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Abstract

The distributive approach to tactile sensing is a novel approach. The method relies on the distributed deformation of the surface in
response to the applied load to a few sensing points within the surface area. The description of the contacting load is then interpreted into
meaningful descriptors typically by using a neural network or fuzzy rules. The method has been shown to interpret descriptors such as
load position, load value and load width and relies on strong coupling between the sensory data retrieved. This opposes the design aims
in many alternative tactile sensing systems that formulate load description from isolated discrete data detected over an array of sensing
elements, or that delineate force descriptions through a structure that minimises coupling on Cartesian axes. For distributive tactile sensors,
the performance can be optimised through placement of sensing points such that the obtained information is optimal. This paper examines
the effect on performance of sensor location points on an experimental one-dimensional surface designed for this purpose. The algorithm
interpreting load descriptors was a back-propagation neural network. The critical parameter of sensor location is optimised using the
genetic algorithm (GA) and principal component analysis (PCA) approach. It is shown that when an optimised configuration is used load
position can be predicted to within 5% of the full range by using as few as two sensing elements, and that performance is improved by
using additional sensor points. The results of this study are a basis for selecting sensor locations to achieve high performance with planar
one- and two-dimensional distributive tactile surfaces.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Precise automated control of contact between surfaces
can be achieved using tactile sensors are necessary, for ex-
ample, in assembly and in the attachment to work pieces
in robotics and in the control of process machinery such
as paper manufacture and rolling steel mills. Additionally,
tactile sensing is used in the form of weighing machines
and keyboards to retrieve certain properties or information
on the contact.

Conventional constructions of tactile sensors range from
complex to simple, ranging respectively from full arrays of
sensors to gather a great deal of data that can be used to de-
rive complex properties of the contacting object, to single
point measurement of force to merely determine that con-
tact has occurred. Load plates are one example where three
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properties of contact may be determined such as weight, and
x–y positions of the centre of load. These use a rigid sur-
face with sensors mounted at the corners and are commer-
cially available[1]. Computation of contacting properties is
derived by a closed form solution of a set of simultaneous
equations.

To obtain further properties of the contacting object,
arrays of sensors are used that provide many data points
over a surface corresponding with the pressure measured
at those points. By monitoring these values, properties of
the contacting imprints can be measured by using complex
computational functions similar to that of a vision system.
Examples of array sensors that emulate machine vision
systems, can be found in various applications for instance
force sensing for robot fingers[2], slip detection[3,4] and
reconstruction of two- and three-dimensional object profiles
[5–7]. By the nature of their construction, these sensors
can be both complex and expensive, and suit applications
needing high levels of precision in some of the data that is
retrieved.
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There are also applications where the level of precision
is not the most important parameter, but rather that the
sensing system is low cost and reliable. The distributive
approach offers advantages in this respect, as it requires
few sensing points placed within surfaces: This can take the
form of a sealed surface and may be used to discriminate
many descriptors of a contacting surface, such as shape,
orientation, size, position, slip and weight. The approach
also introduces low computational load in the derivation of
properties or the state of contact. Food processing, agricul-
tural, domestic, leisure and medical applications can benefit
from the potential low cost and physical robustness. How-
ever, the performance of such sensors is sensitive to the
location of the sensing points.

Holweg and Jongkind[8] also adopted a simplified me-
chanical construction of tactile sensor by using an array of
contact points on a substrate attached beneath a layer of con-
ductive foam. The voltage outputs from the sensing points
appear as a vector that can be related to the shape of the con-
tacting surface. This sensor was used to control the nature
of contact between the end-effector of a manipulator with
a variety of objects. While the complexity of construction
has been reduced by this approach, there is still a question
of the number of connection points to provide the necessary
large number of sensor points/values.

An alternative is to use fewer sensing points where sensor
outputs are coupled by the deformation of a common contact
surface. This is the ‘distributive approach’ and relies heavily
on the correct placement of sensors computational algorithm
used that relates the vector of the sensory output data to the
properties of contact. Ellis et al.[9] applied a closed form
approach for determining certain properties of grasped ob-
jects. A more computationally efficient approach applied to
various surface shapes has been explored by Stone[10]. In
this latter scheme, there is a discriminatory rather than de-
terministic process to determine properties of the load and
state of contact. This approach is able to gather a great deal
of information despite the simplicity of construction. A sur-
face of this type was constructed and used by Stone and
Brett [11] and Evans and Brett[12] to control the gripping
of discrete compact shape soft objects with the aim to min-
imise deformation. The scheme enabled the contact force
distribution to be deduced, and the deformation and slip of
the object to be detected. The sensors used sensing elements
placed beneath the surface and this offered the benefit of a
robust construction. Although the investigation showed the
potential of the method there was little understanding of the
parameters that led to optimum performance. The approach
is relevant to a wide range of applications and this paper re-
ports on studies to increase performance by optimising the
location and number of sensing positions.

The focus is on a one dimensional beam surface that en-
ables ‘behaviour’ to be measured accurately in the laboratory
under specific load conditions. The results on performance
and the selection of design parameters can be used to design
both one- and two-dimensional tactile surfaces, as the ap-

proach developed and the trends identified are appropriate to
both. The demonstration rig uses a back-propagation neural
network as a computational algorithm for the discrimination
of contact conditions. To identify the optimum number of
sensors as well as their positions, an optimisation technique
is described. The method adopted is based on the genetic al-
gorithms (GAs) and uses a performance evaluation function
based on the principal component analysis (PCA); a well
used multi-variable data reduction technique.

In Section 2, the experimental rig and complementary
simulation model for an effective generation of sensory data
are described. The approach taken in the application of PCA
to the test data is described inSection 3. Subsequently, the
optimal number of sensors for this example case is deter-
mined. InSection 4, the search algorithm is applied to op-
timise the sensory positions by using simulated data. Using
the result as a guide to sensor locations, this is followed by
the comparison between discrimination performances of the
networks trained with simulated and experimental measure-
ments with sensory positions at an equal pitch and at the
optimised positions.

2. Test rig and sensing surface simulation

The single dimensional tactile surface was constructed
to evaluate the performance of the sensing scheme for de-
flection of a simply-supported steel beam of length 400 mm
when subjected to an applied load. The configuration shown
in Fig. 1illustrates that eight proximity sensors were initially
positioned at equal pitch under the surface measuring de-
flection at these points. The advantage of using non-contact
proximity sensors is that different sensed positions can be
achieved readily as compared with using attached sensors
such as strain gauges. The sensors were used over their
linear range between 1 and 4 mm separation from the sur-
face. A typical sensor characteristic is shown inFig. 2 in
terms of voltage output in response to the deflection of the
surface. Single point loads were applied as manually posi-
tioned weights on the surface of the beam. The load posi-
tion, was interpreted from the changes in the sensory data
from all sensors by using a back-propagation neural net-

Fig. 1. The experimental rig.
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Fig. 2. A typical characteristic of the proximity sensors.

work. The back-propagation network is used in many engi-
neering applications owing to its clear structure and robust
performance[13]. The networks used in this work consisted
of an input layer with the number of nodes equal to the
number of sensors used, a single hidden layer with 10 hid-
den nodes and an output layer containing a single node out-
putting the estimated magnitude of load position along the
beam. They were trained to achieve composite error of no
more than 0.1% with the fixed learning and momentum rates
of 0.9 and 0.7, respectively. In experiments of point loading,
the accuracy to which position was predicted, when using
equally spaced sensor positions, was to within 5% of the full
range. The trends in measured performance with respect to
the number of sensors used, in optimal sensor locations, is
discussed later in this paper with comparison to a computer
simulated study of the system subjected to the same design
variations.

The network was first trained in order to derive the rela-
tionship between input and output states. Network training
was carried out by giving the network vectors of input (beam
deflection) and corresponding output (applied position). To
explore the performance of the device efficiently, test data
was generated from a simulation model in a parallel study
with the experimental measurements.

A simulation of the full sensing system incorporating
surface, sensor characteristics and the neural network was
produced to explore characteristic behaviour of the whole
system when subjected to changes in major design parame-
ters leading to improved performance. The model was able
to explore such trends more efficiently when compared to
such changes made to the test rig. For the deflection be-
haviour of the beam surface, standard beam bending theory
was applied. The bending theory is reported in most struc-
tural mechanics texts, for example[14]. The deflectiony at
positionx in response to an applied loadW at positiona on
a simply supported beam of lengthl is given by

y = W

6EI

[
(2l − a)(a − l)ax + (l − a)x3

l
− 〈x − a〉3

]
(1)

whereE and I are Young’s modulus and second moment
of area of the beam, respectively. ForEq. (1), the following
assumptions for the beam apply: (a) straight beam, (b) beam
is constructed from a homogeneous material of constant
elasticity, (c) the cross-sectional area remains planar and is
uniform, and (d) the applied load will not cause permanent
deformation. This equation is applicable when the respond-

ing deflections induced by the load are small with respect
to the length.

3. Principal component analysis (PCA) for reduction of
neural network inputs

From the viewpoints of reducing constructional complex-
ity and unacceptably high computational loads associated
with training neural networks, there is advantage in min-
imising the number of input nodes. This corresponds with
minimising the number of sensors deployed. To achieve sat-
isfactory performance whilst reducing the number of sen-
sory inputs requires the strategic placement of sensing points
to enable the required sensitivity in the output of the sens-
ing system. PCA analysis has been applied to compress the
real higher dimensional space into a meaningful lower di-
mensional space. This approach has been well applied in
other applications[15,16] in conjunction with GAs to op-
timise system parameters against performance criteria and
to enhance feature determination in data. PCA has also
been widely used as a data reduction technique, for ex-
ample, in process fault diagnosis[17,18] and analysis of
bench-marking data[19]. In this application, it is shown that
reduction can be achieved successfully when applied to this
novel approach for tactile sensing. The first principal com-
ponent PC lies along an axis corresponding with the direc-
tion of the largest variation in the dataset. The second PC
corresponds with the next largest variance and is orthogonal,
and hence, is uncorrelated with the first. The derivation of
PCs continues until the number of PCs equals the number of
input variables. In practice, the need to compute all compo-
nents is rare since the data captured within the first few PCs
are usually sufficient to explain the input variables[17].

In this example, the minimum number of PCs required
to distinguish certain contact types can be determined from
the minimum number of PCs that provide a unique descrip-
tion for selected parameters. In this process, PCs of large
magnitudes (first PCs) are selected. Additional PCs above
this minimum number can be introduced to allow for redun-
dancy, however in this case, their magnitudes are insignifi-
cant when compared to sensor noise.

The derivation of PCs is carried out as follows[18]. For
a datasetX, consisting of a set ofN0 applied positions mea-
sured atp sensory positions, the covariance matrix is

Σ = 1

N0
XTX (2)

The eigenvectors and eigenvalues ofΣ are solved to satisfy
the standard equation:

ΣU = UD (3)

whereD is a diagonal matrix with the diagonal elements
equal to the eigenvaluesλi andU = {U1, . . . , Up} is a ma-
trix whose columns are the normalised eigenvectors such
thatUUT = UTU = I (the identity matrix). The eigenvalues
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λi correspond to the data variances in the directions of the
eigenvectorsUi . Thus, by rearranging the columns ofU in
descending order of magnitude of the corresponding eigen-
values, a new matrixUp is formed whosep columns are the
p PCs ofX.

To determine the minimum number of inputs required,
PCA was applied to simulated beam deformation. This was
computed at eight equally pitched positions for every 1 mm
in applied position along the beam. The covariance of the
input matrix, characterising the correlation between input
channels was calculated usingEq. (2). Accordingly, the in-
put matrix of 399 samples by eight sensors was reduced to
a covariance matrix of size 8× 8. From the result, eigen-
values and eigenvectors of the covariance were computed.
The eigenvalues directly determine the variance of inputs
whereas the eigenvectors comprised transformation matri-
ces or direction for each PC. The transformed data obtained
as a product of original beam deflection and transformation
matrices were orthogonal and shown in a descendent order
from the most prominent PC of which magnitude, thus, vari-
ance was the largest. The transformed inputs of the largest
four magnitudes are shown inFig. 3.

As expected, the first PC is of the largest magnitude. The
magnitudes of later PCs are reduced rapidly. The magni-
tudes of PCs 5–8 are insignificant and their corresponding
transformed inputs cannot be discerned on the same scale
as the first four PCs.

The first PC is a reflection of the magnitude of deflection
whereas the second PC depicts a bias of beam deformation
due to load applied towards the left or the right of the beam.
The influences on later PCs are less clear. By inspection, it
can be suggested that at least the two most prominent PCs

Fig. 3. Principal components.

(PC1 and PC2) are required for determining the load posi-
tion. With the first two PCs, all combinations of transformed
inputs are unique.

The profile of later PCs can be corrupted by sensor noise
when amplitudes become comparable. To investigate this,
sensory noise at 2–10% of maximum deflection was ran-
domly added to the theoretical deflection inputs. This was
conducted in parallel with experimental measurements from
the demonstration rig. Absolute differences between noisy
and experimental data and transformed inputs derived theo-
retically were computed.

Fig. 4shows a plot of absolute percentage errors between
transformed data of theoretical inputs and those with addi-
tional noise of 2, 10% and experimental measurements. The
x-axis shows the transformed feature whereas they-axis rep-
resents an average absolute error. Trend lines were drawn
through the error plots (based ony = AxB). There was an
increase in error as the noise increased from 2–10%. This
phenomenon was anticipated due to diminishing magnitudes
of later PCs, given that the noise level remains unchanged.

4. GA for optimisation of sensory positions

To detect changes in beam deflection resulting from an
applied load at different position, the sensors were initially
placed at an equal pitch with respect to the beam length. To
improve the accuracy of sensory information, there was a
need to search for the positions, which result in the largest
variance in input data. This can be accomplished by varying
the sensory positions such that the magnitude of each PC
characterised by the corresponding eigenvalue is optimal.



P. Tongpadungrod et al. / Sensors and Actuators A 105 (2003) 47–54 51

Fig. 4. Average absolute percentage errors plot between transformed features of inputs at different levels on noise and theoretical inputs.

A search algorithm based on the GA was employed as an
optimisation tool.

The search algorithm was initialised with eight sensory
locations separated at an equal distance. A slight variation
was randomly assigned to the initial positions generating
new sensory positions. This was repeated so that a population
of combinations of new sensory positions was created. The
performances of the new sensory locations were evaluated
using an optimisation function described by a cost function
shown byEq. (4):

m = 1

E1 × E2 × · · · × En

(4)

wherem is the performance value,Ei the eigenvalue of the
ith PC, andn is the number of features to be optimised.

The performance was evaluated by taking the product
of inverse eigenvalues. With the described cost function,
later PCs with small eigenvalues were given high momen-
tum. As a result when the eigenvalues characterising mag-
nitudes of later PCs increased, the performance value,m,
reduced. To optimise the sensory positions, the algorithm

Fig. 5. Convergence of sensory positions for optimisation of the four largest eigenvalues.

searched for minimal performance value. To minimise the
inputs and computational time, the number of eigenvalues
considered was reduced to the optimum number of inputs
determined previously with the method described inSection
3. In this particular example, a use of four sensors was iden-
tified as an optimum number for discrimination of an applied
position.

Once the performances of all combinations of sensory lo-
cations in the population were evaluated, the combination
with the best performance was chosen as new sensory lo-
cations for the next generation. Based on the best positions
obtained from the preceding generation, the search algo-
rithm reproduced a new set of locations. The positional vari-
ation (increment) was reduced when the best performance
remained the same as the starting positions of that genera-
tion. The process was repeated until the increment converged
to a specified value or when the search algorithm reached a
specified maximum number of iteration.

Fig. 6 shows the convergence of sensory positions based
on the described method to optimise the first four eigenval-
ues. The sensory positions were plotted on thex-axis and
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Fig. 6. Convergence of performance value.

search iterations on they-axis. The convergence of perfor-
mance value,m, is illustrated inFig. 6. Fig. 5clearly shows
the convergence of the sensory positions from eight to four.
The optimised positions were symmetrical about the beam
centre.Fig. 6 demonstrates an asymptotic convergence of
the performance value as the number of iterations increased.
The convergence was achieved within approximately 20
iterations.

Fig. 7. Principal components when using equally spaced and optimised sensing positions, respectively.

Fig. 7 enables comparison between the PCs when using
equally spaced and optimised sensing positions, respectively.
There was a prominent reduction in magnitude of the first.
The second PC experienced a slight reduction in maximum
magnitude. The maximum magnitude of the third PC also
slightly decreased, but there was an increase in magnitude
when load was applied near the middle of the beam. The
fourth PC experienced an increase in maximum magnitude.
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5. Comparison of performances of optimised and
equally spaced sensors

This section compares performances of optimised sensory
positions for discrimination of an applied position with the
initial arrangement of the rig, with sensors placed at an equal
pitch (at intervals of 67, 80, 100 and 133 mm for two, three,
four and five sensors, respectively). The comparison shows
the effect of optimisation on the accuracy of the system.
Additionally, to verify the practicality of the optimisation
technique, experimental measurements of beam deformation
were obtained and used as inputs.

Optimised sensor positions of two to five sensors were
identified using the described method. To evaluate the per-
formance of the optimised positions, neural networks with
the number of inputs corresponding to the number of sensory
positions were created and trained using inputs derived the-
oretically. Subsequently, these networks were used to deter-
mine an applied load position when beam deflections were
derived both theoretically and experimentally. For all neu-
ral networks, the number of inputs varied with the number
of sensing elements. The average positional errors (e) were
evaluated usingEq. (5):

e = |A − P |
l

× 100% (5)

wheree is the error (%),A the applied load position (mm),
P the determined load position (mm), andl is the total beam
length (mm).

For the cases where inputs were derived both theoretically
and experimentally,Fig. 8 illustrates trends of the discrim-
ination errors with respect to the number of sensory posi-
tions. In both cases, simulated and measured results, the dis-
crimination errors decrease with an increase in the number
of sensors. Also as the number of sensors increases the rate
of error reduction is diminished. A limiting factor is noise
in the sensory data. A greater number of sensors increases
the tolerance of the system to error, although it was found
that in the optimised case that the tolerance was greater. As

Fig. 8. Percentage errors of positional discrimination using two to five
inputs at equally pitched and optimised positions with inputs derived
theoretically and experimentally.

expected, the difference between the errors in the case of
equally spaced, as opposed to optimised positions dimin-
ishes with the increasing number of sensors used. With many
sensors, there is less physical difference between optimised
and equal pitch positions. It can be concluded that the opti-
misation method is an advantage if the aim is to reduce the
number of sensing elements used.

6. Conclusions

A novel distributive single-dimensional sensor for iden-
tifying the position of an applied load has been presented.
The method offers a reduction in the number of transduc-
ers and the resolution achieved is higher than the number
of transducers employed. The distributive approach is suited
to the discrimination of states rather than to give an exact
description of the contact.

To search for the minimum number of sensors required
and to optimise the sensory positions, a technique for data
reduction, PCA, has been implemented. With this method,
the minimum number of sensors was identified by determin-
ing the minimum number of PCs needed to distinguish the
parameters of load position. In this example, it was found
that to discriminate the position of an applied load, at least
two sensors must be employed. It can be concluded that the
most prominent PCs of the data in this example are the mag-
nitude of deflection and the bias of deflection towards the
left and the right of the beam. In addition to the minimum
number of sensors required, extra sensors can be employed
to enhance the reliability and redundancy. The determination
of the optimum number of sensors was achieved by examin-
ing the differences between PCs of the theoretical data and
those with randomly added sensory noise as well as those
derived experimentally.

To enhance the performance of the system, the paper de-
scribe an optimisation technique through sensor placement
using a search algorithm based on the GA, using the eigen-
values derived from the PCA as the performance evaluators.
The performances of the optimised and equally pitched sen-
sory positions derived both experimentally and theoretically
were compared. It was found that at a low number of sen-
sors, the improvement in performance as a result of the op-
timisation technique was more pronounced, whilst the trend
was the same. For example, with two sensors the average
percentage positional error using inputs derived experimen-
tally was reduced from 4.67% when the sensors were placed
at an equal pitch to 3.28% when the sensory positions were
optimised. With five sensors, the corresponding errors were
3.13 and 3.16%, respectively.

Potentially this optimisation technique can be applied to
other sensing systems for both one- and two-dimensional
surfaces. The approach is beneficial for a reduction in con-
struction complexity and computational requirements. In ad-
dition, to enhance the sensor performance, the optimisation
technique described can be used to identify the optimum
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number of sensors as well as their positions. Further, the
work has shown that simulation is a satisfactory way to iden-
tify design trends for optimising sensor placement.
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