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ABSTRACT 

In order to stably grasp objects without using objcct modcls, tac-’ 
tile fccdback from  the fingers is sometimes ncccssary. This fccdback 
can be uscd to adjust grasping forces  to prevent a part from slipping 
from a hand. If the angle of force at the object fingcr contact can be 
determined, slip can be prevented by the proper adjustment of 
fingcr forces. Another important tactile sensing task  is finding the 
edgcs and corncrs of an object, since they are usually  feasible grasp- 
ing  locations. 

lhis  paper describes how this information can be extracted from 
the finger-object contact using strain sensors bcneath a compliant 
skin. For determining contact forces, strain measurements are easier 
to use than the surface dcformation profile. The fingcr is modclled 
as an infinitc lincar clastic half plane to predict the nlcasurcd strain 
for several contact types and forces. The numbcr of sensors rcquired 
is less than has been proposcd for othcr tactile recognition tasks. 

A rough upper bound on sensor density rcquirements for a 
specific  depch is prcsenled that is bascd on the frequency rcsponse 
of the elastic medium. The effects of diffcrent sensor stiffncsses on 
sensor performance are discussed. 

1.0 INTRODUCTION 

Much of the recent work in tactile sensing has been devoted to 
recognizing objects and features. One method is to obtain an 
image-like array of an object profile using high density tactile scn- 
sors [10,16]. This is uschl for idcntifying thc location, orientation 
and shape of an object with complicated surfaces, or identifying sur- 
face defccts. Another approach to the recognition problem uses local 
low  level tactilc information and object models to recognize objects 

There are some low  lcvel tactilc sensing operations that arc use- 
ful for basic  grasping, where the intent is keeping an object stably 
grasped in a hand, rather than recognizing it. The requirements for 
grasping polyhedra on a plane with two fingers without object 
modcls havc bccn dcscribcd clsewhcre [SI. Thc most  useful parame- 
tcn to know  are the surface normals, the anglc and n~agnitude of a 
force at a contact, and whctlm the fingcr is touching a  corner or 
edge. These parameters are a subset of thosc required to recognize 
general featurcs. 
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This paper attempts to  show how grasping information can be 
rccovcred using  simpjificd solid mcchanics modcls and basic contact 
thcorq’. Consideration or the mechanics has only been done rarely in 
the design of tactile sensors [ll]. There has becn some work on 
sensing  forccs at fingers  using tactile scnsation to prevcnt slip 1261. 
Other tcchniqucr, havc rclied on using rollers to dctcct thc slip of an 
objcct in parallel  jaw grippers [13].  At a more advanccd Icvel, the 
tactile  array approach will provide some useful information for 
manipulation, such  as  finding a specific  fcaturc, that is crucial to 
oriecting a part accurately. 

A fingcr must have a compliant covering to takc advantage of 
thc incrcascd prehcnsion stability possible at co,mers [5]. Another 
advantage of a soft skin is that contact arcas are large enough to dis- 
tinguish  between features. For examplc, with a very hard skin, an 
edge and a side will contact with the finger at only a fcw points, and 
so may  bc indistinguishablc without  fingcr motion. ?’o distinguish 
between thcm, it will be necessary to gct eithcr the displacement 
profile or the contact stresses  in a compliant fingcr covering. 

Thcre arc two different approaches to the  tactile transduction 
problem. The first approach is based  on measuring the deflection of 
a flexiblc membrane when it contacts a rigid object, or the hcight of 
pcgs tcuching an objcct [HI. The measurement is sometimes done 
by an optical  scnsing schcmc [17]. The sccond approach is bascd on 
f o ~ c s  beneath the surface changing electrical contact arcas [lo], or 
compressing some resistive material Hithout changing the electrical 
contacts. 

We are interested in dctermining the actual contact stresses rath- 
er than just thc contact profile for several  reasons. First, although 
the profile aids in recognition of an objcct shape, it is  only indircctly 
uscful for determining the grasping forces. Another problem is the 
indirect relation bctwecn thc shape of the object and the  profile of 
defonnation, cspccially  when there are both normal and tangcntial 
forces applied at the contact. Because the compliant material is not 
perfectly comprcssible, it will tend to pilc up outside the contact re- 
gion in a complicated manner. 

A mathematical problcm with treating the contact as a deforma- 
tion  is that superposition docs not hold. In general, forces will su- 
perimpose, but displacements will not. For examplc, thc  stresses 
due to  two points closc together each indenting 1 mm. into an elas- 
tic medium are not cquivalcnt to the sum of the stresses from each 
point indenting 1 mm. by itself. Howcvcr, if we deal  with the con- 
tact  bctwccn a rigid objcct and a compliant skin in terms of stresses, 
supcrposition will hold. 

Considcr a grain of sand  pressed  bctwecn  finger and a smooth 
surface. The profile change duc to the hcight of the grain would be 
very small, but there would bc high stress eonccntrations ncar its 
edgcs that should be readily dctcc~able.  One rcscarcher notcs that a 
ridge  of  less than 70 pm height is perceptiblc for humans [12]. 
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2.0 USING SlRAIN FOR TLiCTJLE SENSING 

When determining contact stresses, there are practical reasons for 
measuring these  stresses beneath the elastic material, rather than  on 
the surface. Since we may be intercsted in both normal and tangen- 
tial (friction) forces at the  contact, we would need  two different 
types of sensor at the surface. When sharp rigid objects indent an 
elastic material, very high  stresses are developed at the surface. 
These stresses are reduced by distance from the application area, so 
a fragile sensor would be better protected bencath a layer of skin. 
We note that biological  tactile scnsors are beneath the surface of the 
skin. A rather complete analytical and experimental study of 
stresses beneath the skin and  the mechanoreceptor responses to con- 
tacts without tangential forces was done by Phillips and  John- 
son [19]. 

The general three dimensional analysis of stress and strain leads 
to very complicated expressions. If contact forces arc constant along 
a finger, a two dimensional analysis will describe the behavior in a 
slice perpendicular to  the  finger  axis.  In the remainder of this paper 
we analyze line, edge, and plane contacts -for which a 2 dimensional 
analysis is exact for infinitely long contacts, such as a line load, and 
approximate for short contact lengths. We  will speak of a point in- 
denter or point force  while meaning a planar section of a line eon- 
tact. 

We will  now examinc the 2 dimensional behavior of an infinite 
homogeneous elastic medium for the simplest contact case, a point 
force  with  negligible contact area. To find  the stresses within the 
elastic half planc, we will first  find the stress distribution due to a 
concentrated normal force at the surface, as  in Figure 1. The inter- 
nal stresses due to a general contact stress on the surface can be 
found from the superposition principle. 

The analysis from Timoshenko [27] shows that the internal 
stresses have a “simple radial distribution”. That is, all the stress is 
in the dircction of a radial linc from the point of application of the 
force. 

From Timoshenko [27], for the concentrated normal force we get 

a g  = 0 

rre = 0 (1) 

where u, is the radial stress at ( r ,  e), ue is  the  stress in the plane at 
( r ,  8 )  normal to the radial stress, 7,e is the shearing stress in the r,B 
plane, P is the force per length, and r is the distance from the point 
of application. 

For a force inclined from the vertical by  the angle a, 

To get stresses in cartesian coordinates, we apply the tensor 
transformation: 

u, = u,cos20 

aY = u,sin28 

TXy = u,sinecose (3) 

Normal Force 

I P  
Indined Force 

P\ 
J Y \, Y 

Figure 1. Point Forces on Elastic Half Plane 

So finally, the internal stress due  to a point force is: 

u, = - - 2P 
rr cos(a + e b 2 e  

uy = - -2P 
n r  

cos(a + @)sin2@ 

7- = -2p cos(a + B)sinBcos6 
n r  

where 

cos8 = 2 , sin0 = 1 , cos(a +e)  = -cow - l s i n a  X 

All pressure sensors have an  output based on  thc strain of the 
sensor, which is the fractional change in the linear dimensions of a 
small cubic volume element. This volume change is  to first order 
independent of the shear stresses,  which change the angles of  the 
faces  in  the cube, and not the dimensions. If we assume a linear 
elastic medium, we can apply Hooke’s Law: 

E ,  = - O X  

E 

where E is the modulus of elasticity (N/m2), and E,  is the strain 
along the x axis. 

For materials that are not completely compressible, a contraction 
along one dimensiop will be coupled with expansions along the 
other two. For an incompressible cube which undergoes a strain of 
1% along one axis, there must be corresponding strains in the oppo- 
site  scnse of about .5% along the other two axes to maintain constant 
volume. The ratio of these two strains is called Poisson’s ratio, and 
characterizes the compressibility of the material. For a completely 
compressible material, Poisson’s ratio is 0. For a medium that does 
not change in volume with compression, such as a water  filled  sack 
or rubber, Poisson’s ratio can  be taken as 0.5. Since rubber-like 
materials are popular for covering robot fingers and tactile sensors 
this assumption will  be  used. 

The relations between the stresses and strains are [27]: 

E ,  = [a,-Y(uy+u.) 1 1 

E y  = + [ u y - Y ( U x + a r )  I 
E ,  = - 1 [(rl -Y(U, +uy)] E 

where Y is Poisson’s ratio=.5, and E is the strain along one dmen- 
sion. 
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There are two  simplifying assumptions that can be applied to 
elasticity problems with the appropriate symmetry. For an infinite 
line force on an  elastic half space,  the strain in the direction of the 
line must be zero by symmetry. This is the plane strain assumption. 
Consider a slice of unit width out of the elastic half space,  with a 
line load acting on it. On the faces of this slice, the stresses normal 
to  face must be  zero  to  satisfy the boundary conditions. This is the 
plane stress assumption. 

If a stress pattern is  essentially constant along an axis, a cross 
section of the  stress and strain can be analyzed in just a half plane 
instead of a half space. For this analysis, we  will assume a state of 
plane strain; there is no strain in  the z direction. This assumption 
will be reasonable if the contacts are long compared to  the  finger 
radius. Phillips and Johnson [19] found that an assumption of plane 
stress had a better qualitative agreement with  the response of 
mechanoreceptors in finger skin, but the plane strain assumption will 
be  used here because the contacts are assumed to be infinitely  long. 
The form of the strains under these two assumptions is similar. 

So from  the plane strain assumption E ,  = 0, 

1 u +u 3 
= 2 [Cy - +[ox + ---.I] = -&,-a,) (7) 2 

For  the stresses due to the point indentor or line load (4), the strains 
From (7) become: 

= - [x cosa - y sin,a] [x2-y2] - 3P 
2 n ~ r 4  

for a = 0 

E x . =  - - 3P 
2 , , ~ ~ 4  

x (x2-y2) 

Figures 2 and 3 show the strains in the homogeneous elastic 
medium for a line load normal to the surface and  one inclined 30 
degrees. 

Figure 3. Strain for Line Load Inclined 30 Degrees 

2.1 Measuring Strain 

Since our plane strain assumption  gives a change in volume that 
depends only on the strain in the x direction, there are some  impli- 
cations for volume dependent strain sensors. Figure 4 shows  how a 
transducer based on the volume resismcc could be used  to deter- 
mine the strain at a certain depth. Consider a block o f  conductive 
material with  the electrodes on the top and bottom. The resistance 
is  given  by: 

where p is the  resistivity, R is the resistance, L is the length, and A 
is the area. 

Y 

R'" 
Y Z  

r e s i s t i v i t y  (ohms-,m) 

Unit Volume Resistance Element 

Figure 4. Strain Sensor  Based on Resistance 

For plane strain in the x direction, the new dimensions are: 

x '  = X ( l + E X )  

z = z  

for a unit volumc element 

Figure 2. Strain for Line  Load Normal to Surface = P(1+2€,) 

268 



This transducer would output the variable of interest. A similar 
result can be shown  for the plane stress assumption: 

3.O.DETERMINE FORCE ANGLE  FOR A LINE LOAD 

Can  the angle of inclination, location, and magnitude of a line 
load  be recovered from the type of sensor described previously, that 
measures  only one parameter, E,? Assuming  negligible sensor 
dimensions, it is straight forward  to set up the equations for three 
strain sensors equally spaced on a horizontal plane bencath the sur- 
face. Referring to Figure 5 they are: 

- 3 ~  xcosa - b+b)s ina l  

2nE [ x ’ + ( ~ + b ) ~ ] ~  
I 

Ex1 = I x2 - 0, + b)2] 

-3~[xcosa-ysina 

27rE(~’+y’)~ E x 2  = 

0 
A 

Y 

(outs ide   fr ic t ion  
cone) 

\\\\\\‘\‘ 
The three strain measurements are 

E X ,  = -0.048 
ex2 = 0.18 
e x )  = 0.19 

True Solution 

f 

( tens ion and 
P too large) 

Figure 5. Three  Equally  Spaced Strain Sensors 

We can use “equation counting” methods [22] to determine if 
these 3 measurements are sufficient  to uniquely. determine the line 
load on  the surface. The implicit function theorem [25] states that if 
the  system of equations (12) is continuous and has continuous first 
partial derivatives with respect. to  the independent variables, and if 
the Jacobian is non-zero, then there will be a unique and continuous 
solution to those equations. The determinant of the Jacobian of eq. 
(12) is not identically zero, but does disappear for some values of 
parameters. 

To determine where  the extra solution points are, the system of 
equations was solved by elimination of the magnitude and angle of 
the  force, to get a polynomial in y and the measured strains: 

Figure 6. Finding the Force Location with Multiple Roots 

This eighth degree polynomial has multiple real roots close to 
the sensor locations. It is interesting to note that if the sensor depth 
and the spacing are equal (x=b), one of  the false roots will always 
be at y=O. Constraints on the possible forces, such as magnitude 
ranges and angle limits,  allow  some of these solutions to be rejected. 
For instance, a reasonable constraint might be that all forces are 
directed into the surface (compressive). Tension will not occur at 
the contact without an adhesive bond. If there are still possible 
roots left, a fourth sensor measurement will be necessary  to get a 
unique solution. Figure 6 shows an example with  false roots that can 
be discarded. 

4.0 DISTINGUISH A VERTEX FROM A SIDE 

In this section, we  will try to differentiate between the strains 
beneath the skin due to  the  vertex and  the side contacts. Figure 7 
shows the assumptions used for these contacts. Assume  the side is 
perpendicular to the finger and is moving perpendicularly into the 
skin. For the  vertex, assume its center line is perpendicular to the 
edge of the  finger and is moving pcrpcndicularly into the skin. 
These can be viewed  as contacts with a normal force but no 
moment (Figure 7a). 

Figure 7b shows normal contacts with a tangential force. The 
most general case of a moment and a traction force is shown in 
Figure 7 ~ .  Restricting the analysis to the 2 dimensional case With 
plane strain, we will attempt to charactcriic the strains that would 
be measured for normal contacts without a tangential force. 
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a) C o n t a c t s   w i t h  only normal force 

b )  Contacts w i t h  normal and t a n g e n t i a l  forces 
Figure 8. Two  Extreme Vertex Cases 

c )  Contacts w i t h  generalized forces 

Figure 7. Finger Contacts with Side and  Vertex 

For this analysis, we  will ignore traction from friction while 
indenting nonnal!y into the clastic medium. With friction present, 
the  elastic medium would adhere to the object and cause surface 
shear stresses as it tried to flow  away from the indentation. The 
normal  stresses are not affected very much by this fliction [4]. 

What does a vertex feel like? In this part, we  will consider the 
vertexes touching the  finger  as in Figure 8. The first  case appears to 
be the right side of a rectangular indenter. If Mie could consider the 
finger and the contacting side extending far away from the right 
side, then the left side of the indenter would have no effect on the 
right side. The surface stress for a rectangular indenter on an elastic 
half plane is given by [3]: 

I P  

where P is  the  force per unit length, and a is  the half width of the 
contact. 

The second case  is  roughly equivalent to a wedge of 90 degrees 
being pressed into an elastic  half plane. This stress is given  by 
[8,23] as: 

where K is a function of Poisson's ratio and the modulus of elasti- 
city, and t3 is the vertex  angle. 

Figure 9 shows the stresses and strains for these 2 different vertex 
contacts. A vertex looks very much like a line load especially for 
small indentations and small  vertex  angles.  If the line load and ver- 
tex have approximately the  same strain profiles,  the method of sec- 
tion 3.0 could be used to  find  the  angle of force at this contact. 

Right  S i d e  
of Block 
I n d e n t e r  

a 
U 

I n d e n t e r  
Wedge 

U 
m 
ffl a 

-10 5 U 5 18 

Figure 9. Stresses and Strains for Vertexes 

We shall  now consider the contact of a stiff straight side and a 
circular elastic  fingcr  as in Figure loa. This two dimensional prob- 
lem is still too difficult to analyze analytically, so we  will apply 
Saint-Venant's Principle, as explained by Timoshenko [27]: 
This principle states that ifthe forces acling on a small porfion of the 
surface of  an elastic body are  replaced  by another statically 
equivalent system of  forces acting on the same portion of the sugace, 
this redistribution of loading produces substantial chatlges in the 
stresses locally but has a negligible effect  on the  stresses at distances 
which  are  large  in comparison with the linear dimensions of the sur 
face  on which the forces are changed. 

If the area of contact is small compared to the  finger  radius, we 
can approximate the area near the contact as an infinite  elastic half 
plane. This approximation will be most accurate near the outer sur- 
face of the  finger  in the quadrant where.  the contact is. It is  also 
necessary to reformulate the contact stresses  for the cylindrical finger 
to match the half plane approximation. 
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r i g i d  side 

3 
elastic cylinder 

a) 

r ig id   cy l inder  
> 

-a  +a e l a s t i c  h a l f  plane 

b) 

Figure 10. Approximating a Contact with a Side 

In the solid mechanics literature, the common probirn is the 
rigid cylinder indenting an elastic layer, the punch problem, rather 
than an elastic cylinder contacting a rigid plane. Bentall and John- 
son 121 have done an analysis where the elasticity of the cylinder and 
layer are equal. Hahn and Levinson [9] have analyzed the  stresses 
for the contact of a rigid cylinder and a cylinder covered with an 
elastic layer. That analysis is probably most relevant to the rigid 
finger  with an elastic covering contacting a rigid surface, but as in a 
tot of the contact literature, the form of the solutions (infinite series) 
are inconvenient to work  with. 

For a rigid cylinder indenting an elastic half plane, as in Figure 
lob, the stress on the surface is given by Conway [3] as: 

o,(,v) = 
na 

where a is the half width of the contact region and P is the force 
per unit length of the cylinder. The stress and strain for this contact 
are shown in Figure 11. 

The half width of  the contact from [2] is: 

4RP(1-v2)  ?i 
1 

a = '[ nE 1 
where R is the radius of the cylinder. 

For equilibrium in the contact region, the  stresses should be 
equal and  of opposite sign on the cylinder and the surface. Now for 
an elastic cylindrical finger contacting a side, there should be no 
infinite  stresses  such as occur at sharp edges of indentations. Also, 
the stress will have a peak  value in the center of the  contact, and 
approach zero at the edges. Using  this justification, we will assume 
that the stress on the finger can be approximated by eq. (16) for 
small indentations. 

The stresses due to contacting a side and a vertex are distinguish- 
ably different. For  fie side, there is a smooth, continuous stress 
fimction. For the vertex, there is a discontinuity in the  stress at the 
tip of the  wedge. (Actually, the mcdium deforms around that 
discontinuity, spreading the stress over a finite area). It should be 
easy to distinguish the  two just by looking at the width of the strain 
pattern. For the same elasticity and pressure, the  wedge  has greater 
indentation dcpth with a smaller contact area than the side contact. 
If the vertex angle is less than 90 degrees, there will be a significant 
difference between the  two contact widths. Arguably, this task would 
be simpler if the indentation profile were available. 

5.0 DETERMIMNG THE SIDE-FINGER CONTACT FORCE 

For a finger touching the side, we  will assume that the contact is 
of the form shown in Figure 7b, with both normal and tangential 
components, but  no moment. The tangential components will be 
modeled as  all being in the same drection with a force a t  the sur- 
face that is directly propolzional to the magnitude of the normal 
force [24]. Figure 12 shows  this assumption for a general pressure 
pattern. (The tangential force must be less than p N ,  the friction 
force). 

The stress below the surface was found for an elliptical stress dis- 
tribution on the boundary [24], but that expression is too compli- 
cated to  use for our purposes. To get a better qualitative under- 
standing, the gross assumption will  be made that the normal force is 
relatively constant over a region, and zero outside that region. Fig- 
ure 13 shows the rough agrcement between the strains due to the 
pressure distribution of cq. (16) and a constant pressure over the 
m e  area. By S t  Venant's Principle, if the sensors .were even 
deeper, and the contact area smaller, the difference would be less 
significant. (A parabolic approximation would be a lot more accu- 
rate). 

Contact  ScKeSS 

E l a s t l c  Half Plane 

:i Ft F N  

Figure 12. Tangential Stress Proportional to Normal Stress 

Figure 11. Stresses and Strains for Cylindrical Indentor Figure 13. Approximation by a Constant Pressure 
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Sensor Spacing b 

Figure 15. Discrete Strain Measurements 
yo 

Figure 14. Calculating Strain from Constant  Pressure 

To find  the strain underneath for the constant stress shown in 
Figure 14, we integrate along the surface where 

P for u1 < y < a2 
Pcv)  = 0 else 

Applying the superposition principle to the strain due to a line con- 
tact eq. (8): 

c4 - 3  [xcosa - y s i n a j [ x 2 - y 2 ] ~ ~ y , - y )  

E x ( X , Y o )  = J 2 n ~ r 4  
dY 

-03 

Substituting the integration limits for Pb) gives: 

where rz = x2+y2 

Performing the integration gives  the  strain: 

Ex(X,Yo) = (18) 

The methods of equation counting can also be applied to these 
strain measurements to determine if 4 measurements are enough to 
recover P ,  ul, a?. and a. 

The more complicated contact with generalized forces of Figure 
7c can be treated as  the superposition of stresses due to forces plus 
the stresses due to the moment load. The elasticity literature deals 
with moments applicd to punches indenting an elasttc medium [1,6]. 
In those cases, the pressure distribution due to the moment load is 
an  odd function symmetric about the origin, with half the surface in 
tension and the other half in compression, so the moment can 
significantly affect the internal strains. 

6.0 SENSOR DENSITY REQUIREMENTS 

In section 3, a method to determine the location, direction, and 
magnitude of a line contact was outlined that required at least three 
strain sensors. A more general question is,  how many strain sensors 

are needed to identify a general stress pattern on the surface? This 
problem will  be considered in the contcxt of the spatial frequencies 
of the applied stress. The frequency of the stress pattern is just the 
number of sinusoidal variations in pressure per unit length. Note 
that these are not rime dependent variations. We  shall assume that 
the pressure pattern is approximately bandlimited, that is, most of 
the  stress spectrum is concentrated at low frequencies. This is the 
case  for contact stresses in the form of (15) and (16): 

Figure 15 shows a linear system representation of this discrete 
measurement process,  where the sensors are of negligible  width. 
The sampling theorem says that any bandlimited signal can be 
recovered from discrete samples of it if the samples are taken at a 
sufficiently  high  frequency, the Nyquist rate. (For example see 
[15]). Hcre the sampling frequency  is the minimum strain sensor 
spacing needed to avoid aliasing  when recovering the continuous 
strain measuremcnts from the discrete samples. If there are not 
enough sensors, the strain due to  the high frequency components 
will appear as noise when the continuous strain is recovered from 
the samples by low pass  filtering. 

Since the strain at a point beneath the surface is a linear function 
of the -two stress components for plane strain, the total strain at a 
point in the elastic mcdium can be found by the superposition of 
the strains underncath due  to each stress componcnt on the surface. 
It should be possible to treat the normaf and tangential stresses 
separately, and determine the highest frequencies of interest for 
each. If the force on the boundary has no tangential components, 
the pressure distribution P ( y )  will  be a scalar: at each point. The 
superposition integral is: 

03 

where P ( y )  is the pressure distribution on the surface and h b )  is 
the strain at depth d due to a unit normal pressure point at the ori- 
gin. From equation (8): 

hCv) = 
- 3 d(dZ-y*) 
2-17 (d2+y2)2 

The spectrum of the “impulse response” h (y) can be found from 
simple properties of Fourier transforms: 

dYz ++ ,de-d2VS 
n(d2+y2)2 
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for s > 0 

Here we have neglected the singularities at the origin, because 
the  finger has finite dimensions, and can not have an infinite 
wavelength  pressurc distribution. 

The frequency response of the  elastic medium as  shown in Fig- 
ure 16 is not strictly bandlimited, but it does have very steep skirts. 
We  shall assume that the overall frequency rcsponse P(s )H(s )  has a 
high frequency response like H ( s ) ,  where P ( s )  is the pressure spec- 
trum. 

.o I , , ,  2md 
1 1 1 1 1 1 *  

0 2 4 6 8 

Figure 16. Spatial Frequency Response of Elastic Medium 

We can cho~sc a sampling frequency by deciding how much 
aliasing  is  permissi$le. This requires an engineering judgement 
b a s d o n  the estimated accuracy of the strain sensors. It seems that 
any  aliasing that was less than one part in 1000 of full scale would 
be negligible because most sensors would not have a dynamic range 
much bettcr than that Also, non-linearities and temperature insta- 
bilitics get to be of at least the same order of magnitude. 

The following rough estimate can be used for sampling require- 
ments. We want the value at the tail to be down a factor of 1000 
from the maximum which occurs at  2nsd = 1. So: 

The samples should be  at twice f so 2nsd 2 20.4, or sd > 3.2. 
Here s is the number of samples per unit length. 

For a sensor depth of 1.0, having a sensor density of 3.2 sensors 
per unit distance would allow  recovery of the continuous strain 
response due to a normally directed surface stress distribution with 
aliasijlg errors down at least a factor of 1000 from the desired signal. 
This sampling rate is probably too conservative. The types of 
features touched may have rounded edges, and start out with a more 
band limited signal, so a lower sensor density could be adequate. 

Object 

-i--i- 

Finger Finger 

Figure 17. Fingers Without and With Ridges 

6.1 Using Finger Ridges to Enhance Sensitivity 

The infinite elastic medium has a peak response when the 
wavelength times thc strain sensor depth =112n. There seems to 
be an interesting possibility of maximizing thc strain sensors' outputs 
by locating them at tlie maxima and minima of strain, and predeter- 
mining the frequency and phase of the pressure. This  could be done 
in principle by inserting a thin and flexible sinusoidal grating 
between the  finger and the object touched,  which could superimpose 
a sinusoidal stress on the regular stress. Figure 17 gives a simple 
method of adding the sinusoid of  the desired frequency using a 
ridged finger. 

In Figure 18 we compare .the strain amplitude between the un- 
ridged and ridged fingers, where the ridges are of  the optimal 
wavelength. In both cases the sensors are at the same depth. In the 
unridged case the total contact stress is about 1.5 times the ridged 
case.  Even ncglecting the difference in total contact stress, the ridges 
can enhance tbc amplitude by a factor of 2. The sensors should be 
located beneath and between ridges to detect the maximum ampli- 
tude peaks. This technique is similar to the electrical chopper that 
allows a DC level to pass through an AC. coupled circuit. It is curi- 
ous to note that in the human finger, there is a mechanoreceptor 10- 
cated directly beneath every papillary ridge [12]. 

Phillips and Johnson [19]  gave the  depth of this strain measuring 
mechanoreceptor in the macaque monkey as  about 500 pm. This is 
about the same depth as in the human finger [ZO]. The optimum 
ridge spacing for this depth is about 3 mm, much larger than the pa- 
pillary ridge spacing on the authors' fingers. However, it is intercst- 
ing to speculate that fingerprints may still have some role in enhanc- 
ing strain measurements. 

S t r a i n  
Without  
Ridges 

S t r a i n  
With 
Ridges 

Figure 18. Effect of Ridges on  Strain Amplitude 
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7.0 DISCUSSION 

It seems that some of the recognition tasks would be consider- 
ably easier using a sensor that responded to deformation. That 
would make distinguishing a vertex and a side easy  work.  However, 
other tasks, such as sensing imminent slip, seem to require the strain 
sensor approach. Sensors that combine surface shear sensors, depth 
strain sensors, and surface deflection sensing would simplify the 
problem considerably. 

What effect does a e  skin compliance have on the tactile sensing 
abilities? A stiffer skin wili develop greater contact stresses for the 
Same indentation, but the subsurface deformations (the measured 
strain) will be the same 1191. The smaller contact area and defonna- 
tion  with a less compliant material helps to make the approxima- 
tions we have used more valid. Greater stiffness in the skin may 
also serve to protect the sensors  because a stiffer skin has more resis- 
tance  to puncture. 

A very compliant skin on a sensor may have saturation effects 
sooner than a harder skin. Figure 19 shows three fingers applied to 
a surface with the same normal force, but with diffcrcnt covering 
sofincss. For the very  stiff skin, not enough contact has been made 
to determine the s i x  of the particle. For the  very soft skin, the 
stress due to the small particle may become proportionally less 
significant than the stress due to contact with  the surface around  the 
particle. One way  to choose a skin compliance for good sensing 
characteristics would be to decide on a typical finger force range 
and the smallest contact area of interest, and use  this information to 
determine the  necessary modulus of elasticity. 

A useful way of approaching this problem is  to consider each 
strain sensor as having a response function that overlaps its neigh- 
bor. A point force on the surface will  give an  output for each sen- 
sor that is proportional to the height of the response function under- 
neath that point. For two point forces on the surface, the outputs 
will  be  the linear superposition of the responses of each point force. 
We can measure the output in each sensor channel, and determine if 
it is consistent with just a single point force. However, there might 
be different combinations of point forces that can give the same out- 
put. A very loose analogy could be made to the color matching 
problem [21]. 

In Figure 20 there are locations where two point forces can be 
applied that will  give a response in the two sensors equivalent to a 
single point force. In Figure 21. a third sensor has been added to al- 
low discrimination between all the two point and one point cases, 
limited by the measurement accuracy. I t  will be difficult to distin- 
guish points that give responses way down on the “tails” of the 
channel. If we consider a contact with a vertex  as bcing roughly the 
same as a point force, and a contact with a side being equivalent to 
many  closely spaced point contacts, this simple method could be 
sufficient for disambiguating the two eases. 

Figure 20. Two Strain Response Sensors 

“ledium 

Figure 19. Contacts for Different Skin Compliances 

In psychophysical expcrimcnts, subjects are instructed that there 
will either be one or two points indenting their skin. It appears that 
the sensors should he able to disting;lish between these  two  cases  for 
two-point distances significantly smaller than the individual rccep- 
tivc  fields  of each sensor. Here, the resolution is  not lilnited by the 
density of‘ the sensors, but by the meaaurement accuracy of the sen- 
sors. 

An area for further research  is the spatial bandwidth that is 
required for feature recognition. A test such as the two point 
discrimination test would seem to have vc~y high bandwidth 
requirements because of the  two  impulse functions, but  it may turn 
out that only the low frequencies are important. The two-point 
discrimination test [28], seems  to be the classic test for tactile sensor 
resolution. While we are not interested in resolving between two 
point indenters, this problem may be useful for setting a smaller 
upper bound on the  density of sensors. 

Figure 21. Three  Strain Response Sensors 

It is probably reasonable not to spread the sensors too far apart. 
A guess is that the practical maximum separation would be less than 
twice  the depth of che sensors. This would  give a two-point discrim- 
ination limit about equal to the dcpch of the sensors. (Note that for 
the two-point discrimination task, the modulus of elasticity has no 
effect on the width of the strain response, so it will have no  effect on 
the resolution). More work should be done on optimizing the  depth 
and sensor spacing to optimize the discrimination. 
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8.0 CONCLUSION 

In this paper, we have used a simple linear clastic model to 
predict strains beneath a compliant skin for a finger touching a knife 
edge (line load), a corner, and a flat surface. Appropriate approxi- 
mations were made to get simple exprcssions for the contact stresses 
for a cylindrical finger contacting a side. In gcncral, three strain 
measurements were shown to be necessary and sufficient for deter- 
mining the location, magnitude, and direction of force  for a line 
contact, but degenerate cases  with multiple solutions are possible. 
Further work needs to be done in recovering the angle of force 
from a side contact, and the analysis needs to be extended to con- 
tacts  with other curvatures. 

The elastic mcdium was examined as a signal processing ele- 
ment, which led to the interesting possibility of maximizing strain 
sensor output by adding a grating to the sensor surface with a period 
equal to the sensor depth times 2n. 

We have not attempted to determine stresses and strains for the 
generalized three dimensional contact. At least five strain measure- 
ments are required to determine the magnitude, two angles, and y,z 
location of a point force on an elastic  half-space. These equations 
are quite complicated [14]. It may be possible to  find this informa- 
tion by combining two orthogonal planar solutions, but this was not 
attempted here. 

The discussion here seems to indicate that four senson, with fair- 
ly high dynamic range,  may  be adequate for the planar case for 
finding  force magnitudes and directions, and for distinguishing 
between  two contact types (vertex and side). With a thick skin, one 
can gct a lot from a few sensors. This number of sensors will prob- 
ably  not  suffice  for determining curvature and more complicated 
force  resolving problems. 
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