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ABSTRACT

In this paper we introduce haptic gait retraining as a new method for
treating early stage medial compartment knee osteoarthritis and for
reducing risk of the disease in individuals who may be susceptible.
The hardware and software for implementation are presented in-
cluding rotational skin stretch and vibration haptic devices used to
inform subjects of alterations in gait movements. We also present
a method based on real-time motion analysis for predicting new
subject-specific gaits tailored to change knee joint loading. This
approach uses correlation data between gait parameters and knee
loading as well as a localized linearization technique to compute a
final combined-parameter gait with minimum change from the sub-
ject’s original, unaltered gait. Finally, we validate the haptic gait
retraining system with a user experiment and show that, for the du-
ration of the experiment, the user is able to positively change knee
joint loading to approximately the same degree as HTO surgery.

Index Terms: H.1.2 [Models and Principles]: User/Machine
Systems—Human information processing; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Haptic I/O

1 INTRODUCTION

With the cost of health care rising and an aging baby boomer gen-
eration requiring increasing medical assistance, it is imperative that
new technologies be developed and implemented to improve the
quality of health care while simultaneously reducing costs. Arthri-
tis is a major health concern that could benefit from such new tech-
nologies. The impact of preventing or more efficiently treating
arthritis would be immense as seen in the following [8, 12]:

• Arthritis is the leading cause of disability among adults in the
U.S.

• 46 million U.S. adults (20%) have doctor-diagnosed arthritis.

• $128 billion in total costs or 1.2% of the U.S. gross domestic
product was spent on arthritis in 2003.

• Reducing the incidence of arthritis by even 1% would cut the
total cost by $1.3 billion per year, a savings of more than $3.5
million per day

Knee osteoarthritis (OA) is the most prevalent form of arthritis
afflicting 28% of U.S. adults over age 45 and 37% of U.S. adults
over age 65 [12]. Knee OA causes pain leading to loss of mobil-
ity and often requires painful and expensive surgeries. OA affects
the medial compartment (inside) of the knee approximately ten
times more frequently than the lateral compartment (outside) [1],
and the relative medial-to-lateral loading has been linked to the
severity [20] and rate of progression [14] of knee OA. In light of
this trend, current treatment methods often seek to shift mechanical
loading from the diseased medial to the healthy lateral side of the
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knee in an effort to slow the progression of medial compartment
knee OA.

One common method of treating knee OA is high tibial os-
teotomy (HTO) surgery. During this procedure, a triangular wedge
of bone is either chiseled out of or added to the upper tibia. This
physically changes the leg alignment to be more knock kneed as it
shifts weight from the medial compartment to the lateral compart-
ment, however the surgery is painful and expensive and requires
a long recovery time. Nonsurgical solutions include wedged in-
soles [11], variable stiffness shoes [5] and valgus knee braces [18].
However, these methods only provide a modest amount of knee load
transfer and are therefore limited in their effectiveness.

We present gait retraining with haptic feedback as a promising
new alternative to treating knee osteoarthritis. This method utilizes
real-time motion analysis to link gait parameters to knee joint load-
ing and real-time haptic feedback from wearable vibration and skin
stretch devices to train new gait patterns aimed at reducing knee
loading. We choose haptic feedback for movement retraining be-
cause individual devices can be attached to the body and placed
at or near each movement parameter to be altered, giving the user
an intuitive sense of desired movement changes. In addition, the
wearable devices can potentially be taken outside of the clinic or
laboratory, for extended use if desired.

In the following sections we describe the haptic gait retraining
system and test its effectiveness with a user study aimed at chang-
ing knee loading through gait alterations. We first define the knee
adduction moment and discuss its relevance to knee osteoarthritis.
We then describe the elements of the system, including the motion
capture and haptic feedback devices and the computations used to
correlate feedback with variations in gait parameters. We describe
a user study conducted with ten subjects and present the results of
gait retraining, followed by a discussion of the results and conclu-
sions.

2 HAPTIC GAIT RETRAINING IN REAL-TIME

The purpose of haptic gait retraining is to change walking patterns
to benefit the individual being tested. In this study, we focus on
altering gait parameters associated with knee loading as a treatment
method for osteoarthritis. In particular, we focus our gait modifica-
tions on changing the knee adduction moment, a measurement that
has a well-documented correlation with knee osteoarthritis.

A system intended to produce gait retraining should contain the
following main components: sensing, computation and feedback.

Table 1: Abbreviations

Osteoarthritis OA
High tibial osteotomy HTO
Knee adduction moment KAM
Foot progression angle FPA
Tibia angle TA
Trunk sway angle TSA
Stride length SL



The presented system uses marker-based motion capture and tread-
mill force plates for sensing. Feedback is achieved with portable
haptic devices including a wearable skin stretch device and several
vibration motors. A modeling method utilizing localized lineariza-
tion is used as the intelligence connecting sensing to feedback.

2.1 Reducing the knee adduction moment
The knee adduction moment (KAM) is an established surrogate
measure of medial compartment knee OA [19] and provides an esti-
mate of the relative loading between the medial and lateral compart-
ments of the knee joint. Reducing the KAM shifts loads from the
diseased medial compartment to the healthy lateral compartment of
the knee and is seen as a treatment method for patients with early
stage medial compartment knee OA [6]. The KAM occurs during
the stance phase of gait while the foot is in contact with the ground,
and it characteristically displays two peaks. The first peak specifi-
cally influences knee OA progression [9, 16, 22], and for this reason
we focus our gait retraining on reducing the first peak of the KAM.

The KAM is calculated as the cross product between the moment
arm and the ground reaction force (GRF):

KAM = r×GRF (1)

where r is the position vector from the knee joint center to the cen-
ter of pressure and GRF is the ground reaction force. As seen in
Figure 1, the position vector is the vector from the knee joint center
to the center of pressure at the contact point between the foot and
the ground. The ground reaction force vector starts from the center
of pressure and moves towards the center of mass.

Medial Compartment
Lateral Compartment
Knee Joint Center
Center of Pressure
Position Vector, r
Ground Reaction Force

Figure 1: The knee adduction moment is calculated by taking the
cross-product of the position vector r and the ground reaction force
GRF .

2.2 Sensing and Feedback: System Setup
Since haptic gait retraining involves teaching subjects to change
movements that are inherently dynamic (i.e., gait parameters), the
philosophy behind using haptic feedback is to alter the subject’s
feedforward model of gait. This is different from many applications
of wearable vibrotactile arrays that use haptic feedback as a means
of closed-loop control of human movement [4, 10, 13]. In these
types of studies, trained movements are significantly slower than
movements required during gait. The delay in the human afferent-
efferent loop causes closed loop movement control to become in-
creasingly difficult for faster dynamic tasks such as gait alteration.
Thus haptic feedback is used in gait retraining as an indicator dur-
ing one step to update the feedforward model for the subsequent
step or steps.

In the current study, feedback is administered through a com-
bination of wearable vibration and skin stretch devices. The skin
stretch device (Figure 2) provides feedback via two contact pads
attached to the skin, which give localized rotational displacements,
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Figure 2: Skin Stretch Device

deforming the skin primarily in shear, tangential to the skin sur-
face. This type of feedback can be useful for conveying position,
velocity and direction information to the user [2, 3]. The device is
powered by an ultrasonic motor for low weight, high torque and no
perceptible vibrations.

For vibration feedback we use C2 Tactor motors by EAI due
to their ability to control amplitude and vibration independently
(unlike most pager motors). We vibrate the motors at 250 Hz to
activate fast-acting mechanoreceptors near their peak of sensitiv-
ity [21]. The controller for the motors was implemented using the
Matlab xPC real-time operating system running at 1 kHz and ob-
tains information from the Vicon tracking system via a DLL file.

Figure 3: Reflective markers attached to the body are used to pro-
duce a real-time biomechanical model.

To measure human movements, we used a Vicon 3D motion cap-
ture system. Reflective markers were attached to the subject and
their positions were located in space via infrared cameras. Vi-
con’s software was used to convert marker positions into a seg-
mented biomechanical model which provides segment and joint
positions and rotations (Figure 3). We used Vicon’s real-time soft-
ware, Nexus, to read in marker and segment values in real-time.
Marker data were collected at 60 Hz. Ground reaction forces and
center of pressure measurements were obtained through an instru-
mented Bertec treadmill at a rate of 1200 Hz. The treadmill also
interfaced with the Nexus software to provide these measurements
in real-time.



2.3 Computation: Localized Linearization Modeling to
Predict New Gaits

The relationship between gait parameters and the KAM is com-
plex due to the kinematics and dynamics of the human body, and
is likely to be highly nonlinear and subject specific. As it would
be impractical to collect data over the entire search space to cre-
ate an accurate system model, we present an approach for reducing
the KAM, which uses a limited amount of data in n-dimensional
space of the chosen gait parameters. This approach utilizes local-
ized linear models recomputed over successive iterations similar to
Newton’s method. We estimate the desired gait using a heuristic
approach then iterate by modeling the system about a point and
predicting subsequent gaits in an attempt to achieve a particular
KAM reduction. With adequate initialization and reasonable iter-
ation step sizes, this approach should converge on a specific gait
pattern to achieve the desired KAM reduction.

2.3.1 Initialization Step

To initialize the localized linear method, we calculate a value for
each gait parameter; we define this sequence of gait parameters
as a gait. For the initialization, the value of each parameter is
proportional to its correlation with the KAM and is only a small
change from the subject’s baseline gait. This approach provides
an adequate initialization for the iterative algorithm using limited
data, because with a high degree of confidence, each gait parameter
moves in the direction that will reduce KAM, as predicted by the
correlation metric. While this approach does not minimize the total
changes from the unaltered gait, the initialization gait is a small but
sufficient change from the baseline in the correct general direction.
With this acceptable initialization, the gait converges in iterative
steps.

Using data from the single parameter trials (see Section 3), we
calculate the correlation coefficients between the KAM and each
gait parameter, represented by c and define the initial gait as

gaitdes
0 =

1
4||c||∞

[
c(1) p(1)

max c(2) p(2)
max . . . c(n) p(n)

max

]
(2)

where pmax is the maximum value of each gait parameter. Thus, the
value of each gait parameter is proportional to its correlation with
KAM.

2.3.2 Iteration Step

Walking trial n of the method proceeds as follows: The subject is
trained to walk with a specific combination of desired gait parame-
ters gaitdes

n−1, or the desired gait, predicted from the previous walk-
ing trial. Once the subject achieves this gait and the walking trial
ends, the last ten steps are averaged to determine the final actual
gait, gaitact

n−1, which will be slightly different from the desired gait.
To predict the next desired gait, we create a localized linear model
about the final actual gait, represented as

Ax =b (3)

The equation for matrix A is

A =


step1
step2

...
stepm

−1⊗gaitact
n−1 (4)

where the stepk and gaitact
n−1 vectors contain the measured gait pa-

rameters for step k and the final actual gait, respectively. Vector b
contains the measured KAM on each individual step and is repre-
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Figure 4: A simplified representation (using only a single gait param-
eter) of localized linear modeling to predict new gaits with a nonlin-
ear system. The plots show successive iterations illustrating conver-
gence to the gait parameter value which reduces the KAM moment
by the desired amount.

sented as

b =


KAMstep

1
KAMstep

2
...

KAMstep
m

−1⊗KAMgaitact

n−1 (5)

The final combination of gait parameters gaitact
n−1 and the final knee

adduction moment KAMgaitact

n−1 is subtracted from each step vector
stepk and step knee adduction moment KAMstep

k , respectively, to
form the localized linear model about this point.

We then select thirty percent of all rows of A that lie closest to
the final actual gait in the search space so that the linear model is
localized. Closeness is defined as the magnitude of a row of A after
normalization by the maximum value of each gait parameter. With
the truncated A and b, we solve for x using Equation (3). To achieve
the desired KAM reduction with minimum change in parameters
from the subject’s final gait, the new gait emanates in the x-direction
from the final actual gait. We represent the new gait in context of
the localized linear model as

(gaitdes
n −gaitact

n−1)x =KAMgaitdes

n −KAMgaitact

n (6)

wxT x =KAMgaitdes

n −KAMgaitact

n (7)



Thus, the predicted gait on iteration n is

gaitdes
n = wx+gaitact

n−1 (8)

where

w =
KAMgaitdes

n −KAMgaitact

n

||x||
(9)

A simplified representation of this process with only one gait pa-
rameter is shown in Figure 4.

3 GAIT TRAINING EXPERIMENT

A user study was performed to evaluate the haptic gait retraining
system. Ten healthy subjects ages 23-37 participated in this study,
which was approved by Stanford University’s Institutional Review
Board. Individualized gait patterns were identified through local-
ized linear modeling aimed at significantly reducing the KAM with
minimal change from normal walking movements. Subjects were
trained to adopt these new gait patterns with feedback through the
haptic gait retraining system.

We targeted four gait parameters for training and control, which
previous studies had identified as having an influence on the KAM:
trunk sway angle (TSA), tibia angle (TA), foot progression angle
(FPA) and stride length (SA) [15, 6, 7, 17]. Trunk sway angle was
defined as the maximum angle that a vector from the lower back
to the upper back deviated from vertical in the frontal plane dur-
ing a complete gait cycle. Tibia angle was the maximum angle that
a vector from the outside of the ankle to the outside of the knee
deviated from vertical in the frontal plane during the stance phase
of each gait cycle. Positive tibia angle was toward the body. Foot
progression angle was defined as the maximum angle that a vec-
tor from the heel to the toe deviated from a line pointing directly
away from the front of the subject in the horizontal plane during
the stance phase. Positive foot progression angle occurred when
the toe pointed in toward the subject. Stride length was the length
of each step normalized by the subject’s height. Haptic feedback
devices were placed at or near the associated gait parameters (Fig-
ure 5), and a metronome was used as an audio indicator to train
subjects on stride length.

There are many possible ways to apply haptic feedback to indi-
cate desired changes in up to four gait parameters for reducing the
KAM. Based on the results of pilot tests, a combination of two vi-
bration devices, one skin stretch device, and the audio metronome
for stride length, was found to be relatively easy for subjects to use.

Rotational skin stretch was used to indicate the necessity to sway
the upper torso by a certain amplitude to change the trunk sway
angle. Skin stretch was applied continuously as a sinusoid, cho-
sen for its similarity to the movement pattern of the torso during
ambulation. The frequency of the sine wave was set to match the
subject’s gait frequency. Two amplitudes of sine waves were used
for feedback. The larger amplitude was used when a large increase
in trunk sway angle was desired and the small amplitude was used
to indicate a small desired increase. If the subject walked with too
much trunk sway, the skin stretch device rotated quickly three times
at 5Hz. If the user’s trunk sway was in an acceptable range, the
skin stretch device did not rotate but remained in the neutral posi-
tion. We used discrete sine wave amplitudes instead of continuously
varying amplitudes to give users a clear indication of improving or
declining performance.

Vibration motors were used as feedback indicators for tibia angle
and foot progression angle. Unlike trunk sway, which was perpetu-
ally changing, these gait parameters are nearly constant during the
stance phase of gait. Thus, vibration was used as an indicator to
simulate a type of restoring force to move the gait parameter back
to a specific static location during stance. One vibration motor was

Skin Stretch Device

Vibration Motors

FPA

TA

TSA

Figure 5: Haptic feedback device locations and associated gait pa-
rameters

placed on the lateral side of the knee to indicate desired medio-
lateral knee position and the associated tibia angle. During each
step a 500 ms pulse vibrated to alert the user that the knee position
should be more medial. A large amplitude pulse indicated a large
change and a small amplitude pulse indicated a small change. If the
knee position was too medial, the motor gave three short 100 ms
pulses, and if the knee position was in an acceptable range the mo-
tor did not vibrate. Two vibration motors were attached to the foot
and worked in a similar manner to control the foot progression an-
gle. Lateral motor vibrations indicated a need to point the toe more
inward during static stance alignment and medial motor vibrations
to point the toe more outward.

The haptic feedback devices were attached to each subject via
Velcro straps. Hypoallergenic, double-sided tape adhered the skin
stretch device to two contact areas on the skin of the lower back.
Each feedback device was calibrated to the subject before testing
so that the subject could clearly sense a difference between each
level of feedback for each feedback device.

Thirteen reflective markers were placed on each subject to track
motions (Figure 3). Markers were placed at the following places:
calcaneous (heel), second metatarsal (front of foot), lateral malleo-
lus (outside ankle), outside of the knee, middle of the shank, greater
trochanter (hip), middle of the thigh, left anterior superior iliac
spine (front pelvis), left posterior superior iliac spine (back pelvis),
right posterior superior iliac spine (back pelvis), left shoulder, right
shoulder, and the seventh cervical vertebrae (upper spine). In addi-
tion to these, markers were added to the medial malleolus and inner
knee for static trials to obtain the knee offset and create musculos-
ketal models for post-processing.

After all of the markers and feedback devices were attached,
each subject initially walked normally for two to five minutes to get
used to using to the treadmill. During this time all of the baseline
parameters were recorded and stored, including the knee adduction
moment, trunk sway angle, tibia angle, foot progression angle and
stride length.

After collecting baseline data, the subject was trained to walk
with several new gait patterns, each with a change to a single gait
parameter. These single parameter gait trials lasted one to five min-
utes depending on how long it took to learn the new gait. During
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Figure 6: Example data shows comparison of measured KAM re-
duction and predicted KAM reduction for a multi-parameter gait. The
data shown is after a four-sample moving average.

the trunk sway angle, tibia angle and foot progression angle gaits,
subjects were either given haptic feedback as described above or
a visual display with arrows indicating required changes. Stride
length feedback was auditory through a metronome. The purpose
of the single gait parameter tests was to give each subject a feeling
for using changing individual gait parameters with feedback while
walking. Additionally, the data recorded during this session was
used to correlate gait parameters with the KAM to initialize the lo-
calized linear modeling process.

Once the single parameter gait trials were complete, the subject
was trained to walk with three new gaits involving multiple param-
eter changes: Initialization Gait, Gait 1 and Gait 2. The parameter
values for the Initialization Gait were determined using the correla-
tion model detailed in Section 2.3.1. Gait 1 parameters were com-
puted based on the first iteration of the localized linear modeling
method shown in Section 2.3.2 and Gait 2 was based on a second
iteration using the same algorithm.

Our goal was to reduce the KAM by at least 30% on either or
both of Gait 1 and Gait 2. The final desired KAM, step vector and
the max gait parameter vectors were set as follows:

KAMgaitdes

n = 30% (10)

stepk =
[

FPAk TAk T SAk SLk
]

(11)

pmax =
[

20◦ 8◦ 15◦ 20%
]

(12)

where foot progression angle (FPA), tibia angle (TA), trunk sway
angle (TSA) and stride length (SL) were the gait parameters the
subjects were trained to alter. These gait parameters, stepk, and
maximum gait values, pmax, were relative to the baseline values.
The maximum values were determined based on preliminary test-
ing. During testing for each of these new multiparameter gait trials,
all feedback devices were used to train each of the four gait param-
eters.

Subjects were determined to have correctly adopted the new gait
if they were able to move all of the gait parameters correctly on
eight out of ten steps. Subjects were given two-hundred steps to ac-
complish this. Once the new multiparameter gait was successfully
adopted or two-hundred steps were taken, the gait parameters and
KAM were averaged over those final ten steps (or best ten steps in
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Figure 7: KAM reduction for multi-parameter gaits. The target was
at least a 30% KAM reduction on either or both of Gait 1 and Gait 2.
Initialization parameters were determined from correlation data (Sec-
tion 2.3.1) and Gait 1 and Gait 2 were the first and second iterations
from the localized linear model (Section 2.3.2).

the case where the gait was never correctly adopted for eight out of
ten steps) and set as the final gait values. Final values were post-
processed for analysis.

4 RESULTS AND DISCUSSION

Data from the experiments were analyzed to evaluate the haptic
gait retraining system and motivate future work. The main results
demonstrate that the localized linearization algorithm is adequate
and allows subjects to reduce KAM by the desired amount. Addi-
tional results show the correlation between gait parameters and the
KAM. Further, we observe that the baseline and desired gaits are
both subject-specific and that a modest change to multiple parame-
ters can effect a substantial change in the KAM.

4.1 Model Accuracy
The localized linear model predicts the KAM from the subject’s
measured gait parameters. For example, Figure 6 illustrates a com-
parison between the measured KAM and the localized linear model
KAM prediction. The local linear model tracks the measured data
and, after filtering the data with a four-sample moving average, the
mean error is 6.8%. The ability to accurately predict KAM provides
confidence in our multi-parameter gait predictions, since we use the
localized linear modeling approach to predict a subject’s ideal gait.

4.2 KAM Reduction with Haptic Gait Retraining
All ten subjects were able to reduce their KAM by at least 28%
and nine of the ten subjects were able to reduce it by at least the
target amount of 30% (Figure 7). Although the localized linear
modeling algorithm computes a gait which will reduce the KAM
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Figure 8: KAM reduction for current OA treatments compared to hap-
tic gait retraining [5, 11, 18, 19].

by 30%, the haptic feedback was set up so as to encourage subjects
to achieve a final gait with an effect equal to that of the predicted
gait, or greater. Thus, we expect that some subjects would exceed
the targeted reduction of 30%. Since the haptic gait retraining sys-
tem allows the subject to walk with a gait that differs further than
the predicted gait, with respect the to the baseline, there may be
significant changes between iterations. This effect could lead to
increasing KAM reductions with successive iterations.

Some subjects were unable to achieve the desired gait for eight
out of ten consecutive steps over a two-hundred step trial. Subjects
7 and 10 never achieved Gait 1 and subjects 1, 9, and 10 never
achieved Gait 2. This may explain why some subjects did not re-
duce KAM by at least 30% in the multi-parameter gait trials.

In agreement with our hypothesis, subjects were on average able
to reduce KAM by 34% with Gait 1 and 39% with Gait 2 using
haptic gait retraining. Remarkably, this reduction is comparable to
the results of HTO surgery and more that doubles the reductions
reported in tests of orthotics [5, 11, 18, 19] which is depicted in
Figure 8. The HTO surgery results are for a large population sample
while some of the nonsurgical results have relativity smaller sample
sizes.

4.3 Subject Specificity in Gait Predictions
KAM reduction was also computed for each single parameter gait.
Figure 9 illustrates that decreased foot progression angle and tibia
angle decreased KAM, but increased trunk sway and stride length
had different effects among subjects; that is, increasing trunk sway
and stride length did not always reduce KAM.
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Figure 9: Average KAM reduction for single parameter gaits

Table 2: Comparison of gaits between two subjects illustrates how
the local linear modeling algorithm predicts subject specific gaits

Trunk Sway Angle Gait Multi-parameter Gait 1
Parameter Subject 2 Subject 10 Subject 2 Subject 10

FPA 3.50◦ -1.46◦ -14.24◦ -10.90◦

TA -1.29◦ -3.35◦ -5.31◦ -6.42◦

TSA 7.88◦ 11.84◦ -2.67◦ 5.18◦
SL 0.03 -0.01 -0.01 -0.05

KAM -6.95% 42.44% 33.73% 33.83%

Since the effect of each parameter on KAM reduction varies
amongst subjects, it is necessary for the desired gaits to be subject
specific. This specificity is reflected in the multi-parameter gaits,
which the localized linear algorithm predicts for each subject. For
example, Table 2 illustrates that increasing trunk sway angle in-
creases KAM for Subject 2, but decreases KAM for Subject 10,
where all other parameters remain close to baseline. This varia-
tion in the effect of trunk sway angle is reflected in the predicted
gait as Subject 2’s trunk sway angle decreases and Subject 10’s in-
creases. Both subjects, however, achieve approximately the same
KAM reduction with their multi-parameter Gait 1, despite signifi-
cant differences in the final gait parameters.

4.4 Moderate Gaits Can Reduce KAM
In the single gait trials, subjects generally needed to change one pa-
rameter by a large amount. The ideal multimodal gait, in contrast,
minimizes changes to any single parameter. As depicted in Table
3, in two single-parameter trials, the subject was able to change
tibia and trunk sway angles by large amounts, reducing the KAM
by about 40%; however, the subject was able to reduce the KAM by
a similar amount in the multi-parameter gait with less pronounced
tibia and trunk sway angles. Thus, it is possible for the KAM to
be reduced significantly with a moderate gait. A moderate multi-
parameter gait is likely to be more attractive for the subject to adopt
as it requires fewer large modifications and from outside observa-
tion appears to more closely resemble normal gait than changing
one parameter in a more extreme way.

Table 3: Example data for one subject shows moderate multiparam-
eter gaits can achieve the same reduction as extreme single param-
eter gaits

Tibia Trunk Sway Multi-Parameter
Parameter Angle Gait Angle Gait Init. Gait

FPA -4.11◦ -1.46◦ -5.79◦

TA -7.64◦ -3.35◦ -4.17◦
TSA -0.98◦ 11.84◦ 4.47◦
SL -0.07 0.01 -0.05

KAM 37.09% 42.44% 42.45%

4.5 Correlations between Gait Parameters
Table 4 illustrates the correlations between gait parameters mea-
sured using all of the data taken for each subject. There is negli-
gible subject-to-subject variability in these correlations. Thus, for
each subject, foot progression angle and tibia angle are correlated
while the other gait parameters are not significantly correlated. The
positive correlation between foot progression angle and tibia angle
means that pointing the toe inward causes the knee position and the
angle of the tibia to bend inward. Similarly, pointing the toe out-
ward causes the knee position to move laterally. The same response



is true for the foot progression angle when knee movement is ini-
tiated. Individual feedback modalities for trunk sway angle, stride
length, and either tibia angle or foot progression angle are justified
as these parameters are uncorrelated. Further, although tibia angle
and foot progression angle are correlated, the correlation coefficient
is only 0.60, which suggests that the parameters are not completely
dependent and motivates individual feedback modalities for these
parameters.

Table 4: Correlation between gait parameters

FPA TA TSA SL
FPA 1.00 - - -
TA 0.60 ± 0.09 1.00 - -

TSA -0.02 ± 0.11 -0.06 ± 0.12 1.00 -
SL 0.03 ± 0.07 0.08 ± 0.07 0.05 ± 0.08 1.00

5 CONCLUSIONS AND FUTURE WORK

The reported results illustrate the promise of a haptic gait retraining
system, based on initial experiments with healthy subjects. The re-
sults show reductions in the KAM comparable to those obtained
from surgery, and larger than those typically obtained with or-
thotics. We plan to explore this type of haptic gait retraining in clin-
ical applications by testing patients with early-stage medial com-
partment knee OA. Such patients might benefit greatly with gait
retraining, since it has the potential to slow the progression of os-
teoarthritis preventing costly and painful knee surgeries.

However, additional studies are necessary to improve and justify
the system as a viable knee OA treatment. Future work will seek
to (1) improve the gait prediction algorithm, (2) investigate and im-
prove the human-feedback interface, and (3) demonstrate that the
system can reduce KAM with early-stage knee OA patients. In par-
ticular, the experiments reported here were performed on healthy
subjects who may find it easier to modify their gaits than OA pa-
tients, who are often older and heavier. Also, it remains to be seen
whether the improvements in gait will be retained outside of the
laboratory. In this regard, part of the motivation for using wearable
haptic feedback devices is that they can be worn outside of a lab-
oratory or clinic setting, perhaps using a combination of force and
inertial sensing to detect when a patient’s gait is reverting to the
previous baseline.

Future iterations of the localized linear modeling algorithm will
improve predicted gait feasibility by accounting for correlations be-
tween, and subject-specific ranges of, gait parameters. Addition-
ally, a future algorithm should be able to decrease divergence from
the targeted KAM reduction. While the maximum value for each
gait parameter was fixed in the gait prediction algorithm, the range
was observed to be different for each subject. Adjusting the al-
gorithm for subject-specific ranges will help predict gaits that are
feasible for a particular subject. To set the maximum value for
each parameter, subjects would be asked to modify a particular gait
parameter as far as comfortable, with some minimum change re-
quired.

Further, to predict a gait, we assumed that individual gait param-
eters were independent. Measuring the correlation between these
parameters revealed that while most are independent, tibia and foot
progression angles are correlated. Thus in future versions of the
modeling algorithm, feasible foot progression angle / tibia angle
combinations will be predicted while also ensuring minimum gait
changes from baseline.

The gait prediction algorithm assumes that we will converge to
the desired gait; however, two main factors may lead to divergence,
or to a gait that does not produce minimum changes: (1) subjects

are allowed to walk at the predicted gait or at a more extreme gait
and (2) large jumps from the initialization gait to the 30% mark
can be made. For future iterations of the gait prediction algorithm,
the sequential changes to gaits should be minimal to both reduce
the possibility of divergence and the possibility of overshooting the
30% target, as this will cause the subject to adopt a gait with a larger
than necessary deviation from his or her baseline.

The human-feedback interface allowed subjects to be trained to
the multi-parameter gaits using only haptic and sound feedback.
In future experiments, we plan to study how subjects respond to
multimodal feedback when receiving the same information through
vision, haptics, and a haptics-vision redundant combination. With
several gait parameters that require attention it is unclear how a
purely haptic system will compare to a system with vision feed-
back. This comparison is necessary as we hope this preliminary
work can lead to a portable system for gait retraining outside of the
laboratory.
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