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4 Faculté Polytechnique de Mons, 31 Boulevard Dolez, B-7000 Mons, Belgium

E-mail: afernand@sckcen.be

Received 10 January 2001, accepted for publication 22 March 2001

Abstract
The control of robots in electromagnetically noisy environments may benefit
from the use of EMI-insensitive multi-component force sensors.
Multi-component force sensing is usually done with local strain
measurements on an elastic transducer. We propose to use fibre Bragg
grating (FBG) strain sensors to perform these local strain measurements,
taking advantage of their multiplexing capabilities and their immunity to
electromagnetic interference. In this paper, we discuss the design and the
calibration of a compact multi-component force sensor using an elastic
transducing body and eight multiplexed fibre Bragg gratings.
We demonstrate, for the first time, that multi-component force sensors based
on multiplexed FBG strain sensors can be constructed.

Keywords: force, torque, strain, fibre optic sensor, fibre Bragg gratings,
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1. Introduction

The use of robots and manipulators in complex applications
such as assembly, surface machining and cutting operations
requires efficient multi-component force sensing schemes to
control the force exerted by the robot end-effector on an
object. Since such remote-handled tools also have to operate
in electromagnetically noisy environments, classical force
sensors based on electrical strain gauges require a complex
design and need a large number of shielded connections.

To tackle this problem, we rely on passive fibre Bragg
grating (FBG) strain sensors [1–3]. Their multiplexing
capabilities allow us to construct very compact sensors, with a
reduced number of connections to the instrumentation. In this
paper, we demonstrate that it is possible to perform a multi-
component force measurement by means of multiplexed FBG
strain sensors mounted on a force uncoupling elastic body.

2. Multi-component force sensor based on FBG
strain sensors

Generally, a classical force sensor is a structure with a
dedicated shape to uncouple the different components of
the applied force [4–10]. The forces and moments applied
to the sensor are evaluated through n strain measurements,
performed by appropriate strain transducers, at given locations
on the sensor body. The force vector components are derived
from these strain measurements, yielding an output vector
z = [z1z2 · · · zn]T .

If the sensor body has been designed to remain in
the elastic region, the superposition principle applies. The
relationship between internal strains and external forces is
therefore linear. This can be written in a matrix form:
[z1z2 · · · zn]T = C[FxFyFzMxMyMz]T , where C is a n × 6
matrix called the calibration matrix. This relation needs to be
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Figure 1. Schematic view of the multi-component force sensor
based on eight multiplexed FBG strain sensors. We number the
beams counterclockwise.

inverted to derive the force components from the measurement
of n strain transducers. When the number of strain transducers
is not equal to six, pseudo-inverse matrix calculations have to
be used [7, 11].

As proof-of-principle for multi-component force sensing
with FBG sensors, we started from the most widespread multi-
component force sensor design: the Maltese-cross-shaped
transducer [12]. We constructed a three-component force
sensor (Fz, Mx , My) with eight multiplexed FBG sensors glued
in the centre of the beams (cf figure 1). Our force sensor design
consists of four radial beams of 50 mm length that connect a
rigid hub of 25 mm radius to an outer flange. The beams
have a square cross-subsection of 4 mm × 4 mm. The elastic
body is made of a high-yieldpoint stainless steel. Eight fibre
Bragg gratings, spaced by 4 nm in the window 1525–1560 nm,
were bonded to the sensor body using Loctite cyanoacrylate
adhesive 401. To compensate for the possible temperature
effects and the drift of the wavelength detection scheme, two
FBG strain sensors, with successive Bragg wavelengths, were
mounted on the opposite faces of the beam. The temperature is
assumed to be uniform on the whole sensor. The strain on beam
i is therefore measured by subtracting two respective Bragg
peak shifts, resulting in a compensated wavelength shift �λi

[13]. Fz, Mx and My can therefore be computed by inverting
[�λ1�λ2�λ3�λ4]T = C[FzMxMy]T .

Due to the symmetry of the elastic transducer, the
theoretical form of the calibration matrix C is given by


�λ1

�λ2

�λ3

�λ4


 =




a −b 0
a 0 −b

a b 0
a 0 b



(

Fz

Mx

My

)
. (1)

Multi-component force sensors are commonly evaluated
using the method proposed by Uchiyama and Bayo, based on
the singular value decomposition of the normalized calibration
matrix [14–17]. Uchiyama et al [14] established that the
relative error on the determination of the force components
‖�f‖/‖f‖ is related to the relative error on the strain
measurements ‖�λ‖/‖λ‖ by the following relation:

0 � ‖�f‖/‖f‖
‖�λ‖/‖λ‖ � σ1(Cnorm)

σ6(Cnorm)
(2)

where σ1(Cnorm) and σ6(Cnorm) are the largest and the smallest
singular values of Cnorm

5. The ratio σ1(Cnorm)/σ6(Cnorm)

5 The definition of the singular value decomposition of matrices can be found
in [18].

represents the condition number of the multi-component force
sensor. The condition number sets an upper bound to the
relative error propagation between measured strains and forces.
A condition number of one represents the lowest possible error
propagation. A complete discussion on error propagation has
been provided by Bicchi and Canepa [19].

3. Experimental results

We calibrated the force sensor by applying pure forces Fz and
pure torques Mx and My by means of well defined weights and
a system of pulleys (see figure 3).

We evaluated the calibration matrix C following the
standard calibration procedure described by Watson and Drake
[7] and by Shimano and Roth [8]. The calibration range
was from 0 N to 475 N for Fz and 0 N m until 6.5 N m
for both torques. The temperature fluctuations during the
calibration did not exceed 0.5 ◦C. The results are summarized
in figure 2, which also shows the spectra reflected by these
FBGs, as measured with an ANRITSU MS9710C optical
spectrum analyser (OSA) and a ANRITSU MG9637A tunable
laser source (TLS), with a 17.5 pm step.

For the calibration matrix C, with the force Fz expressed
in N and the torques Mx , My in N m, we find




�λ1

�λ2

�λ3

�λ4


 =




0.32 −54.0 −2.5
0.03 1.6 −40.7
0.35 61.0 −0.9
0.85 2.5 66.8



(

Fz

Mx

My

)
. (3)

The experimental calibration matrix (3) needs to be
inverted to derive the force components from the measurement
of the FBG strain sensors. We calculated the inverse
relation by using the Moore–Penrose inversion [11], after
normalizing with respect to the maximum forces and torques
[14, 15]. We obtain therefore the normalized calibration matrix
Cnorm(

Fz

Mx

My

)
= (CT

normCnorm)−1CT
norm




�λ1

�λ2

�λ3

�λ4


 (4)

=
( 391.149 401.436 324.930 263.604

−0.057 −0.001 0.057 −0.002
−0.049 −0.092 −0.042 0.039

)
�λ1

�λ2

�λ3

�λ4


 .(5)

4. Discussion

A comparison of the experimental calibration matrix (3) with
the theoretical form (1) shows that the force sensor operates
well for both torque components. A good discrimination
between force components is achieved. The Mx and My

calibrations evidence the linear response of the force sensor as
well as its ability to separate the desired force component from
all the others. Nevertheless, the Fz calibration does not give
the expected results. The measurement of the Fz component
is only achieved satisfactorily by two pairs of FBGs. This is
probably due to a non-uniformity in the gluing conditions for
the different FBG pairs.
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Figure 2. Calibration results of our multi-component force sensor based on multiplexed FBG strain sensors. (a) Bragg peak shifts during
the Fz calibration. The four beams should be equally stressed. (b) Fz calibration. (c) Bragg peak shifts during the Mx calibration. Beam 2
and beam 4 show opposite strains while beam 1 and beam 3 are not stressed. (d) Mx calibration. (e) Bragg peak shifts during the My

calibration. Beam 1 and beam 3 show opposite strains while beam 2 and beam 4 are not stressed. (f) My calibration.
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Figure 3. The calibration table allowing forces and torques to be
applied. On the right, we see the single fibre connecting the sensor
with its instrumentation.

The singular values of the FBG multi-component sensor
are {12.596, 11.985, 0.001} (cf equation (2)). These values
confirm the correct operation of the sensor with respect to
the torque component measurements, while they evidence the
force component measurement limitation. Our future work
will therefore focus on the improvement of the Fz measurement
by optimizing both the mounting of the FBG strain sensors and
their position on the elastic transducer. A possible solution
could be to attach prestressed FBGs only at two points and
allow operation in both tensile and compressive mode. With
this configuration, the requested torque measurement requires
a new transducer design that transforms torques in compression
or tension, as has been done in multi-component force sensors
based on LVDT extensometers [20].

5. Conclusions

Robot operation in complex manufacturing tasks requires
efficient multi-component force sensors. FBG sensing
technology could allow us to develop compact force sensors
able to operate in harsh environments. For the first time,
we demonstrate that multi-component force sensors based
on multiplexed FBG strain sensors can be constructed. A
design based on a Maltese-cross-shaped elastic transducer
has been evaluated and its satisfactory operation has been
evidenced.

Nevertheless, in this application, the control of the gluing
conditions is a critical issue. Future work will therefore focus
on the study of the repeatability of the gluing procedure for
FBGs intended for multi-component force sensing. It will
also include the evaluation of the actual efficiency of the
temperature compensation. FBGs written in polarization-
maintaining fibres [21] as intrinsic multi-component force
transducers will also be investigated.
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