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SMOOTH-CURVE INTERPOLATION: 

A GENERALIZED SPLINE-FIT PROCEDURE 

J. M. GLASS 

Abstract .  

A method is presented for finding the smoothest curve through a set of data 
points. "Smoothest" refers to the equilibrium, or minimum-energy configuration 
of an ideal elastic beam constrained to pass through the data points. The formula- 
tion of the smoothest curve is seen to involve a multivariable boundary-value 
minimization problem which makes use of a numerical solution of the beam non- 
linear differential equation. The method is shown to offer considerable improve- 
ment over the spline technique for smooth-curve interpolation. 
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I. Introduct ion .  

Smooth-curve  in terpola t ion  of sampled d a t a  is f requen t ly  desired for 
a va r i e ty  of reasons. Fo r  example,  the  physical  or ma themat i ca l  process 
t h a t  is sampled m a y  be known to be ex t r eme ly  well-behaved,  with l i t t le  
f luc tua t ion  between sample points.  As ano the r  instance,  one m a y  wish 
to  create  a smooth  curve or surface be tween certain f ixed points,  a tech- 
n ique used in the  fairing of shiplines [1, 2]. Other  i l lustrat ions of the need 
for smooth  in terpola t ion  will be readi ly  appa ren t  to the  reader.  

W hen  the  da ta  are known precisely (no noise) an exact  in terpola t ion  
scheme is called for ra the r  t han  a least  squares da ta  fit, par t icu lar ly  
when considerable expense m a y  be incurred in obtaining the  data.  A 
nu m ber  of papers  in the  l i te ra ture  have  described an exac t  smooth-curve  
da t a  f i t  known as spline interpolat ion.  A represen ta t ive  sampling of the  
l i te ra ture  on spline in te rpola t ion  is l is ted as references [1]-[6] a t  the end 
of the  paper.  The spline me thod  essential ly approximates  the  equili- 
br ium, or min imum energy configurat ion of an ideal elastic beam con- 
s t ra ined to  pass th rough  the  given da ta  points.  The  approx imat ion  re- 
sults f rom neglecting the  nonlineari t ies in the  beam equat ion.  Thus  i t  
can  be shown tha t  for  a set of N da t a  points  the  spline curve  consists of 
N - 1  piecewise cubic polynomials  which have  continuous first  and sec- 
ond  derivat ives at  the  N - 2  inter ior  junc ture  points [3]. The  me thod  to 
be described here gives a computa t iona l  scheme for f inding the  equili- 
br ium posit ion of the  beam t h a t  ful ly  accounts  ~or the  nonlinearit ies in 
the  beam equat ion.  The  me thod  makes use of a minimizat ion procedure  
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that  permits computation of the minimum energy configuration to as fine 
a precision as desired, within the limits of computational roundoff errors. 

An important advantage of the present method is that  it is not re- 
stricted to single-valued data points as is the case with the spline tech- 
nique. The method described here permits arbitrarily located data  points 
(some exceptions will be noted later) in the x - y  plane and seeks to pass 
the smoothest curve through these points in the minimum energy sense. 
Our definition of the "energy" of a curve is directly analogous to the 
formulation for the strain energy of an elastic beam under flexure. That  
is, for a curve y(x) with arc length L, we have 

L 

E[y(x) ]Lo = I V2(s)ds' (1) 
0 

where V(s) is the reciprocal of the instantaneous radius of curvature of 
the curve. Equation (1) is identically the expression for the strain energy 
of a beam, neglecting the appropriate material and geometry constants. 
It should be noted that the energy interpretation requires that the radius 
of curvature be everywhere nonzero; otherwise an infinite energy will 
result. Throughout the rest of this paper the minimum-energy curve for 
a set of data points will be abbreviated as MEC. The next section derives 
the differential equation satisfied by  the MEC between each pair of data 
points. Section I I I  shows the numerical solution of the differential equa- 
tion and a gradient minimization method for adjusting the boundary 
conditions. A brief discussion of the design of the minimization algorithm 
for computer implementation is given in Section IV, and results and con- 
clusions are presented in Sections V and VI, respectively. 

II. Equat ion  of the MEC. 

Let the data points (boundary points) be represented by  their x - y  
coordinates, (xt, yi), i = 1, 2 . . . . .  N, and consider a beam (curve) passing 
through all the data points: i.e., y (x i )=y  i, (see Fig. 1). Letting W denote 
the strain-energy density, and S~ the arc length along y(x) up to the i th 
data point, the total strain energy of the curve is written as 

E[y] = W d s .  (2) 
i=1  S~ 

From (1), W is recognized as the square of the reciprocal of the instantane- 
ous radius of curvature, which in cartesian coordinates is 
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W = (Y")~ 
[1 + (y,)2]a" (3) 

Substi tut ing (3) in (2), and taking 

ds = [1 + (y')2]~dx , 
(2) becomes 

N-I,~= ~til [1 +(Y")~ Ely] = "~1 (y,)2]5/2 d x .  (4) 
xi  

The MEC is then tha t  function y(x), with y(xi)=Yi ,  tha t  minimizes (4). 
At all interior boundary points, i = 2, 3 , . . ,  N - 1, the first derivative must  
be continuous; otherwise infinite strain energy will result, an impossi- 
bility for a physical beam. 

Between each pair of boundary points the MEC must  satisfy the dif- 
ferential equation tha t  minimizes the integral in (4). This differential 
equation is obtained by using the calculus of variations and is found to 
be [7, 8] 

5(y") 3 + 20y 'y"y ' "  35(y')2(y") a 
yiv = 211 + (y,)2] 211 + (y,)212' (5) 

which is recognized as a fourth-order nonlinear differential equation. I t  
can be further shown tha t  for a meaningful solution to exist the four 
boundary conditions tha t  must  be specified are: y(xi), y(xt+l) , y'(xt) and 

r x Y (i+1) [7]. The minimization of (4) is thus recognized as a mult ipoint  
boundary-value problem. When the boundary coordinates are fixed, then 
only the boundary slopes, y'(xi), must  be determined. Thus the minimiza- 
t ion involves a search for the y'(xi), i = 1 , 2 , . . . , N ,  tha t  minimize (4), 
where y(x) satisfies (5) and y(xi)= y~, i = 1 ,2 , . . .  ,N. Note tha t  the solu- 
t ion must  provide for continuity in function value and slope across each 
of the boundary points in order to faithfully represent the continuous 
beam. If all the boundary points were to lie along a straight line then the 
minimizing solution would itself be a straight line. When the boundary 
points are located such tha t  the  change in slope of the solution within 
each interval is small, then the denominator  in (4) can be accurately 
approximated by a constant in each interval and the minimization yields 
the spline interpolation. 

I t  has not  been found possible to integrate (5) analytically, and hence a 
numerical solution is indicated. The next  section describes the numerical 
solution of (5) subject to the four boundary conditions specified above, 
and presents the gradient method for adjusting the slopes at the boundary 
point~ so as to minimize (4). 
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III. Numer ica l  solution of the m i n i m u m - e n e r g y  curve. 

3.1. Solution of the Differential Equation. 
A numerical solution of (5) will be given for the interval (0,0)-(1,0), 

subject to the given boundary conditions y'(0) and y'(1). Figure 2 shows 
the arrangement to be used for evaluating quantities at discrete points 
in the range, where the x-interval [0, l] is subdivided at N points, in- 
cluding the points x = 0 and x = 1. The notation used is largely that  due 
to Fox [9]. The points of subdivision are called "pivotal points" and the 
solution values at these points are called "pivotal values". The pivotal 
points are indexed from j = 1 to j = N and the pivotal values denoted by  
Yr The uniform mesh spacing will be represented by  H = xj+ 1 -xj.. 

There are two basic methods for handling the solution of a boundary- 
value problem: 1) converting the boundary-value problem into an ini- 
tial-value problem; 2) direct solution of the difference-equation repre- 
sentation of the differential equation by  forcing it to satisfy the boundary 
conditions. The present work has followed the second approach. 

The second method involves writing the finite-difference equation at 
each of the 5 7 -  2 interior pivotal points in terms of the unknown pivotal 
values, yj. One thus obtains 5 7 -  2 algebraic equations in the N -  2 interior 
pivotal values and those exterior pivotal values which are involved when 
the difference equation is written at pivotal points near the end of the 
range. The boundary conditions must be sufficient in number and kind 
to supply the remaining equations needed to obtain a consistent set. The 
yj can then be solved for, either directly, as when the difference equation 
is linear, or by  iteration, for a nonlinear difference equation. Alternatively, 
the original differential equation can first be linearized and an iterative 
approach used to converge to the solution. The latter method is used in 
this paper. 

The linearization of (5) is accomplished as follows. Suppose that  y(0) 
is an approximate solution of (5) and that  a better  approximation is 
given by  y¢°)+~t(°). Let (5) be written in abbreviated form as yiv= 
f (x ,y ' ,y" ,y" ' ) .  Expanding (5) about  y(O~ in a Taylor series and retaining 
only the first-order terms, we get 

(y(0)+~c0))iv = f(x,y¢O),,y(O),,,y(O),,,)+~(o), ~f +~(o),, ~f +~(o),,, ~f ~ ,  ~y(O),} ~y(0),,---- ~ . (6) 

Rewriting (6), dropping the superscript notation for convenience, and 
letting 

(y(°))~v- f (x, y(°)', y(°)", y (°)''') = b, 
one obtains 
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. . . . . .  
~-~-z+V" +V'~y ,  = y ~ - f ( x , y  ,y ,y ) = b (7)  

Now (7) represents a linear equation in 7, and solving one next takes 
y(O)+~(0) _~ y(1) as a bet ter  approximation. The procedure can then be 
repeated using the improved approximation y(1) in (7). Succeeding iter- 
ates, y(l), should converge to the solution if the approximate solution at 
any stage in the iteration is sufficiently close to the true solution so that  
the neglected higher-order terms in (6) are negligible. The process ter- 
minates when the i TM correction, ~(i) becomes negligibly small, as deter- 
mined by some desired tolerance. At this stage the mesh size, H, can be 
halved, the calculated pivotal values used to interpolate for the inter- 
mediate values, and the iterations repeated. The mesh size can be halved 
as many times as is required in order to obtain a desired precision for the 
solution. 

The conversion of the foregoing procedure into a finite-difference 
scheme is shown in Appendix A. I t  is shown there that  one can arrive 
at the following difference equation version of (7), namely, 

i2j~7i+2 + Alj~Tj+I + A0jVj + A_lj~t_I + A _ 2 j ~ j _ 2  = Bj 
j - -  2,3 . . . . .  N - 1 .  (S) 

One observes from (8) that  the equations written at the pivotal points 
j = 2 and j = N -  1 will each involve a pivotal point exterior to the range. 
Auxiliary relations are needed to express the two corresponding exterior 
pivotal values in terms of interior values and the boundary conditions 
are used for this purpose. For example, writing a Taylor series expan- 
sion at j = N  about YN, one obtains 

H e 

YN+I = YN + HyN' + ~.  YN" + . . . .  (9) 

Both YN and YN' are given quantities at each stage of the iteration, being 
supplied from the given boundary conditions. If H is sufficiently small, 
all terms beyond first-order will be negligible and (9) can be written as 

YN+I ~= yN+ HyN'  " (10) 

The value of ~ at the external pivotal points can be similarly evaluated. 
Thus 

H e 
• H ' " -  ~7,~+1 = ~ y ~  ~N ~ .  ~]g ~ . . . .  (11) 

Since ~N and ~N' must vanish because of the boundary conditions fixing 
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YN and YN', and neglecting the higher-order terms for the same reason 
as in (9)-(11), there results 

~]Y+l ~ 0 .  (12) 

With successive iterations of (8) the ~j will become progressively smaller 
if the process is converging, and the approximation (12) will improve. 
Expressions identical to (10) and (12) are obtained at the other end of 
the range, j = 1. 

Thus the system of equations (8) will consist of N - 2  linear equations 
in the i V - 2  unknowns, ~j, j = 2 , 3 , . . .  , N - 1 .  In matrix notation (8) can 
be written 

A T = B (13) 

A being a sparse matrix, and (13) is rapidly solved on a digital computer 
by  straightforward Gauss elimination. 

Successive iterations with (13) will give progressively decreasing values 
of Vj provided that  at any stage the iterate values, yj, are sufficiently 
close to the true solution so that  the neglected higher-order terms in the 
expansion (6) are indeed negligible compared to the terms retained. Thus 
convergence is strongly dependent on the initial approximation being a 
good one. After each iteration for V~, the matrices A and B are recomputed 
using the corrected pivotal values yj + Vj -+ yj, the iterations being con- 
t inued until the ~7~ have been reduced below a desired tolerance. The final 
pivotal values are then used to compute the energy via a numerical inte- 
gration of (4), provided the mesh size used (H) is sufficiently small to 
give a desired precision. Because of the smooth nature of the solution, 
a zero-order integration formula was found adequate for a mesh size 
slightly less than ~ of the interval range. The observed difference in 
the computed energy values using higher-order formulas was confined to 
at most the fourth decimal place. 

The initial approximation (y(0)) for the pivotal values is provided by  a 
cubic polynomial, determined b y  the four boundary conditions. Justifica- 
tion for use of a cubic rests on the fact that  the solution itself will behave 
as a cubic over small intervals and also over larger intervals if the slope 
change between boundary points is small (i.e., spline interpolation). 
With the cubic approximation convergence was always obtained provided 
the specified boundary slopes did not give too "severe" a slope change 
per unit range distance or provided there was not a severely asymmetrical 
slope difference. In such cases the cubic approximation is not  accurate 
enough to permit neglecting the higher-order terms in the expansion of (5) 
and the solution becomes unstable. A way of frequently overcoming this 
difficulty was found through the use of an "intermediate" variable 
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boundary point, whose location can be adjusted so as to minimize the 
energy of the curve passing through the given boundary points and the 
intermediate point. If  the solution is still unstable then additional inter- 
mediate points must be added. The computation time, of course, in- 
creases appreciably. Thus the data points can be arbitrarily located (see 
Section I) as long as the solution remains stable. 

3.2. The Gradient Method for  Min imiza t ion .  

Having obtained a solution for the energy in any interval, we can 
proceed to show the gradient method for adjusting the boundary-values 
slopes in order to give a minimum-energy curve through a set of data 
points (see Fig. 1). The problem can be considered as one in which a 
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Figure 1. Minimum-energy curve t h rough  a set  of N da ta  points.  

criterion function, the total strain energy, is expressed as a function of the 
/V boundary slopes, or 

E[y] = f [ Y l ' , Y ~ ' , ' ' ' , Y N ' ] ,  (14) 

the boundary positions being fixed. 
We let the n-tuple 

~ k  i r 
= [Ylk, Y2k . . . . .  YNk] 

represent the slopes at each of the N boundary points at  the k th iteration 
of the minimization procedure, and we take E k as the corresponding 
energy of the solution. The gradient method results in a sequence of slope 
vectors, $1, S~ . . . . .  Sk, Sk+l,. •.,  St, such that  E 1 > E~ > . . .  > E k > Ek+ 1 > 
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. . .  > E  t,  where St corresponds to the slope vector of the minimum- 
energy solution• At the minimum, St, the gradient of the energy with 
respect to the slope vector must vanish, or 

[~Et ~Et , ~Et] 
gradEr = [~Yl~' ~Y=~t . . . .  ~ j  - 0 .  (15) 

One thus obtains the slope vector for the k+  1 st iteration as 

Sk+l = S k -  2k gradEk,  (16) 

where 2k is a constant adjusted to ensure that  Ek+ 1 < Ek, and the minus 
sign is required because the gradient vector is in a direction to maximize 
the criterion function. Use of (16) is known as the method of steepest 
descent [10]. 

Because an analytic expression for the energy in each interval is not 
available, the partial derivative components of the gradient vector at 
the k th iteration must be approximated by terms 

AEk 
Lly, k i 1,2,. ,N 

One notes that  the gradient components can be evaluated by making a 
small change in slope at each boundary point and evaluating the resulting 
energy change in the two adjacent intervals (or a single interval in the 
case of the end points). In  the actual computation the gradient vector 
itself was not used in the iterations of (16). Rather, the gradient com- 
ponents were quantized into + 1, - 1, or 0, according as the components 
increase, decrease, or do not change the energy beyond the tolerance set 
for the gradient. Thus all boundary slopes undergo the same magnitude 
of change, or none at all, for each iteration of (16). The reason for this 
procedure was to avoid instability which may result from the large value 
of some of the gradient components and the accompanying large bound- 
ary slope change in the corresponding intervals. Although it seems as if 
the method used would be highly inefficient, the comparatively few 
iterations required in most of the examples performed testifies to its 
efficiency. 

The efficiency mentioned in the preceding paragraph is due in large 
measure to the good initial approximation $1 that  can be obtained to 
the solution St. I t  will be recalled from Section 3.1 that  convergence is 
critically dependent on the approximate solution at any point being 
suitably close to the true solution to permit the linearized expansion 
of (5). I t  has been found that  the slopes obtained by passing "overlap- 
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Figure  2. A r r a n g e m e n t  for t h e  loca t ion  of t h e  p ivo ta l  p o i n t s  for t he  d i f fe rence-equat ion  
solut ion.  T h e  u n i f o r m  m e s h  size is H .  

ping" parabolas through the data points give a fairly accurate initial 
approximation. Fig. 3 illnstrates the idea. The initial slope at the ith data 
point is taken as the slope of the parabola passing through the points 
i -  1, i, and i + 1. I t  has been observed that  in those intervals for which 
the overlapping parabolas have second derivatives of opposite sign, the 
MEC will have a point of inflection. 

Comparison of the final slope values achieved in the minimization with 
the initial approximation reveals good agreement, as may be seen from 
an example included in Section V. Physical intuition strongly suggests 
that  the problem has an isolated minimum, provided the initial approxi- 
mation is not too far removed from the stationary point. This intuition 
has been confirmed computationalty with the examples tested as well as 
with a physical simulator [7, 8]. However, no uniqueness proof has yet  
been obtained for the MEC. 

The use of any numerical gradient technique always evokes considera- 
tion of the convergence problem; that  is, finding an efficient choice for 
the Xk in (16) and use of a suitable metric (e.g., Newton's method) to give 

Figure  3. P a r a b o l a  f i t t ing  for d e t e r m i n i n g  t h e  ini t ial  s lope a p p r o x i m a t i o n .  



286 z. ~r. GLASS 

quadratic convergence near the minimum. Methods for giving improved 
convergence near the minimum were not considered in this work; nor 
was any at tempt  made to design a sophisticated searching algorithm for 
the optimum 2k. Rather,  the value of 21 at  the first iteration was suc- 
cessively increased until the greatest possible energy reduction was 
achieved; thereafter the iterations used ~k+l=~k, where the value was 
repeatedly halved until the energy relation Ek+ 1 < E k was satisfied. This 
procedure seemed to work quite well in most cases, giving satisfactory 
convergence (less than 1 percent change in energy) within four or five 
iterations. The bulk of the computation time consists of evaluating the 
gradient and the criterion function via solution of the basic difference 
equation (13) in each interval. Thus it was felt that  computation time 
per iteration would be substantially increased* by  use of accelerating 
methods and by  use of any of a variety of schemes for interpolating for 
the optimum 2k in the direction - g r a d e  k. The author suggests, however, 
that  there is considerable opportunity for the application of acceleration 
techniques to give improved convergence of the minimum-energy solu- 
tion. 

In each interval the solution is carried out  by  rotating coordinates so 
as to bring the x-axis into correspondence with the line joining the two 
data points. This procedure allows the number of pivotal points in each 
interval to be made directly proportional to the interval length (the dis- 
tance between two data points along the line joining them), thus ensuring 
that  a nearly uniform precision is obtained throughout the solution. In 
the interval (xi, y i ) -  (xi+l,yi+l) the angle of rotation is 

0~ = tan -1Yi+l--Yt.  (17) 
X i + l - - X  i 

Hence if 0tk is the trial solution angle corresponding to the i TM data point 
at  the k th iteration of (16), the boundary slopes used in the numerical 
solution of (5) are given by  

, tan Oik - tan 0~ 
Yik = 1 + (tan 0tk)(tan 0t) 

(is) 
, tan 0/+1, k -- tan 0 i 

Yi+l, k = 1 + (tan 0t+1, k)(tan 0t)" 

When minimization is reached the coordinates of the pivotal points in 

* T h e  iteration t i m e  pe r  interval a v e r a g e d  a p p r o x i m a t e l y  6 seconds  for t h e  e x a m p l e s  

chosen.  T h e  t ime ,  of com-se, is s t r o n g l y  d e p e n d e n t  on  t he  i n t e rva l  size a n d  t he  f ineness  
of t h e  subd iv i s ions  used .  T h e  c o m p u t a t i o n s  were p e r f o r m e d  on  a n  I B M  7094. 
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each interval can be transformed back into the absolute coordinates to 
facilitate graphing of the solution. 

IV. Selection of parameters for the ME(] algorithm. 

There are three competing factors influencing the choice of the various 
parameters to be supplied to the MEC algorithm: 1) we desire as precise 
a solution as possible; 2) we desire as rapid convergence as possible; 
3) we must guard against instability of the solution. The last-mentioned 
factor is the most important  and decisions affecting stability must over- 
ride considerations of precision and convergence. 

The tolerance values used in the algorithm were found largely through 
experience gained from worked examples and the intuition acquired 
therein. Setting a tolerance for determining when a stationary point is 
reached depends on several factors: 1) the incremental value of slope 
change used to calculate the gradient components; 2) the number of 
iterations of (16) required to give a value Ek+ t whose jth decimal place 
remains unchanged from the E k value; 3) the tolerance value used to 
terminate the ~ correction-factor iteration. All these factors are in turn 
influenced by the mesh size H and the roundoff error propagated through 
the entire solution. I t  was found from worked examples that  when the 
energy change due to an incremental slope change at any data point 
was approximately 0.2 percent of the total curve energy, then succeeding 
iterations of (16) did not reduce the total energy by  more than approxi- 
mately 0.5 percent. For the examples tested the curve energies were all 
within an order of magnitude of each other, ranging from about  2 to 20, 
and a value of 0.001 for the gradient energy tolerance was sufficiently 
small to generally give 1 percent accuracy for the minimum. 

The incremental slope change used to calculate the gradient compo- 
nents was usually set at  0.005. This value was found to be sufficiently 
large to give a measurable change even near a stationary point and suf- 
ficiently small to approximate the taking of a derivative. I t  was also 
large enough to prevent the gradient tolerance from being satisfied before 
the solution had come satisfactorily close to the stationary point. The 
average number of iterations of (16) required to satisfy the gradient 
tolerance averaged about  five for the examples tested. Reduction of the 
gradient tolerance resulted in an appreciable increase in the number of 
iterations. The initial trial value of 4, i.e., X1, was taken to be four times 
the incremental slope value. Successive doubling of 21 was permitted to 
obtain that  value resulting in the largest energy reduction. If the initial 
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trial value failed to reduce the energy, then 21 was successively halved 
until reduction occurred. 

The range between the data points influences the selection of an ap- 
propriate tolerance for the ~ correction factors. For all test examples the 
range was within two units and an acceptable tolerance was found to be 
0.00002. When the tolerance was reduced to 0.000002 the resulting energy 
values differed only in the fifth decimal place from those obtained with 
the larger value. Reducing the tolerance by still another order of magni- 
tude failed to produce convergence, thus establishing the effect of round- 
off-error propagation in the calculation and indicating that  results com- 
puted with the 0.00002 value were sufficiently protected from roundoff. 

Selection of the mesh size, H, can critically affect the precision of the 
energy calculation. In most of the test  examples the initial value of H 
was chosen to give about  60 pivotal points per unit distance in each data  
interval. Generally one interval subdivision was used, resulting in about  
120 pivotal points per unit distance for the final energy calculation. Such 
a mesh size appears to be sufficient for maintaining the precision estab- 
lished by  the gradient and V tolerances. Any finer mesh affects the energy 
calculations only in the fourth decimal place or beyond. If the mesh is 
made too fine it can have an adverse effect by tending to amplify at any 
stage in the iterations the difference between the current calculated pivo- 
tal values and the true values. The reason for this effect can be seen by  
considering the expressions obtained for the a l t  , a~j, and aaj terms as 
defined by  (A-I). Carrying out the operations indicated in (A-I) shows 
that  H appears raised to the sixth and eighth power in the denominator 
of some terms. Where these are not effectively cancelled by  corresponding 
multiplying powers of H the result can be an oscillation in the solution, 
or even instability. 

V. Results .  

Several comparisons of MEC and spline interpolation are shown in 
Fig. 4 to 7, with the respective curve energies listed. One notes in Fig. 5 

1 

, b ~ . . . "  MEC 

0 1 2 3 
Figure 4. Example 1. Spline energy=2.249. Mec energy= 1.383. 
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Figure 5. Example  2. Spline ene rgy=  18.63. Mec energy=2.005.  
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and 7 that  the spline method does not give a completely symmetrical 
curve even though the samples (shown in heavy black dots) are sym- 
metrically placed*. In  all cases the spline curve energy is substantially 
greater than that  of the corresponding MEC. 

To give an idea of the accuracy of the initial slope approximation 
provided by fitting overlapping parabolas (see Fig. 3) to the samples 
consider Table I. This table lists the initia] and final values of the bound- 
ary slopes in each of the nine intervals for the example of Fig. 7. The 
slopes are given with respect to the straight line joining the two boundary 
points of each interval. The sequence of energy values obtained in the 
minimization is listed in Table II.  At the end of the tenth iteration all 

1 

Figure 6. Example  3. Spline energy=5.501.  Mec energy=2.305.  

* There is no special significance to the use of symmetric samples. The da ta  used here 
were obtained/11 connection with the s tudy of a related quant izat ion problem [7, 8] t ha t  
resulted in symmetric data .  
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F igure  7. E x a m p l e  4. Spline energy-- .  3'/.13. Mee e n e r g y ~  8.353. 

componen t s  of the  g rad ien t  vec tor  were below 0.001 excep t  for the  com- 
ponen t  associa ted  wi th  the  sample  (0.1, 0.95), which was 0.001295. The  
to t a l  c o m p u t a t i o n  t ime  for  this example  was a p p r o x i m a t e l y  10 minutes  
on the  I B M  7094. 

Tab le  I 

Comparison of initial and final slopes for the example of fig. 7. 
Interval Initial Slopes Final Slopes 

1 - 0.676, 0.771 - 0.201, 0.419 
2 -0.389, 0.149 -0.731, 0.190 
3 -0.020, -0.048 0.019, -0.030 
4 0.280, -0.466 0.300, -0.558 
5 0.363, -0.363 0.283, -0.288 
6 0.466, -0.280 0.552, -0.300 
7 0.048, 0.020 0.030, -0.026 
8 -0.149, 0.389 -0.198, 0.731 
9 -0.771, 0.676 -0.419, 0.201 

YI.  C o n c l u s i o n s .  

A m e t h o d  has been presen ted  for  obta in ing  the  smoo thes t  curve  
th rough  a set  of d a t a  points  in the  sense of minimizing the  s t ra in  energy  
of an  ideal  elastic b e a m  cons t ra ined  to  pass t h rough  the  points .  The  
m e t h o d  represents  an  advance  over  the  usual  spline in te rpo la t ion  proce- 
dure  in t h a t  i t  fu l ly  accounts  for  the  nonlineari t ies  in the  b e a m  equa t ion  
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Table I I  

Sequence of MEC energy values obtained for the example of fig. 7. 
Iteration Energy 

1 10.465 
2 9.552 
3 8.957 
4 8.857 
5 8.756 
6 8.489 
7 8.483 
8 8.392 
9 8.354 

10 8.353 

and is not restricted to single-valued data points. The drawback of the 
method is the enormous computation time, compared to the spline fit, 
as well as possible stability problems when the data are such as to re- 
sult in large slope change per unit distance of the solution. The stability 
problem can always be overcome by  the addition of sufficient numbers 
of adjustable, intermediate boundary points, but  at the expense of a 
substantial increase in computation time. 
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APPENDIX A 

FINITE-DIFFERENCE FORMULAE FOR 

NUMERICAL SOLUTION OF 

THE MINIMIZING DIFFERENTIAL EQUATION 

We adopt the following notation: 

yjiv-f(xj ,  y / , y / ' , y / " )  = bi 

- -  a l j ;  , ,  = a 2 1 ;  , , ,  = a a j  
~Y/ ~Yj ~Yj 

~)t' -+ ~'; ~ / '  ~ ~" ;  ~J"" --> ~ ' " ;  ~jiv _~ ~iv, 

(A-l) 

j = 2,3 . . . .  , N - 1 .  
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Equa t ion  (7) in the  t ex t  can t hen  be wr i t ten  

- ~ i i v + a l j ~ i ' + a 2 j ~ " + a a i ? ] j  ' ' '  = bj, j = 2 , 3 , . . . , N - 1 .  (A-2) 

Defining the  "cent ra l -d i f ference"  and  "averag ing"  operators  respect ively  
b y  

@j ~= (?]j+½-~j_½)/H 

#~j _A (~1+½ + ?]j_½)/2, 

the  following "ba l anced"  finite difference formulae  are obta ined:  

~/=A/~@j = (?]I+I-Vj-1)/H 
?]j" ___A (~27]¢ = (~i+1 - 2 ~  + ~i_1)/H ~ 

,]1,,, ~ #~3~ = (?]i+2- 2~i+1 + 2~I-1 - ~I-~)/2Ha 

~i iv ~ ~ t  4 = (?]i+2 -- 471i+1 + 671i - 471i-1 + ?]i-2)/Ha • (A-3) 

Subst i tu t ing f rom (A-3) into (A-2), and collecting like te rms we get :  

~ 7 i + 2 (  - -  1 + a3iH/2 ) + ?]i+1(4 + al iH3/2 + a21H~ - a31H ) 

+ ~i( - 6 - 2a2jH 2) + ?]i_1(4 - aliHa/2 + a2jH 2 + aaiH ) 

+ ~ t _ ~ ( - 1 - a 3 j H / 2 )  = H4bi = Bi, j = 2,3 . . . . .  N - I .  (A-4) 

The  te rms ali, a2i and  a3i are readi ly  ob ta ined  using (5) and  (A-l),  and  
finite-difference formulae  as in (A-3) to replace the  YI', Yi" and Yt'"" 
The  expressions for the  alj, a2t and  a3j are then  subs t i tu ted  into (A-4) 
to  obta in  the  sys tem of algebraic equat ions  in the  unknowns  ?]j, which 
can be wr i t ten  compac t ly  as 

A21Vt+2 + Ali~i+1 + A0i~i + A_11Vt_l + A_~Vi_2 = B t ,  

j = 2 , 3 , . . . , N - 1  (A-5) 
(A-5) is recognized as (8) in the  t ex t .  
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