User action: Retrain the models so that they are all at the same hierarchiacal lev-
els.

Information not available (–730)

Explanation: (1) A VGETPIC, VPUTPIC, VRULER, VRULERI, or VWINDOW
operation has been attempted when the specified frame store
(binary or grayscale) does not contain valid picture data. (2) No
information is available for VGAPS or VSUBPROTO (for example,
V.LAST.VER.DIST is set to zero), or the prototype name specified is
not the name of the last object located.

User action: Change the operations that precede the failed one to make sure the
required conditions are satisfied.

Initialization error (-505)

Explanation An I/O device reported an error condition during its initialization.
Initialization is performed during power-up, after a reset, and may
also be performed after certain nonrecoverable I/O errors occur.
V+ Language Reference Guide, Rev A 695

Appendix B Alphabetical Listing
User action Be sure that the hardware for the I/O device is properly installed.
Repeat the failed I/O operation. If the problem persists, contact
Adept Field Service.

Initialization failure Belt n (–1015)

Explanation: The indicated belt encoder monitoring system failed to respond to
V+ during the initialization caused by the DEFBELT instruction.

User action: Power down the controller and restart. If the problem persists, con-
tact Adept Customer Service. (You can prevent this error from being
reported by enabling the DRY.RUN system switch.)

Input block error (–511)

Explanation: A read error has occurred while reading a binary data file from the
floppy disk. This indicates that the wrong file was specified or that
the data in the file is corrupted.

User action: Try the operation again. If the error recurs use another diskette.

Input error Try again: (16)

Explanation: The input provided was not consistent with what V+ expected.

User action: Provide another response.

Invalid argument (–407)

Explanation: An argument for a function, program instruction, or SEE editor
command is not in the accepted range.

User action: Check the range of arguments for the function, program instruction,
or editor command being used.

Invalid camera calibration (–802)

Explanation: A vision system operation has been attempted before the
camera-to-robot calibration has been done.

User action: Execute the camera-to-robot calibration program provided by
Adept, or load previous calibration data. The latter can be done, for
example, by calling the subroutine load.line provided on the Adept
Utility Disk in the file LOADAREA.V2.
696 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Invalid character in font (–741)

Explanation: An invalid character appears in the string that defines a font for
optical character recognition (OCR). The characters in the string
must be in the range ASCII 33 (!) to 126 ().

User action: Delete the invalid character from the string.

Invalid connection specified (–540)

Explanation: An invalid logical network connection has been specified. For exam-
ple, a zero connection ID is invalid.

User action: Specify a valid logical connection ID.

Invalid disk format (–520)

Explanation: An attempt has been made to read a disk that is not formatted, or is
formatted improperly; or a FORMAT command has been entered
that specifies invalid format parameters for the device specified.

User action: If a FORMAT command has been entered, check the command syn-
tax and retry the command. Otherwise, try a different diskette or
reformat the current one. Remember that formatting erases all infor-
mation on the diskette. If the diskette was created on an IBM PC, be
sure it was formatted with one of the formats accepted by the V+
system.

Invalid error code Belt n (–1010)

Explanation: An unrecognized error was reported by the controller for the indi-
cated conveyor belt.

User action: Attempt the operation again. If the error repeats, report the situation
to Adept Application Engineering.

Invalid format specifier (–461)

Explanation: An unrecognized output format specifier was encountered in a
TYPE or WRITE instruction, or in an $ENCODE function.

User action: Edit the program to use a valid format specifier.

Invalid hardware configuration (–533)

Explanation: An attempt has been made to access an I/O device in a manner
inconsistent with its current configuration. Either the I/O device is
V+ Language Reference Guide, Rev A 697

Appendix B Alphabetical Listing
not present in the system, or it is configured for some other use. For
example, if a serial communication line is configured as a network
port, it cannot be accessed as a user serial line.

User action: Make sure the correct device is being accessed. Power down the
controller and try starting it again. Make sure the boot disk you are
using is valid for your controller. Use the CONFIG_C utility pro-
gram to make sure the serial I/O configuration is correct. If the
problem persists, contact Adept Application Engineering for assis-
tance.

If the error resulted from a disk I/O operation, it indicates that the
disk controller hardware is not configured correctly. Adept Cus-
tomer Service should be contacted in that case.

Invalid in read-only mode (–352)

Explanation: An editor function was attempted that cannot be performed while
accessing a program in read-only mode.

User action: Change to editing the program in read-write mode, or use a differ-
ent editor command.

Invalid model name (–732)

Explanation: The name of a prototype, subprototype, OCR font, or correlation
template has been incorrectly specified. The correct format for pro-
totype names is proto:subproto, where proto is a prototype name
and subproto is a subprototype name. This error occurs if the colon
is followed by a blank, or when some other character is used instead
of a colon. Font names have the form FONT_n, where n is an integer
in the range 0 to 50. (The special name FONT_0 refers to all fonts.)
Similarly, template names have the form TMPL_n. Prototype names
should not begin with FONT_ or TMPL_.

User action: Enter the attempted operation again, correctly specifying the proto-
type, subprototype, OCR font, or correlation template.

Invalid network address (–561)

Explanation: This error occurs when an NFS server has not correctly exported the
path being accessed or when an IP network address specified is not
of class A, B, or C.

User action: Check the IP addresses used to refer to network nodes.
698 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Invalid network protocol (–541)

Explanation: A message has been received and rejected by a remote node because
it does not follow the expected protocol. If the KERMIT device was
being accessed, this error indicates the remote server reported an
error or sent a message not understood by the V+ Kermit driver.

User action: Check that network software version on the remote node is compat-
ible with the network software on the local node. DISABLE and
ENABLE the affected network nodes and retry the operation. If this
error occurs repeatedly, contact Adept Application Engineering for
assistance. (See the V+ Language User’s Guide for information on
Kermit.)

Invalid network resource* (–560)

Explanation: This error occurs when referring to a node that has not been
defined.

User action: Check the node definitions.

Invalid number format (–456)

Explanation: A syntax error was detected while reading a number. For example,
an 8 or 9 digit was encountered while reading an octal number.

User action: Reenter the line with a valid number.

Invalid orientation (–619)

Explanation: A motion has been requested to a location that is defined by a trans-
formation with its orientation pointed up instead of down.

User action: Correct the definition of the destination transformation. For exam-
ple, you may need to correct the base transformation in the com-
pound transformation. (The p component of all destination
transformations should be approximately 180 degrees.)

Invalid program or variable name (–455)

Explanation: A user-defined name used in a command or instruction was not rec-
ognized by V+.

User action: Check the name and retype the line.
V+ Language Reference Guide, Rev A 699

Appendix B Alphabetical Listing
Invalid qualifier (–476)

Explanation: An invalid qualifier was specified on the last command.

User action: Enter the command again, with a valid qualifier.

Invalid request while camera running (–706)

Explanation: An operation was attempted that requires the vision system to be
idle, but it was still processing an image.

User action: Use a VWAIT instruction to make program execution wait for the
vision system to be idle.

Invalid request while vision training (–729)

Explanation: An VEDGE.INFO or VGAPS instruction has been attempted while
the vision system is in prototype training mode.

User action: Use the manual control pendant to terminate prototype training,
type Ctrl+C at the system terminal to abort a VTRAIN command, or
abort execution of the program that initiated training.

Invalid servo error Mtr n (–1001)

Explanation: An unrecognized error was reported for the indicated robot motor.

User action: Attempt the operation again. Contact Adept Customer Service if the
error repeats.

Invalid servo initialization data (–625)

Explanation: During V+ system initialization after booting from disk, servo ini-
tialization data in the wrong format was found. This can be caused
by using a version of the SPEC utility that is incompatible with the
V+ system.

User action: Make sure your system disk has been configured correctly. Contact
Adept Application Engineering for assistance.

Invalid software configuration (–315)

Explanation: During initial startup, V+ has detected that the system software is
not configured properly for the options or hardware present.

User action: Power down the controller and try starting it again. Make sure that
the boot disk you are using is valid for your controller. If the prob-
lem persists, contact Adept Customer Service for assistance.
700 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Invalid statement label (–463)

Explanation: The program statement label was not an integer from 0 to 65535.

User action: Reenter the line with a valid label.

Invalid steps will be changed to ? lines (None)

Explanation: The AUTO.BAD extended command has been used to change the
action to be taken when an invalid line is detected while editing.
Subsequently, such a line will automatically be changed to a bad
line with a question mark in column one.

User action: None. This is an informational message.

Invalid VFEATURE access (–801)

Explanation: A VFEATURE function has been used to access, from the vision sys-
tem, data that is not valid. In particular, after a VLOCATE instruc-
tion in no-wait mode, the vision data is invalid if VFEATURE(1)
returns the value FALSE.

User action: Edit the program to ensure that, after a no-wait VLOCATE, no
VFEATURE accesses [other than VFEATURE(1)] occur if the vision
data is indicated by VFEATURE(1) to be invalid.

Invalid vision argument (–735)

Explanation: An argument for a vision function, program instruction, or com-
mand is not in the accepted range.

User action: Check the acceptable range of arguments for the function, program
instruction, or command being used. Check the vision calibration to
make sure the scaling is reasonable.

Invalid vision X/Y ratio (–727)

Explanation: A VPUTCAL instruction has been used to pass vision calibration
data to the AdeptVision system, and the x-scale to y-scale is not in
the acceptable range.

User action: Make sure the program reads the calibration data from a valid data
file, or make sure valid values are asserted by the program.
V+ Language Reference Guide, Rev A 701

Appendix B Alphabetical Listing
Invalid when program on stack (–366)

Explanation: An attempt has been made to edit a .PROGRAM or AUTO state-
ment while the program appears on some task execution stack.
While a task is on a stack, its subroutine arguments and automatic
variable values are kept on the stack. Changes to these statements
would modify the stack, which is not allowed.

User action: Remove the program from the stack by allowing the task to run
until the desired program executes a RETURN instruction, or issue a
KILL monitor command to clear the stack. If you are using the SEE
program editor, press the Undo key to allow you to continue edit-
ing.

Invalid when program task active (–311)

Explanation: An attempt has been made to begin execution of a robot or PC pro-
gram task when that task is already active.

User action: Abort the currently executing task, or execute the program as a dif-
ferent task, if possible.

I/O communication error (–507)

Explanation: A hardware error has been detected in the I/O interface.

User action: Try your command again. If the problem persists, contact Adept
Customer Service.

I/O queue full (–517)

Explanation: Too many I/O requests have been issued to a device too quickly,
and there is no more room to queue them.

User action: Retry the operation. If the problem persists, it would be appreciated
if you would report the error to Adept Application Engineering.
Please include the details of the error message and exactly what you
were doing at the time the error occurred.

Is a directory (–568)

Explanation: The caller specified a directory in a nondirectory NFS operation.

User action: Specifying a file that is not a directory, repeat the operation; or per-
form the correct directory operation.
702 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Joint 1 in brake track or robot overheated (–606)

Explanation: (1) Robot joint 1 has been moved into the hardware brake track area,
which causes high power to be turned off and prevents the robot
from moving.

(2) The robot base has become overheated.

User action: (1) Push the brake release button at the robot base and move the
joints back into the normal working range. Turn on high power and
continue program execution.

(2) Check the fan filter on the robot base, and check the ambient
temperature of the robot. Allow the robot to cool down, turn on
high power, and continue program execution.

Keyswitch not set to AUTO (–303)

Explanation: An attempt has been made to PRIME or otherwise initiate program
execution from the terminal when the front-panel keyswitch is not
set to the AUTO position.

User action: Move the keyswitch to the AUTO position or start program execu-
tion from the selected device.

Keyswitch not set to MANUAL (–304)

Explanation: An attempt has been made to PRIME or otherwise initiate program
execution from the manual control pendant, when the front-panel
keyswitch is not in the MANUAL position. If you do not have a
front panel, the keyswitch is assumed to be set to the AUTO posi-
tion.

User action: Move the keyswitch to the MANUAL position, or start program
execution from the selected device.

Keyswitch not set to NETWORK (–317)

Explanation: An attempt has been made to use a serial line configured for net-
work use, but the front-panel keyswitch is not in the NETWORK
position. If you do not have a front panel, the keyswitch is assumed
to be set to the AUTO position.

User action: Move the keyswitch to the NETWORK position, and retry the oper-
ation.
V+ Language Reference Guide, Rev A 703

Appendix B Alphabetical Listing
Line too long (–354)

Explanation: An operation was attempted that would have resulted in accessing
a program step that contains too many characters. A single program
step can contain at most about 150 characters.

User action: Enter the program step as two or more separate steps.

Location out of range (–610)

Explanation: V+ has encountered a location that is too far away to represent (pos-
sibly within an intermediate computation) or that is beyond the
reach of the robot. This probably indicates an error in a location
function argument value or in a compound transformation.

User action: Check to make sure you are using location functions and operations
correctly and edit the program as required.

Location too close (–618)

Explanation: An attempt has been made to move the robot to a location that is too
close to the robot column. This probably indicates an error in the
value of a location function argument or an incorrect compound
transformation.

User action: Check to make sure you are using location functions and operations
correctly and edit the program as required.

Macro (Z ends): (None)

Explanation: Definition of a SEE editor macro command has been initiated.

User action: Enter the keystrokes to define the macro and then enter Z to termi-
nate the definition.

Manual brake release (–639)

Explanation: The robot's manual brake-release button is active. It is not possible
to enable power when this button is pressed.

User Action: Make sure that the manual brake-release button (usually located on
the robot) is not active. If the problem persists even though the but-
ton is not pressed, call Adept Customer Service.
704 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Manual control pendant failure (–650)

Explanation: A program has attempted to access the manual control pendant
when it is disconnected or has failed.

User action: Make sure the pendant is connected properly. If the problem per-
sists, contact Adept Customer Service.

Maximum number of prototypes exceeded (–712)

Explanation: A maximum of 25 prototypes may be in the AdeptVision system
memory at one time.

User action: If not all of the current prototypes are needed, then store them on
disk using the VSTORE monitor command and VDELETE the pro-
totypes that are not needed. This will reduce the number of proto-
types in memory so that more may be VTRAINed or VLOADed.

Maximum number of samples trained (–739)

Explanation: An attempt has been made to train a character more than 30 times
for optical character recognition (OCR).

User action: Display the font (with VSHOW.FONT) and determine which char-
acters have already been trained 30 times. Don’t train those charac-
ters any more.

Memory Err at aaaaaa (None)

Explanation: During initialization, V+ detected a hardware failure at the indi-
cated memory location.

User action: Power down the controller and start it again. If the error persists,
contact Adept Customer Service.

Misplaced declaration statement (–471)

Explanation: Upon loading a program or exiting from the program editor, V+ has
encountered an AUTO or LOCAL statement that follows an execut-
able program instruction.

User action: Edit the program to make sure that AUTO and LOCAL statements
are preceded only by blank lines, comments, or other AUTO and
LOCAL statements.
V+ Language Reference Guide, Rev A 705

Appendix B Alphabetical Listing
Missing argument (–454)

Explanation: A valid argument was not found for one or more of the arguments
required for the requested command or instruction. That is, the
argument was not present at all or an invalid argument was present.
A possible cause is the use of a single equal sign (=) for the equality
relational operator (==).

User action: Check the operation syntax and reenter the line.

Missing bracket (–475)

Explanation: In the specification of an array element, a left bracket has been found
with no matching right bracket. Either too many left brackets are
present or a right bracket has been omitted.

User action: Reenter the line with correctly matching left and right brackets.

Missing parenthesis (–459)

Explanation: An attempt was made to evaluate an expression that did not have
correctly matching left and right parentheses.

User action: Correct the expression.

Missing quote mark (–460)

Explanation: A quoted string has been encountered that has no matching quote
mark before the end of the line.

User action: Insert a quote mark at the end of the string. Strings may not cross
line boundaries.

Mixing half and full resolutions (–750)

Explanation: A model (recognition prototype, OCR font, or correlation template)
was defined using a full-frame image, but was applied to a
half-frame image (field only), or vice versa.

User action: Make sure the correct virtual camera is being used for both defining
the model and applying the model. Associated with each virtual
camera is a calibration array that contains information indicating
whether full-frame or half-frame images are to be acquired with the
virtual camera.
706 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Motion interface E-STOP (–630)

Explanation: The AdeptMotion system has detected an error or problem and has
asserted the BRKSTOP signal on the VMEBus. If that error is seen, it
indicates a transient BRAKE-ESTOP signal or a problem with either
the motion interface board or the SIO module.

User action: Correct the problem that is causing the motion system to report the
error.

Motor amplifier fault Mtr n (–1018)

Explanation: The power amplifier for the indicated motor has signaled a fault
condition on fault line 1. This fault occurs only for devices con-
trolled by the AdeptMotion Servo system. The interpretation of this
fault depends on the particular device being controlled.

User action: Turn high power back on and restart the program. If the error per-
sists, implement procedures appropriate for your AdeptMotion sys-
tem. If the robot is a standard Adept product, contact Adept
Customer Service.

Motor overheating Mtr n (–1016)

Explanation: The indicated motor is overheating.

User action: Reduce the speed, acceleration, and/or deceleration of the robot
motions, or introduce delays in the application cycle to give the
motor an opportunity to cool.

Motor stalled Mtr n (–1007)

Explanation: The indicated motor has stalled while being driven. This is usually
caused by the robot encountering an obstruction.

User action: Turn high power back on and restart the program. Remove the
obstruction or modify the program to have the robot follow a differ-
ent path.

Motor startup failure Mtr n (–1105)

Explanation: During calibration, the indicated motor did not move as expected.
The problem may be: (1) the motor is obstructed or up against a
limit stop, (2) the load on the robot is too large for calibration, (3) the
motor drive hardware is not functioning, or (4) the position encod-
ers are not functioning.
V+ Language Reference Guide, Rev A 707

Appendix B Alphabetical Listing
User action: Move the robot away from its limit stops and remove any unusual
load. Turn high power back on and try to calibrate again. Contact
Adept Customer Service if the error persists.

Must be in debug mode (–360)

Explanation: An editor function was attempted that is accepted only when the
program debugger is active.

User action: Use a different editor command or activate the program debugger
with the SEE editor DEBUG extended command or the DEBUG
monitor command.

Must use CPU #1 (–666)

Explanation: A command or instruction that requires execution on CPU #1 has
been attempted on a different CPU.

User: action: Reexecute the command or instruction on CPU #1.

Must use straight-line motion (–611)

Explanation: A joint-controlled motion instruction was attempted while the sys-
tem was in a mode requiring that only straight-line motions be
used. For example, while tracking a conveyor, only straight-line
motions can be used.

User action: Change the motion instruction to one that requests a straight-line
motion.

Negative overtravel Mtr n* (–1032)

Explanation: The indicated motor has moved beyond the hardware-limited nega-
tive range of motion.

User action: Move the robot back into the working envelope. Correct whatever
caused the robot to get into the restricted area. Then enable power.

Negative square root (–410)

Explanation: An attempt has been made to calculate the square root of a negative
number.

User action: Correct the program as required.
708 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Network closed locally (–535)

Explanation: An attempt has been made to access a DDCMP serial line when the
protocol is not active. The protocol was probably stopped because of
some other error condition.

User action: Restart the DDCMP protocol.

Network connection closed (101)

Explanation: A client connection has closed on the given logical unit.

User action: None. This is an information message.

Network connection opened (100)

Explanation: A new client connection has been established on the given logical
unit.

User action: None. This is an information message.

Network connection terminated (−565)

Explanation: This error occurs when input or output operations are attempted on
a network connection that has already been terminated.

User action: Reestablish the network connection, and retry the original opera-
tion.

Network error Code n (value received)

Explanation: An error code between −255 and −1 (inclusive) has been received
from the network. The error code, which does not have meaning to
V+, is being reported to the user.

User action: Application dependent. If the indicated code does not having mean-
ing for the current application, check to make sure the remote com-
puter is sending valid data.

Network node off line (–538)

Explanation: An attempt has been made to send data to a known network node
that is off-line. Either the node has been disabled, or it is not con-
nected to the network.

User action: Check that the remote node is active and connected to the network.
Check that the local node is connected to the network.
V+ Language Reference Guide, Rev A 709

Appendix B Alphabetical Listing
Network not enabled (–542)

Explanation: An attempt has been made to access a remote network node, or per-
form certain network functions, when the network is not enabled.

User action: Enable the network and retry the operation.

Network resource name conflict (–564)

Explanation: The name specified for an NFS mount matches an existing network
name such as an NFS disk name.

User action: Choose a different name.

Network restarted remotely (–534)

Explanation: V+ has received a DDCMP start-up message from the remote system
when the protocol was already started. The remote system has prob-
ably stopped and restarted its protocol. The local protocol is
stopped and all pending I/O requests are completed with this error.

User action: (1) Close and reopen the DDCMP line; (2) check the remote program
logic to see why it restarted the protocol.

Network timeout (–562)

Explanation: This error occurs when a network transaction is initiated but no
reply is received from the server.

User action: Check network integrity. Make sure the server is up and running.
Make sure the correct IP address is being used.

NFS error Code n (–1200 to –1299)

Explanation: Because NFS returns errors that do not have corresponding mean-
ing in V+, some NFS errors are reported as a variable NFS error.
Errors in this range have the following interpretation: V+ error num-
ber –(1200+n) corresponds to NFS error code n. Following are the
currently known NFS error codes that are reported in this way:

Table B-4. NFS Error Message Codes

Code n Explanation

19 No such device.

30 Read-only file system. A write operation
was attempted on a read-only file system.
710 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
No air pressure (–607)

Explanation: V+ detected that the air supply to the robot brakes and hand has
failed. High power is turned off and cannot be turned on until the
air pressure is restored.

User action: Restore the air pressure, turn high power back on, and resume pro-
gram execution. If the error persists, contact Adept Customer Ser-
vice.

No data received (–526)

Explanation: An I/O read request without wait has not found any data to return.
This is not really an error condition.

User action: Continue polling the I/O device until data is received, or use a read
request that waits automatically for data to be received.

No matching connection (–539)

Explanation: A request for a logical network connection has been received and
rejected because there is no matching connection on the remote
node.

User action: Check that the proper logical connection was specified. Check that
the remote node is operating properly.

No models (–758)

Explanation: The VSTORE program instruction or monitor command has not
found any models to store.

User action: Supply correct model names to the VSTORE instruction.

69 Disk quota exceeded. The client’s disk quota
on the server has been exceeded.

99 The server’s write cache used in the
WRITECACHE call was flushed to disk.

Table B-4. NFS Error Message Codes

Code n Explanation
V+ Language Reference Guide, Rev A 711

Appendix B Alphabetical Listing
No models planned (–761)

Explanation: Recognition cannot commence because no object models have been
planned for the given virtual camera.

User action: Supply the correct virtual camera number or plan that uses the spec-
ified camera number. (See the VPLAN.FINDER instruction in the
AdeptVision Reference Guide.)

No objects seen (–704)

Explanation: The vision system reports that no objects were seen, in response to a
VTRAIN or VLOCATE command. In the VLOCATE case, it is an
error only if you expect to see objects.

User action: In the training case, make sure the training object is visible under
the camera. If you expect to see objects, check the threshold parame-
ter, the minimum area parameter, and the camera hardware.

No other program referenced (–353)

Explanation: A command was issued that attempted to reference a previously
edited program, but no other program has been edited during the
current editing session.

User action: Use the New or GoTo function-key command (or the N keyboard
command) to change to a new program.

No picture data available (–723)

Explanation: A vision operation was attempted that requires processed picture
data (run-length encodings) when no processed picture data was
available.

User action: Issue a VPICTURE or VWINDOW command or instruction with a
mode parameter of −1 or 1. This will provide the processed picture
data needed for rulers or reprocessing.

No program specified (–301)

Explanation: No program was specified for an EXECUTE or SEE command or
instruction, or DEBUG command, and no previous program is avail-
able as a default.

User action: Type the line again, providing a program name.
712 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
No prototypes (–702)

Explanation: This is the response to the monitor commands VSTORE and
VSHOW (without a parameter) when no prototypes currently exist.

User action: Load some vision object prototypes or train a new one.

No robot connected to system (–622)

Explanation: An attempt has been made to attach a robot with a system that does
not support control of a robot. (Note that some commands, instruc-
tions, and functions implicitly attach the robot.)

User action: Make sure the system has been booted from the correct system disk
(for example, use the ID command to display the system identifica-
tion). Change the program so that it does not attempt to attach the
robot.

No vision system selected (–751)

Explanation: The current task has not selected a vision system. By default, vision
system 1 is selected. This error may indicate the vision option is not
installed.

User action: Use the SELECT() function to select a vision system.

No zero index Belt n (–1011)

Explanation: The conveyor belt controller did not detect a zero-index mark for
the indicated belt.

User action: Make sure the value of the BELT.ZERO.COUNT parameter is set
correctly. Make sure the belt encoder is connected properly. If the
problem persists, contact Adept Customer Service.

No zero index Mtr n (–1004)

Explanation: The motor controller did not detect a zero-index mark for the indi-
cated joint.

User action: Before you can resume running the program, you need to recalibrate
the robot. If the problem persists, contact Adept Customer Service.

Nonexistent file (–501)

Explanation: (1) The requested file is not stored on the disk accessed. Either the
name was mistyped or the wrong disk was read.
V+ Language Reference Guide, Rev A 713

Appendix B Alphabetical Listing
(2) The requested graphics window title, menu, or scroll bar does
not exist.

User action: (1) Check the file name--use the FDIRECTORY command to display
the directory of the disk.

(2) Check the name of the graphics window element specified.

Nonexistent subdirectory (–545)

Explanation: The subdirectory referenced in a file specification does not exist on
the disk that is referenced. Note that the subdirectory may be part of
a default directory path set by the DEFAULT monitor command.

User action: Check that the subdirectory name was entered correctly. Check that
the correct disk drive was referenced and that the correct diskette is
loaded. Use an FDIRECTORY command to display the directory
containing the subdirectory. Check that the default directory path is
correct.

Not a directory (–567)

Explanation: The caller specified a nondirectory in an NFS directory operation.

User action: Specify a directory in the operation, or use the correct nondirectory
operation.

Not attached to logical unit (–516)

Explanation: A program has attempted to perform I/O to a logical unit that it has
not attached with an ATTACH instruction. Logical unit 4 allows
output without being attached, but all other logical units require
attachment for both input and output.

User action: Edit the program to make sure it attaches a logical unit before
attempting to use it to perform I/O.

Not configured as accessed (–544)

Explanation: An attempt has been made to access a serial line or other I/O device
in a manner for which it is not configured. For example, a Kermit or
network line cannot be accessed as a simple serial line.

User action: Check on the proper way to access the serial line for the current con-
figuration. Use the configuration utility program to display the
serial line configuration and change it if desired.
714 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Not enough program stack space (–413)

Explanation: An attempt was made to call a subroutine, process a reaction sub-
routine, or allocate automatic variables when the stack for the pro-
gram task was too full.

User action: Reorganize the program logic to eliminate one or more nested sub-
routine calls or reactions; eliminate some of the automatic variables
that are allocated by the programs; or use the STACK monitor com-
mand to increase the size of the stack for the program task. The pro-
gram may be restarted with the RETRY command.

Not enough prototype storage area (–717)

Explanation: The vision system does not have enough memory to store all of the
prototypes requested.

User action: VDELETE unused prototypes, load fewer prototypes, or use simpler
object models.

Not enough storage area (–411)

Explanation: There is no more space in RAM for programs or variables.

User action: Delete unused programs and variables. If the memory is frag-
mented because of numerous deletions, it can be consolidated by
issuing the commands STORE save_all, ZERO, and LOAD save_all.
This writes the memory contents to the disk and reads them back
into memory. Note, however, that this procedure does not retain any
variables that are not referenced by any program in memory, nor
does it retain the values of variables that are defined to be AUTO or
LOCAL.

Not found (–356)

Explanation: The search operation was unable to locate the specified string.

User action: Enter a new search string, or consider this an informational message
and continue with other operations.

Not owner (–566)

Explanation: The client does not have the correct access identity to perform the
requested NFS operation.
V+ Language Reference Guide, Rev A 715

Appendix B Alphabetical Listing
User action: Modify the LOCAL_ID statement in the V+ configuration file (using
the CONFIG_C utility) as required to gain access to the server. You
may also need to change the access setup on the server itself.

NVRAM battery failure (–665)

Explanation: The nonvolatile RAM battery backup has failed and the RAM may
not hold valid data.

User action: Replace NVRAM battery.

NVRAM data invalid (–661)

Explanation: The nonvolatile RAM has not been initialized or the data has been
corrupted.

User action: Power down your controller and restart your system. If the error
persists, contact Adept Customer Service.

Obstacle collision detected (–901)

Explanation: A possible or actual collision has been detected between the robot
and any statically defined obstacles. This error is similar to *Loca-
tion out of range* in that it is often detected by the kinematic solu-
tion programs as the robot is moving.

User action: Move the robot away from the obstacle and continue the motion, or
modify the application program to avoid the obstacle and reexecute
the program.

Old value: n, New value: n

Explanation: The specified watchpoint has detected a change in value for the
expression being watched. The change occurred because of execu-
tion of the program step just before the one indicated.

User action: Enter a PROCEED (Ctrl+P), RETRY, SSTEP (Ctrl+Z), or XSTEP
(Ctrl+X) command to resume program execution.1 Otherwise, enter
any other monitor command.

1 The command keys CTRL+P, CTRL+X, and CTRL+Z are accepted only while using the V+
program debugger in its monitor mode.
716 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Option not installed (–804)

Explanation: An attempt has been made to use a feature of a V+ system option
that is not present in this robot system.

User action: Power down the controller and try starting it again. Contact Adept
Application Engineering if the problem repeats.

Out of graphics memory (–549)

Explanation: There is no more space in the graphics memory on the system pro-
cessor for windows, icons, fonts, or other graphics items.

User action: Delete unused graphics items, or reduce the size of windows, to free
up graphics memory.

Out of I/O buffer space (–532)

Explanation: An I/O operation cannot be performed because the V+ system has
run out of memory for buffers.

User action: Delete some of the programs or data in the system memory and
retry the operation. (Also see *Not enough storage area*.)

Out of vision transform memory (–753)

Explanation: The space allocated for vision transformations is inadequate. (A
vision transformation may be defined for each task for each CPU
running V+ user tasks.) Vision transformations are defined with the
VTRANS instruction.

User action: Define only the vision transformations that you need. If more mem-
ory must be allocated to vision transformations, see the description
of the DEVICE instruction.

Out of network resources (–559)

Explanation: This error applies to many circumstances. Listed below are several
possible cases:

1. Too many ports are simultaneously in use for TCP and NFS;
there are no more buffers available for incoming and outgoing
packets.

2. Too many drives are being mounted.

3. Too many NFS calls were made simultaneously from separate
tasks to a nonfunctional NFS server.
V+ Language Reference Guide, Rev A 717

Appendix B Alphabetical Listing
4. Too many node names are being defined.

5. An incoming IP packet was fragmented into too many pieces
and V+ was unable to reassemble it. (This is a highly unlikely
occurrence.)

User action: Correct the problem generating the error.

Output record too long (–529)

Explanation: A TYPE, PROMPT, or WRITE instruction has attempted to output a
line that is too long. The maximum line length is 512 characters.

User action: Change the program to output less information from each instruc-
tion. Remember that you can concatenate the output from separate
instructions by using /S to suppress the carriage return and line
feed normally done at the end of each TYPE output.

Overtravel Mtr n (–1034)

Explanation: The indicated motor has moved beyond the hardware-limited range
of motion.

User action: Move the robot back into the working envelope. Correct whatever
caused the robot to get into the restricted area. Then enable power.

PANIC command (–633)

Explanation: The operator has entered a V+ PANIC monitor command which has
stopped the current robot motion. High power is still enabled.

User Action: To continue the current motion, enter the RETRY monitor com-
mand. To continue after the current motion, enter the PROCEED
monitor command.

(PAUSED) (9)

Explanation: A PAUSE instruction has been executed, and thus the current pro-
gram has suspended execution.

User action: Any monitor command can be entered. To continue execution of the
program, type proceed followed by the task number if it is not 0.

Position out of range Jt n (–1002)

Explanation: (1) The requested motion was beyond the software-limited range of
motion for the indicated joint; (2) while enabling high power, V+
718 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
detected that the indicated robot joint was outside the software
limit.

User action: (1) Modify the program as required to prevent the invalid motion
request. (Because the robot did not actually move out of range, you
do not need to move the robot before continuing); (2) move the
robot back into the working envelope. Correct whatever caused the
robot to get into the restricted area. Then enable power.

Position out of range Mtr n (–1023)

Explanation: (1) The requested motion was beyond the software-limited range of
motion for the indicated motor; (2) while enabling high power, V+
detected that the indicated robot motor was outside the software
limit.

User action: (1) Modify the program as required to prevent the invalid motion
request (Because the robot did not actually move out of range, you
do not need to move the robot before continuing.); (2) move the
robot back into the working envelope. Correct whatever caused the
robot to get into the restricted area. Then enable power.

Positive overtravel Mtr n (–1033)

Explanation: The indicated motor has moved beyond the hardware-limited posi-
tive range of motion.

User action: Move the robot back into the working envelope. Correct whatever
caused the robot to get into the restricted area. Then enable power.

Power disabled: Manual/Auto changed (–645)

Explanation: V+ disables power when the VFP switch moves from MANUAL to
AUTO or vice versa.

User action: Use any valid method to enable high power.

Power failure detected (–667)

Explanation: Indicates that a controller AC power-fail condition has been
detected. If battery backup is installed, this error will be reported
(when power is restored) by any I/O operations that were canceled
due to the power failure. This error code may be trapped by a pro-
gram using the REACTE instruction in order to provide some level
of automatic power failure response.
V+ Language Reference Guide, Rev A 719

Appendix B Alphabetical Listing
User action: The user may need to restart or repeat any operations that were
interrupted by the controller AC power failure. Some reinitialization
of the system may be required: for example, any robot(s) connected
to the controller need to be recalibrated after a controller power fail-
ure.

Power failure detected by robot (–632)

Explanation: Indicates that a controller power failure condition has been detected
by the robot control software while a robot is attached to a program.
This error is issued in addition to −667 if a program has a robot
attached and has a REACTE routine defined. Unlike error −667, if no
REACTE routine is defined and a robot is attached, the V+ program
stops with this error.

User action: The user may need to restart or repeat any operations that were
interrupted by the controller AC power failure. Some reinitialization
of the system may be required: for example, any robot(s) connected
to the controller will need to be recalibrated after a controller power
failure

Press HIGH POWER button to enable power (57)

Explanation: The HIGH POWER ON/OFF button on the front panel must be
pressed to complete the process of enabling high power.

User action: When the HIGH POWER ON/OFF button on the VFP blinks,
promptly press the button to complete the two-step process of
enabling high power. (You must press the button within the time
period specified in the V+ configuration data.)

Processor crash CPU = n (None)

Explanation: V+ has detected that the specified CPU within the controller has
entered a fatal error state. A crash message from that processor is
displayed immediately following. A software error or hardware
problem with that processor is likely.

User action: It would be appreciated if you would report the error to Adept
Application Engineering. Please include the details of the error mes-
sage and exactly what you were doing at the time the error
occurred. You should store the programs that are in memory, power
down the controller, and start it again. (If the processor ID shown is
1, you can restart V+ by pressing CTRL+G. The robot servos will not
function, but you can STORE the programs in memory.) If the prob-
lem persists, contact Adept Customer Service.
720 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Program already exists (–309)

Explanation: An attempt has been made to LOAD a program that already exists,
or to COPY or RENAME a program to a name that is already in use.

User action: Delete the conflicting program or use a different name.

Program argument mismatch (–408)

Explanation: The arguments in a CALL, CALLS, or EXECUTE instruction do not
match the arguments in the program being referenced because they
are of different types.

User action: Modify the CALL, CALLS, or EXECUTE instruction, or the
.PROGRAM statement of the referenced program, so that the argu-
ment types match. If arguments are omitted in the CALL, CALLS, or
EXECUTE instruction, make sure the appropriate commas are
included to position the arguments that are present.

Program completed (3)

Explanation: The program has been executed the number of times specified in the
last EXECUTE command or instruction.

User action: Any monitor command can be entered, except that PROCEED can-
not be used to resume program execution.

Program program_name doesn’t exist. Create it (Y/N)? (None)

Explanation: An attempt has been made to use the SEE editor to access a program
that does not currently exist.

User action: Enter a Y to have the program created. Any other input, including
just pressing RETURN, cancels the edit request.

Program HOLD (15)

Explanation: The RUN/HOLD button on the pendant has been pressed while a
robot program was executing, and it is now suspended.

User action: Any monitor command can be entered. To continue execution of the
program, type proceed or retry, or press the PROGRAM START but-
ton on the controller. (The RUN/HOLD button can be held down to
temporarily resume execution of the program if the front-panel key-
switch is in the MANUAL position.)
V+ Language Reference Guide, Rev A 721

Appendix B Alphabetical Listing
Program interlocked (–308)

Explanation: An attempt has been made to access a program that is already in use
by some V+ process. For example, you have attempted to delete or
edit a program that is being executed, or execute a program that is
being edited.

User action: Abort the program or exit the editor as appropriate and retry the
operation. You can use the SEE editor in read-only mode to look at
programs that are interlocked from read-write access.

Program name? (None)

Explanation: A SEE editor command to change to a different program has been
entered.

User action: Enter the name of the new program to be edited, or press RETURN
to cancel the request.

Program not executable (–307)

Explanation: Because of program errors detected during loading or upon exiting
from the editor, this program cannot be executed.

User action: Edit the program to remove any errors.

Program not on top of stack (–421)

Explanation: A DO context specification has referenced an automatic variable or
a subroutine argument in a program that is not on the top of the
stack for the specified task.

User action: Reenter the DO command and specify the correct program context
or eliminate references to automatic variables and subroutine argu-
ments. Use the STATUS command to determine which program is
on the top of the stack.

Program task # stopped at program_name, step step_number date time (4)

Explanation: Execution of the program task indicated by # has terminated for the
reason indicated in the message that preceded this message. The
step number displayed corresponds to the next NEXT program step
that would be executed (for example, if PROCEED were entered).
The current date and time are displayed if the system date and time
have been set.

User action: None. This is only an informational message.
722 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Program task not active (–318)

Explanation: An attempt was made to abort a task that was not active.

User action: None required if the correct task number was specified. Otherwise,
use the STATUS command to determine which task number should
have been used.

Program task not in use (–319)

Explanation: A program task cannot be accessed because it has never been used.
(Such program tasks do not use any system memory and do not
appear in the STATUS display.)

User action: None.

Protected program (53)

Explanation: An attempt has been made to list a program that is protected from
user access.

User action: None.

Protection error (–530)

Explanation: An I/O operation cannot be performed because (1) it attempted to
write to a disk that is write protected, or (2) the user does not have
the proper access status.

User action: Check the diskette to make sure the write-protect tab is in the cor-
rect position. Use an FDIRECTORY command to display the disk
directory. If the file has protected (P) or read-only (R) protection,
you cannot access it in the way attempted.

Recursive macros illegal (–357)

Explanation: An attempt was made to execute a macro recursively. That is, the
macro contained a command character sequence that (directly or
indirectly) restarted execution of the macro.

User action: Change the macro definitions as necessary to make sure neither
macro invokes itself. You can have the U macro invoke the Y macro,
or vice versa (but not both).
V+ Language Reference Guide, Rev A 723

Appendix B Alphabetical Listing
Region too big (–743)

Explanation: While using optical character recognition (OCR) to recognize text
(VOCR) or train a font (VTRAIN.OCR), a region in the given win-
dow was more than 63 pixels in the horizontal or vertical dimen-
sion.

User action: Make sure there are no extraneous regions in the training window. If
the characters in the font are too large, use a camera lens with a
shorter focal length, or increase the distance between the camera
and the text.

Region too complicated (–744)

Explanation: While using optical character recognition (OCR) to train a font
(VTRAIN.OCR), a character region was encountered with more
than 20 concavities and holes.

User action: Look at the binary image (with VDISPLAY mode 2). Perhaps the
threshold needs adjustment.

Remote has not exported network resource (–563)

Explanation: The NFS server has not exported the designated path for use by cli-
ents.

User action: Check the NFS server setup, and check the path that the V+ system
uses.

Reserved word illegal (–457)

Explanation: An attempt has been made to use a V+ reserved word for a variable
name. (See Tables 1-1 to 1-9 for a list of the reserved keywords.)

User action: Use a different name for the variable. You can, for example, append
a prefix or suffix to the attempted name.

Return manual control pendant to background display (^C to exit) (None)

Explanation: The manual control pendant display must be in background mode
for the operation you have selected.

User action: Press the DONE button on the pendant one or more times to exit the
current function.
724 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Robot already attached to program (–602)

Explanation: A program has executed more than one ATTACH instruction for the
robot, without executing a DETACH in between. Or an attempt has
been made to SELECT another robot when one is already attached.
The robot is still attached even after this error occurs.

User action: Check the program logic—remove redundant ATTACH instruc-
tions, or DETACH the current robot before attempting to SELECT
another robot.

Robot interlocked (–621)

Explanation: (1) An attempt has been made to access a robot or external device
that is already being used by a different program task or by the sys-
tem monitor; (2) an attempt has been made to calibrate the robot
with the VFP keyswitch set to MANUAL.

User action: (1) Review the program logic and make sure the robot or device is
being controlled by only one program task; (2) with V+ 11.3 (and
later), you cannot calibrate the robot when the VFP keyswitch is set
to MANUAL. (This is for safety reasons, and also to avoid trigger-
ing the accelerometer when calibrating.) Set the keyswitch to AUTO
before attempting calibration.

Robot module not enabled (–900)

Explanation: The indicated robot module is present in memory, but it was not
enabled for use due to an error (which is reported by a separate
message).

User action: Use the CONFIG_C and/or SPEC utilities to correct the module
configuration.

Robot module not loaded ID: n (–628)

Explanation: This error occurs only during startup when a robot module has been
configured using the CONFIG_C utility, but the robot module is not
present in memory.

User Action: Use the CONFIG_C utility to add the robot module to the boot disk
before rebooting.

Robot not attached to this program (–601)

Explanation: An attempt has been made to execute a robot-control command or
instruction in one of the following invalid situations:
V+ Language Reference Guide, Rev A 725

Appendix B Alphabetical Listing
(1) The system is not configured to control a robot. (2) There is no
robot connected to the system. (3) The robot is attached to a different
program task.

User action: (1) Make sure the system is booted from the proper system disk, or
remove the robot-control instruction.

(2) Connect the robot or enable the DRY.RUN system switch.

(3) Modify the program logic as required to ensure that only one
program task is controlling the robot at any given time.

Robot not calibrated (–605)

Explanation: An attempt has been made to execute a robot-control program when
the robot is not calibrated. No motion is allowed until the robot is
calibrated.

User action: If you want to use the robot, issue a CALIBRATE command or have
your program execute a CALIBRATE instruction. Or enable the
DRY.RUN switch to allow program execution without using the
robot.

Robot power off (–604)

Explanation: High power is not turned on or cannot be turned on because of a
hardware failure. On a system with the Manual Mode Safety
Package (MMSP), you can get this error if you press the HIGH
POWER ON/OFF button before it starts to flash.

User action: (1) Turn on high power and reenter the last command; (2) on a sys-
tem with the MMSP, wait for the HIGH POWER ON/OFF button to
start to flash before you press it.

Robot power on (–627)

Explanation: An attempt has been made to perform an action that requires high
power to be off.

User action: DISABLE POWER and reexecute the action.

RSC bad packet format (–655)

Explanation: V+ has received an incorrect data packet from the robot signature
card, during the initial calibration data load.

User action: None unless the calibration load fails. If the problem persists, con-
tact Adept Customer Service.
726 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
RSC calibration load failure (–656)

Explanation: V+ cannot load calibration data from the robot signature card (RSC).

User action: Power down the controller and make sure the robot cables are cor-
rectly and securely connected. If the problem persists, contact Adept
Customer Service.

RSC communications failure (–651)

Explanation: V+ has lost communications with the robot signature card (RSC).
Either a hardware problem has occurred or the robot is being oper-
ated in an environment with excessive electrical noise.

User action: Check the connections of the robot cables. Turn high power back on,
calibrate the robot, and resume program execution. If the problem
persists, contact Adept Customer Service.

RSC hardware failure (–669)

Explanation: The RSC has reported an internal failure. Because RSC failures
almost always cause the RSC to stop communicating altogether
(rendering it incapable of reporting the failure), this error message
may be due to some other cause, such as electrical noise at the RSC
or within or around the arm signal cable.

User Action: If the problem persists, contact Adept Customer Service.

RSC module ID doesn’t match robot (–676)

Explanation: The V+ configuration data contains an explicit ID specification for a
robot module (for example, 6 for the Adept 550 robot), and the robot
RSC does not contain that ID number.

User Action: Make sure that the correct type of robot is being used. Use the
CONFIG_C utility to change the module ID to –1 in the V+ configu-
ration data. Correct the module ID in the RSC.

RSC power failure (–670)

Explanation: The RSC has reported that its power is failing. Because a power fail-
ure on the RSC almost always causes it to stop communicating alto-
gether (rendering it incapable of reporting the failure), this error
message may be due to some other cause, such as electrical noise at
the RSC or within or around the arm signal cable.
V+ Language Reference Guide, Rev A 727

Appendix B Alphabetical Listing
It is possible that the power lines to the RSC have an intermittent
connection somewhere.

User Action: If the problem persists, contact Adept Customer Service.

RSC reset (–652)

Explanation: V+ has detected that the robot signature card (RSC) has lost power
temporarily, but is now functioning.

User action: Turn high power back on and resume program execution. If the
problem persists, check the cabling to the robot. Contact Adept Cus-
tomer Service if no solution can be found.

RSC time-out (–653)

Explanation: V+ has not received a response from the robot signature card (RSC)
when expected, during the initial calibration data load. The RSC or
its cabling is probably faulty.

User action: Power down the controller and check the cables to the robot. If the
problem persists, contact Adept Customer Service.

RSC transmission garbled (–654)

Explanation: V+ has received an invalid transmission from the robot signature
card (RSC). Either a hardware problem has occurred or the robot is
being operated in an environment with excessive electrical noise.

User action: None unless the calibration load fails or RSC communications fail. If
the problem persists, contact Adept Customer Service.

Searching for string (exact case) (None)

Explanation: The SEE editor command 0’ has been entered. The editor is prepared
to search for the string indicated, in the search mode indicated.

User action: This is an informational message. You can use the Repeat command
to perform the indicated search, or you can use Find (or Change) to
initiate a new search (or replacement) operation. The EXACT
extended command controls the setting of the search mode.

Searching for string (ignoring case) (None)

Explanation: The SEE editor command 0’ has been entered. The editor is prepared
to search for the string indicated, in the search mode indicated.
728 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: This is an informational message. You can use the Repeat command
to perform the indicated search; or you can use Find (or Change) to
initiate a new search (or replacement) operation. The EXACT
extended command controls the setting of the search mode.

Servo board E-Stop fuse open (–673)

Explanation: Your servo board has a fused ESTOP circuit, and the system has
detected an open circuit at that location.

User Action: Refer to your hardware documentation, consult with Adept Cus-
tomer Service as needed for details about types and locations of
fuses, and replace the fuse.

Servo board 12v fuse open (–671)

Explanation: Your servo board has a fused 12-volt bus, and the system has
detected an open circuit at that location.

User Action: Refer to your hardware documentation, and replace the fuse.

Servo board solenoid fuse open (–672)

Explanation: Your servo board has a fused robot solenoid control line, and the
system has detected an open circuit at that location.

User Action: Refer to your hardware documentation, and replace the fuse.

Servo task overloaded (–674)

Explanation: A servo interrupt task has used up all the execution time. The detec-
tion algorithm reports an error when the servo interrupt task com-
pletely occupies 10 or more time slices per second of real time. The
robot went to a fatal error state when this error occurred, and the
servo interrupt task stopped running.

User action: Change one or more of the following: (1) move servo tasks off CPU
#1 to allow more time for trajectory generation, (2) change CPU #1
from an 030 to an 040 to increase the throughput, or (3) reduce the
number of robots or axes that you are operating.

Set for CASE DEPENDENT searches (None)

Explanation: The EXACT extended command has been used to change the
method by which character case is considered during string
searches. The message indicates how case will be considered in sub-
sequent searches (for the current or future search-for strings).
V+ Language Reference Guide, Rev A 729

Appendix B Alphabetical Listing
User action: None. This is an informational message.

Set for CASE INDEPENDENT searches (None)

Explanation: The EXACT extended command has been used to change the
method by which character case is considered during string
searches. The message indicates how case will be considered in sub-
sequent searches (for the current or future search-for strings).

User action: None. This is an informational message.

Skew envelope error Mtr n (–1022)

Explanation: The two motors associated with a split robot axis were not tracking
each other with sufficient accuracy.

User action: Make sure nothing is obstructing the robot motion. Turn on high
power and try to perform the motion at a slower speed. If necessary,
use the SPEC utility to increase the maximum skew error.

Soft envelope error (–1006)

Explanation: The indicated motor was not tracking the commanded position with
sufficient accuracy, indicating a failure in the hardware servo system
or something impeding the path of the robot. Because this was not
considered a serious error, a controlled motion stop occurred and
high power remains on.

User Action: Try to perform the motion at a slower speed. Make sure that nothing
is obstructing the robot’s motion. If the error recurs, contact Adept
Customer Service.

Software checksum error (–316)

Explanation: During processing of a FREE command the V+ system has detected
a checksum error in the system memory. This indicates a problem
with the system software or hardware. (Note, however, that a check-
sum error will be introduced if any patches are made to the system
software after the system is loaded from disk and started up.) The
following codes are appended to the message indicating where the
error occurred: Os, operating system; V+, V+ interpreter or trajectory
generator; Vi, vision software; Sv, servo software.

User action: Report to Adept Application Engineering the error and information
about any possible contributing circumstances. You can continue to
use the system, but you should keep in mind the possibility of a
problem with the hardware.
730 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Software incompatible Code n (–1026)

Explanation: The servo code has detected an incompatibility between the servo
code and calibration software.

User action: Make sure that you are using the calibration software (in the
\CALIB\ directory) that you received with the V+ system you are
using. If you are using the correct software, note the code number,
and call Adept Customer Service.

Speed pot or STEP not pressed (–620)

Explanation: While the VFP was set to MANUAL mode, a V+ program tried to
initiate a robot motion, but you failed to press the STEP button and
speed bar on the MCP.

User action: When the VFP is set to MANUAL mode and a V+ program is about
to initiate robot motions, press the STEP button and speed bar on
the MCP. To continue the motion once it has started, you can release
the STEP button but must continue to press the speed bar.

SPIN motion not permitted (–638)

Explanation: Either a SPIN instruction has attempted to move a joint that has not
been configured with the continuous-rotation capability or the robot
is currently tracking a belt or moving under control of an ALTER
instruction.

User action: Configure the joint with continuous-rotation capability, or complete
the belt tracking or ALTER instruction before attempting to execute
the SPIN instruction.

Step syntax MUST be valid (None)

Explanation: The SEE editor’s AUTO.BAD extended command has been used to
change the action to be taken when an invalid line is detected while
editing. Subsequently, the editor will require that such a line be cor-
rected before you will be able to perform any operation that would
move the cursor off the bad line.

User action: None. This is an informational message.

Stop-on-force triggered (–623)

Explanation: A force-sensor Guarded Mode trip occurred when the robot was not
under program control.
V+ Language Reference Guide, Rev A 731

Appendix B Alphabetical Listing
User action: High power must be reenabled before robot motion may continue. If
the trip was not desired, make sure that Guarded Mode is disabled
before the program relinquishes control of the robot to the manual
control pendant.

Stopped due to servoing error (–600)

Explanation: Program execution has stopped because of one or more servo errors.

User action: Correct the source of the reported servo errors, referring to your sys-
tem hardware manual as required.

Storage area format error (–305)

Explanation: During execution of a FREE command, V+ has detected that pro-
grams or data in RAM may have been corrupted. This may have
been caused by a momentary hardware failure or a software error.

User action: Attempt to save as much as possible onto the disk. Then enter a
ZERO command or power down the controller and restart the sys-
tem.

Straight-line motion can’t alter configuration (–612)

Explanation: A change in configuration was requested during a straight-line
motion. This is not allowed.

User action: Delete the configuration change request, or use a joint-interpolated
motion instruction.

String too short (–417)

Explanation: A program instruction or command expected a string argument
with a certain minimum length and received one that was too short.

User action: Review the syntax for the program instruction and edit the program
to pass a string of the correct length.

String variable overflow (–416)

Explanation: An attempt has been made to create a string value that is greater
than the maximum string length of 128 characters.

User action: Edit the program to generate strings of the proper length.
732 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Subdirectory in use (–547)

Explanation: An attempt has been made to delete a subdirectory that still con-
tains files or that is being referenced by another operation (for exam-
ple, an FDIRECTORY command).

User action: Check that all the files within the subdirectory have been deleted.
Check that no other program tasks are referencing the subdirectory.
Retry the delete operation.

Subdirectory list too long (–546)

Explanation: A directory path contains too many subdirectories, or the directory
path is too long to be processed. The path is a combination of subdi-
rectories in the file specification and the default directory path set
by the DEFAULT monitor command. Directory paths are limited to
a total of 16 subdirectories and 80 characters (including any portion
of the directory path specified by the current default path).

User action: Specify a shorter directory path in the file specification or in the
DEFAULT command. If you are accessing a foreign disk that con-
tains more than 16 nested subdirectories, you cannot read the files in
subdirectories nested deeper than 16 levels. In that case you will
need to use the system that created the disk to copy the files to a
directory that is nested less deeply.

Switch can’t be enabled (–314)

Explanation: An ENABLE command for a certain switch has been rejected
because of some error condition. For example, ENABLE POWER
will fail if the system is in FATAL ERROR state.

User action: Review the description for the switch you are trying to enable, cor-
rect the error condition, and try again.

SYSFAIL asserted (–629)

Explanation: A board on the VME bus has encountered a severe error and
asserted SYSFAIL which turns off high power. If that error is seen, it
indicates a transient SYSFAIL signal or a problem with either the
motion interface board or the SIO module.

User action: Restart the system. Check for proper seating of the system boards
and correct device connections to the boards. Test the system with as
many boards removed as possible, adding boards back in until the
problem board is identified. If the problem persists, contact Adept
customer service.
V+ Language Reference Guide, Rev A 733

Appendix B Alphabetical Listing
Task = (None)

Explanation: The SEE editor DEBUG extended command has been used to ini-
tiate a program debugging session for the current program. The
debugger needs to know which program task you want to use when
executing the program.

User action: Enter the desired task number, or press RETURN to access the same
task used for the last debugging session.

Template already defined (–748)

Explanation: When defining a new correlation template with the program
instruction VTRAIN.MODEL, the number of an existing template
was given.

User action: Delete the existing template if it is no longer needed, or use a differ-
ent number in the VTRAIN.MODEL instruction.

Template of uniform intensity (–746)

Explanation: When defining a correlation template with the VTRAIN.MODEL
program instruction, the area of the image within the given tem-
plate bounds has uniform intensity. Image templates must have
some variation in brightness. (That is, there must be some features
in the template to correlate with later.)

User action: Check the position of the template in the image and make sure it is
in the desired place. Also, view the grayscale image in the current
frame to make sure it is valid. (For example, maybe a strobe light
did not fire, or the lens cap is still on the camera.)

Template not defined (–747)

Explanation: The correlation template referenced in a VCORRELATE, VDELETE,
VSHOW.MODEL, or VSTORE operation does not exist.

User action: Check the correlation number supplied to the operation to make
sure it is correct. Use the Models pull-down menu in the vision win-
dow (or the VSHOW.MODEL program instruction) to get a list of
the templates currently defined in the vision system.

Time-out nulling errors Mtr n (–1003)

Explanation: The indicated motor took too long to complete the last motion, pos-
sibly because the robot is blocked and cannot reach its destination.
734 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Turn on high power and retry the motion after making any neces-
sary program changes. If this error occurs repeatedly, contact Adept
Application Engineering for assistance.

Time-out enabling amplifier Mtr n (–1009)

Explanation: The power amplifier for the indicated motor has signaled a fault
condition. A momentary power failure or a hardware error may
have occurred.

User action: Turn high power back on and restart the program. If the error per-
sists, contact Adept Customer Service.

Timeout enabling power (–675)

Explanation: High power did not enable within the allowed amount of time, and
the servos reported no other error during the timeout period.

User action: For non-Adept robots, use the SPEC utility to increase the value of
the high power time-out.

For Adept robots, double-check your installation (cabling, AC
power line voltages, circuit breakers, amplifier retaining screws,
cables, and contactors). For information about the correct configura-
tion for installation, refer to your Robot Instruction Handbook.
Make sure that the amplifier chassis is properly connected to a
power source and is turned on. Try again. If the problem persists,
contact Adept Customer Service.

Timeout: Hold-to-run not toggled (–649)

Explanation: V+ did not enable high power because you failed to toggle properly
the HOLD-TO-RUN switch on the manual control pendant.

User action: Do one or more of the following: (1) when toggling the
HOLD-TO-RUN switch, release it for a minimum of about two sec-
onds and a maximum of ten seconds, and then press it back in; and
(2) make sure that you are pressing the HOLD-TO-RUN switch and
not the RUN/HOLD button by mistake.

Too many arguments (–553)

Explanation: Too many arguments were specified for the last command or
instruction.

User action: Reenter the command or instruction but with the correct number of
arguments.
V+ Language Reference Guide, Rev A 735

Appendix B Alphabetical Listing
Too many array indices (–474)

Explanation: The specification of an array element contains more than three
indexes.

User action: Reenter the line with the correct number of indexes.

Too many closeable windows (–554)

Explanation: The names of too many graphics windows have been specified to
appear in the pull-down under the Adept logo in the status line at
the top of the screen.

User action: Specify all subsequent windows as /NOCLOSEABLE, or delete
some existing windows that appear in this pull-down.

Too many icons (–556)

Explanation: An attempt has been made to define more graphic icons than the
system is configured to support.

User action: Delete any icons that are no longed needed. If necessary, use the
CONFIG_C utility program to reconfigure your V+ system to sup-
port more icons.

Too many network errors (–536)

Explanation: (1) The number of errors detected by the DDCMP protocol has
exceeded the maximum allowed. The local protocol is stopped, and
all pending I/O requests are completed with this error.

(2) The V+ Kermit driver experienced more errors than permitted by
the KERMIT.RETRY parameter.

User action: (1) Use the NET monitor command to determine the type of errors
that have occurred. Check for noise on the communication line,
errors in the remote DDCMP implementation, or program logic that
sends messages faster than they can be processed. Use the appropri-
ate FCMND instruction to increase the maximum number of errors.

(2) Set the KERMIT.RETRY parameter to a larger value, increase the
retry threshold on the remote server, restart the Kermit session, and
retry the operation that failed.
736 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Too many vision requests pending (–703)

Explanation: A program has issued too many VLOCATE commands before the
first ones have completed.

User action: Edit the program to wait for pending VLOCATE requests to com-
plete before issuing more.

Too many windows (–550)

Explanation: An attempt was made to create a graphics window when the maxi-
mum number of windows were already defined. (The V+ system
uses two windows for the screen and the top status line. Every title
bar, menu bar, and scroll bar is a separate window. The pull-down
window is always allocated even if it is not visible. Systems with
AdeptVision always have the vision-training window allocated.)

User action: Where possible, change your window definitions to omit menu bars
and scroll bars. If necessary, use the utility program CONFIG_C to
increase the number of window buffers.

Trajectory clock overrun (–636)

Explanation: One of these three conditions has occurred: (1) the time for a new
trajectory point has arrived, but the internal trajectory task has not
finished computing the previous point; (2) the servos did not receive
trajectory data at the expected time because the trajectory task took
too long to compute and write out the data; or (3) the trajectory
interval is equal to or less than the servo interval.

User action: Perform one or more of the following: (1) if the trajectory cycle time
is less than 16msec change it to the next longer time; (2) move servo
tasks off CPU #1 to allow more time for trajectory generation; (3)
change CPU #1 from an 030 to an 040 to increase the throughput; (4)
reduce the number of robots or axes that you are operating; or (5) if
the trajectory cycle time is set to 2ms, make sure the servo interval is
1ms.

Undefined program or variable name (–406)

Explanation: The program or variable, referenced in a command or program step,
does not exist—possibly because the name was mistyped.

User action: If the correct name was entered, create the program or variable
using one of the V+ editors or the appropriate V+ monitor com-
mands, or by loading from a disk file.
V+ Language Reference Guide, Rev A 737

Appendix B Alphabetical Listing
Undefined value (–401)

Explanation: (1) A variable has been referenced that has not been assigned a
value.

(2) Using the SEE editor, an attempt has been made to use a macro,
return to a memorized cursor position, or perform a repeat string
search or change without first performing the appropriate initializa-
tion sequence.

User action: (1) Assign the variable a value or correct its name.

(2) Define the macro, record a cursor position, or enter the desired
search/replacement string(s).

Undefined value in this context (–420)

Explanation: An automatic variable or subroutine argument value appears in a
monitor command, but the specified program is not on the execu-
tion stack for the specified program task. Automatic variables and
subroutine arguments have values only when the program that
defines them is on a stack.

User action: Change the monitor command to not reference the variables. Check
that the program is on the expected execution stack. You can place a
PAUSE instruction or breakpoint in the program to stop it while it is
on the execution stack.

Unexpected end of file (–504)

Explanation: (1) If a file was being loaded from the disk, the end of the file was
encountered unexpectedly.

(2) If a program is reading a file, this error code merely indicates that
the end of the file has been reached and should not be interpreted as
a real error.

(3) This message results if a CTRL+Z is pressed in response to a pro-
gram PROMPT.

(4) A break condition was detected on a serial line.

User action: (1) Try again to read the file.

(2) Close the file and continue program execution.

(3) Treat the program as having been aborted early by user request.
738 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Unexpected text at end of line (–451)

Explanation: The previous command or instruction could not be recognized by
V+, possibly because of a mistyped function name or because an
argument was specified where none is allowed.

User action: Reenter the line, correcting the syntax error.

Unexpected zero index Belt n (–1012)

Explanation: A zero index signal was received from the encoder for this motor
belt at an unexpected time. The encoder may be gaining or losing
counts, there may be a hardware problem with the zero index sig-
nal, or the Counts per zero index configuration parameter may be
set incorrectly.

User action: Continue to use the system. Contact Adept Customer Service if this
error occurs repeatedly.

Unexpected zero index Mtr n (–1005)

Explanation: A zero index signal was received from the encoder for this motor at
an unexpected time. The encoder may be gaining or losing counts,
there may be a hardware problem with the zero index signal, or the
Counts per zero index configuration parameter may be set incor-
rectly.

User action: Turn on high power, calibrate the robot, and continue to use the sys-
tem. If this error occurs repeatedly, contact Adept Customer Service.

Unknown editor command (–363)

Explanation: An unknown keystroke or extended command was issued while
using the SEE program editor.

User action: Enter another command.

Unknown error code (–800)

Explanation: An error code that does not correspond to a known error message
was received by V+ from an external device.

User action: If an external computer is communicating with V+ when the error
occurs, verify that it is sending proper error codes. Otherwise, a
software error is indicated. It would be appreciated if you would
report the error to Adept Application Engineering. Please include
V+ Language Reference Guide, Rev A 739

Appendix B Alphabetical Listing
the details of the error message and exactly what you were doing at
the time the error occurred.

Unknown function (–462)

Explanation: While accepting a program statement, V+ has encountered a refer-
ence to a function that it does not recognize. This could be due to a
mistyped function name or the leaving out of an operator between a
symbol and a left parenthesis.

User action: Check the spelling and syntax and reenter the line.

Unknown instruction (–452)

Explanation: An instruction was entered (or read from a disk file) that was not
recognized by the system. This error is often caused by mistyping
the instruction name, or trying to use a command as an instruction
or vice versa. Note that statements with errors are turned into bad
lines beginning with a question mark.

If the message occurred while loading a file from the disk, the file
was probably created off-line, or with a different V+ system (differ-
ent version or options), and the indicated line is not compatible with
the V+ system in use.

User action: Correct the line or enter it again, making sure the spelling and usage
are correct. When using the SEE editor, an invalid statement is either
converted to a bad line or must be corrected before you can leave
that line (depending on the setting of the AUTO.BAD feature). In
the case of an error while loading from the disk, edit the program to
correct the indicated instruction.

Unknown keyword (–424)

Explanation: The keyword in an FSET instruction is unknown in the context in
which it was found. (Most often, a keyword used for a serial line
was used when referencing a window or vice versa.)

User action: Correct the line in the executing program or reenter the command
with the correct keyword.

Unknown model (–759)

Explanation: The VPLAN.FINDER vision instruction was given the name of a
model that does not exist on the system.
740 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
User action: Supply the name of an existing model to the VPLAN.FINDER
vision instruction.

Unknown network node (–537)

Explanation: A reference has been made to a network node address that is not
known by the local network.

User action: Check that the correct node address was specified. Check that the
remote node is active and connected to the network. If explicit rout-
ing tables are used, check that they specify this node.

Unknown prototype (–707)

Explanation: A vision command or instruction has referenced an object prototype
that is not known to the vision system. This may be due to mistyp-
ing the prototype name.

User action: Enter the command VSHOW at the terminal for a list of the known
prototypes. If necessary, load the appropriate prototype file from
disk or VTRAIN the prototype.

Unknown sub-prototype (–731)

Explanation: A vision command or instruction has referenced an object subproto-
type that is not known to the vision system. This may be due to
mistyping the prototype name.

User action: Use the command VSHOW at the terminal to display the subproto-
types defined for the specified prototype. If necessary, load the
appropriate prototype file from disk or use VDEF.SUBPROTO to
define the sub-prototype.

User has not tested Cat3 system (–648)

Explanation: A system with the EN954 Safety Category 3 option—the Manual
Mode Safety Package (MMSP)—has not been successfully commis-
sioned with the SAFE_UTL utility program.

User action: Test the MMSP with the SAFE_UTL utility before enabling power
for the first time. Adept recommends that you rerun the utility pro-
gram every three months. If you have connected the robot to a dif-
ferent controller or replaced the controller or the SIO module, repeat
the test. (For information on the use of SAFE_UTL, refer to the
AdeptOne-MV/AdeptThree-MV Robot Instruction Handbook.)
V+ Language Reference Guide, Rev A 741

Appendix B Alphabetical Listing
Variable type mismatch (–465)

Explanation: One or more of the variables in the line is of a type inconsistent with
the other variables or with the type required by the command or
instruction. For example, you may be trying to mix location vari-
ables with real-valued variables. If this error occurs upon exiting
from the editor, the variable type within the program conflicts with
the type of a global variable that is already defined.

User action: Check the syntax for the operation and reenter the line, correcting
the mismatch. Delete conflicting global variables, if appropriate.

Vision aborted (–749)

Explanation: (1) The Abort menu item in the vision window has been selected. If
a vision instruction in a V+ program was being executed, it is
aborted and the error code for this message is returned (for access
with the ERROR function); (2) A V+ program has been aborted
when it was executing a vision instruction. (In this case, the error
code for the standard Aborted message is normally returned.); (3) a
VABORT instruction was issued.

User action: If you selected the Abort menu item by mistake, you can make the
V+ program continue by typing retry n on the keyboard, where n is
the number of the task that stopped. Typing proceed n also resumes
program execution, but the aborted vision instruction is not retried.

*[Vision error] <details> (None)

The following vision error messages can be displayed on the V+ system terminal
any time while the VISION system switch is enabled. When one of these errors
occurs, all pending vision commands (for example, VLOCATE) are aborted and
the VISION switch is disabled. The user must reenable the VISION switch in
order to resume using the vision system. Prototypes are not deleted from memory
when these errors occur, or when the VISION switch is enabled.

Each of these messages has the form *[Vision error] <details>*, where <details>
represents specific information identifying the error. That information will help
Adept personnel to identify the specific nature and cause of the error.
742 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
[Vision error] Bit-masking failed on FS #n (None)

[Vision error] Bit-packer failure, n bus errors instead of 2 (None)

[Vision error] Bit-packer returned wrong data (None)

[Vision error] Bus error reading video FBn a ... at a time (None)

[Vision error] Bus error writing video FBn a ... at a time (None)

[Vision error] Bus error reading video ILUTm #n (None)

[Vision error] Bus error writing video ILUTm #n (None)

[Vision error] Bus error reading video register aaa (None)

[Vision error] Bus error writing video register aaa (None)

Explanation: A failure of the vision hardware has occurred.

User action: See the general comments above. If the problem persists, contact
Adept Customer Service and provide the exact details of the error
message.

[Vision error] Camera, multiplexor, or frame grabber failure #n (None)

Explanation: Generally this error indicates that a failure of the vision hardware
has occurred.

User action: See the general comments above. If the problem persists, contact
Adept Customer Service and provide the exact details of the error
message.

[Vision error] Internal confusion #n (None)

Explanation: This error message should never appear.

User action: See the general comments above. If the problem persists, contact
Adept Application Engineering and provide the exact details of the
error message.

[Vision error] No acquire interrupt at level 4 (None)

Explanation: A failure of the vision hardware has occurred.

User action: See the general comments above. Contact Adept Customer Service
if the problem persists.
V+ Language Reference Guide, Rev A 743

Appendix B Alphabetical Listing
[Vision error] Out of memory #n (None)

Explanation: Either a fixed allocation of memory has been depleted (for example,
run lengths) or the general memory allocator has run out of RAM. A
common cause of this error is the processing of an overly complex
binary image. In this case the display should show many small
regions (noise), often due to a bad threshold value.

User action: See the general comments above. If the problem persists, contact
Adept Application Engineering and provide the exact details of the
error message.

[Vision error] Read (...) of video FBn different than data written (None)

Explanation: A failure of the vision hardware has occurred.

User action: See the general comments above. If the problem persists, contact
Adept Customer Service and provide the exact details of the error
message.

[Vision error] Video ILUTm #n read different than write (None)

Explanation: A failure of the vision hardware has occurred.

User action: See the general comments above. If the problem persists, contact
Adept Customer Service and provide the exact details of the error
message.

Vision not calibrated (–713)

Explanation: A vision command was entered that required the vision system to
be calibrated, and the vision system is not calibrated.

User action: Calibrate the vision system or load calibration data from a disk file.

VISION not enabled (–701)

Explanation: A vision command was entered before the vision system has been
enabled.

User action: Enter an ENABLE VISION command and retry the previous com-
mand.
744 V+ Language Reference Guide, Rev A

Appendix B Alphabetical Listing
Vision option not installed (–720)

Explanation: During initialization, the V+ system failed to detect the presence of
the vision processor. No vision instructions or commands will be
accepted. Otherwise, V+ will operate normally.

User action: Check to make sure that the vision processor is installed and that
your software supports vision. Power down the controller and
restart. If the problem persists, contact Adept Customer Service.

Vision system out of memory (–733)

Explanation: The vision system has run out of free memory for the last operation
attempted. This message should not be confused with *[Vision
error] Out of memory*. This error does not disable the vision switch
and is always returned in direct response to the last vision instruc-
tion.

User action: Reduce the complexity of the image or reduce the number of models
in memory. If the problem persists, contact Adept Customer Service.

Warning Monitoring watchpoint (55)

Explanation: Program execution has begun while a watchpoint is set.

User action: None. This is an informational message. You may want to disable
the watchpoint to eliminate its slowing down of program execution.

Warning Not calibrated (51)

Explanation: The robot servo system and joint position sensors are not calibrated.
Thus, any location variables that are defined may not represent the
locations desired.

User action: Enter a CALIBRATE command or have your program execute a
CALIBRATE instruction.

Warning Protected and read-only programs are not stored (52)

Explanation: A STORE command has been executed while protected and/or
read-only programs are loaded in the V+ system memory. The pro-
tected and read-only programs are not stored in the new disk file.

User action: Use the FCOPY command if you want to move read-only programs
from one disk to another. Protected programs cannot be moved
from one disk to another.
V+ Language Reference Guide, Rev A 745

Appendix B Alphabetical Listing
Warning SET.SPEED switch disabled (54)

Explanation: A PRIME operation has been performed from the manual control
pendant while the SET.SPEED system switch is disabled. Therefore,
the monitor speed specified in the PRIME command has no effect.

User action: If you want the PRIME command to change the monitor speed, type
the command enable set.speed at the keyboard.

Warning Watchdog timer disabled (56)

Explanation: Displayed at startup by all CPUs if the watchdog timer on the board
is disabled. For Adept CPUs, the timer is enabled by removing a
jumper. This timer is a hardware device that asserts SYSFAIL on the
VME bus (which drops high power) if the CPU halts or gets hung.
On the Adept 030 board, the green light goes out if SYSFAIL is
asserted.

This message also is displayed whenever user task is started from
the monitor and the watchdog timer is disabled.

User action: Replace the watchdog timer jumper. See the Adept MV Controller
User’s Guide.

Watchpoint changed at (task) program_name, step n. ... (18)

Explanation: A watchpoint has been enabled, and the watchpoint expression has
changed.

User action: Continue debugging session.

Wrong disk loaded (–521)

Explanation: The diskette in a disk drive has been changed while a file was still
open. Further attempts to access the file result in this error. Data
being written into the file may be lost.

User action: Check your diskette to see if any data was lost. If so, it’s too late
now. Be more careful in the future.
746 V+ Language Reference Guide, Rev A

Appendix B Numerical List
Numerical List

This section lists all the V+ messages that have a numeric code. Most message
codes associated with errors can be made available to a program by the ERROR
function, which returns the code of the latest error that occurred. In addition, the
$ERROR function returns the error message associated with any V+ error code.

The information for each message below consists of the message code, the text of
the message, and sometimes a comment about the applicability of the message.
Angle brackets (<...>) are used to enclose a description of an item that would
appear in that position. All numbers are decimal.

Table B-5, “Informational Messages” on page 764 lists messages that provide
information.

Table B-6, “Warning Messages” on page 764 lists warning messages that you
may receive.

Table B-7, “Error Messages” on page 766 lists the error messages that you may
receive.
V+ Language Reference Guide, Rev A 747

Appendix B Numerical List
Table B-5. Informational Messages

Code Message Text Comments

0 Not complete

1 Success (General success response)

2 <no message> (Signals start of program execution)

3 Program completed

4 Program task # stopped at

5 <no message> (Signals start of DO processing)

6 <no message> (Signals completion of DO
processing)

7 <program instruction step> (For TRACE mode of execution)

8 (HALTED)

9 (PAUSED)

10 Are you sure (Y/N)?

11 Change?

15 Program HOLD

16 *Input error* Try again:

17 Breakpoint at (task) program_name,
step n

18 Watchpoint changed at (task)
program_name, step n

Old value: n, New value: n

Table B-6. Warning Messages

Code Message Text

50 Executing in DRY.RUN mode

51 *Warning* Not calibrated

52 *Warning* Protected and read-only programs are not stored

53 *Protected program*
748 V+ Language Reference Guide, Rev A

Appendix B Numerical List
54 *Warning* SET.SPEED switch disabled

55 *Warning* Monitoring watchpoint

56 *Warning* Watchdog timer disabled

57 Press HIGH POWER button to enable power

58 Release then press Hold-to-run button

60 Press HIGH POWER button when blinking

100 Network connection opened

101 Network connection closed

Table B-6. Warning Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 749

Appendix B Numerical List
Table B-7. Error Messages

Code Message Text

–300 *Illegal monitor command*

–301 *No program specified*

–302 *DO not primed*

–303 *Keyswitch not set to AUTO*

–304 *Keyswitch not set to MANUAL*

–305 *Storage area format error*

–307 *Program not executable*

–308 *Program interlocked*

–309 *Program already exists*

–310 *Can’t access protected or read–only program*

–311 *Invalid when program task active*

–312 *Can’t start while program running*

–313 *Can’t go on, use EXECUTE or PRIME*

–314 *Switch can’t be enabled*

–315 *Invalid software configuration*

–316 *Software checksum error*

–317 *Keyswitch not set to NETWORK*

–318 *Program task not active*

–319 *Program task not in use*

–350 *Can’t delete .PROGRAM statement*

–351 *First statement must be .PROGRAM*

–352 *Invalid in read–only mode*

–353 *No other program referenced*

–354 *Line too long*

–355 *Can’t exit while lines attached*

–356 *Not found*

–357 *Recursive macros illegal*
750 V+ Language Reference Guide, Rev A

Appendix B Numerical List
–358 *Cancelled*

–359 *Illegal in debug monitor mode*

–360 *Must be in debug mode*

–361 *Can’t change modes while task running*

–362 *Can’t execute from SEE program instruction*

–363 *Unknown editor command*

–364 *Can’t create program in read–only mode*

–365 *Illegal in read–write mode*

–366 *Invalid when program on stack*

–380 *Breakpoint not allowed here*

–400 Aborted

–401 *Undefined value*

–402 *Illegal value*

–403 *Illegal assignment*

–404 *Illegal array index*

–405 *Illegal digital signal*

–406 *Undefined program or variable name*

–407 *Invalid argument*

–408 *Program argument mismatch*

–409 *Arithmetic overflow*

–410 *Negative square root*

–411 *Not enough storage area*

–412 *Branch to undefined label* Step nnn

–413 *Not enough program stack space*

–414 *Can’t mix MC & program instructions*

–416 *String variable overflow*

–417 *String too short*

–418 *Illegal memory reference*

Table B-7. Error Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 751

Appendix B Numerical List
–419 *Illegal when command program active*

–420 *Undefined value in this context*

–421 *Program not on top of stack*

–422 *Function already enabled*

–423 *Illegal operation*

–424 *Unknown keyword*

–425 *Calibration program not loaded*

–426 *Can’t find calibration program file*

–450 *Can’t interpret line*

–451 *Unexpected text at end of line*

–452 *Unknown instruction*

–453 *Ambiguous name*

–454 *Missing argument*

–455 *Invalid program or variable name*

–456 *Invalid number format*

–457 *Reserved word illegal*

–458 *Illegal expression syntax*

–459 *Missing parenthesis*

–460 *Missing quote mark*

–461 *Invalid format specifier*

–462 *Unknown function*

–463 *Invalid statement label*

–464 *Duplicate statement label*

–465 *Variable type mismatch*

–466 *Illegal use of belt variable*

–467 *Illegal .PROGRAM statement*

–468 *Duplicate .PROGRAM arguments*

–469 *Attempt to redefine variable type*: variable_name

Table B-7. Error Messages (Continued)

Code Message Text
752 V+ Language Reference Guide, Rev A

Appendix B Numerical List
–470 *Attempt to redefine variable class*: variable_name

–471 *Misplaced declaration statement*

–472 *Control structure error* Step nnn

–473 *Control structure error*

–474 *Too many array indices*

–475 *Missing bracket*

–476 *Invalid qualifier*

–477 *Ambiguous AUTO invalid*

–500 *File already exists*

–501 *Nonexistent file*

–502 *Illegal I/O device command*

–503 *Device full*

–504 *Unexpected end of file*

–506 *File already open*

–507 *I/O communication error*

–508 *Device not ready*

–509 *Directory error*

–510 *Data checksum error*

–511 *Input block error*

–512 *File format error*

–513 *File not opened*

–514 *File or subdirectory name error*

–515 *Already attached to logical unit*

–516 *Not attached to logical unit*

–517 *I/O queue full*

–518 *Illegal I/O channel number*

–519 *Driver internal consistency error*

–520 *Invalid disk format*

Table B-7. Error Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 753

Appendix B Numerical List
–521 *Wrong disk loaded*

–522 *Data error on device*

–523 *Bad block in disk header*

–524 *Communications overrun*

–525 *Illegal I/O redirection specified*

–526 *No data received*

–527 *Illegal user LUN specified*

–528 *Illegal record length*

–529 *Output record too long*

–530 *Protection error*

–531 *Communication time–out*

–532 *Out of I/O buffer space*

–533 *Invalid hardware configuration*

–534 *Network restarted remotely*

–535 *Network closed locally*

–536 *Too many network errors*

–537 *Unknown network node*

–538 *Network node off line*

–539 *No matching connection*

–540 *Invalid connection specified*

–541 *Invalid network protocol*

–542 *Network not enabled*

–543 *Illegal when network enabled*

–544 *Not configured as accessed*

–545 *Nonexistent subdirectory*

–546 *Subdirectory list too long*

–547 *Subdirectory in use*

–548 *Illegal while protocol active*

Table B-7. Error Messages (Continued)

Code Message Text
754 V+ Language Reference Guide, Rev A

Appendix B Numerical List
–549 *Out of graphics memory*

–550 *Too many windows*

–551 *Font not loaded*

–552 *Graphics processor timeout*

–553 *Too many arguments*

–554 *Too many closeable windows*

–555 *Graphics storage area format error*

–556 *Too many icons*

–557 *Can’t create new slide bar*

–558 *Graphics software checksum error*

–559 *Out of network resources*

–560 *Invalid network resource*

–561 *Invalid network address*

–562 *Network timeout*

–563 *Remote has not exported network resource*

–564 *Network resource name conflict*

–565 *Network connection terminated*

–566 *Not owner*

–567 *Not a directory*

–568 *Is a directory*

–569 *File too large*

–570 *File name too long*

–571 *Directory not empty*

–600 *Stopped due to servoing error*

–601 *Robot not attached to this program*

–602 *Robot already attached to program*

–603 *COMP mode disabled*

–604 *Robot power off*

Table B-7. Error Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 755

Appendix B Numerical List
–605 *Robot not calibrated*

–606 *Joint 1 in brake track or robot overheated*

–607 *No air pressure*

–608 *External E-STOP*

–609 *Illegal joint number*

–610 *Location out of range*

–611 *Must use straight–line motion*

–612 *Straight–line motion can’t alter configuration*

–613 *Illegal motion from here*

–614 *Attempt to modify active belt*

–615 *Belt not enabled*

–616 *Belt window violation*

–617 *Belt servo dead*

–618 *Location too close*

–619 *Invalid orientation*

–620 *Speed pot or STEP not pressed*

–621 *Robot interlocked*

–622 *No robot connected to system*

–623 *Stop–on–force triggered*

–624 *Force protect limit exceeded*

–625 *Invalid servo initialization data*

–626 *Can’t ALTER and track belt*

–627 *Robot power on*

–628 *Robot module not loaded* ID:n

–629 *SYSFAIL asserted

–630 *Motion interface E-STOP*

–631 *Controller overheating*

–632 *Power failure detected by robot*

Table B-7. Error Messages (Continued)

Code Message Text
756 V+ Language Reference Guide, Rev A

Appendix B Numerical List
–633 *PANIC command*

–635 *Cartesian control of robot not possible*

–636 *Trajectory clock overrun*

–637 *Illegal while joints SPIN'ing*

–638 *SPIN motion not permitted*

–639 *Manual brake release*

–640 *E-STOP from robot*

–641 *E-STOP from amplifier*

–642 *E-STOP from SYSFAIL*

–643 *E-STOP from backplane*

–644 *Incompatible robot and safety ID*

–645 *Power disabled: Manual/Auto changed*

–646 *HIGH POWER button on VFP not pressed*

–647 *Collision avoidance dead-lock*

–648 *User has not tested Cat3 system*

–649 *Timeout: Hold-to-run not toggled*

–650 *Manual control pendant failure*

–651 *RSC communications failure*

–652 *RSC reset*

–653 *RSC time–out*

–654 *RSC transmission garbled*

–655 *RSC bad packet format*

–656 *RSC calibration load failure*

–658 *Device hardware not present*

–659 *Device time–out*

–660 *Device error*

–661 *NVRAM data invalid*

–662 *Device sensor error*

Table B-7. Error Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 757

Appendix B Numerical List
–663 *Device reset*

–665 *NVRAM battery failure*

–666 *Must use CPU #1*

–667 *Power failure detected*

–668 *Device in use*

–669 *RSC hardware failure*

–670 *RSC power failure*

–671 *Servo board 12V fuse open*

–672 *Servo board solenoid fuse open*

–673 *Servo board E-Stop fuse open*

–674 *Servo task overloaded*

–675 *Timeout enabling power*

–676 *RSC module ID doesn’t match robot*

–701 *VISION not enabled*

–702 *No prototypes*

–703 *Too many vision requests pending*

–704 *No objects seen*

–705 *Camera not running*

–706 *Invalid request while camera running*

–707 *Unknown prototype*

–708 *Display interface absent*

–710 *Camera disconnected*

–712 *Maximum number of prototypes exceeded*

–713 *Vision not calibrated*

–714 *Camera already running*

–717 *Not enough prototype storage area*

–718 *Duplicate prototype name*

–719 *Camera already off*

Table B-7. Error Messages (Continued)

Code Message Text
758 V+ Language Reference Guide, Rev A

Appendix B Numerical List
–720 *Vision option not installed*

–721 *Bad grip definition*

–722 *Camera interface board absent*

–723 *No picture data available*

–724 *Illegal display mode*

–726 *Bad camera calibration*

–727 *Invalid vision X/Y ratio*

–728 *Image processing board failure*

–729 *Invalid request while vision training*

–730 *Information not available*

–731 *Unknown sub–prototype*

–732 *Invalid model name*

–733 *Vision system out of memory*

–734 *Can’t open vision window for read/write*

–735 *Invalid vision argument*

–736 *Font not defined*

–737 *Font already defined*

–738 *Font not completely trained*

–739 *Maximum number of samples trained*

–740 *Duplicate character in font*

–741 *Invalid character in font*

–742 *Character not in font*

–743 *Region too big*

–744 *Region too complicated*

–745 *Expected character(s) not found*

–746 *Template of uniform intensity*

–747 *Template not defined*

–748 *Template already defined*

Table B-7. Error Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 759

Appendix B Numerical List
–749 *Vision aborted*

–750 *Mixing half and full resolutions*

–751 *No vision sytem selected*

–752 *AOI not defined*

–753 *Out of vision transform memory*

–754 *Correlation template too big*

–755 *Data overflow*

–756 *A scratch frame store is needed (use VSELECT)*

–757 *Inconsistent heirarchy levels*

–758 *No models*

–759 *Unknown model*

–760 *Duplicate model*

–761 *No models planned*

–800 *Unknown error code*

–801 *Invalid VFEATURE access*

–802 *Invalid camera calibration*

–803 *Illegal camera number*

–804 *Option not installed*

–805 *Hardware not in system*

–859 *Database manager internal error*

–900 *Robot module not enabled*

–901 *Obstacle collision detected*

–999 Aborted

–1001 *Invalid servo error* Mtr n

–1002 *Position out of range* Jt

–1003 *Time–out nulling errors* Mtr n

–1004 *No zero index* Mtr n

–1005 *Unexpected zero index* Mtr n

Table B-7. Error Messages (Continued)

Code Message Text
760 V+ Language Reference Guide, Rev A

Appendix B Numerical List
–1006 *Envelope error* Mtr n

–1007 *Motor stalled* Mtr n

–1008 *Encoder quadrature error* Mtr n

–1009 *Timeout enabling amplifier* Mtr n

–1010 *Invalid error code* Belt n

–1011 *No zero index* Belt n

–1012 *Unexpected zero index* Belt n

–1013 *Encoder quadrature error* Belt n

–1014 *[Fatal] Initialization failure* Mtr n

–1015 *Initialization failure* Belt n

–1016 *Motor overheating* Mtr n

–1018 *Motor amplifier fault* Mtr n

–1021 *Duty–cycle exceeded* Mtr n

–1022 *Skew envelope error* Mtr n

–1023 *Position out of range* Mtr n

–1025 *Encoder fault*

–1026 *Software incompatible* Code n

–1027 *Hard envelope error*

–1032 *Negative overtravel* Mtr n

–1033 *Positive overtravel* Mtr n

–1034 *Overtravel* Mtr n

–1101 *[Fatal] Servo process dead* CPU n

–1102 *[Fatal] Servo code incompatible* CPU n

–1104 *[Fatal] Servo dead* Mtr n

–1105 *Motor startup failure* Mtr n

–1106 *Calibration sensor failure* Mtr n

–1107 *[Fatal] Servo init failure* CPU n

–1108 *Cat3 diagnostic error* Code n

Table B-7. Error Messages (Continued)

Code Message Text
V+ Language Reference Guide, Rev A 761

Appendix B Numerical List
–1109 *Cat3 external sensor fault* Code n

–1111 *Cat3 external E-STOP* Code n

–1200 to –1299 *NFS error* Code n*

Table B-7. Error Messages (Continued)

Code Message Text
762 V+ Language Reference Guide, Rev A

ID Option WordsC
Introduction . 780

System Option Words . 780

Controller Option Word . 782

Robot Option Words . 782

Processor Option Word . 783

Vision Option Word . 784
V+ Language Reference Guide, Rev A 763

Appendix C Introduction
Introduction

This appendix supplements the descriptions of the ID Monitor Command in the
V+Operating System Reference Guide and the ID() Real-Valued Function in the
V+Language Reference Guide.

The ID command displays various option words as hexadecimal values; the ID
function makes the same values available to programs. This appendix describes
the following:

• Basic V+ system (two option words)

• Controller option word

• Processor (option word for each processor)

• Vision option word (option word for each vision interface)

System Option Words

The configuration of a specific V+ system can be determined by examining two
“option words” that are displayed (as hexadecimal numbers) when the system is
loaded from the system boot disk, and by the ID monitor command. The values of
the option words are also available to programs from the real-valued functions
ID(5) and ID(6).

The option words should be interpreted as collections of bit fields, each of which
indicates information about the system configuration. The interpretations of the
bits in the first system option word [returned by the function ID(5)] are described
in Table C-1, “System Option Word #1 [from ID(5)]” on page 781.
764 V+ Language Reference Guide, Rev A

Appendix C System Option Words
The interpretations of the bits in the second software option word [returned by
the function ID(6)] are described in Table C-2.

a The External encoder bit is used with robot systems to indicate the “conveyor tracking” capability.
With nonrobot systems it is used to indicate the “external encoder option”.

b This bit tracks the “V+ Extensions” bit.

a This bit tracks the “V+ Extensions” bit in the first option word.

Table C-1. System Option Word #1 [from ID(5)]

Bit #

Mask Value

Interpretation When Bit SetDecimal Hexadecimal

1 1 1 “V+ Extensions” software license installed

2 2 2 External encoders are supporteda

3-7 Reserved for future use (currently zero)

8 128 80 Alter instruction enabledb

Table C-2. System Option Word #2 [from ID(6)]

Bit #

Mask Value

Interpretation When Bit SetDecimal Hexadecimal

1-6 Reserved for future use (currently zero)

7 64 40 Guidance vision is enabled

8 128 80 Inspection vision is enabled

9 256 100 DDCMP option is installeda

10-11 Reserved for future use (currently zero)

12 AdeptNet hardware is installed, and TCP
and or NFS is installed. You can use the
NETWORK real-valued function to obtain
detailed information about the AdeptNet
option.

13-16 Reserved for future use (currently zero)
V+ Language Reference Guide, Rev A 765

Appendix C Controller Option Word
Controller Option Word

This word is not used, and all bits currently are zero.

NOTE: The installed Software Licenses can be listed using the
CONFIG_C utility.

Robot Option Words

For information about the first robot option word, consult the documentation for
your particular kinematic module.

The real-valued functions ID(11,8) and ID(11,10+robot) return the second option
word for the selected and specified robot, respectively. The interpretations of the
bits in this option word are described in Table C-3.

Table C-3. Robot Option Word #2 (from ID(11, 10+robot)]

Bit #

Mask Value

Interpretation When Bit SetDecimal Hexadecimal

1 1 1 Robot has an RSC.

2 2 2 Robot has an extended-length quill.

3 4 4 Robot has the cleanroom option.

4 8 8 Robot has the HyperDrive option. This bit
also enables the MOVEF and MOVESF
program instructions.

5 16 10 Robot has the high-torque option.

6 Reserved for future use (currently zero).

7 64 40 Robot has the EC certification option.

8–16 Reserved for future use (currently zero).
766 V+ Language Reference Guide, Rev A

Appendix C Processor Option Word
Processor Option Word

The interpretations of the bits in the processor option word [returned by the
function ID(6, 4)] are described in Table C-4.

Table C-4. Processor Option Word [from ID(6, 4)]

Bit #

Mask Value

Interpretation When Bit SetDecimal Hexadecimal

1 1 1 Processor is running the V+ Operating
System

2 2 2 Processor is running the Vision processing
software

3 4 4 Processor is running the Servo software

4-16 Reserved for future use (currently zero)
V+ Language Reference Guide, Rev A 767

Appendix C Vision Option Word
Vision Option Word

There is one vision option word for each vision interface (maximum of two).

The interpretations of the bits in the vision option word [returned by the function
ID(5, 3)] are described in Table C-5.

Table C-5. Vision Option Word [from ID(5, 3)]

Bit #

Mask Value

Interpretation When Bit SetDecimal Hexadecimal

1-4 15 F CPU number for this interface module

5 Reserved for future use (currently zero)

6 32 20 Extended Vision Interface (EVI) present

7-8 Reserved for future use (currently zero)

9-10 768 300 Reserved for internal use by Adept (may be
one or zero)

11-16 Reserved for future use (currently zero)
768 V+ Language Reference Guide, Rev A

GlossaryD
The following terms may be new to you, or their use in this manual may differ
from your previous experience. Some of these terms are explained more fully
elsewhere in this manual.

Array A collection of stored values (locations, real values, or strings)
that can be referenced individually or collectively. A symbolic
name is used to refer to an array. The individual values are
called array elements and are referenced by appending an
index to the array name. For example, a group of robot
locations can be stored as an array part and the individual
locations can be referred to as part[0], part[1], part[2], and so
on.

ASCII The acronym for American Standard Code for Information
Interchange, which is the name of a system for assigning
numeric values to the characters used by a computer.

Binary The name of the base-two number system. That is, the number
system that uses only the digits 0 and 1. (See Decimal,
Hexadecimal, and Octal.)

Breakpoint A flag in a program that causes the program to stop executing
and/or display a value of interest to the programmer while
debugging the program. (See Debugging and Watchpoint.)

Command A directive from the user to the V+ monitor, to the V+ SEE
editor, or to the V+ program debugger.

Compound
transformation

A transformation that is defined as a combination of relative
transformation values, joined with colons (n:n).

Debugging The process of executing programs interactively to detect and
correct program errors. (See Breakpoint and Watchpoint.)
V+ Language Reference Guide, Rev A 769

Appendix D Glossary
Decimal The name of the base-ten number system. That is, the common
number system that uses only the digits 0 to 9. Unless
otherwise noted, all numbers in this manual are decimal.
(Also see Binary, Hexadecimal, and Octal.)

Default When an optional argument is omitted from a V+ command or
instruction, some value is assumed for the argument. The
value assumed is referred to as a default value.

Editor An aid for entering information into a computer system and
modifying existing text. The V+ editors are used to enter and
modify application programs.

Expression A combination of real-valued variables and functions, and
mathematical and logical operators that, when evaluated,
yields a numeric value.

File A collection of information stored on a device that is
peripheral to the V+ system controller memory. For example,
V+ application programs can be stored in files in the system
disk drive.

Function A V+ language element that results in a value being returned
in its place.

Hexadecimal The name of the base-sixteen number system. That is, the
number system that uses 0 to 9 and A to F as its digits. (Also
see Binary, Decimal, and Octal.)

Hexadecimal numbers are frequently convenient to use
because their conversion to binary (base-two) numbers is very
simple--one scans the hexadecimal number from left to right
converting each digit to its 4-bit binary equivalent. For
example:

123ABC (hex) = 0001 0010 0011 1010 1011 1100 (binary)

Instruction A directive to the V+ system that can be recorded in a
program.

Integer A numeric value that does not have a fractional part. In the V+
system, integers can range from −16,777,216 to +16,777,215
without losing any precision. (That is, larger values may be
truncated to seven significant digits.)
770 V+ Language Reference Guide, Rev A

Appendix D Glossary
Kilobyte A unit of measure (abbreviated K) used when describing the
amount of information that can be stored in a system
component (for example, memory). A byte is an 8-bit storage
element, which can hold a single character or a portion of a
numeric value. The abbreviation K is used to represent a
multiple of 1024. Thus, for example, 256K represents 256 *
1024 (262,144) bytes. (Also see Megabyte.)

Keyword A word that has a predefined meaning to V+. For example, all
the command, instruction, and function names are keywords.
Those keywords that cannot be used as program or variable
names are called reserved keywords.

Label A number used to identify a V+ program instruction for the
purpose of having program execution branch to that
instruction. (This should not be confused with a Step
Number.)

Location The description of the position of an object in space and the
orientation of the object. Locations are used to define the
positions and orientations the robot tool is to assume during
program execution. (See Point.)

Logical value A numeric value that is interpreted as either true or false. A
zero value is interpreted by V+ as false, and a nonzero value is
interpreted as true.

Megabyte A unit of measure (abbreviated MB) used when describing the
amount of information that can be stored in a system
component (for example, a disk). A byte is an 8-bit storage
element, which can hold a single character or a portion of a
numeric value. The abbreviation M is used to represent a
multiple of 1024 * 1024 (1,048,576). Thus, for example, 10 MB
represents 10 * 1,048,576 (10,485,760) bytes. (Also see
Kilobyte.)

Monitor An administrative computer program that oversees operation
of a system. The V+ monitor accepts user input and initiates
the appropriate response; follows instructions from
application programs to direct the robot; and performs the
computations necessary to control the robot.
V+ Language Reference Guide, Rev A 771

Appendix D Glossary
Octal The name of the base-eight number system. That is, the
number system that uses only the digits 0 to 7. (Also see
Binary, Decimal, and Hexadecimal.)

Octal numbers are frequently convenient to use because their
conversion to binary (base-two) numbers is very simple--one
scans the octal number from left to right converting each digit
to its 3-bit binary equivalent. For example:

1234 (octal) = 001 010 011 100 (binary)

Operation A general term used in this manual to refer to V+ commands,
instructions, and functions.

Operator An indicator of a mathematical, relational or logical operation
to be performed. For example, + is the addition operator in V+.
OR is the logical-or operator.

Parameter A numeric variable that determines characteristics of the
operation of the V+ system. (Also see "Switch".)

Point A position in space defined, for example, by its X, Y, and Z
coordinate values. Unlike a location (see above), a point does
not represent any orientation information. Thus, a location
represents a point and an orientation at that point.

Precision point A description of a location that specifies the position of each of
the robot joints. (Also see Transformation.)

Program A list of instructions telling a computer how to do a desired
task. For example, V+ programs are written to describe tasks
the robot is to perform.

Real value A numeric value that can have an integer part and a fractional
part. For example, 15.25 has an integer part equal to 15 and a
fractional part equal to 0.25.

Relative
transformation

A transformation that defines a location relative to another
location, rather than relative to the origin of the robot
coordinate system.

Scalar A single value, as opposed to an array of values. (See Array.)

Switch A logical variable that determines characteristics of the
operation of the V+ system. That is, a switch can be set to
either of two states, which are referred to as enabled and
disabled. (Also see Parameter.)
772 V+ Language Reference Guide, Rev A

Appendix D Glossary
Transformation A mathematical description of a location, which defines the
position and orientation of the location without regard for the
configuration of the robot when it is at the location. (Also see
Precision point.)

The term "transform" is sometimes used to refer to a
transformation.

Variable A stored value that is referred to with a symbolic name. For
example, a robot location can be referred to as start, and a real
value can be called loop.count.

Watchpoint A variable or expression that is evaluated before each step of a
program is executed, and that causes program execution to
stop if the value has changed. (Also see Breakpoint and
Debugging.)

VFI The VME Force Interface module.
V+ Language Reference Guide, Rev A 773

Index
A
ABORT

instruction 45
Aborting

(see also Stopping)
WAIT 625
WAIT.EVENT 627

ABOVE instruction 46
ABS function 47
ABS_POSTION (FSET argument) 259
ACCEL

function 51
instruction 48

Acceleration 48
Adept

address, e-mail 39
Fax on Demand 40
on Demand web page 40

Adept VME Controller User's Guide 11
AdeptForce 11
AdeptForce VME User’s Guide 11
AdeptMotion VME Developer’s Guide 11
AdeptNet User’s Guide 11
AdeptVision Reference Guide 11
AIO.IN function 52
AIO.INS function 54
AIO.OUT program instruction 55
ALIGN instruction 56
Allocation

graphics memory 230
Alphabetical list of messages 656
ALTER instruction 57
ALTER program instruction 576
ALTOFF instruction 59
ALTON instruction 60
ALWAYS keywords 62
AND operator 63
ANY instruction 64, 118
Application questions 38

Applications, Internet e-mail address 39
APPRO instruction 65
APPROS instruction 65
Arguments

subroutine 112, 480
to V+ keywords 12

Array 769
graphics icon 307
highest index used 398

ASC function 67
ASCII 769

value 67, 121
Assignment

instruction 148, 348, 459, 532, 552, 560,
604

location variables 532, 552, 560
numeric variables 589

ATAN2 function 68
ATTACH instruction 69
Attaching

disk 74
graphics window 74
pendant 73
robot 73
serial line 74
terminal 73

AUTO instruction 77
AUTO.POWER.OFF switch 80
Automatic variables 77

B
BAND operator 82
BASE

function 86
instruction 84

BCD
function 87
values 87, 143

BCD (see Binary coded digits)
V+ Language Reference Guide, Rev A 775

Index
BELOW instruction 88
BELT

function 90
switch 89

Belt
encoder errors 89, 151

BELT.MODE parameter 91
Binary

definition 769
operators 82, 105, 127

Binary values
notation 13

Bindary coded digits
converting 143

Bit mask
creating 97

BITS
function 95
instruction 93

BMASK function 97
BORDER (FSET argument) 259
BRAKE instruction 100
Branching 111, 114, 116, 319, 359, 487, 490,

492
BREAK instruction 102
Breakpoint 769
BSTATUS function 103
BXOR operator 105
BY keyword 107, 517, 541
BYTE_LENGTH (FSET argument) 269

C
CALIBRATE

instruction 108
Calibration, robot 108, 446
CALL instruction 111
CALLP instruction 114
CALLS instruction 116
Calls, service 38
CASE instruction 118
$CHR function 121
CLEAR.EVENT instruction 122
CLOSE instruction 123
CLOSEI instruction 123
COARSE instruction 125
Colors, graphics 262, 282
COM operator 127
Command 769

program 414, 417

Communications
attaching serial lines 74
control of serial lines 213
detaching serial lines 164

Comparing strings 622
Compound Transformation 769
CONFIG function 128
Configuration

change 426, 428
control 46, 88, 223, 403, 435, 439, 510,

550
standard 500

Constant
logical 208, 612

Continuous path 102, 133
Control

axis 179
configuration 46, 88, 223, 403, 435, 439,

510, 550
external device 166, 168, 170, 539
joint 179
path 65, 102, 160, 426, 428, 433

Control key
notation 13

Control structures
early exit 207
exiting 207

Conversion factor
IPS 390
MMPS 423

Conveyor tracking 89, 90, 91, 103, 151,
537, 632, 634

Coordinates
tool 65, 160, 604
world 56, 84

COS function 132
CP switch 133
CPOFF Instruction 134
CPON instruction 136
Creating

disk subdirectory 212
graphics

icon 306
window 228

location variables 348
program 523

CURSOR (FSET argument) 259
CYCLE.END

instruction 138
776 V+ Language Reference Guide, Rev A

Index
D
$DBLB function 142
DBLB function 140
DCB function 143
DDCMP

parameters 215
status 214
writing 638

Debugging 769
Debugging programs 607
DECEL.100 switch 144
Deceleration 48
Decimal 770
$DECODE function 145
DECOMPOSE instruction 148
DEF.DIO instruction 154
$DEFAULT function 150
Default 770
DEFBELT instruction 151
DEFINED function 156
Defining

belt variable 151
location variables 348, 532, 560
signal numbers for third-party

boards 154
DELAY instruction 158
Deleting

disk files 217
disk subdirectory 212
graphics

icon 217
window 217

DEPART instruction 160
DEPARTS instruction 160
DEST function 162
Destination

determining for motion device 162
DETACH instruction 164
Detaching

disk 164
pendant 164
robot 164
serial line 164
terminal 164

DEVICE
function 168
instruction 166

Device
control 166, 168, 170, 539

DEVICES instruction 170
Digital signals 93, 95, 506, 514, 542, 544,

547
Directory

creating 212
default 150
deleting 212
path 150

DISABLE
instruction 172

Disk
attaching 74
commands 211, 217
detaching 164
reading 287, 495
writing 638

Disk file
closing 209

DISPLAY (FSET argument) 260
Displaying

graphics
icon 304
window 228

real variables 192, 614
Distance

between two locations 174
DISTANCE function 174
DO

instruction 175
keyword 630

DOS instruction 177
Double precision numbers 140
DRIVE instruction 179
DRY.RUN switch 181
DTR (FSET argument) 270
DURATION

function 186
instruction 183

DX function 188
DY function 188
DZ function 188

E
Editing

programs 523
Editor 770

program 523
screen 523

ELSE keyword 189, 361
V+ Language Reference Guide, Rev A 777

Index
E-mail address 39
ENABLE

instruction 190
Enabling software options 367
$ENCODE function 192
.END instruction 196
END

instruction 118, 195, 247, 361, 630
$ERROR function 200
Error

belt encoder 89, 151
processing 416, 490, 509
reaction subroutine 490, 509

ERROR function 197, 490
Error messages

alphabetical list 656
list of 656
numerical list 747

ESTOP
instruction 201

EVENT (FSET argument) 260
EXECUTE

instruction 202
Executing

programs 202
single instruction 177

EXIT
instruction 207

Exiting
control structures 207

Expression 770
displaying 192, 614
logical 175, 359, 361, 630

Expressions
as arguments to V+ keywords 12

External
device control 166, 168, 170, 539
signal 625

F
FALSE

function 208
Fax back service 40
FCLOSE instruction 209
FCMD instruction 211
FDELETE

instruction 217
Feedforward compensation

adjusting 466

FEMPTY instruction 219
File 770

closing 209
deletion 217
directory

creating 212
deleting 212

reading creation date 213
renaming 212
subdirectory

creating 212
deleting 212

FINE instruction 221
FLIP instruction 223
FLOW (FSET argument) 270
$FLTB function 227
FLTB function 225
FLUSH (FSET argument) 270
FONT (FSET argument) 261
FONT_HDR (FSET argument) 261
FOPEN instruction 228
FOPEN_ instructions 243
FOR instruction 247
Format

control 192, 614
disk 212
of output 192, 614

FRACT function 250
FRAME function 251
Frame, reference 84
France, Adept office 39
FREE

function 253
Free memory space 253
FSEEK instruction 249, 255
FSET instruction 257
Function 770

G
Gain parameters, setting 273
GAIN.SET instruction 273
GARC instruction 275
GCHAIN instruction 277
GCLEAR instruction 279
GCLIP instruction 280
GCOLOR instruction 282
GCOPY instruction 285
GET.EVENT function 289
GETC function 287
778 V+ Language Reference Guide, Rev A

Index
GETEVENT instruction 290
GFLOOD instruction 298
GGET.LINE instruction 303
GGETLINE instruction 300
GICON instruction 304
GLINE instruction 309
GLINES instruction 311
GLOBAL instruction 314
GLOGICAL instruction 316
Glossary 769
GOTO instruction 319
GPANEL instruction 321
GPOINT instruction 324
Graphics

(see also Window) 275
colors 282
events 213
icons 304
instructions 228, 257, 275, 285, 290,

316, 321, 337, 341
memory

allocation 230
free space 253

window
attaching 74
attributes 232, 234, 257
buffers

available 253
commands 217, 228
creation 228
deletion 217
modification 257
name 230

GRECTANGLE instruction 326
GSCAN instruction 328
GSLIDE instruction 331
GTEXTURE instruction 334
GTYPE instruction 337, 341

H
H_ARROWINC (FSET argument) 261
H_HANDLE (FSET argument) 261
H_RANGE (FSET argument) 262
H_SCROLL (FSET argument) 262
HALT instruction 344
Hand control 123, 158, 346, 433, 453, 502
HAND function 345
HAND.TIME parameter 123, 346, 453, 502
Hardware servo 125, 221

HERE
function 350
instruction 348

Hexadecimal 770
Hexidecimal values

notation 13
Hour meter 351
HOUR.METER function 351

I
Icon

array 307
creation 306
deletion 217
displaying 304
standard 305

$ID 357
ID function 352
ID option words 763

controller 766
processor 767
system 764
vision 768

IDENTICAL function 358
IEEE

double precision format 140
IF instruction 359, 361
IGNORE (FSET argument) 262
IGNORE instruction 363
Information, training 39
Input signals 95, 363, 487, 492
INRANGE function 364
INSTALL 367
INSTALL program instruction 367
Installing software options 367
Instruction 770

assignment 148, 348, 459, 532, 552, 560,
604

execution 177
Instructions for Adept Utility

Programs 11
INT function 369
INT.EVENT 375
$INTB function 372
INTB function 370

(see also $INTB)
Integer 770
Integers

and real-values 13
V+ Language Reference Guide, Rev A 779

Index
INTERACTIVE switch 373
Internal signal 93, 95, 547
Internet 39
Interrogation, system 578
INVERSE function 377
IOGET_ function 378
$IOGETS function 380
IOPUTB program instruction 382
IOPUTD program instruction 382
IOPUTF program instruction 382
IOSTAT function 384
IOTAS function 387
IP address information

displaying 436
IPS conversion factor 390
IPUTL program instruction 382
IPUTW program instruction 382

J
Joint

control 179
moving individual 179
variable 179

Joint-interpolated motion 65, 160, 426,
428, 433

JTS robot kinematic module 569

K
Kbyte 771
Kermit

parameters 391, 393
KERMIT.RETRY parameter 391
KERMIT.TIMEOUT parameter 393
KEYMODE instruction 394
Keyword 771
KILL

instruction 397

L
Label 771
Label, program step 319, 359
LAST function 398
LATCH function 400
LATCHED function 401
LEFTY instruction 403
LEN function 405
Listing

real variables 192, 614

$LNGB function 408
LNGB function 406
LOCAL instruction 409
Local variables 409
Location 771

decomposition 148
definition 162, 348, 532, 552, 560
variable 348

LOCK instruction 411
Logical

expression 175, 359, 361, 630
operator 63, 455, 641

Logical value 771
Lowercase letters 622
LUT (FSET argument) 262

M
Manual control pendant 394, 469

attaching 73
detaching 164
input 469
reading 495
writing 638

MARGINS (FSET argument) 263
Mask

creating bit mask 97
MAX function 413
Maximum

function 413
Mbyte 771
MC instruction 414
MCP.MESSAGES switch 416
MCS instruction 417
MCS.MESSAGES switch 419
Memory

free space 253
graphics

allocation 230
free space 253

vision 253
MENU (FSET argument) 263
Messages 465, 482, 614, 656

control of 373, 416, 419, 420
MESSAGES switch 420, 614
$MID function 421
MIN function 422
Minimum

function 422
MMPS conversion factor 423
780 V+ Language Reference Guide, Rev A

Index
MOD operator 424
Modem

configuring 269
Modification

graphics window 257
program 523

Monitor 771
MONITORS switch 425
Motion

continuous path 102
joint-interpolated 65, 160, 426, 428, 433
optimized 428
path 65, 102, 160, 426, 428, 433
speed 179, 562
straight-line 65, 160, 426, 428, 433
tool 56, 160

MOVE instruction 426
MOVEF instruction 428
MOVES instruction 426
MOVESF instruction 428
MOVEST instruction 433
MOVET instruction 433
MULTIDROP (FSET argument) 270
MULTIPLE instruction 435

N
Name

graphics
icon 305
window 230

NETWORK function 436
NODISPLAY (FSET argument) 260
NOFLIP instruction 439
NONULL instruction 437, 440
NOOVERLAP instruction 442
NORMAL function 444
NOT.CALIBRATED parameter 446
NOUPDATE (FSET argument) 268
NULL

function 450
instruction 448

Null tool 604
Number conversion 623
Numeric

list of messages 747
Numeric values

integers vs. real values 13

O
Octal 772
Octal values

notation 13
OF keyword 118
OFF function 451
ON function 452
OPEN instruction 453
OPENI instruction 453
Operation 772
Operator 772

binary 82, 105, 127
logical 63, 455, 641
mathematical 424

Optimized motion 428
Option words, ID 763
OR operator 455
Output

messages 482, 614
signals 93, 506, 514, 547

OUTSIDE real-valued function 457
OVERLAP instruction 458
Overstrike 342

P
PACK instruction 459
PARAMETER

function 463
instruction 461

Parameter 772
BELT.MODE 91
HAND.TIME 123, 346, 453, 502
KERMIT.RETRY 391
KERMIT.TIMEOUT 393
NOT.CALIBRATED 446
operations 461, 463
SCREEN.TIMEOUT 521
TERMINAL 193, 593, 615

Parameters
to V+ keywords 12

PARITY (FSET argument) 269
Path

continuous 102, 133
control 65, 102, 160, 426, 428, 433
directory

creating 212
deleting 212

joint-interpolated 65, 160, 426, 428, 433
V+ Language Reference Guide, Rev A 781

Index
Path (continued)
optimized 428
straight-line 65, 160, 426, 428, 433

PAUSE instruction 465
PAYLOAD instruction 466
#PDEST function 468
PDEST (see #PDEST)
Pendant

attaching 73
detaching 164
input 469
reading 495
writing 638

PENDANT function 469
PI function 472
#PLATCH function 473
Pneumatic hand 123, 453, 502
Point 772
POINTER (FSET argument) 263
POS function 474
Position

error 437, 440, 448
POSITION (FSET argument) 264
POWER switch 475
#PPOINT function 477
Precision point 772

function 468, 473, 477
Printing

real variables 192, 614
Priority

modifying 411
program 411, 479, 487, 492
reaction 411, 479, 487, 492

PRIORITY function 479
.PROGRAM instruction 480
Program 772

command 414, 417
editing 523
error reaction 490
execution 202
label 319, 359
modification 523
monitor command 414, 417
priority 411, 479, 487, 492
status 578
termination 45, 138, 344, 397, 465, 580

PROGRAM START button 507, 574
PROMPT instruction 482
Proportional hand 123, 453

Protected
program 523

Protocols
setting serial line 269

PULLDOWN (FSET argument) 265

Q
Questions, application 38

R
RANDOM function 486
REACT instruction 487
REACTE instruction 490
REACTI instruction 492
READ instruction 495
Reading from VME bus devices 378, 380
Reading from VMW bus devices 380
Read-only

program 523
READY

instruction 500
location 500

Real value 772
Real values

and integers 13
double precision 140

Real variable
defining 148, 482
displaying 192, 614

Record number 495, 638
Reference frame 84
Relational

test 175, 359, 361, 630
Relative transformation 772
RELAXI instruction 502
RELEASE instruction 504
Renaming

disk files 212
RESET

instruction 506
RETRY

switch 507
RETURN instruction 508
RETURNE instruction 509
RIGHTY instruction 510
Robot

attaching 73
moving a single joint 179
782 V+ Language Reference Guide, Rev A

Index
Robot (continued)
number 355, 526, 530
program attachment 73
program detachment 164
stopping 201

ROBOT switch 511
ROBOT.OPR instruction 513
RUNSIG instruction 514
RX function 516
RY function 516
RZ function 516

S
Scalar 772
SCALE function 517
SCALE.ACCEL switch 518
SCALE.ACCEL.ROT switch 520
SCREEN.TIMEOUT parameter 521
SEE

editor
graphics window 523
invoking 523

instruction 523
SELECT

function 530
instruction 526

SELECT (FSET argument) 265
Serial line

attaching 74
configuring with FSET 269
control 213
detaching 164
reading 287, 495
writing 638

Service calls 38
SET instruction 532
SET.EVENT instruction 534
#SET.POINT function 535
SET.SPEED switch 536
SETBELT instruction 537
SETDEVICE instruction 539
SHIFT function 541
SHOW (FSET argument) 265
SIG function 542
SIG.INS function 544
SIGN function 546
SIGNAL

instruction 547

Signal
digital 93, 95, 506, 514, 542, 544, 547
external 625
input 95, 363, 487, 492, 542
internal software 93, 95, 547
output 93, 506, 514, 547
resetting 506

SINGLE instruction 550
SIZE (FSET argument) 266
Software options

installing 367
Software servo 437, 440, 448
SOLVE.ANGLES instruction 552
SOLVE.FLAGS function 558
SOLVE.TRANS instruction 560
SPECIAL (FSET argument) 266
SPEED

function 565
instruction 562
units

IPS 390
MMPS 423

SPEED (FSET argument) 270
Speed, motion 179, 562
SPIN instruction 567
SQR function 570
SQRT function 571
STACK (FSET argument) 267
STATE function 572
STATUS

function 578
Status

program 578
system 572, 578

Step
label 319, 359

STEP keyword 247
STOP instruction 580
STOP_BITS (FSET argument) 269
Stopping

(see also Aborting)
program execution 45, 138, 344, 465,

580
Straight-line motion 65, 160, 426, 428, 433
STRDF function 581
String

array 459, 619
comparison 622
V+ Language Reference Guide, Rev A 783

Index
String (continued)
function 121, 142, 145, 150, 192, 200,

227, 372, 408, 421, 599, 611, 613, 619
replacement 459
variable

array 459, 619
Subdirectory

creating 212
default path 150
deleting 212
path

creating 212
default 150
deleting 212

Subroutine 111, 114, 116, 487, 492
arguments 112, 480
error reaction 490, 509

Support
application support 38
Internet E-Mail Address 39
phone numbers 38
training information 39

SWITCH
function 585
instruction 583

Switch 772
BELT 89
CP 133
DRY.RUN 181
INTERACTIVE 373
MCP.MESSAGES 416
MCS.MESSAGES 419
MESSAGES 420, 614
MONITORS 425
operations 172, 190, 583, 585
POWER 475
RETRY 507
ROBOT 511
SET.SPEED 536
TRACE 607
UPPER 622

$SYMBOL function 587
SYMBOL.PTR function 588
System

identification 357
interrogation 578
status and control 578

T
TAS function 589
TASK function 591
Teaching locations 348
Terminal

attaching 73
CRT 594
detaching 164
hardcopy 593
reading 287
VT100 594
Wyse 594

TERMINAL (FSET argument) 267
TERMINAL parameter 193, 593, 615
Test

program
presence 578
status 578

relational 175, 359, 361, 630
variable defined 156

THEN keyword 361
Third-party digital I/O boards

assigning to standard V+ signal
numbers 154

$TIME function 599
TIME

(see also $TIME)
function 597
instruction 595

TIMER
function 602
instruction 601

TITLE (FSET argument) 267
TO keyword 247
TOOL

function 605
instruction 604

Tool
control 123, 158, 433, 453, 502
coordinates 65, 160, 604
motion 56, 65, 160
null 604
point 604
transformation 604, 605

TPS function 606
TRACE switch 607
Training information 39
TRANS function 608
$TRANSB function 611
784 V+ Language Reference Guide, Rev A

Index
TRANSB function 610
Transformation 532, 552, 560, 608, 773

function 86, 162, 251, 350, 375, 377,
444, 450, 516, 517, 541, 605, 608, 610

TRUE
function 612

$TRUNCATE function 613
TYPE instruction 614

U
UNIDIRECT instruction 617
$UNPACK function 619
UNTIL instruction 175, 621
UPDATE (FSET argument) 268
UPPER switch 622
Uppercase letters 622

V
V+

messages 656
V+ Operating System Reference Guide 10
V+ Operating System User’s Guide 10
V_ARROWINC (FSET argument) 268
V_HANDLE (FSET argument) 268
V_RANGE (FSET argument) 268
V_SCROLL (FSET argument) 269
VAL function 623
Value

ASCII 67, 121
maximum

function 413
minimum

function 422
VALUE instruction 118, 624
Values

as arguments to V+ keywords 12
Variables 773

as arguments to V+ keywords 12
assignment 148, 482
automatic 77
displaying 192, 614
joint 179
local 409
location

assignment 532, 560
defining 348, 532, 560

scope 314

VFI 773
Vision memory 253
VME bus

reading from 378, 380
VT100 terminal 594

W
WAIT instruction 625
Wait loop 625, 627
WAIT.EVENT instruction 627
Watchpoint 773
WHILE instruction 630
WINDOW

function 634
instruction 632

Window
(see also Graphics)
conveyor 632, 634
graphics

attaching 74
attributes 232, 234, 257, 259

default 233
buffers

available 253
commands 217, 228
creation 228
deletion 217
modification 257
name 230

World coordinates 56, 84
WRITE instruction 638
Wyse terminal 594

X
XOR operator 641
V+ Language Reference Guide, Rev A 785

Adept User’s Manual
 Comment Form

We have provided this form to allow you to make comments about this manual, to point out any mis-
takes you may find, or to offer suggestions about information you want to see added to the manual. We
review and revise user’s manuals on a regular basis, and any comments or feedback you send us will be
given serious consideration. Thank you for your input.

NAME DATE_____________________

COMPANY__

ADDRESS ___

PHONE ___

MANUAL TITLE: V+ Language Reference Guide
PART NUMBER: 00962-01100 PUBLICATION DATE: September, 1997

COMMENTS __

__

__

__

__

__

__

__

__

__

__

MAIL TO: Adept Technology, Inc.
Technical Publications Dept.
11133 Kenwood Rd.
Cincinnati, OH 45242

	MANUALS MENU
	Chapter 1: Introduction
	Introduction
	Related Publications
	Conventions Used in This Manual
	Notes, Cautions, and Warnings
	Values, Variables, and Expressions
	Integers and Real Values
	Special Notation

	V+ Language Keyword Summary
	Keyword Groups

	How Can I Get Help?
	Within the Continental United States
	Service Calls
	Application Questions
	Applications Internet E-Mail Address
	Training Information

	Within Europe
	France

	Outside Continental United States or Europe
	Adept Fax on Demand
	Adept on Demand Web Page

	Chapter 2: Descriptions of V+ Keywords
	Introduction
	ABORT
	ABOVE
	ABS
	ACCEL
	ACCEL
	AIO.IN
	AIO.INS
	AIO.OUT
	ALIGN
	ALTER
	ALTOFF
	ALTON
	ALWAYS
	AND
	ANY
	APPRO
	APPROS
	ASC
	ATAN2
	ATTACH
	AUTO
	AUTO.POWER.OFF
	BAND
	BASE
	BASE
	BCD
	BELOW
	BELT
	BELT
	BELT.MODE
	BITS
	BITS
	BMASK
	BOR
	BRAKE
	BREAK
	BSTATUS
	BXOR
	BY
	CALIBRATE
	CALL
	CALLP
	CALLS
	CASE
	$CHR
	CLEAR.EVENT
	CLOSE
	CLOSEI
	COARSE
	COM
	CONFIG
	COS
	CP
	CPOFF
	CPON
	CYCLE.END
	DBLB
	$DBLB
	DCB
	DECEL.100
	$DECODE
	DECOMPOSE
	$DEFAULT
	DEFBELT
	DEF.DIO
	DEFINED
	DELAY
	DEPART
	DEPARTS
	DEST
	DETACH
	DEVICE
	DEVICE
	DEVICES
	DISABLE
	DISTANCE
	DO
	DOS
	DRIVE
	DRY.RUN
	DURATION
	DURATION
	DX
	DY
	DZ
	ELSE
	ENABLE
	$ENCODE
	END
	.END
	ERROR
	$ERROR
	ESTOP
	EXECUTE
	EXIT
	FALSE
	FCLOSE
	FCMND
	Command Codes

	FDELETE
	FEMPTY
	FINE
	FLIP
	FLTB
	$FLTB
	FOPEN
	Using FOPEN with Windows
	Graphics Memory Allocation
	Window Name — General Information
	Window Name — Reserved Names
	Attributes — General Information
	Attributes — Default Settings
	Attributes — Descriptions

	Using FOPEN with TCP

	FOPEN_
	FOR
	FORCE._
	FRACT
	FRAME
	FREE
	FSEEK
	FSET
	Using FSET with Windows
	Using FSET with Serial Lines
	Using FSET with NFS and TCP
	Graphics
	AdeptNet

	GAIN.SET
	GARC
	GCHAIN
	GCLEAR
	GCLIP
	GCOLOR
	GCOPY
	GETC
	GET.EVENT
	GETEVENT
	Event Codes
	Enabling Event Recognition

	GFLOOD
	GGETLINE
	GGET.LINE
	GICON
	GLINE
	GLINES
	GLOBAL
	GLOGICAL
	GOTO
	GPANEL
	GPOINT
	GRECTANGLE
	GSCAN
	GSLIDE
	GTEXTURE
	GTRANS
	GTYPE
	HALT
	HAND
	HAND.TIME
	HERE
	HERE
	HOUR.METER
	ID
	$ID
	IDENTICAL
	IF GOTO
	IF
	IGNORE
	INRANGE
	INSTALL
	INT
	INTB
	$INTB
	INTERACTIVE
	INT.EVENT
	INVERSE
	IOGET_
	$IOGETS
	IOPUT_
	IOSTAT
	IOTAS
	IPS
	KERMIT.RETRY
	KERMIT.TIMEOUT
	KEYMODE
	0 - Keyboard Mode
	1 - Toggle Mode
	2 - Level Mode
	3 - Special Mode
	4 - Mask Mode
	Attach/Detach Requirements
	Defaults

	KILL
	LAST
	LATCH
	LATCHED
	LEFTY
	LEN
	LNGB
	$LNGB
	LOCAL
	LOCK
	MAX
	MC
	MCP.MESSAGE
	MCS
	MCS.MESSAGE
	MESSAGES
	$MID
	MIN
	MMPS
	MOD
	MONITORS
	MOVE
	MOVES
	MOVEF
	MOVESF
	MOVET
	MOVEST
	MULTIPLE
	NETWORK
	NEXT
	NOFLIP
	NONULL
	NOOVERLAP
	NORMAL
	NOT
	NOT.CALIBRATED
	NULL
	NULL
	OFF
	ON
	OPEN
	OPENI
	OR
	OUTSIDE
	OVERLAP
	PACK
	PACK
	PARAMETER
	PARAMETER
	PARAMETER
	PARAMETER
	PAUSE
	PAYLOAD
	#PDEST
	PENDANT
	PI
	#PLATCH
	POS
	POWER
	#PPOINT
	PRIORITY
	.PROGRAM
	PROMPT
	RANDOM
	REACT
	REACTE
	REACTI
	READ
	READY
	RELAX
	RELAXI
	RELEASE
	RESET
	RETRY
	RETURN
	RETURNE
	RIGHTY
	ROBOT
	ROBOT.OPR
	RUNSIG
	RX
	RY
	RZ
	SCALE
	SCALE.ACCEL
	SCALE.ACCEL.ROT
	SCREEN.TIMEOUT
	SEE
	SELECT
	SELECT ROBOT
	SELECT VISION
	SELECT FORCE
	SELECT ROBOT
	SELECT VISION
	SELECT FORCE

	SELECT
	SET
	SET.EVENT
	#SET.POINT
	SET.SPEED
	SETBELT
	SETDEVICE
	SHIFT
	SIG
	SIG.INS
	SIGN
	SIGNAL
	SIN
	SINGLE
	SOLVE.ANGLES
	SOLVE.FLAGS
	SOLVE.TRANS
	SPEED
	SPEED
	SPIN
	Continous-Turn Axes

	SQR
	SQRT
	STATE
	STATUS
	STOP
	STRDIF
	SWITCH
	SWITCH
	SWITCH
	SWITCH
	$SYMBOL
	SYMBOL.PTR
	TAS
	TASK
	TERMINAL
	TIME
	TIME
	$TIME
	TIMER
	TIMER
	TOOL
	TOOL
	TPS
	TRACE
	TRANS
	TRANSB
	$TRANSB
	TRUE
	$TRUNCATE
	TYPE
	UNIDIRECT
	$UNPACK
	UNTIL
	UPPER
	VAL
	VALUE
	WAIT
	WAIT.EVENT
	WHILE
	WINDOW
	WINDOW
	WRITE
	XOR

	Appendix A: V+ Language Quick Reference
	Appendix B: System Messages
	Introduction
	Alphabetical Listing
	Numerical List

	Appendix C: ID Option Words
	Introduction
	System Option Words
	Controller Option Word
	Robot Option Words
	Processor Option Word
	Vision Option Word

	Glossary
	Index
	Help Markers
	ABORT-I
	ABOVE-I
	ABS-R
	ACCEL-I
	ACCEL-R
	AIO.IN-R
	AIO.INS-R
	AIO.OUT-I
	ALIGN-I
	ALTER-I
	ALTOFF-I
	ALTON-I
	ALWAYS-I
	AND-I
	ANY-I
	APPRO-I
	APPROS-I
	ASC-R
	ATAN2-R
	ATTACH-I
	AUTO-I
	AUTO.POWER.OFF-S
	BAND-I
	BASE-I
	BASE-T
	BCD-R
	BELOW-I
	BELT-S
	BELT-R
	BELT.MODE-P
	BITS-I
	BITS-R
	BMASK-R
	BOR-R
	BRAKE-I
	BREAK-I
	BSTATUS-R
	BXOR-I
	BY-I
	CALIBRATE-I
	CALL-I
	CALLP-I
	CALLS-I
	CASE-I
	$CHR-$
	CLEAR.EVENT-I
	CLOSE-I
	CLOSEI-I
	COARSE-I
	COM-I
	CONFIG-R
	COS-R
	CP-S
	CPOFF-I
	CPON-I
	CYCLE.END-I
	DBLB-R
	$DBLB-$
	DCB-R
	DECEL.100-S
	$DECODE-$
	DECOMPOSE-I
	$DEFAULT-$
	DEFBELT-I
	DEF.DIO-I
	DEFINED-R
	DELAY-I
	DEPART-I
	DEPARTS-I
	DEST-T
	DETACH-I
	DEVICE-I
	DEVICE-R
	DEVICES-I
	DISABLE-I
	DISTANCE-R
	DO-I
	DOS-I
	DRIVE-I
	DRY.RUN-S
	DURATION-I
	DURATION-R
	DX-R
	DY-R
	DZ-R
	ELSE-I
	ENABLE-I
	$ENCODE-$
	END-I
	.END-I
	ERROR-R
	$ERROR-$
	ESTOP-I
	EXECUTE-I
	EXIT-I
	FALSE-R
	FCLOSE-I
	FCMND-I
	FDELETE-I
	FEMPTY-I
	FINE-I
	FLIP-I
	FLTB-R
	$FLTB-$
	FOPEN-I
	FOPEN-ARRAY
	FOPEN-BACKGROUND
	FOPEN-BUFFERED
	FOPEN-CLOSEABLE
	FOPEN-NOCLOSEABLE
	FOPEN-COLORS
	FOPEN-DEFFONT
	FOPEN-ICON
	FOPEN-MAXSIZE
	FOPEN-NEW
	FOPEN-SCROLLBAR
	FOPEN-NOSCROLLBAR
	FOPEN-SHOWSCROLL
	FOPEN-NOSHOWSCROLL
	FOPEN-TITLEBAR
	FOPEN-NOTITLEBAR
	FOPEN-WRITEONLY
	FOPEN-BUFFERSIZE
	FOPEN-CLIENTS
	FOPEN-LOCALPORT
	FOPEN-REMOTEPORT
	FOPENR-I
	FOPENW-I
	FOPENA-I
	FOPEND-I
	FOR-I
	FORCE.FRAME-I
	FORCE.MODE-I
	FORCE.OFFSET-I
	FORCE.READ-I
	FRACT-R
	FRAME-T
	FREE-R
	FSEEK-I
	FSET-I
	FSET-ABS_POSITION
	FSET-BORDER
	FSET-CURSOR
	FSET-DISPLAY
	FSET-NODISPLAY
	FSET-EVENT
	FSET-EVENT_CONNECT
	FSET-FONT
	FSET-FONT_HDR
	FSET-H_ARROWWINC
	FSET-H_HANDLE
	FSET-H_RANGE
	FSET-H_SCROLL
	FSET-IGNORE
	FSET-LUT
	FSET-MARGINS
	FSET-MENU
	FSET-POINTER
	FSET-POSITION
	FSET-PULLDOWN
	FSET-SELECT
	FSET-SHOW
	FSET-SIZE
	FSET-SPECIAL
	FSET-STACK
	FSET-TERMINAL
	FSET-TITLE
	FSET-UPDATE
	FSET-NOUPDATE
	FSET-V_ARROWWINC
	FSET-V_HANDLE
	FSET-V_RANGE
	FSET-V_SCROLL
	FSET-PARITY
	FSET-STOP_BITS
	FSET-LENGTH
	FSET-FLOW
	FSET-DTR
	FSET-MULTIDROP
	FSET-FLUSH
	FSET-SPEED
	FSET-ADDRESS
	FSET-MOUNT
	FSET-NODE
	FSET-PATH
	GAIN.SET-I
	GARC-I
	GCHAIN-I
	GCLEAR -I
	GCLIP-I
	GCOLOR-I
	GCOPY-I
	GETC-R
	GET.EVENT-R
	GETEVENT-I
	GETEVENT-BUTTON
	GETEVENT-GRAB_H_SCROLL
	GETEVENT-GRAB_OPEN
	GETEVENT-GRAB_SIZE
	GETEVENT-GRAB_V_SCROLL
	GETEVENT-KEYPRESS
	GETEVENT-MENU
	GETEVENT-MOVE_ANY
	GETEVENT-MOVE_B1
	GETEVENT-MOVE_B2
	GETEVENT-MOVE_B3
	GETEVENT-NONE
	GETEVENT-NTFY_H_SCROLL
	GETEVENT-NTFY_OPEN
	GETEVENT-NTFY_SIZE
	GETEVENT-NTFY_V_SCROLL
	GETEVENT-OBJECT
	GETEVENT-POINTER_CHANGE
	GETEVENT-SELECT_WINDOW
	GFLOOD-I
	GGETLINE-I
	GGET.LINE-I
	GICON-I
	GLINE-I
	GLINES-I
	GLOBAL-I
	GLOGICAL-I
	GOTO-I
	GPANEL-I
	GPOINT-I
	GRECTANGLE-I
	GSCAN-I
	GSLIDE-I
	GTEXTURE-I
	GTRANS-I
	GTYPE-I
	HALT-I
	HAND-R
	HAND.TIME-P
	HERE-I
	HERE-T
	HOUR.METER-R
	ID-R
	$ID-$
	IDENTICAL-R
	IF GOTO-I
	IF-I
	IGNORE-I
	INRANGE-R
	INSTALL-I
	INT-R
	INTB-R
	$INTB-$
	INTERACTIVE-S
	INT.EVENT-I
	INVERSE-T
	IOGET-R
	IOGETB-R
	IOGETD-R
	IOGETF-R
	IOGETL-R
	IOGETW-R
	$IOGETS-$
	IOPUT-I
	IOPUTB-I
	IOPUTD-I
	IOPUTF-I
	IOPUTL-I
	IOPUTS-I
	IOPUTW-I
	IOSTAT-R
	IOTAS-R
	IPS-I
	KERMIT.RETRY-P
	KERMIT.TIMEOUT-P
	KEYMODE-I
	KILL-I
	LAST-R
	LATCH-T
	LATCHED-R
	LEFTY-I
	LEN-R
	LNGB-R
	$LNGB-$
	LOCAL-I
	LOCK-I
	MAX-R
	MC-I
	MCP.MESSAGE-S
	MCS-I
	MCS.MESSAGE-S
	MESSAGES-S
	$MID-$
	MIN-R
	MMPS-I
	MOD-I
	MONITORS-S
	MOVE-I
	MOVES-I
	MOVEF-I
	MOVESF-I
	MOVET-I
	MOVEST-I
	MULTIPLE-I
	NETWORK-R
	NEXT-I
	NOFLIP-I
	NONULL-I
	NOOVERLAP-I
	NORMAL-T
	NOT-I
	NOT.CALIBRATED-P
	NULL-I
	NULL-T
	OFF-R
	ON-R
	OPEN-I
	OPENI-I
	OR-I
	OUTSIDE-R
	OVERLAP-I
	PACK-I
	PARAMETER-I
	PARAMETER-R
	PAUSE-I
	PAYLOAD-I
	#PDEST-#
	PENDANT-R
	PI-R
	#PLATCH-#
	POS-R
	POWER-S
	#PPOINT-#
	PRIORITY-R
	.PROGRAM-I
	PROMPT-I
	RANDOM-R
	REACT-I
	REACTE-I
	REACTI-I
	READ-I
	READY-I
	RELAX-I
	RELAXI-I
	RELEASE-I
	RESET-I
	RETRY-S
	RETURN-I
	RETURNE-I
	RIGHTY-I
	ROBOT-S
	ROBOT.OPR-I
	RUNSIG-I
	RX-T
	RY-T
	RZ-T
	SCALE-T
	SCALE.ACCEL-S
	SCALE.ACCEL.ROT-S
	SCREEN.TIMEOUT-P
	SEE-I
	SELECT-I
	SELECT-R
	SET-I
	SET.EVENT-I
	#SET.POINT-#
	SET.SPEED-S
	SETBELT-I
	SETDEVICE-I
	SHIFT-T
	SIG-R
	SIG.INS-R
	SIGN-R
	SIGNAL-I
	SIN-R
	SINGLE-I
	SOLVE.ANGLES-I
	SOLVE.FLAGS-R
	SOLVE.TRANS-I
	SPEED-I
	SPEED-R
	SPIN-I
	SQR-R
	SQRT-R
	STATE-R
	STATUS-R
	STOP-I
	STRDIF-R
	SWITCH-I
	SWITCH-R
	$SYMBOL-$
	SYMBOL.PTR-R
	TAS-R
	TASK-R
	TERMINAL-P
	TIME-I
	TIME-R
	$TIME-$
	TIMER-I
	TIMER-R
	TOOL-I
	TOOL-T
	TPS-R
	TRACE-S
	TRANS-T
	TRANSB-T
	$TRANSB-$
	TRUE-R
	$TRUNCATE-$
	TYPE-I
	UNIDIRECT-I
	$UNPACK-$
	UNTIL-I
	UPPER-S
	VAL-R
	VALUE-I
	WAIT-I
	WAIT.EVENT-I
	WHILE-I
	WINDOW-I
	WINDOW-R
	WRITE-I
	XOR-I

