Eric V. Eason

PO Box 18924 Stanford, CA 94309-8924 (720) 470-7330; easone@stanford.edu www.linkedin.com/in/easoneric

Summary: Creative problem-solver with engineering skills and fabrication experience.

Education

Ph.D.	Stanford University, Applied Physics	April 2015
B.S.	University of Colorado, Boulder, Engineering Physics, summa cum laude	May 2009
B.S.	University of Colorado, Boulder, Applied Mathematics, summa cum laude	May 2009

Experience

Biomimetics and Dexterous Manipulation Lab, Stanford Mechanical Engineering — Stanford, CA *Ph.D. Research (January 2010–April 2015)*

Dissertation: Analysis and Measurement of Stress Distributions in Gecko Toes and Synthetic Adhesives Advisor: Dr. Mark Cutkosky (cutkosky@stanford.edu), Department of Mechanical Engineering

- Developed a numerical model to predict adhesive performance of polymer microstructures.
- Built a computer vision system to measure micro-deformation of gecko-inspired adhesives.
- Built a custom force sensor to measure adhesive stress distributions within a gecko's toe.
- Developed a novel micromachining process to manufacture gecko-inspired adhesives.
- Collaborated with researchers at Stanford, NASA/JPL, and Draper Laboratory to develop practical applications of gecko-inspired adhesives, including a gripper to be used by a spacecraft to capture orbital debris and a system enabling a human to climb a smooth surface.

University of Colorado Physics Department — Boulder, CO

Honors Thesis Research (January 2008–May 2009) Advisor: Dr. Kyle P. McElroy (kyle.mcelroy@colorado.edu)

• Developed instrumentation to investigate the electronic properties and thermodynamic phase structure of high-temperature superconductors with a scanning tunneling microscope (STM).

National Institute of Standards and Technology (NIST) — Boulder, CO

Summer Undergraduate Research Fellowship (May–August 2007) Supervisor: Dr. James Bergquist (james.bergquist@boulder.nist.gov)

- Measured the time rate of change of α , a fundamental physical constant, using an atomic clock.
- Built laser frequency-doubling cavities using nonlinear optics and piezoelectric mirrors.

Technical Skills

Engineering Design

- 10 years experience with SolidWorks. Designed 3D models for rapid prototyping, created moving assemblies, and produced engineering drawings to be sent to machine shops.
- Designed and built custom sensors, manufacturing fixtures, and adhesive testing systems.
- BLINKY.SHOES (2015): Designed and built LED strips with accelerometers, which attach to shoes and light up in response to steps. Designed PCB layout, prototyped hardware & software, and worked with overseas manufacturers. Raised \$22,087 on Kickstarter (442% of funding goal).

Prototyping and Fabrication

- Proficient with CNC & conventional machining, laser cutting, 3D printing, and polymer casting.
- Computer-Aided Product Creation course (2011, Stanford University): Used CAD, CAM, and CNC milling to create a stainless steel bottle opener and a set of noncircular aluminum gears.

Technical Skills (Continued)

Laboratory Tools and Computation

- Familiar with vacuum systems, cryogenics, laser optics, and microscopy (STM, SEM, AFM).
- Proficient with digital and analog circuitry and microcontrollers.
- Proficient with MATLAB, Mathematica, LaTeX, Java, C/C++, and EAGLE.

Selected Publications

- E. V. Eason, "Analysis and Measurement of Stress Distributions in Gecko Toes and Synthetic Adhesives," Ph.D. thesis, Stanford University (April 2015).
- E. V. Eason *et al.*, "Stress Distribution and Contact Area Measurements of a Gecko Toe Using a High-Resolution Tactile Sensor," *Bioinspir. Biomim.* **10**, 016013 (February 2015).
- E. W. Hawkes, E. V. Eason, D. L. Christensen, and M. R. Cutkosky, "Human Climbing with Efficiently Scaled Gecko-Inspired Dry Adhesives," *J. R. Soc. Interface* **12**, 20140675 (January 2015).
- E. W. Hawkes *et al.*, "Dynamic Surface Grasping with Directional Adhesion," *IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2013)*, Tokyo, Japan, pp. 5487–5493 (November 2013).
- E. W. Hawkes, E. V. Eason, A. T. Asbeck, and M. R. Cutkosky, "The Gecko's Toe: Scaling Directional Adhesives for Climbing Applications," *IEEE/ASME Trans. Mechatron.* 18, 518–526 (April 2013).
- P. Day, E. V. Eason, N. Esparza, D. Christensen, and M. Cutkosky, "Micro-Wedge Machining for the Manufacture of Directional Dry Adhesives," *ASME J. Micro Nano-Manuf.* **1**, 011001 (March 2013).

Presentations

• "Z-Man Quarterly Program Review: Stanford Biomimetics and Dexterous Manipulation Laboratory," DARPA Z-Man Quarterly Program Review, Raleigh, NC (April 2012): presented to a broad audience including private industry (Draper Laboratory), government (DARPA DSO), and military personnel.

Inventions

- E. W. Hawkes, D. L. Christensen, E. V. Eason, and M. R. Cutkosky, "Climbing Device with Dry Adhesives," U.S. Provisional Patent Application No. 61/984,946 (filed April 2014).
- M. R. Cutkosky, P. S. Day, and E. V. Eason, "Synthetic Dry Adhesives," U.S. Patent Application No. 13/451,713 (filed April 2012).

Fellowships and Awards

- Hertz Foundation Graduate Fellowship (2009–2014): awarded to only 15 science and engineering Ph.D. students in the U.S. per year.
- NSF Graduate Research Fellowship (2009–2014).
- Stanford Graduate Fellowship (2009–2014).
- Tau Beta Pi Centennial Fellowship (2009–2010).
- University of Colorado Outstanding Graduate for Academic Achievement, College of Engineering (May 2009): Awarded for highest GPA in the College's graduating class (GPA 3.994).
- Sigma Xi Undergraduate Research Award, CU Chapter (2009).

Other Interests: Robotics (Arduino/LEGO); classical piano (19 years practice); electronic music composition, arranging, and production; skiing; bicycling.

Affiliations and Honor Societies: ASME, MRS, Tau Beta Pi, Sigma Xi.