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Traversing complicated environment 
• Rescue, exploration, construction and other activities in 

the field 
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http://www.deccanchronicle.com/150101/technology-science-and-
trends/article/nasa-designs-ape-robot-robosimian-disaster-relief

http://www.dailymail.co.uk/sciencetech/article-3222992/Nasa-
reveals-bizarre-hedgehog-robot-roll-fall-alien-planets.html
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Rocky terrains
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http://www.summitpost.org/start-of-rocky-terrain/781777

https://www.pinterest.com/pin/495114552764154649/

https://www.reddit.com/r/SketchDaily/comments/2icdmr/
october_5th_rocky_terrain/
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Attempts on rough terrain locomotion

4Fig. 3 Collection of recent humanoid robots: HUBO [88], HRP-4 [56], DLR TORO [95], Petman [12], and
Atlas [9].

Fig. 4 Recent quadruped robots: LittleDog [82], BigDog [10], Toshiba quadruped robot [125], and Hy-
draulically Actuated Quadruped HyQ [49].

Advanced Institute of Science and Technology [67] is a 66-degree-of-freedom humanoid robot; HRP-4 [56]
is a research product of the Japanese National Institute of Advanced Industrial Science and Technology [85]
and Kawada Industries [57]. As all joints have been designed to be position controlled, neither system is
well-suited for compliant motion control tasks. The actuators and joints of TORO [95] make use of the
technology of the KUKA/DLR Lightweight Robots [7, 43, 70]. Using torque sensors at each joint, the
implementation of impedance controllers allows the specification of different compliant behaviors to safely
execute manipulation tasks in human environments [2]. Petman [12] and Atlas [9] are recent developments
of Boston Dynamics. Both are anthropomorphic robots that have demonstrated considerable strength and
capabilities with potential for bipedal action in rough terrain [104].
Quadruped robots have been developed to significantly increase the region of stability, and allowing robot

deployments in even more challenging outdoor terrain. Figure 4 shows a collection of recent robots. The
robot LittleDog was developed to pursue research on locomotion under DARPA’s “Learning Locomotion”
(L2) project [11, 53, 65, 82, 86, 115, 140], and its up-sized brother, BigDog, continues this work [10, 49,
80, 100, 105, 125, 133].
Humanoid robots have also been the topic of a large body of research around the world. Unlike large

quadrupeds, they have potential to use human-scale furniture, ladders, vehicles, etc. However, despite some
impressive accomplishments in terms of dynamically stable locomotion [21, 22, 52, 54, 122], they cannot
negotiate the kinds of terrain that either humans or robots like BigDog can. The proposed work aims to
address this limitation by providing humanoids with a relatively light and simple but highly effective aid for
locomotion and exploration while retaining manipulation capabilities not available to quadrupeds.
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Fig. 3 Collection of recent humanoid robots: HUBO [88], HRP-4 [56], DLR TORO [95], Petman [12], and
Atlas [9].

Fig. 4 Recent quadruped robots: LittleDog [82], BigDog [10], Toshiba quadruped robot [125], and Hy-
draulically Actuated Quadruped HyQ [49].
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is a research product of the Japanese National Institute of Advanced Industrial Science and Technology [85]
and Kawada Industries [57]. As all joints have been designed to be position controlled, neither system is
well-suited for compliant motion control tasks. The actuators and joints of TORO [95] make use of the
technology of the KUKA/DLR Lightweight Robots [7, 43, 70]. Using torque sensors at each joint, the
implementation of impedance controllers allows the specification of different compliant behaviors to safely
execute manipulation tasks in human environments [2]. Petman [12] and Atlas [9] are recent developments
of Boston Dynamics. Both are anthropomorphic robots that have demonstrated considerable strength and
capabilities with potential for bipedal action in rough terrain [104].
Quadruped robots have been developed to significantly increase the region of stability, and allowing robot

deployments in even more challenging outdoor terrain. Figure 4 shows a collection of recent robots. The
robot LittleDog was developed to pursue research on locomotion under DARPA’s “Learning Locomotion”
(L2) project [11, 53, 65, 82, 86, 115, 140], and its up-sized brother, BigDog, continues this work [10, 49,
80, 100, 105, 125, 133].
Humanoid robots have also been the topic of a large body of research around the world. Unlike large

quadrupeds, they have potential to use human-scale furniture, ladders, vehicles, etc. However, despite some
impressive accomplishments in terms of dynamically stable locomotion [21, 22, 52, 54, 122], they cannot
negotiate the kinds of terrain that either humans or robots like BigDog can. The proposed work aims to
address this limitation by providing humanoids with a relatively light and simple but highly effective aid for
locomotion and exploration while retaining manipulation capabilities not available to quadrupeds.
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Tradeoff on robot scales
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• Still much narrower than human

Limited robot-accessible terrain types

6

State	of	the	art			 Isolated	demos

Adapted from Duke-Stanford-UCSB NSF Proposal
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Limiting factor: contact
• Locomotion: transform the robot posture 

through a sequence of contacts that 
guarantee static and dynamic stability.
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http://www.switchbacktravel.com/best-trail-running-shoes

https://www.youtube.com/watch?v=WYKgHa8hH1k

https://www.inverse.com/article/24487-atlas-partial-foothold-algorithm
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How do humans improve contacts?
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http://avantgardica.blogspot.com/2014/02/winter-vacation-climbing-in-getu.htmlhttp://www.trailspace.com/articles/trekking-poles-fit-maintain.html

Hiking pole Surface Grasping
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Contributions
• SupraPed: point contact

- Design solutions of the smart staff 
- Sensing methods for terrain information 

• SpinyPalm: contact patch
- New spine design for higher adhesion density 
- Spine contact model 
- Scaled-up contact patch (palm) 

• SpinyHand: hierarchical contact patches
- Hand design 
- Grasp model with spine contact (non-convex) 
- SimGrasp: a convenient hand/grasping 

simulator 

9



SupraPed: 
Extend the reach of a point contact
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Design requirements (smart staff)

11

• Lightweight 
• Controllable length
• Terrain sensing
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Smart staff design
• 3 segments
• Single actuator 

with tendon
• Spring design
• SMA active brake

12v2
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Smart staff design
• 3 segments
• Single actuator 

with tendon
• Spring design
• Active brake

13v2

Extending to grasp

Changing the tool tip

• Range of length: 
0.4 ~ 1.0m

• Weight: 350 g
• Interchangeable 

end-effector
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Sensor design
• Ground reaction force

- 500N axial and 50N lateral  
• Robust, compact, 

and low inertia

14

5-DOF Force and Torque Sensor 
(Patent Pending)
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Terrain sensing methods

• Vision 
- Complexity 
- Occlusion 

• Contact position based
- Poor accuracy 
- Non-flexible

15

• Contact force based
- Low control effort 
- Short tip travel (few mm) 
- Fast (few seconds)

1) Surface normal   2) Coefficient of friction
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Terrain sensing procedures

16

Cone Fit
WANG, et al. IROS2015

Surface  
Scratching

Data  
Seperation
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Active sensing primitive

17
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Terrain sensing verification
• Probing manually
• KUKA arm

18
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Results

19

• 2 deg average error (both experiments)
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SupraPed contact limitation

20

O. Khatib and S. Chung 2014

• Constrained by friction cone
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Improve the contact
• Admissible force volume

21

Point contact

Fig. 2. Non-convex admissible force volumes (bottom right) can arise out
of micro-interactions. Consider a peg-in-hole setup where the peg makes
frictional contact with any side of the hole depending on the external loading
condition. Friction leads to an apparent adhesive force when shear loads are
applied in either direction.

contact [14] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
19]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [11] and
microspines [1]. More related to our work is Hawkes et al.
[11], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM TESTING WITH EMPIRICAL CONTACT
MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly.
We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model

A contact region C between bodies O
A

and O
B

is modeled
as a rigid surface with a normal direction n defined at each
point x 2 C. To handle directionality of frictional forces, two
orthogonal vector fields u and v are defined over C. The frame
R = (u, v, n) is assumed to be orthogonal at all points x 2
R. The region is discretized into a finite number of contact
patches p1, . . . , pk. Each patch i = 1, . . . , k is centered at the
point x

i

, and is associated with the corresponding frames R
i

defined at x
i

.
At each contact patch, an admissible force volume F

i

✓ R3

describes the set of valid forces f
i

applied to object O
B

at
each point x 2 p

i

. This volume is defined as the interior of
the force limit surface f

max

(d) : S2 ! [0,1) which describes
the maximum force in every direction in 3D. In other words
F
i

= {f 2 R3 | kfk  f
max

(

ˆf)} where ˆf = f/kfk is the
unit vector in the direction of f . The world-oriented admissible
force volume is a rotation of a local limit surface rotated by
the frame R

i

.

Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
Axes are labeled as follows: x (red) the shear direction, y (green) the lateral
tangent direction, and z (blue) the normal direction pointing into the unit.
(Figure best viewed in color)

We measure a local limit surface described with respect to
a canonical 3D reference frame aligned with R = (u, v, n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, f

max

(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
f
max

(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular contact (Fig. 2), which can cause them
to exhibit exotic adhesive behavior such as the microspine
units presented below (Fig. 3). There may also be non-
convex behavior in the compressive limits of buckling internal
structures, such as corrugated cardboard which are stiffer in
directions not parallel to the normal.

B. Equilibrium Testing
Equilibrium testing asks whether an external wrench w

ext

⌘
(f

ext

, t
ext

) 2 R6 applied to O
B

can be resisted by forces at
the contact points. Assume t

ext

is the external torque about
the origin. Often, the external wrench is due only to gravity,
the center of mass of O

B

is taken to be the origin, and hence
f
ext

= mg and t
ext

= 0. Three conditions must be met: force

Anchored contact

Adhesion

FShear

FNormal
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Improve the contact

22

?
Miniatured anchored contact array

Fig. 2. Non-convex admissible force volumes (bottom right) can arise out
of micro-interactions. Consider a peg-in-hole setup where the peg makes
frictional contact with any side of the hole depending on the external loading
condition. Friction leads to an apparent adhesive force when shear loads are
applied in either direction.

contact [14] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
19]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [11] and
microspines [1]. More related to our work is Hawkes et al.
[11], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM TESTING WITH EMPIRICAL CONTACT
MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly.
We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model

A contact region C between bodies O
A

and O
B

is modeled
as a rigid surface with a normal direction n defined at each
point x 2 C. To handle directionality of frictional forces, two
orthogonal vector fields u and v are defined over C. The frame
R = (u, v, n) is assumed to be orthogonal at all points x 2
R. The region is discretized into a finite number of contact
patches p1, . . . , pk. Each patch i = 1, . . . , k is centered at the
point x

i

, and is associated with the corresponding frames R
i

defined at x
i

.
At each contact patch, an admissible force volume F
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applied to object O
B

at
each point x 2 p
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. This volume is defined as the interior of
the force limit surface f
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(d) : S2 ! [0,1) which describes
the maximum force in every direction in 3D. In other words
F
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= {f 2 R3 | kfk  f
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(

ˆf)} where ˆf = f/kfk is the
unit vector in the direction of f . The world-oriented admissible
force volume is a rotation of a local limit surface rotated by
the frame R
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.

Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
Axes are labeled as follows: x (red) the shear direction, y (green) the lateral
tangent direction, and z (blue) the normal direction pointing into the unit.
(Figure best viewed in color)

We measure a local limit surface described with respect to
a canonical 3D reference frame aligned with R = (u, v, n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, f

max

(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
f
max

(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular contact (Fig. 2), which can cause them
to exhibit exotic adhesive behavior such as the microspine
units presented below (Fig. 3). There may also be non-
convex behavior in the compressive limits of buckling internal
structures, such as corrugated cardboard which are stiffer in
directions not parallel to the normal.

B. Equilibrium Testing
Equilibrium testing asks whether an external wrench w

ext

⌘
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ext
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) 2 R6 applied to O
B

can be resisted by forces at
the contact points. Assume t

ext

is the external torque about
the origin. Often, the external wrench is due only to gravity,
the center of mass of O

B

is taken to be the origin, and hence
f
ext

= mg and t
ext

= 0. Three conditions must be met: force

Anchored contact



SpinyPalm: 
Enhance the admissible force volume 
of a contact patch  

23
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• Shear spring: load sharing
• Normal spring: conforming

Miniatured spike array
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Compliantly-supported Micro-spines

Spring

Spine

Spring

Spine

Spring

Spine

Wang, et al. 3

Figure 2. Comparison between linearly-constrained spine
mechanism (a,d) and compliant long-flexure spine
mechanism (b). Microscopic view (c) of a new and worn
spine (50µm tip radius) engaging an asperity. Gray shaded
region shows that the asperity is not usable for a spine with
larger tip radius (100µm).

For a group of such spines, because of the
high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly,
spines must rely on whatever asperities they encounter
immediately. Therefore, the percentage of engaged
spines is lower than for the compliantly-supported
design with elastic deflection in the tangential
direction. However, as will be shown later in the paper,
this limitation is compensated by a much higher spine
density. Load sharing among those engaged spines
is approximately the same as in the compliantly-
supported design because the spines are not entirely
rigid. The new design also has a large range of travel
normal to the surface, which is desirable for irregular
surfaces.

2.2 Spine Model and Design Parameters

The performance of a spine mechanism depends on how
well it conforms to a surface and engages asperities
Asbeck et al. (2006). For the linearly-constrained spine
mechanism, performance depends primarily on the
dimensions of the spines, their inclination angle, and
backlash and friction between the spines and their
channels. The main constraints and corresponding
design implications are summarized below. Supporting
definitions and derivations are provided in the
Appendix A.

2.2.1 Spine Strength On strong asperities, the adhe-
sion of a spine is limited by the spine’s own strength

Figure 3. Diagram for spine strength analysis. Failure is
dominated by shear stress when the loading location is near
the tip and by bending stress otherwise. There are two places
where maximum bending stress can occur: (i) where the
spine exits the channel and (ii) on the tapered portion near
the tip. R1, R2 and Rg are reaction forces on the spine.

which depends on its diameter ds, the tip included
angle, α, and how far it extends from its channel, le.
When the loading location is close to the sharpened tip,
as in Figure 3 (left), failure is related to the shear stress:
4Fr/(πd(y)2) where d(y) is the spine cross-section
diameter at loading position y. In practice, sharp (≈
10µm tip radius) spines quickly become blunted by tip
forces on the order of tens of Newtons. A maximum
expected tip force of 70N corresponds to a minimum
diameter of the tapered spine tip of ≈ 0.1mm on the
current design, which empirically is the steady state
condition after extended use.
When Fr is applied at a worn tip, the next likely

source of failure is bending, as in Fig. 3 (right). There
are two local maxima: the spine may yield at the upper
contact, where it exits from the spine channel, or along
the tapered section highlighted in red. The derivation
is provided in Appendix B. The extended length, le,
and spine diameter, ds, are limiting factors for the
upper maximum. For example, a 1mm diameter steel
spine extended out by 5mm can withstand up to 70N
force at the tip without breaking. For the second local
maximum, which is usually the tighter constraint, the
spine tip angle, α, becomes the limiting factor. It needs
to be at least 14◦ for a worn spine to withstand up to
40N force (stronger than most asperities on concrete
surfaces Wang et al. (2016)) without plastic bending
near the tip.

2.2.2 Spine-asperity Interaction Another factor that
affects adhesion is how the spine interacts with an
asperity. Depending on how a spine is inclined and
loaded with respect to the asperity, the spine-asperity
interaction falls into three different cases illustrated in
Figure 4: (a) the spine slips along the surface when the

Prepared using sagej.cls

Asperity

Asbeck, et al. IJRR2006
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Compliantly-support micro-spines
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Micro-spine
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Dai and Gorb, JEB2002
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Prior work (micro-spine)

27

SpinyBotII
S. Kim 2005

0.4kg

CLIBO
A. Sintov 2011

2kg
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Prior work (micro-spine)
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RiSE
M. J. Spenko 2008

4kg

LEMUR IIB
A. Parness 2013

8kg
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Our goal: human-scale application

29

JPL LEMUR
8kg

JPL RoboSimian
100kg

>10X



Introduction SupraPed SpinyHand ConclusionSpinyPalm

Further scaling up

30

http://northdesignlabs.com/cockroach-mimetic-climbing-paddles/

Need to improve the 
adhesion density!
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Spine design with smaller footprint?
• Number of immediately engaged spines is proportional 

to spine density

31

Spring

Spine

Spring

Spine

Spring

Spine

XX X

20-40 % immediately engaged surface
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New spine design: linearly constrained
• Longer normal travel: conformability
• Low shear contact compliance

32

Spring

Spine



Introduction SupraPed SpinyHand ConclusionSpinyPalm

Linearly-constrained spine array

33

How to optimize the spine design?

How well the adhesion scale up with 
spine density?

What is the admissible force volume?

Spring

Spine
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Linearly-constrained spine array

34

Spring

Spine

How to optimize the spine design?

How well the adhesion scale up with 
spine density?

What is the admissible force volume?
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Design parameters

35

maximum bending 
stress region

Spring

Spine

Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max

d

dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
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where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r
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where �
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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Fig. 2: Left: comparison between compliant long-flexure
spine mechanism (top) and linearly-constrained spine mech-
anism (bottom). Top right: spine tile. Bottom right: spines in
channels with miniature springs.

Fig. 3: Geometric parameters: tip included angle ↵, spine tilt
angle �, sliding channel tolerance ✏, tip backlash s, spine
length l, and extended spine length l

e

. Loading direction is
to the right.

travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ

s

.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
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if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ

s

.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx

1
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where C is a constant related with Young’s modulus and tip
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �
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dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Fig. 8: Tile adhesion with different numbers of spines and backlash conditions on different surfaces. Asterisks and error bars
are the mean and standard deviations of 20 experimental trials. The solid line and shaded area are the mean and standard
deviation, respectively, of simulation results.

In 2D loading cases, the spine adhesion degrades as its
loading angle increases due to more spines slips, spine shaft
interference and weaker asperity strength, which is described
by the equations in II. Asperity slope distribution is also
required to compute the 2D adhesion. As discussed in [16],
the probability density of the asperity slope is a convex decay
curve. Because a usable asperity requires a steep enough
slope, which means only the rightest small portion of curve
is valid (typically 60 to 90 deg depending on the asperity
friction of coefficient), and this probability density can be
simplified as a linear function. With a constraint that the
sum of the probability density function should be 1, only
one unknown is left to fully determine the function f

s

( ).
With the assumption that all asperities are IID, the overall
adhesion at any loading angle can be computed with the
integral over all the usable asperity slopes:
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Where � = 0 is the shear direction. The range of slopes
[ 
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] can be estimated based on surface coefficient
of friction µ and the maximum loading angle �

max

occurring
in the experiment:
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When considering the 3D cases, the only difference from
the 2D cases is the spine tilting angle. A polar coordinate (�,
✓) is used to denote the loading direction, where ✓ represents

the orientation of the loading force vector projected to the
surface. Axis x is defined as the positive shear direction in
the 2D case (Fig. 6), where both � and ✓ are zero. Z axis
is surface normal where � becomes 90 degrees. Therefore,
x-z plane is where the spine has maximal tilting angle. If we
use ✓ to represent the loading angle projected to the surface
plane (x-y plane), the new tilting angle �0 for the 2D limit
curve at ✓ is the projection of spine on that 2D plane:

�

0(✓) = arcsin(sin(� � ⇡

2
) ⇤ cos(✓)) + ⇡

2
(15)

Spine tilting angle � is replaced with �

0 in Equation (11)
to compute the 3D limit surface. The Adhesion along the
three directions were empirically measured to determine the
asperity slope distribution, C

i

and F (0).
2) Experiments and Results: The limit surface model

is verified with experiments. A concrete block is mounted
on top of an ATI force and torque sensor (same one used
before) as the testing surface. A 60-spine tile was loaded
in random 3D directions for 300 times. In each test, the
maximum force components were recorded by the sensor.
The raw data were then counted according to their polar
coordinate positions (�, ✓) with a bin size of 3deg in � and
18deg in ✓ to compute the mean and standard deviation. The
comparison between the model and the experimental results
is in Fig. 9. The adhesion limit surface is in a bowl shape
with a concavity at the origin. The spine adhesion 2D limit
curve is optimal at ✓ = 0. Larger loading angle � means
less usable asperities and therefore leads to smaller adhesion.
When ✓ increases, equivalent spine tilting angle �0 decreases
and results in more interference between the spine body and
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r
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needs to satisfy:
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)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Spring

Spine

Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k
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; 5) sliding channel tolerance ✏;
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and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
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. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:
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where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
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where �
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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Fig. 2: Left: comparison between compliant long-flexure
spine mechanism (top) and linearly-constrained spine mech-
anism (bottom). Top right: spine tile. Bottom right: spines in
channels with miniature springs.

Fig. 3: Geometric parameters: tip included angle ↵, spine tilt
angle �, sliding channel tolerance ✏, tip backlash s, spine
length l, and extended spine length l
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travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ

s

.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
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6) sliding friction µ

s
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wheel, the tip is a circular flat surface with its radius defined
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from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than
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where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than
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result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.
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if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
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normal forces.
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critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
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; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
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. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
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where C is a constant related with Young’s modulus and tip
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Figure 19. Diagram and forces for dirt particles in the spine
mechanism. Red arrows represent forces applied by the
channel wall on the dust particle; blue arrows are applied by
the spine surface.

Figure 20. The overall adhesion in the (x, z) direction can
be computed by summing two mirrored single tile limit
curves offset by 2× the preload force. However, when either
curve is zero, the result is zero.

D Opposed Gripper Model Derivations

Due to the opposed configuration, the individual
limit surfaces of the two tiles are mirrored about
the (y, z) plane. Because the gripper is rotationally
constrained when being loaded, the total maximum
normal adhesion is the sum of the two limit surfaces
for forces in the z direction. However, for shear loading
there is a spring to control the force distribution and
the maximum adhesion needs to be modeled differently.
If one tile fails, or produces zero force, the mechanism
loses its grip. Thus the limit curve in the (x, z) plane
is computed as shown in Figure 20, where we take the
limit curve from each tile, invert one of them, and offset
it by two times the preload force, fp. If fp becomes
either too large or too small, the overall limit curve
will be reduced as the force at one of the tiles becomes
zero. Even with an appropriate preload, there are small
angular regions in which an external load force can
produce failure as one of the tiles loses its grip. Recall,
however, that the spine/asperity contact and adhesion
are probabilistic so that, in practice, these gaps may
not be evident (e.g. as in Figure 12).

Figure 21. 2D limit curve (x-z plane) of the opposed
mechanism with various preload force levels (60 spines per
tile, β = 15◦).

If the limit surface of each tile is represented by
fz = F (fx, fy), the mechanism surface limit becomes:

fz =

⎧
⎪⎨

⎪⎩

F (fx1,
fy
2 ) + F (fx2,

fy
2 ) if F (fx1,

fy
2 ) ≥ 0

and F (fx2,
fy
2 ) ≥ 0

0 else
(25)

where fx1 and fx2 are given by:

fx1 = fp + fx, fx2 = fp − fx. (26)

Note that only fx > 0 is discussed here because the
limit surface is mirrored about the (y, z) plane.
Figure 21 shows the effect of applying various

amounts of internal preload. Increasing the preload
from 5N to 10N allows a larger force in the z direction.
However, increasing the preload further brings the
tiles close to their individual limits, compromising the
effectiveness of the system.
The above equations are valid only when none of the

hard stops is touching a tile. When a tile encounters
the outer hard stop, additional load forces will be
borne entirely by that tile, hastening the point which
it (and therefore the entire mechanism) reaches its
limit. Meanwhile, the force on the opposite tile is fixed,
according to the spring length.
For example, when pulling in the positive x direction

the left tile will reach its limit and the right tile will
maintain a fixed force. Therefore the tile adhesion
becomes bounded for Equation 25:

fx2 = fhs2 if fx1 ≥ fhs1 (27)

where fhs1 and fhs2 are the adhesion of the left and
right tiles respectively when one of the tiles hits the
outer hard stop. If inner hard stop is hit first, the
additional force transmits to right tile instead. In such
case, the bounding condition becomes:

fx1 = fhs1 if fx2 ≤ fhs2 (28)

.
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• Spine diameter
• Tip angle

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of

Spring

Spine

Fig. 2: Left: comparison between compliant long-flexure
spine mechanism (top) and linearly-constrained spine mech-
anism (bottom). Top right: spine tile. Bottom right: spines in
channels with miniature springs.

Fig. 3: Geometric parameters: tip included angle ↵, spine tilt
angle �, sliding channel tolerance ✏, tip backlash s, spine
length l, and extended spine length l

e

. Loading direction is
to the right.

travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ

s

.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip

Spring
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max

d

dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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Fig. 6: Diagrams of spine loaded on simplified asperities.
Red arrows indicate the loading angles.

The derivative of µ1 can be computed:
8
<

:

dµ1

dµ2
= 1

(µ2sin

↵

2 +cos

↵

2 )2 > 0

dµ1

d↵

= � 1+µ

2
2

2(mu2sin

↵

2 +cos

↵

2 )2 < 0
(9)

It shows that given the spine material with certain µ1, choos-
ing a channel wall material with higher friction µ2 or smaller
spine tip angle ↵ may cause dust jamming that prevents the
spine from freely extending out of the channel. Our tests
on the spring loaded spine with two different channel wall
material (aluminum alloy 7075 and polypropylene) also show
consistent results.

C. Surface Properties

For the asperities on the surface, there are 3 types
of properties that can affect the adhesive performance of
micro-spine when dragged along a surface, known as the
asperity spatial distribution, spine-asperity contact strength
distribution, and the asperity angle distribution. Because the
linearly-constrained spine relies on only asperities that it can
immediately catch, the engagement probability for individual
spine is determined by usable asperities surface area over
entire surface area. Therefore the spatial distribution does
not need to be fully characterized. The contact strength
distribution determines the amount of adhesion a spine and
asperity pair can take before either the asperity breaks or the
micro-spine slips off. The asperity angle distribution affects
the loading angle limit and the adhesion for any loading
angle in 3D.

The strength distribution has been well studied in [31].
Multinomial and truncated Gaussian distribution were used
to describe the contact strength under 3 different failure
modes: engagement failure, asperity failure and spine fail-
ure. The distribution parameters were measured empirically.
Asperity angle distribution has also been systematically
measured with a microscope in the previous work [16] and
can be fitted with linear or polynomial functions.

Note that in real applications, the slipping force that the
engagement failures contribute is negligible comparing the
the total adhesion, and the spine failures generally should
be avoided to protect the mechanism. Thus the adhesion is
mainly dependent on the asperity failure distribution and the
occurrence probability of asperity failure.

D. Spine Asperity Interaction

When a spine is loaded with loading angle gradually
increases, there are four cases that affect the spine adhesion:
1) the spines slips along the surface when the tip contact
force is outside the friction cone; 2) the spines slide along
the channel when interacting force between sliding channel
and spine body is outside the friction cone; 3) asperity
strength changes due to the loading angle; 4) spine tip
cannot reach the asperity due to shaft body interference.
The first two cases are described using the equations in
the spine mechanism section. The asperity strength changes
as loading angle varied due to different stress distribution
over the contact patch. For cementitious materials, the failure
mode is dominated by the tensile strength which is much
lower than the compressive strength. Both the tangential and
normal components of the loading force result in maximum
tensile stresses at the trailing edge of the contact patch [32].
The total tensile stress is linear superimposition of the two
components with different scalars. Therefore, as the loading
angle changes, the magnitudes of the two components vary
and lead to different total tensile and thus different asperity
strength. The adhesion change from purely shear loading
case C

s

can be represented as:

C

s

(�, ) =
k

s

cos( ) + k

n

sin( )

k

s

cos( � �) + k

n

sin( � �)
(10)

where  and � are asperity slope and spine loading angle, k

s

and k

n

are scalar of shear and normal loading components
for maximum tensile stress on the contact patch. Notes that
there is only one unknown k

s

/k

n

in the equation, which can
be estimated with results in [32]. When the tilting angle is
too small that the spine shaft body interferes with the asperity
and the tip cannot reach the asperity (Figure. 6), the actual
contact surface  0 is determined by the spine surface angle
rather the asperity slope  :

 

0( ,�) =

(
 if   � � ↵/2

� � ↵/2 else
(11)

Moreover, as shown in Figure. 6(c) the contact position is
much closer to the top of the asperity comparing to (a)
and (b), where the asperity breaking strength decreases. We
simplify this decay factor C

i

( ,�) as a constant number
that will be empirically fitted, except when there is no
interference (  � � ↵/2) and C

i

( ,�) = 1.
We tested a spine with tip radius of 2mm on plaster

surfaces to validate the trend of loading force limit as the
asperity slope  increases (Fig. 7). Notes that when there
is no slip and spine body interference occur, varying spine
loading angle is equivalent to varying asperity slope in terms
of force limit along loading direction. When  is small (Fig.
7, a), the maximum loading force is limited by the static
friction that gradually increases as  becomes bigger. The
force limit dramatically increases as the spine starts to jam
on the asperity. As the loading angle increases more (b), the
asperity undertakes less shear force that causes tensile stress
and relies more on its compressive strength, and thus can
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max

d

dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max

d

dx

�(cot(r
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)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max
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dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ

s

.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx
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where C is a constant related with Young’s modulus and tip
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k
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; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r
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. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k
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, (v)
normal spring stiffness k
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; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ
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.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx
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where C is a constant related with Young’s modulus and tip

Spring

Spine
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anism (top) and linearly-constrained spine mechanism (bot-
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
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where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r
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needs to satisfy:
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where �
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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Fig. 2: Left: comparison between long-flexure spine mech-
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k
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,
4) normal spring stiffness k
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; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r
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. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx
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where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r
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where �
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k
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; 5) sliding channel tolerance ✏;
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and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
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. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:
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where C is a constant related with Young’s modulus and tip
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is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of
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travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ
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.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d
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. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:
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flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max

d

dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged

Conclusion and future work discussion are presented in
Section VI.

II. SPINE THEORY

A. Spine Mechanism
Inspired by insect legs [28], spines with 10 � 15µm tip

radii catch on asperities (small bumps or pits on a surface)
if the loading direction is within the friction cone of the
local surface [16]. When loaded in shear, they can apply
modest negative (i.e., adhesive) as well as large positive
normal forces.

Figure 2 (upper left) shows an idealization of a compliant
spine mechanism that has been used on several climbing and
perching robots [16]–[19,27,29,30]. The mechanism has a
long tangential flexural element and a soft normal flexure.
The tangential flexure allows spines that are tied to the same
base to travel over a surface and find usable asperities without
interfering with each other. This load sharing property is
critical for combining arrays of small spines to generate
larger forces. The soft normal flexure keeps the spine in
contact with the surface while traveling tangentially to avoid
missing asperities.

The compliantly-supported spine design is lightweight, has
good impact resistance and is robust. However, it has some
drawbacks when applied to human-scale rock climbing. The
tangential flexure must be able to extend long enough to
guarantee sufficient travel of spines for good load sharing.
This constraint limits the spatial density of spines and can
lead to bulky designs for large loads [27]. The range of
spine motion in the normal direction is also confined, which
makes it hard to adapt to large scale asperities and irregular
surfaces. Hence, the compliant spine mechanisms work best
on surfaces like flat concrete and stucco walls. Moreover, the
compliance between the base of the spines and the asperities
can be undesirable for locomotion of large scale robots where
stiff attachment benefits the control.

To address the aforementioned problems, we propose a
new spine design, known as linearly-constrained spines (Fig.
2, lower). The spine is completely straight with a sharpened
tip (⇡ 10µm tip radius). Its body is a slider that travels in a
tubular cavity, angled with respect to the surface normal. A
soft spring element located within the sliding channel helps
to press the spine against the contact surface. This design is
approximately equivalent to a compliantly-supported spine
with almost rigid tangential flexures and no potential for
bending rotations. However, it is much more compact.

For a group of such spines, because of the high tangential
stiffness, each spine can travel a negligible distance along the
surface. Accordingly, spines must rely on whatever asperities
they encounter immediately. Therefore, the percentage of
engaged spines is lower than for the compliantly-supported
design with elastic deflection in tangential direction. How-
ever, as will be shown later in the paper, this limitation is
compensated by a much higher spine density. Load sharing
among those engaged spines is approximately the same as
in the compliantly-supported design because the spines are
not entirely rigid. The new design also has a large range of

Spring

Spine

Fig. 2: Left: comparison between compliant long-flexure
spine mechanism (top) and linearly-constrained spine mech-
anism (bottom). Top right: spine tile. Bottom right: spines in
channels with miniature springs.

Fig. 3: Geometric parameters: tip included angle ↵, spine tilt
angle �, sliding channel tolerance ✏, tip backlash s, spine
length l, and extended spine length l

e

. Loading direction is
to the right.

travel normal to the surface, which is desirable for irregular
surfaces.

B. Spine Design Parameters
There are several key design parameters (Fig. 3) that affect

spine performance: (i) tip included angle ↵; (ii) inclination
angle of the spine �; (iii) spine shaft diameter d

s

; (iv)
spine stiffness with respect to the tip displacement k

t

, (v)
normal spring stiffness k

n

; (vi) sliding channel tolerance ✏;
(vii) angle of normal travel and (viii) coefficient of friction
between sliding channel and the spine µ

s

.
The tip included angle ↵ affects the flexural stiffness and

strength of spine. The spine is fabricated by grinding a
hardened steel rod of diameter d

t

. Note that the definition
of tip radius here is different from one used in compliantly-
supported spine that has a round tip. If x is the distance
along the spine axis from the tip, the bending moment
grows linearly with x while the area moment of inertia is
proportional to x

4. Hence, the bending strength � at x can
be represented as:

�(x) = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip

Spring
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Fig. 2: Left: comparison between long-flexure spine mech-
anism (top) and linearly-constrained spine mechanism (bot-
tom). Top right: spine tile. Bottom right: spines with minia-
ture springs.

flexure allows spines that are tied to the same base to travel
and find usable asperities without interfering with each other.
Such load sharing property is critical for combining arrays
of micro-spines to generate larger adhesion. The soft normal
flexure keeps the spine in contact with the surface while
traveling tangentially to avoid missing asperities.

The compliantly-supported spine design is used in various
applications [2,3,12]–[14] due to its lightweight, good impact
resistance and robustness. However, it has some drawbacks
when applied to large scale applications such as human-
scale rock climbing. The tangential flexure must be able to
extend long enough to guarantee sufficient travel of spines for
good load sharing. This constraint limits the spatial density
of spines and can lead to bulky designs for large loads
[13]. The range of spine motion in the normal direction is
also confined, which makes it hard to adapt to large scale
asperities and irregular surfaces. Moreover, the compliance
between the base of the spines and the asperities can be
undesirable for locomotion of large scale robots where stiff
attachment benefits the control.

To address the aforementioned problems, we propose
a new spine design, known as linearly-constrained micro-
spines (Fig. 2, lower). The spine is completely straight with
a sharpened tip (⇡ 10µm tip radius). Its body is used as
a slider that travels in a tubular cavity, angled with respect
to the surface normal. A soft spring element located within
the sliding channel helps to press the spine against the
contact surface. This design is approximately equivalent to
a compliantly-supported spine with almost rigid tangential
flexures and no potential for bending rotations. However, it
is much more compact. For a group of such spines, because
of the high tangential stiffness, each spine can travel a
negligible distance along the surface. Accordingly, spines
must rely on whatever asperities they encounter immediately.
Therefore, the percentage of engaged spines is lower than

Fig. 3: Diagram for spine stress analysis. The red arrow is
where the force apply in the model, which gets conservative
result but simplifies the analysis.

for the compliantly-supported design with elastic deflection
in tangential direction. However, as will be shown later in
the paper, this limitation is compensated by a much higher
spine density. Load sharing among those engaged spines
is approximately the same as in the compliantly-supported
design because the spines are not entirely rigid. The new
design also has a large range of travel normal to the surface,
which is desirable for irregular surfaces.

B. Design Parameters
There are several key design parameters that affect the

spine performance: 1) tip angle ↵; 2) tilting angle of the spine
�; 3) spine stiffness with respect to the tip displacement k

t

,
4) normal spring stiffness k

n

; 5) sliding channel tolerance ✏;
6) sliding friction µ

s

and 7) range of normal travel.
The tip angle affects the flexural strength of spine. Because

the spine is fabricated by grinding a metal rod with sand
wheel, the tip is a circular flat surface with its radius defined
as r

t

. Note that the definition of tip radius here is different
from one used in compliantly-supported spine that has a
round tip. If x is the distance along the spine axis from the
tip, the bending moment grows linearly with x while the area
moment of inertia is proportional to x

4. Hence the bending
strength � at x can be represented as:

� = CFx

1
4 (1)

where C is a constant related with Young’s modulus and tip
angle, and F is the loading force. To guarantee the strength
does not exceed the shear yield strength anywhere along the
spine, tip angle ↵ and tip radius r

t

needs to satisfy:
(
�(cot(r

t

)) < �

max

d

dx

�(cot(r

t

)) < tan(↵/2)

(2)

where �

max

is yield strength of the spine. It assumes that
the contact force is applied on the vortex of the cone tip (3),
which gains conservative result but simplifies the estimation.
This constraint limits the lower bound of the tip angle. give
a calculation example here.

The tilting angle � (angle between the spine axis and the
tangential line pointing towards spine travel direction) and tip
angle both affect the usable asperities. Asperities with slope
larger than ��↵/2 interferes with the spine body and can not
be reached by the spine tip. In this case, the contact surface
normal is determined by the spine body surface instead.
Spine stiffness is determined by spine diameter, material and
suspended length. It allows load sharing between engaged
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of the spine tile adhesion, F , can be represented as:

E[F ] =

nX

i=1

ZZZ
F

i

f�MifSi

f

MidMi

dS

i

d�

Mi

(3)

where f is the probability density function of the correspond-
ing random variable. Depending on the actual distributions
the random variables follow, it can be difficult to obtain a
closed form analytic solution. An alternative method is to
compute the model numerically using a Monte Carlo method.

C. Contact Stiffness

There is finite stiffness between the base of a spine
group and the contact surface (contact stiffness), due to the
deflections of the spines. This contact stiffness K increases
as more spines overcome their backlash, which is described
by:

K(x) =

8
<

:

nxP

r

k

maxS

i

�minS

i

if x < maxS

i

�minS

i

nP

r

k if x � maxS

i

�minS

i

(4)
where x is the spine group travel. S

i

is the backlash of spine
i, which follows a uniform distribution with range from 0 to
the sliding channel tolerance, ✏. P

r

is the probability of spine
engagement. If the min and max terms are approximated by
E[maxS

i

] and E[minS

i

], the relationship between effective
adhesion and the travel of a spine group can be solved in
closed form:

F (x) =

Z
x

0
K(x)dx
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>>:
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knx if x � n� 1

n+ 1

✏

(5)
Using the above equation, the displacement of a spine

group can be calculated given the tile force. This relation
is used to estimate the maximal spine force in Section III.

D. Design Parameters

There are some parameters associated with linearly-
constrained spines that can affect the adhesion performance.

• The tip taper angle must be small enough to avoid
interference with asperities but large enough to provide
adequate mechanical strength.

• The tilt angle of each spine in its channel must be large
enough with respect to the average surface normal so
that spines can reach and engage asperities with steep
faces.

• The sliding range of each spine needs to be long enough
to accommodate surface unevenness.

• The tolerance of the sliding channels needs to be tight
enough that backlash effects do not compromise the
performance.

The implications of these parameters are considered further
in Section III.

III. SPINE TILE

A. Design and Implementation

Spine groups are assembled in a “tile” as shown in Fig.
2, right. For the spines, we use ground steel rods (1mm
diameter, 15mm length). To improve abrasion resistance, we
choose hardened high-speed tool steel (HRC 63 – somewhat
harder than the steel typically used for drill bits). The tip
angle is 15

o, which has sufficient strength (no spine broke
in any of the experiments) and ensures that the spine tip can
catch most of the asperities without interference from the
shaft of the spine if the tile is tilted by as much as 7.5

o with
respect to the surface. Note that a larger tilting angle results
in bulkier tile size. A soft compression spring (1.25mm OD,
5mN/mm) is attached to the end of each spine. The spring
has a force of 25mN at maximum compression, which can
easily overcome the weight of a spine but ensures that little
force is required to compress an entire tile of 60 spines.

The tile base that contains the channels is 3D printed
(ABS, selective laser sintering). The lower (closer to the con-
tact surface) portion of the channel has a smaller diameter,
to support the spine and prevent the spring from entering
this region. The upper portion is large enough to contain the
spring. With this design, the spring-spine assemblies can be
installed from the back of the tile. A snap-fit cover traps
the spine and spring inside. 60 spines are fit into a tile with
surface area of 18x18mm. The channel wall strength was
empirically validated to support shear forces up to 80N on
a single spine.

B. Analysis

The most important metric of tile performance is the
maximum adhesion (tile failure load). The spine tile is
designed for the palm of RoboSimian which provides mainly
a tangential force; hence, only shear adhesion is discussed
here. However, to clarify: as long as the loading direction is
within approximately 15

o with respect to the shear direction,
all the modeling and analyses presented still apply. To exploit
spine adhesion efficiently, we need to know how well the
tile adhesion can scale as the number of spines increases.
Based on the model in the previous section, the adhesion
can be evaluated if the probability distributions of failure
modes, spine failure forces and backlash are known. These
distributions were empirically measured by engaging and
pulling a single spine with a force gauge (Mark-10 Series 4)
until slip occurred. 300 measurements in total were collected
from two different surfaces (fine and coarse concrete block).
As shown in Fig. 3, nearly half of the measurements have
forces near zero; these represent engagement failures. The
middle portion of the histogram is associated with asperity
failure and is fitted with a truncated Gaussian distribution.
Very few cases have forces greater than 40N; these are
associated with spine failures and are fitted with another
Gaussian distribution. The empirical data also show that the
spine has less chance to slip, and thus a better chance of
holding with a very large force, on a coarse concrete surface.
The probability of each failure mode is approximated by its

Spine Force- Failure Force
- Failure Type
- Backlash

• Mean spine array adhesion
- Non close-form solution 
- Monte Carlo 
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Figure 7. Tile adhesion with different numbers of spines and backlash conditions on different surfaces. Asterisks and error
bars are the mean and standard deviations of 20 experimental trials. The solid line and shaded area are the mean and
standard deviation, respectively, of simulation results.

channels, modeled with another coefficient Cc(φ,β)
(Equation 4). The parentheses denote that these effects
are subject to conditions on the associated variables
(the constant becomes 1 if the condition is not
satisfied).

In summary, the overall adhesion at any loading
angle can be computed with the integral over all the
usable asperity slopes considering both spine shaft
contact and channel slip effects:

F (φ) =

∫ ψmax(φ)
ψmin(φ)

Ci(ψ,β)Cc(φ,β)fΨ(ψ)dψ
∫ ψmax(0)
ψmin(0)

Ci(ψ,β)Cc(0,β)fΨ(ψ)dψ
F (0)

(10)
where φ = 0 is the shear direction.

The usable range of slopes [ψmin ψmax] can be
estimated based on the surface coefficient of friction
µ and the maximum loading angle, φmax, occurring in
the experiment:

{
ψmin(φ) = φ− cot−1 µ

ψmax(φ) = φmax − cot−1 µ
(11)

Combining equations, we estimate the spine array
adhesion at any loading angle with the following
procedure:

• Use the single-direction adhesion model, Equa-
tion 8, to compute F(0) with single-spine statis-
tics characterized along the shear direction.

• Gather single-spine data at another loading
angle, φ1, to compute F (φ1) using the same
empirical method.

• Calculate the asperity slope range [ψmin ψmax]
with measured surface coefficient of friction and
maximum loading angle, using Equation 11.

• Solve for constant ci in Equation 2 using F (0)
and F (φ1) in Equation 10.

• Having determined the unknowns in Equation 10,
we use it again to compute the adhesion limit,
F (φ), at any angle.

3.2 3D Limit Surface

If we let the original, preferred loading direction be in
the (x, z) plane, with z perpendicular to the surface,
we now consider the effect of pulling in the lateral
direction, y. The load is now described by two angles,
(φ, θ) measured with respect to the x and y axes.
Assuming that the surface is isotropic, we define an
equivalent inclination angle, β′, when pulling in a
direction defined by φ and θ:

β′(θ) = arcsin(sinβ cos θ) (12)
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- 42 - 67 N 
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Figure 7. Tile adhesion with different numbers of spines and backlash conditions on different surfaces. Asterisks and error
bars are the mean and standard deviations of 20 experimental trials. The solid line and shaded area are the mean and
standard deviation, respectively, of simulation results.

channels, modeled with another coefficient Cc(φ,β)
(Equation 4). The parentheses denote that these effects
are subject to conditions on the associated variables
(the constant becomes 1 if the condition is not
satisfied).

In summary, the overall adhesion at any loading
angle can be computed with the integral over all the
usable asperity slopes considering both spine shaft
contact and channel slip effects:

F (φ) =

∫ ψmax(φ)
ψmin(φ)

Ci(ψ,β)Cc(φ,β)fΨ(ψ)dψ
∫ ψmax(0)
ψmin(0)

Ci(ψ,β)Cc(0,β)fΨ(ψ)dψ
F (0)

(10)
where φ = 0 is the shear direction.

The usable range of slopes [ψmin ψmax] can be
estimated based on the surface coefficient of friction
µ and the maximum loading angle, φmax, occurring in
the experiment:

{
ψmin(φ) = φ− cot−1 µ

ψmax(φ) = φmax − cot−1 µ
(11)

Combining equations, we estimate the spine array
adhesion at any loading angle with the following
procedure:

• Use the single-direction adhesion model, Equa-
tion 8, to compute F(0) with single-spine statis-
tics characterized along the shear direction.

• Gather single-spine data at another loading
angle, φ1, to compute F (φ1) using the same
empirical method.

• Calculate the asperity slope range [ψmin ψmax]
with measured surface coefficient of friction and
maximum loading angle, using Equation 11.

• Solve for constant ci in Equation 2 using F (0)
and F (φ1) in Equation 10.

• Having determined the unknowns in Equation 10,
we use it again to compute the adhesion limit,
F (φ), at any angle.

3.2 3D Limit Surface

If we let the original, preferred loading direction be in
the (x, z) plane, with z perpendicular to the surface,
we now consider the effect of pulling in the lateral
direction, y. The load is now described by two angles,
(φ, θ) measured with respect to the x and y axes.
Assuming that the surface is isotropic, we define an
equivalent inclination angle, β′, when pulling in a
direction defined by φ and θ:

β′(θ) = arcsin(sinβ cos θ) (12)
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Figure 7. Tile adhesion with different numbers of spines and backlash conditions on different surfaces. Asterisks and error
bars are the mean and standard deviations of 20 experimental trials. The solid line and shaded area are the mean and
standard deviation, respectively, of simulation results.

channels, modeled with another coefficient Cc(φ,β)
(Equation 4). The parentheses denote that these effects
are subject to conditions on the associated variables
(the constant becomes 1 if the condition is not
satisfied).

In summary, the overall adhesion at any loading
angle can be computed with the integral over all the
usable asperity slopes considering both spine shaft
contact and channel slip effects:

F (φ) =

∫ ψmax(φ)
ψmin(φ)

Ci(ψ,β)Cc(φ,β)fΨ(ψ)dψ
∫ ψmax(0)
ψmin(0)

Ci(ψ,β)Cc(0,β)fΨ(ψ)dψ
F (0)

(10)
where φ = 0 is the shear direction.

The usable range of slopes [ψmin ψmax] can be
estimated based on the surface coefficient of friction
µ and the maximum loading angle, φmax, occurring in
the experiment:

{
ψmin(φ) = φ− cot−1 µ

ψmax(φ) = φmax − cot−1 µ
(11)

Combining equations, we estimate the spine array
adhesion at any loading angle with the following
procedure:

• Use the single-direction adhesion model, Equa-
tion 8, to compute F(0) with single-spine statis-
tics characterized along the shear direction.

• Gather single-spine data at another loading
angle, φ1, to compute F (φ1) using the same
empirical method.

• Calculate the asperity slope range [ψmin ψmax]
with measured surface coefficient of friction and
maximum loading angle, using Equation 11.

• Solve for constant ci in Equation 2 using F (0)
and F (φ1) in Equation 10.

• Having determined the unknowns in Equation 10,
we use it again to compute the adhesion limit,
F (φ), at any angle.

3.2 3D Limit Surface

If we let the original, preferred loading direction be in
the (x, z) plane, with z perpendicular to the surface,
we now consider the effect of pulling in the lateral
direction, y. The load is now described by two angles,
(φ, θ) measured with respect to the x and y axes.
Assuming that the surface is isotropic, we define an
equivalent inclination angle, β′, when pulling in a
direction defined by φ and θ:

β′(θ) = arcsin(sinβ cos θ) (12)
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The derivative of µ1 can be computed:
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It shows that given the spine material with certain µ1, choos-
ing a channel wall material with higher friction µ2 or smaller
spine tip angle ↵ may cause dust jamming that prevents the
spine from freely extending out of the channel. Our tests
on the spring loaded spine with two different channel wall
material (aluminum alloy 7075 and polypropylene) also show
consistent results.

C. Surface Properties

For the asperities on the surface, there are 3 types
of properties that can affect the adhesive performance of
micro-spine when dragged along a surface, known as the
asperity spatial distribution, spine-asperity contact strength
distribution, and the asperity angle distribution. Because the
linearly-constrained spine relies on only asperities that it can
immediately catch, the engagement probability for individual
spine is determined by usable asperities surface area over
entire surface area. Therefore the spatial distribution does
not need to be fully characterized. The contact strength
distribution determines the amount of adhesion a spine and
asperity pair can take before either the asperity breaks or the
micro-spine slips off. The asperity angle distribution affects
the loading angle limit and the adhesion for any loading
angle in 3D.

The strength distribution has been well studied in [31].
Multinomial and truncated Gaussian distribution were used
to describe the contact strength under 3 different failure
modes: engagement failure, asperity failure and spine fail-
ure. The distribution parameters were measured empirically.
Asperity angle distribution has also been systematically
measured with a microscope in the previous work [16] and
can be fitted with linear or polynomial functions.
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It shows that given the spine material with certain µ1, choos-
ing a channel wall material with higher friction µ2 or smaller
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on the spring loaded spine with two different channel wall
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of properties that can affect the adhesive performance of
micro-spine when dragged along a surface, known as the
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distribution determines the amount of adhesion a spine and
asperity pair can take before either the asperity breaks or the
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the loading angle limit and the adhesion for any loading
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the spine mechanism section. The asperity strength changes
as loading angle varied due to different stress distribution
over the contact patch. For cementitious materials, the failure
mode is dominated by the tensile strength which is much
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normal components of the loading force result in maximum
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Figure 4. Different limiting factors on spine adhesion: (a)
range of spine approach angles to prevent spine-asperity slip;
(b) maximum spine tip included angle, αmax, to allow tip
contact on small asperities (red shading highlights contact
stress region). Magnifications (b1) and (b2) show the effect
of tip angle; (c) undesirable spine inclination angle causes
asperity tip contact and results in low asperity strength; (d)
range of approach angles to prevent spine-channel slip.

tip contact force is outside the local friction cone; (b)
the spine tip is engaged with the surface (tip contact)
and (c) the spine tip cannot reach the asperity due to
shaft side contact when the spine inclines too much.

For this analysis, the failure force due to friction (a)
is:

F =
µ cosψ

cosψ − µ sinψ
FP (1)

where FP is the compression force provided by the soft
spring in the sliding channel. F rises rapidly as the
force vector approaches the friction cone and can be
approximated as a step function when FP is small. The
failure force is then limited by the asperity strength
under tip contact (b) which is modeled as a constant
(further discussion in Section 2.4). As seen in the
enlarged inset Figure 4 (b2), if the spine tip included
angle, α, is too large, the spine may fail to engage
an aspertity at its tip. Similarly, in Figure 4 (c), if
the spine inclination angle, β, is too small, the spine
may engage the asperity in side contact. In both cases,
the strength of the asperity is significantly reduced.
Models of the strength of cementitious materials like
stucco and cement are available in the literature
Momber (2004). However, the materials are brittle
and prediction of asperity strength is difficult. For
our purposes it suffices to note that asperity strength
grows with cross sectional area, which depends on the
roughness of the surface. We lump this effect into a
constant decay factor Ci(ψ,β) that will be empirically

Figure 5. Maximum shear loading force of an enlarged spine
(α = 15◦, β = 15◦, tip radius = 2mm, φ = 0, µ = 0.4) on
large plaster asperities with different slopes, ψ. The behavior
falls into three regimes, matching cases (a), (b) and (c) in
Figure 4. The model is based on Equation 1 and 2.

fit under shaft contact:

Ci(ψ,β) =

{
ci if ψ ≤ β + π/2− α/2

1 else
(2)

The contact surface slope ψ is the slope of the spine tip
rather than asperity slope in the case of shaft contact:

ψ′(ψ,β) =

{
ψ if ψ ≤ β + π/2− α/2

β + π/2− α/2 else

(3)
To evaluate the effects of varying spine load angle, we

constructed magnified asperities of plaster and pulled
against them in pure shear with a magnified spine
with a 2mm tip radius. Figure 5 shows the results
for a range of asperity slope angles, ψ (5 trials for
each angle), which match the cases depicted in Fig.
4. In regime (a), the performance is limited by surface
friction (Equation 1, µ = 0.4); in regime (b) and (c), we
assume constant asperity strengths that are empirically
measured, represented by Equation 3.

2.2.3 Spine-channel Interaction There are two addi-
tional constraints, which concern the sliding of spines
within their channels. Friction µs between the spine
and its channel should prevent the spine from sliding
when the spine tile is loaded. Figure 4 shows that for
a range of loading directions (a) the associated friction
cone for spine/channel sliding is (d). To account for this
limit we can introduce a coefficient, Cc(φ,β), which
becomes 1 when no slip occurs and otherwise is limited
by µs and β (details are given in Appendix C):

Cc(φ,β) = sin(β + π/2− φ− arctanµs)(1 + µ2
s) (4)

The second constraint is due to particles that become
dislodged from the surface and can jam the spines.
For a given tip angle α, channel clearance, and friction
coefficient, µs, particles of a certain dimension, ϵ, may
either get stuck, or will be pushed out by the spine
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Figure 7. Tile adhesion with different numbers of spines and backlash conditions on different surfaces. Asterisks and error
bars are the mean and standard deviations of 20 experimental trials. The solid line and shaded area are the mean and
standard deviation, respectively, of simulation results.

channels, modeled with another coefficient Cc(φ,β)
(Equation 4). The parentheses denote that these effects
are subject to conditions on the associated variables
(the constant becomes 1 if the condition is not
satisfied).

In summary, the overall adhesion at any loading
angle can be computed with the integral over all the
usable asperity slopes considering both spine shaft
contact and channel slip effects:

F (φ) =

∫ ψmax(φ)
ψmin(φ)

Ci(ψ,β)Cc(φ,β)fΨ(ψ)dψ
∫ ψmax(0)
ψmin(0)

Ci(ψ,β)Cc(0,β)fΨ(ψ)dψ
F (0)

(10)
where φ = 0 is the shear direction.

The usable range of slopes [ψmin ψmax] can be
estimated based on the surface coefficient of friction
µ and the maximum loading angle, φmax, occurring in
the experiment:

{
ψmin(φ) = φ− cot−1 µ

ψmax(φ) = φmax − cot−1 µ
(11)

Combining equations, we estimate the spine array
adhesion at any loading angle with the following
procedure:

• Use the single-direction adhesion model, Equa-
tion 8, to compute F(0) with single-spine statis-
tics characterized along the shear direction.

• Gather single-spine data at another loading
angle, φ1, to compute F (φ1) using the same
empirical method.

• Calculate the asperity slope range [ψmin ψmax]
with measured surface coefficient of friction and
maximum loading angle, using Equation 11.

• Solve for constant ci in Equation 2 using F (0)
and F (φ1) in Equation 10.

• Having determined the unknowns in Equation 10,
we use it again to compute the adhesion limit,
F (φ), at any angle.

3.2 3D Limit Surface

If we let the original, preferred loading direction be in
the (x, z) plane, with z perpendicular to the surface,
we now consider the effect of pulling in the lateral
direction, y. The load is now described by two angles,
(φ, θ) measured with respect to the x and y axes.
Assuming that the surface is isotropic, we define an
equivalent inclination angle, β′, when pulling in a
direction defined by φ and θ:

β′(θ) = arcsin(sinβ cos θ) (12)
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maximum loading angle, using Equation 11.

• Solve for constant ci in Equation 2 using F (0)
and F (φ1) in Equation 10.

• Having determined the unknowns in Equation 10,
we use it again to compute the adhesion limit,
F (φ), at any angle.

3.2 3D Limit Surface

If we let the original, preferred loading direction be in
the (x, z) plane, with z perpendicular to the surface,
we now consider the effect of pulling in the lateral
direction, y. The load is now described by two angles,
(φ, θ) measured with respect to the x and y axes.
Assuming that the surface is isotropic, we define an
equivalent inclination angle, β′, when pulling in a
direction defined by φ and θ:

β′(θ) = arcsin(sinβ cos θ) (12)
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Figure 9. Effective friction of a spine tile on different slopes
and coefficients of friction between the tile substrate and
surface. The effective friction decreases with increasing load
force. The result is based on 60-spine tile with 0.5mm
backlash on a fine concrete surface.

4 Opposed Spines Mechanism

Unidirectional spine arrays can take loads primarily
in shear, with a small amount of force away from
the surface. To support substantial normal forces, a
solution is to use opposed arrays of spines with an
internal grasp force. In this section we consider such a
mechanism and how its properties affect the aggregate
limit surface for a pair of opposed spine arrays.

4.1 Mechanism Design

Figure 10 is a diagram of a mechanism used for loading
two opposed arrays of linearly constrained spines. Each
array (b) slides on linear rails, with motion limited by
external (a) and internal (c) hard stops. An external
load is applied (d) to the rails and transmitted to the
arrays via springs. To engage the device we first pull
the arrays apart, stretching the springs, then press the
opposed spine mechanism gently against a surface and
release the springs, which provide an internal force.
The arrays move a small distance toward each other as
the spines engage. At this point the frame is essentially
rigid in the direction normal to the surface but allows
some motion parallel to the surface, depending on
the spring stiffness and the hard stops. To release
the device, it suffices to pull the arrays slightly away
from each other using, for example, a cam or toggle
mechanism.

4.2 Modeling

When the center part (d) is loaded, the normal
adhesion of the tiles is transmitted through the sliding
frame while the shear adhesion is transmitted via the
springs. Because the mechanism will be used at the
end of a “smart staff” as in Figure 1, we assume that it
can be kept parallel to the surface. With this kinematic

Figure 10. Schematic of an opposed micro-spine mechanism:
spine array (b) slides along the shaft, constrained by outer
(a) and inner (c) hard stops. Arrows (1) show motion to
engage a surface. Arrow (2) shows external load.

constraint, the limit surface is the sum, rather than the
minimum, of the contribution from each tile.∗

As defined in Appendix D, the overall limit surface
is computed by summing the contribution from each
tile, taking into account the offset produced by the
internal preload force and the limits imposed by the
hard stops. However, if either tile completely loses its
grip, the internal springs will cause the entire grip to
fail.
The resulting limit surface is symmetric about the x

and y axes, as seen in Figure 11. Note that the limit
surface is longest in the y direction (in contrast to a
single tile) because the forces from each array are added
in the y direction whereas they are subtracted in the x
direction. Hence the preferred loading direction is now
transverse to the sliding rails.
The overall performance of the opposed-array

mechanism depends on the preload and the hard stops.
Increasing the internal preload increases the ability
to support loads primarily in the normal direction.
However, if the preload is too high, one of the tiles will
quickly reach its limit. Similar considerations apply to
the outer and inner hard stops. Details of the model are
provided in Appendix D. When one of the tiles reaches
its respective outer hard stop, additional external loads
will be borne entirely by that tile. The stop should
be chosen in combination with the preload and spring
stiffness to maintain a desired minimum force on the
opposite tile. The inner hard stop determines when one
of the tiles will release, causing the entire mechanism
to detach before damage occurs.

4.3 Experiments
An opposed array mechanism was tested gripping a
concrete block. The internal preload was set to 16.5N,

∗This is in contrast to a perching micro air vehicle that hangs
from a gripper with spines Jiang et al. (2014).
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Figure 13. Support region for a humanoid: blue circular
panels are local approximations of surfaces for local motion
planning; orange polygons show estimated support regions
computed using constraint-based method Bretl and Lall
(2008). Force on staff is limited to 20% of robot’s weight.
(left) humanoid without staffs, (middle) SupraPed with
µt = 0.5 increases support region by factor of 2.2, (right)
SupraPed generates with gripper increases effective friction
coefficient to 2.0 and enlarges support region by 3.4 over
unassisted case.

Figure 14. Opposed spine mechanism for smart staff: (a)
retracted, (b) gripping a flat surface, (c) gripping a convex
surface. Elements include: (1) spine tiles; (2) preload spring
and slider (prismatic joint); (3) linkages; (4) center rings
(prismatic joint). ρ is spine tile inclination (same for all tiles).

combination with the sliding ring. A prismatic sliding
joint is located on the back surface of the tile, with
a spring that pushes the tile inward (toward the
pole) when it is not loaded. When not gripping, the
mechanism can be retracted by actuating the sliding
ring upward (Figure 14 a). To grip, the sliding ring is
actuated downward to engage the tiles with a surface
(b) and compress the preload spring. After the sliding
ring is released, the preload springs load the tiles in
the local shear direction to engage with a surface
and provide adhesion, in the same manner as for the
opposed spine array discussed in Section 4. The only
difference is that the surface can now be either flat or
convex.

The angle of inclination of the tiles is ρ (Figure 14).
If we let fm(φ, θ) be the limit surface for a tile, the limit
surface for the entire mechanism, gm(φ, θ, ρ), becomes:

Figure 15. Effective coefficient of friction created by the
SupraPed spine mechanism for convex features with different
inclinations, ρ and shear force capabilities of 20N or 40N.
Computed results assume an array of 60 spines with 0.5mm
backlash on a smooth concrete surface, having a friction
coefficient of µ = 0.5 with the tile substrate.

gm(φ, θ, ρ) = fm(φ(0, ρ), θ(0, ρ)) + fm(φ(
π

2
, ρ), θ(

π

2
, ρ))

+ fm(φ(π, ρ), θ(π, ρ)) + fm(φ(
3π

2
, ρ), θ(

3π

2
, ρ))

(15)
where φ(ξ, ζ) and θ(ξ, ζ) are mapped from global φ
and θ to a local coordinate frame that is rotated about
its z axis by ξ and about its y axis by ζ. The limit
surface and effective coefficient of friction can then
be computed using eq. (15) and the enhanced friction
method in Section 4.
Figure 15 shows the effective coefficient of friction

achieved with the presented mechanism under various
conditions. If the contact force on the staff tip is limited
to 100N (20% of a 50 kg humanoid), grasping a convex
feature for which ρ = 30◦ results in approximately
200% increase in the effective coefficient of friction
as compared to a flat surface. Similarly, the effective
coefficient of friction can be improved from 0.5 to 2
with the mechanism (60-spine tiles, 0.5mm backlash,
21N shear adhesion) grasping a 20◦ convex concrete
feature. Tiles with better adhesion (60-spines, 0.1mm
backlash, 40N shear adhesion) can achieve an effective
friction coefficient of 2 on flat surfaces for a contact
force up to 135N, which could greatly increase the
stability of a humanoid robot.

5.2 Rock Climbing Palm
The second application involves applying arrays of
spines to the foot of a large legged robot. The challenge
in this case is to support loads of hundreds of Newtons,
and to do so in a mechanism sufficiently compact and
light to be placed on the end of a robot leg. Because
we are interested primarily in shear forces and because
the robot can orient its leg as desired about an axis
perpendicular to the surface, we use unidirectional
spine arrays. However, as illustrated in Figure 7, simply
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Abstract
Linearly constrained spines are a new solution for the locomotion of human-scale robots on steep, rocky surfaces. The
spine stiffness is low in the normal direction but high with respect to lateral and bending loads. The solution differs
from previous spine arrays used for small robots in having a much higher spine density and less spine scraping over
asperities. We present theoretical and empirical results to demonstrate that this solution is capable of shear stresses
of over 200 kPa, enabling human-scale robots to apply forces parallel to steep rock surfaces for climbing, bracing, etc.
The analysis includes the effects of spine geometry, stiffness, backlash and three-dimensional loading angle to predict
the overall forces possible in three dimensions of both single and opposed configurations of spine arrays. Demonstrated
applications include a gripper for a “smart staff” aimed at helping humanoid robots to negotiate steep terrain and a
palm that provides over 700N in shear for the RoboSimian quadruped.

Keywords
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1 Introduction

A continuing challenge faced by human-scale robots for
search and rescue, planetary exploration and related
applications is to negotiate rubble and steep, rocky
terrain Kajita and Tani (1991); Hauser et al. (2005,
2008); Khatib and Chung (2014); Chung and Khatib
(2015). For bipedal robots, one possible solution
is to equip them with a collapsable, instrumented
“smart staff” in each hand Khatib and Chung (2014);
Wang et al. (2015). This solution draws inspiration
from hiking poles used by humans to improve stability
and reduce strain Jacobson et al. (2000). With this
solution, it is further desirable if the robot can brace
itself by “grasping” steep or even vertical surfaces
(Figure 1). In the case of large, multi-legged robots, it is
similarly desirable if the hands or feet can apply large
tangential as well as normal forces on steep surfaces
Wang et al. (2016); Satzinger et al. (2015).

In both cases, various climbing technologies, some
adapted from human climbing equipment and others
developed for climbing robots, can enhance the
ability to apply large forces. For example, soft
rubber can produce a large coefficient of friction
Persson et al. (2004), helping humans or robots to
climb. In challenging environments, human climbers

Figure 1. Left: a humanoid using “smart staffs” negotiates
rocky terrain. Right: smart staff tip is a gripper with arrays
of linearly constrained spines to grasp rough surfaces.
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Figure 9. Effective friction of a spine tile on different slopes
and coefficients of friction between the tile substrate and
surface. The effective friction decreases with increasing load
force. The result is based on 60-spine tile with 0.5mm
backlash on a fine concrete surface.

4 Opposed Spines Mechanism

Unidirectional spine arrays can take loads primarily
in shear, with a small amount of force away from
the surface. To support substantial normal forces, a
solution is to use opposed arrays of spines with an
internal grasp force. In this section we consider such a
mechanism and how its properties affect the aggregate
limit surface for a pair of opposed spine arrays.

4.1 Mechanism Design

Figure 10 is a diagram of a mechanism used for loading
two opposed arrays of linearly constrained spines. Each
array (b) slides on linear rails, with motion limited by
external (a) and internal (c) hard stops. An external
load is applied (d) to the rails and transmitted to the
arrays via springs. To engage the device we first pull
the arrays apart, stretching the springs, then press the
opposed spine mechanism gently against a surface and
release the springs, which provide an internal force.
The arrays move a small distance toward each other as
the spines engage. At this point the frame is essentially
rigid in the direction normal to the surface but allows
some motion parallel to the surface, depending on
the spring stiffness and the hard stops. To release
the device, it suffices to pull the arrays slightly away
from each other using, for example, a cam or toggle
mechanism.

4.2 Modeling

When the center part (d) is loaded, the normal
adhesion of the tiles is transmitted through the sliding
frame while the shear adhesion is transmitted via the
springs. Because the mechanism will be used at the
end of a “smart staff” as in Figure 1, we assume that it
can be kept parallel to the surface. With this kinematic

Figure 10. Schematic of an opposed micro-spine mechanism:
spine array (b) slides along the shaft, constrained by outer
(a) and inner (c) hard stops. Arrows (1) show motion to
engage a surface. Arrow (2) shows external load.

constraint, the limit surface is the sum, rather than the
minimum, of the contribution from each tile.∗

As defined in Appendix D, the overall limit surface
is computed by summing the contribution from each
tile, taking into account the offset produced by the
internal preload force and the limits imposed by the
hard stops. However, if either tile completely loses its
grip, the internal springs will cause the entire grip to
fail.
The resulting limit surface is symmetric about the x

and y axes, as seen in Figure 11. Note that the limit
surface is longest in the y direction (in contrast to a
single tile) because the forces from each array are added
in the y direction whereas they are subtracted in the x
direction. Hence the preferred loading direction is now
transverse to the sliding rails.
The overall performance of the opposed-array

mechanism depends on the preload and the hard stops.
Increasing the internal preload increases the ability
to support loads primarily in the normal direction.
However, if the preload is too high, one of the tiles will
quickly reach its limit. Similar considerations apply to
the outer and inner hard stops. Details of the model are
provided in Appendix D. When one of the tiles reaches
its respective outer hard stop, additional external loads
will be borne entirely by that tile. The stop should
be chosen in combination with the preload and spring
stiffness to maintain a desired minimum force on the
opposite tile. The inner hard stop determines when one
of the tiles will release, causing the entire mechanism
to detach before damage occurs.

4.3 Experiments
An opposed array mechanism was tested gripping a
concrete block. The internal preload was set to 16.5N,

∗This is in contrast to a perching micro air vehicle that hangs
from a gripper with spines Jiang et al. (2014).
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• Giant spine tile

- Scaling up plateau due to backlash 
- Limited by local poor contact
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Scaling up spine contact patch: SpinyPalm
• Pulley system: 1) load sharing; 2) free travel
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Spine contact patch load sharing
• Better load sharing

- Allow better contact patch to take more load 
• Spine tile contact stiffness

- Reflects the contact quality
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• Moderate friction improves palm performance
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Improve SpinyPalm with friction
• Overall adhesion is 

improved by 20~60 %
• Bearing support pulley is 

replaced with fixed rod
- Less complexity 
- Higher spine tile density
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2-tile model & experiments

4-tile model empirical verification
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SpinyPalm test with human (55kg in shear)

63



Introduction SupraPed SpinyHand ConclusionSpinyPalm

SpinyPalm test on different surfaces
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Surface types are: 
1) paving stone; 
2) natural rock; 
3) coarse stucco; 
4) sand stone; 
5) pebble wall; 
6) fine stucco; 
7) bark texture wood; 
8) fine concrete;
9) coarse concrete.
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SpinyPalm limitation
• Poor performance on large surface variation
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Rock Climbing
• Surface grasping
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SpinyHand implementation
• (Motor + double support pulley) x 4
• (Motor + worm drive) x 2
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SpinyHand implementation
• 4-layer PCB

- Motor drivers 
- Signal conditioning 

• Sensors
- Tendon position sensor x 4 
- Rotary finger position / moment x 4
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Finger design: prismatic phalanx
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• Shear contact force
• Strong phalanx spring: travel after contact is formed
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• 600N force on fingernail
• Motion sequence:

- fingernail -> hard stop -> the 
rest of finger joints
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Grasp performance
• 3D force -> 6D force and torque (wrench space)
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Fig. 2. Non-convex admissible force volumes (right) can arise out of micro-
interactions. Consider a peg-in-hole setup where the peg makes frictional
contact with different sides of the hole depending on the external loading
condition. Friction leads to apparent adhesion when shear loads are applied.

Mathematically, Coulomb friction may be expressed as a
cone constraint, which leads to linear constraints in 2D or
second-order cone constraints in 3D. A variety of conic ex-
tensions to the Coulomb model have been proposed, including
a soft-finger approximation, polyhedral approximations, and
anisotropic friction with elliptical constraints [2, 3].

Limit surfaces were introduced as a description of forces
exerted on objects during planar sliding [9] and frictional
contact [15] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
20]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [12] and
microspines [1]. More related to our work is Hawkes et al.
[12], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM WITH EMPIRICAL FORCE MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly under
the estimated external wrench.

We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model
A contact region C between bodies O

A

and O
B

is modeled
as a rigid surface with a normal direction n defined at each
point x 2 C. To handle anisotropy of friction forces, two
orthogonal vector fields u and v are defined over C, which
defines an orthogonal frame R = (u, v, n) at all points x 2
C. The region is discretized into a finite number of contact
patches p1, . . . , pk. Each patch i = 1, . . . , k is centered at the
point x

i

and is associated with frame R
i

.
At each contact patch, an admissible force volume F

i

✓ R3

describes the set of valid forces f
i

applied to object O
B

at
each point x

i

. This volume is defined as the interior of the
force limit surface f

max

(d) : S2 ! [0,1) which describes

Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
Axes are labeled as follows: x (red) the shear direction, y (green) the lateral
tangent direction, and z (blue) the normal direction pointing into the unit.
(Figure best viewed in color)

the maximum force in every direction in 3D. In other words
F
i

= {f 2 R3 | kfk  f
max

(

ˆf)} where ˆf = f/kfk is the
unit vector in the direction of f . The world-oriented admissible
force volume is a rotation of a local limit surface rotated by
the frame R

i

.
We measure a local limit surface described with respect to

a canonical 3D reference frame aligned with R = (u, v, n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, f

max

(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
f
max

(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular micro-contact (Fig. 2), which can cause
them to exhibit exotic adhesive behavior such as the mi-
crospine units presented below (Fig. 3). There may also be
non-convex behavior in the compressive limits of buckling
internal structures, such as corrugated cardboard which are
stiffer in directions not parallel to the normal.

B. Equilibrium Testing
Equilibrium testing asks whether an external wrench w

ext

⌘
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can be resisted by forces at
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contact with different sides of the hole depending on the external loading
condition. Friction leads to apparent adhesion when shear loads are applied.

Mathematically, Coulomb friction may be expressed as a
cone constraint, which leads to linear constraints in 2D or
second-order cone constraints in 3D. A variety of conic ex-
tensions to the Coulomb model have been proposed, including
a soft-finger approximation, polyhedral approximations, and
anisotropic friction with elliptical constraints [2, 3].

Limit surfaces were introduced as a description of forces
exerted on objects during planar sliding [9] and frictional
contact [15] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
20]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [12] and
microspines [1]. More related to our work is Hawkes et al.
[12], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM WITH EMPIRICAL FORCE MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly under
the estimated external wrench.

We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model
A contact region C between bodies O
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and O
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is modeled
as a rigid surface with a normal direction n defined at each
point x 2 C. To handle anisotropy of friction forces, two
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C. The region is discretized into a finite number of contact
patches p1, . . . , p

k

. Each patch i = 1, . . . , k is centered at the
point x

i

and is associated with frame R
i

.
At each contact patch, an admissible force volume F

i

✓ R3

describes the set of valid forces f
i

applied to object O
B

at
each point x

i

. This volume is defined as the interior of the
force limit surface f

max

(d) : S2 ! [0, 1) which describes

Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
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Colors indicate different components of the volume’s convex decomposition.
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a canonical 3D reference frame aligned with R = (u, v, n).
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a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
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inward-pointing (compressive) directions, f
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be infinite or capped by a maximum force that does not dam-
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this measurement procedure will be presented in Sec. IV.
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are particularly interested in handling these situations. Non-
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Mathematically, Coulomb friction may be expressed as a
cone constraint, which leads to linear constraints in 2D or
second-order cone constraints in 3D. A variety of conic ex-
tensions to the Coulomb model have been proposed, including
a soft-finger approximation, polyhedral approximations, and
anisotropic friction with elliptical constraints [2, 3].

Limit surfaces were introduced as a description of forces
exerted on objects during planar sliding [9] and frictional
contact [15] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
20]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [12] and
microspines [1]. More related to our work is Hawkes et al.
[12], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM WITH EMPIRICAL FORCE MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly under
the estimated external wrench.

We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model
A contact region C between bodies O

A

and O
B

is modeled
as a rigid surface with a normal direction n defined at each
point x 2 C. To handle anisotropy of friction forces, two
orthogonal vector fields u and v are defined over C, which
defines an orthogonal frame R = (u, v, n) at all points x 2
C. The region is discretized into a finite number of contact
patches p1, . . . , p

k

. Each patch i = 1, . . . , k is centered at the
point x

i

and is associated with frame R
i

.
At each contact patch, an admissible force volume F
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applied to object O
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at
each point x
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. This volume is defined as the interior of the
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Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
Axes are labeled as follows: x (red) the shear direction, y (green) the lateral
tangent direction, and z (blue) the normal direction pointing into the unit.
(Figure best viewed in color)

the maximum force in every direction in 3D. In other words
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unit vector in the direction of f . The world-oriented admissible
force volume is a rotation of a local limit surface rotated by
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.
We measure a local limit surface described with respect to

a canonical 3D reference frame aligned with R = (u, v, n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, f
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(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
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(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular micro-contact (Fig. 2), which can cause
them to exhibit exotic adhesive behavior such as the mi-
crospine units presented below (Fig. 3). There may also be
non-convex behavior in the compressive limits of buckling
internal structures, such as corrugated cardboard which are
stiffer in directions not parallel to the normal.
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Fig. 2. Non-convex admissible force volumes (bottom right) can arise out
of micro-interactions. Consider a peg-in-hole setup where the peg makes
frictional contact with any side of the hole depending on the external loading
condition. Friction leads to an apparent adhesive force when shear loads are
applied in either direction.

contact [14] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
19]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [11] and
microspines [1]. More related to our work is Hawkes et al.
[11], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.
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2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly.
We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model

A contact region C between bodies O
A

and O
B

is modeled
as a rigid surface with a normal direction n defined at each
point x 2 C. To handle directionality of frictional forces, two
orthogonal vector fields u and v are defined over C. The frame
R = (u, v, n) is assumed to be orthogonal at all points x 2
R. The region is discretized into a finite number of contact
patches p1, . . . , pk. Each patch i = 1, . . . , k is centered at the
point x
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, and is associated with the corresponding frames R
i

defined at x
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Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
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We measure a local limit surface described with respect to
a canonical 3D reference frame aligned with R = (u, v, n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, f

max

(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
f
max

(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular contact (Fig. 2), which can cause them
to exhibit exotic adhesive behavior such as the microspine
units presented below (Fig. 3). There may also be non-
convex behavior in the compressive limits of buckling internal
structures, such as corrugated cardboard which are stiffer in
directions not parallel to the normal.

B. Equilibrium Testing
Equilibrium testing asks whether an external wrench w

ext

⌘
(f

ext

, t
ext

) 2 R6 applied to O
B

can be resisted by forces at
the contact points. Assume t

ext

is the external torque about
the origin. Often, the external wrench is due only to gravity,
the center of mass of O

B

is taken to be the origin, and hence
f
ext

= mg and t
ext

= 0. Three conditions must be met: force

Fig. 7. Experiments exhibiting close agreement between predicted and actual onset of slip.

Fig. 8. Experimental runs with inaccurate predictions. Left group: the model predicted the first slip event early (middle) and did not predict the final slip
(right). Right group: the model did not predict the final slip (right).

Fig. 9. 3D slices of the wrench space of the passive two-finger gripper
(2FG) example in the distal-all phalanges (D-PMD) contact condition. Top:
(f

x

, f

y

, f

z

) slice. Bottom: (f
x

, t

y

, f

z

) slice, rear view.

manually to match the physical gripper and observed which
phalanges (P: proximal, M: medial, D: distal) made contact
with the object. Configurations are denoted by the initials of
the left and right phalanges in contact, separated by a dash,
e.g., D-D, MD-MD, D-PMD, etc.

Fig. 7 shows that the method was able to accurately predict
the angle of slip onset in 11/14 slip events. Fig. 8 shows the
failure cases. In the first two, the left distal phalanx catches the
tip of the object, and this contact is not included in our model.
In the third, the left proximal link makes partial contact, and
eventually separates. Separation is not predicted at this point
because the proximal and medial joints admit opposed forces
that can produce net adhesive force. Excluding the proximal
link leads to an accurate prediction of slip onset.

We also calculated wrench spaces for this device in different
configurations. In general, the gripper can resist stronger loads
in the y direction because it is parallel to the passive joint axes
and thus demands less joint friction. Also, the wrench space
grows with more phalanges in contact. Fig. 9 and 10 illustrate
two slices of the wrench spaces for the D-PMD and MD-MD
configurations. The D-PMD configuration is able to support

Fig. 10. 3D slices of the wrench space of the passive two-finger gripper (2FG)
example in the medial,distal-medial,distal (MD-MD) contact condition. Left:
(f

x

, f

y

, f

z

) slice. Right: (f
x

, t

y

, f

z

) slice.

Fig. 11. 3D slices of the wrench space of the four-finger hand (4FH) example
in the parallel (Par.) finger configuration. Top: (f

x

, f

y

, f

z

) slice. Bottom:
(f

x

, t

y

, f

z

) slice, rear view.

diagonal loads and stronger wrenches about the y axis, since
it can recruit 3 spine units to resist rightward shear. The MD-
MD configuration is able to support stronger downward forces
because its symmetry allows shear forces to counterbalance
one another. However, it is poor at resisting torques.

d) Four Finger Hand (4FH): The 4FH device is illus-
trated in Fig. 1. We investigate the differences in applicable

Stability test under different configuration
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Fig. 8: Empirical maximum load of a four-tile system with and without
frictions. Horizontal axis shows the contact stiffness spring configurations:
spring type sequence starts from the left.

capability is useful for design guidance, terrain handhold
selection, hand control and motion planning. However, grasp
model with non-convex frictional contacts (spine adhesion)
is generally difficult to solve. This section presents an
efficient approach to model special-contact grasping with the
SpinyHand. The model is generalized for 3D grasping but is
verified with grasp experiments in 2D for simplicity, on an
opposed-finger gripper that has identical fingers as Spiny-
Hand. The verification covers both normal and tangential
(with respect to the surface) contact forces, which describe
the main part of finger-surface interaction and is of most
interest for climbing applications.

A. Grasp Model

1) Contact Forces: The first step is solving contact forces
on a single SpinyHand finger given actuation (tendon) force,
finger design and the aimed surface to grasp, assuming
no friction exist in the system and single contact on each
phalanx. The hand is simplified as shown in the diagram
(Fig. 9). Three coordinates systems are used in the model:
1) palm coordinates (global); 2) finger coordinates with z
axis same as palm coordinates and with x-z on the finger
plane; 3) phalanx coordinates on each phalanx, which are
set to be consistent with the spine tile analysis in REF. The
contact force model in this section is established on the 2D
finger plane (x-z plane of finger coordinates).

Based on geometry constraints of the surface, joint posi-
tions of a n-phalanx finger q and the corresponding contact
locations c can be easily computed with bottom-up approach
(from proximal to distal phalanx), which are both denoted by
column vectors: q = [q1 q2 . . . qn]T and c = [c1 c2 . . . cn]T .
c

i

is position along x axis of the local phalanx frame i. The
subscript is finger/joint number starts from proximal. Same
convention applies to other variables 1.

In equilibrium state, torques due to tendon actuation,
contact forces, joint spring and preload spring at each joint
should balance:

J(q, c)Tf
c

+ f

t

r �K

r

q � p
r

= 0 (4)

1Every upper case, bold lower case and regular lower case symbol
represents matrix, vector and scalar respectively.

Fig. 9: Hand diagram for modeling and two special grasping cases. Three
coordinates are used in the model: 1) palm (global) coordinates G; 2) finger
coordinates F ; 3) phalanx coordinates P . Blue dots indicates the contact
locations. c

i

and q

i

are contact forces and joint angles. The third finger is
behind the grasping surface and therefore displayed with dotted lines. The
top diagrams show: (a) crimp grasp with only distal phalanx contact; (b)
pinch/sloper grasp with proximal contacts broken.

where J is an expanded Jacobian matrix [J1 J2 . . . Jn], with
J

i

being the Jacobian matrix with respect to contact on the
i

th phalanx. f
c

is column list of the contact force f (i)
c

(column vector) for phalanx i. f
t

is tendon force (scaler). r
and p

r

is column vector of pulley radius and preload torque
for each joint. Joint stiffness matrix K

r

is a diagonal matrix
with joint spring stiffnesses being the diagonal elements.

Because of the special prismatic phalanx design, there is
another group of force balancing constraints on the sliding
spine tiles:

P

x

f
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(c, f
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where P

x

is a projection matrix that projects contact force
on each phalanx to the x axis of its local coordinates. f

p

is
force along x axis on the spine tile due to tendon actuation.
Note that this force may change as the phalanx slides and
affects the tendon angles on the tile pulley. d is column list
of prismatic phalanx travel from its initial position. Similar
to Eqn. 4, K

p

and p
p

denote tile spring stiffness and preload
force on each phalanx. The above equations can be rewritten
as:

Af
c

= b (6)

where
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Matrix A is square and invertible, therefore contact forces
f
c

can be easily solved. It is the fundamental of our grasp
model, which is enabled by the prismatic phalanx design.
In addition to its better efficiency than optimization-based
contact force solver for regular hand designs, solutions of
the model does not depend on structural stiffness of the hand
that is hard to characterize, thus is likely to provide better
predictions.

Fig. 8: Empirical maximum load of a four-tile system with and without
frictions. Horizontal axis shows the contact stiffness spring configurations:
spring type sequence starts from the left.

capability is useful for design guidance, terrain handhold
selection, hand control and motion planning. However, grasp
model with non-convex frictional contacts (spine adhesion)
is generally difficult to solve. This section presents an
efficient approach to model special-contact grasping with the
SpinyHand. The model is generalized for 3D grasping but is
verified with grasp experiments in 2D for simplicity, on an
opposed-finger gripper that has identical fingers as Spiny-
Hand. The verification covers both normal and tangential
(with respect to the surface) contact forces, which describe
the main part of finger-surface interaction and is of most
interest for climbing applications.

A. Grasp Model

1) Contact Forces: The first step is solving contact forces
on a single SpinyHand finger given actuation (tendon) force,
finger design and the aimed surface to grasp, assuming
no friction exist in the system and single contact on each
phalanx. The hand is simplified as shown in the diagram
(Fig. 9). Three coordinates systems are used in the model:
1) palm coordinates (global); 2) finger coordinates with z
axis same as palm coordinates and with x-z on the finger
plane; 3) phalanx coordinates on each phalanx, which are
set to be consistent with the spine tile analysis in REF. The
contact force model in this section is established on the 2D
finger plane (x-z plane of finger coordinates).

Based on geometry constraints of the surface, joint posi-
tions of a n-phalanx finger q and the corresponding contact
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coordinates are used in the model: 1) palm (global) coordinates G; 2) finger
coordinates F ; 3) phalanx coordinates P . Blue dots indicates the contact
locations. c
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and q
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are contact forces and joint angles. The third finger is
behind the grasping surface and therefore displayed with dotted lines. The
top diagrams show: (a) crimp grasp with only distal phalanx contact; (b)
pinch/sloper grasp with proximal contacts broken.
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is tendon force (scaler). r
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is column vector of pulley radius and preload torque
for each joint. Joint stiffness matrix K
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is
force along x axis on the spine tile due to tendon actuation.
Note that this force may change as the phalanx slides and
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Matrix A is square and invertible, therefore contact forces
f
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can be easily solved. It is the fundamental of our grasp
model, which is enabled by the prismatic phalanx design.
In addition to its better efficiency than optimization-based
contact force solver for regular hand designs, solutions of
the model does not depend on structural stiffness of the hand
that is hard to characterize, thus is likely to provide better
predictions.
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Fig. 8: Empirical maximum load of a four-tile system with and without
frictions. Horizontal axis shows the contact stiffness spring configurations:
spring type sequence starts from the left.

capability is useful for design guidance, terrain handhold
selection, hand control and motion planning. However, grasp
model with non-convex frictional contacts (spine adhesion)
is generally difficult to solve. This section presents an
efficient approach to model special-contact grasping with the
SpinyHand. The model is generalized for 3D grasping but is
verified with grasp experiments in 2D for simplicity, on an
opposed-finger gripper that has identical fingers as Spiny-
Hand. The verification covers both normal and tangential
(with respect to the surface) contact forces, which describe
the main part of finger-surface interaction and is of most
interest for climbing applications.

A. Grasp Model

1) Contact Forces: The first step is solving contact forces
on a single SpinyHand finger given actuation (tendon) force,
finger design and the aimed surface to grasp, assuming
no friction exist in the system and single contact on each
phalanx. The hand is simplified as shown in the diagram
(Fig. 9). Three coordinates systems are used in the model:
1) palm coordinates (global); 2) finger coordinates with z
axis same as palm coordinates and with x-z on the finger
plane; 3) phalanx coordinates on each phalanx, which are
set to be consistent with the spine tile analysis in REF. The
contact force model in this section is established on the 2D
finger plane (x-z plane of finger coordinates).

Based on geometry constraints of the surface, joint posi-
tions of a n-phalanx finger q and the corresponding contact
locations c can be easily computed with bottom-up approach
(from proximal to distal phalanx), which are both denoted by
column vectors: q = [q1 q2 . . . q
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]T .
c

i

is position along x axis of the local phalanx frame i. The
subscript is finger/joint number starts from proximal. Same
convention applies to other variables 1.
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should balance:

J(q, c)Tf
c
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t
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= 0 (4)

1Every upper case, bold lower case and regular lower case symbol
represents matrix, vector and scalar respectively.

Fig. 9: Hand diagram for modeling and two special grasping cases. Three
coordinates are used in the model: 1) palm (global) coordinates G; 2) finger
coordinates F ; 3) phalanx coordinates P . Blue dots indicates the contact
locations. c

i

and q

i

are contact forces and joint angles. The third finger is
behind the grasping surface and therefore displayed with dotted lines. The
top diagrams show: (a) crimp grasp with only distal phalanx contact; (b)
pinch/sloper grasp with proximal contacts broken.

where J is an expanded Jacobian matrix [J1 J2 . . . J

n

], with
J

i

being the Jacobian matrix with respect to contact on the
i

th phalanx. f
c

is column list of the contact force f (i)
c

(column vector) for phalanx i. f

t

is tendon force (scaler). r
and p

r

is column vector of pulley radius and preload torque
for each joint. Joint stiffness matrix K

r

is a diagonal matrix
with joint spring stiffnesses being the diagonal elements.

Because of the special prismatic phalanx design, there is
another group of force balancing constraints on the sliding
spine tiles:

P
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f
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p
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t

) � K

p

d � p
p

= 0 (5)

where P

x

is a projection matrix that projects contact force
on each phalanx to the x axis of its local coordinates. f

p

is
force along x axis on the spine tile due to tendon actuation.
Note that this force may change as the phalanx slides and
affects the tendon angles on the tile pulley. d is column list
of prismatic phalanx travel from its initial position. Similar
to Eqn. 4, K

p

and p
p

denote tile spring stiffness and preload
force on each phalanx. The above equations can be rewritten
as:

Af
c

= b (6)

where
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
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Matrix A is square and invertible, therefore contact forces
f

c

can be easily solved. It is the fundamental of our grasp
model, which is enabled by the prismatic phalanx design.
In addition to its better efficiency than optimization-based
contact force solver for regular hand designs, solutions of
the model does not depend on structural stiffness of the hand
that is hard to characterize, thus is likely to provide better
predictions.

Finger 
States

Finger
Contact 
Forces

Fig. 8: Empirical maximum load of a four-tile system with and without
frictions. Horizontal axis shows the contact stiffness spring configurations:
spring type sequence starts from the left.

capability is useful for design guidance, terrain handhold
selection, hand control and motion planning. However, grasp
model with non-convex frictional contacts (spine adhesion)
is generally difficult to solve. This section presents an
efficient approach to model special-contact grasping with the
SpinyHand. The model is generalized for 3D grasping but is
verified with grasp experiments in 2D for simplicity, on an
opposed-finger gripper that has identical fingers as Spiny-
Hand. The verification covers both normal and tangential
(with respect to the surface) contact forces, which describe
the main part of finger-surface interaction and is of most
interest for climbing applications.

A. Grasp Model

1) Contact Forces: The first step is solving contact forces
on a single SpinyHand finger given actuation (tendon) force,
finger design and the aimed surface to grasp, assuming
no friction exist in the system and single contact on each
phalanx. The hand is simplified as shown in the diagram
(Fig. 9). Three coordinates systems are used in the model:
1) palm coordinates (global); 2) finger coordinates with z
axis same as palm coordinates and with x-z on the finger
plane; 3) phalanx coordinates on each phalanx, which are
set to be consistent with the spine tile analysis in REF. The
contact force model in this section is established on the 2D
finger plane (x-z plane of finger coordinates).

Based on geometry constraints of the surface, joint posi-
tions of a n-phalanx finger q and the corresponding contact
locations c can be easily computed with bottom-up approach
(from proximal to distal phalanx), which are both denoted by
column vectors: q = [q1 q2 . . . qn]T and c = [c1 c2 . . . cn]T .
c

i

is position along x axis of the local phalanx frame i. The
subscript is finger/joint number starts from proximal. Same
convention applies to other variables 1.

In equilibrium state, torques due to tendon actuation,
contact forces, joint spring and preload spring at each joint
should balance:
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Fig. 9: Hand diagram for modeling and two special grasping cases. Three
coordinates are used in the model: 1) palm (global) coordinates G; 2) finger
coordinates F ; 3) phalanx coordinates P . Blue dots indicates the contact
locations. c

i

and q

i

are contact forces and joint angles. The third finger is
behind the grasping surface and therefore displayed with dotted lines. The
top diagrams show: (a) crimp grasp with only distal phalanx contact; (b)
pinch/sloper grasp with proximal contacts broken.

where J is an expanded Jacobian matrix [J1 J2 . . . Jn], with
J

i

being the Jacobian matrix with respect to contact on the
i

th phalanx. f
c

is column list of the contact force f (i)
c

(column vector) for phalanx i. f
t

is tendon force (scaler). r
and p

r

is column vector of pulley radius and preload torque
for each joint. Joint stiffness matrix K

r

is a diagonal matrix
with joint spring stiffnesses being the diagonal elements.

Because of the special prismatic phalanx design, there is
another group of force balancing constraints on the sliding
spine tiles:
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where P

x

is a projection matrix that projects contact force
on each phalanx to the x axis of its local coordinates. f

p

is
force along x axis on the spine tile due to tendon actuation.
Note that this force may change as the phalanx slides and
affects the tendon angles on the tile pulley. d is column list
of prismatic phalanx travel from its initial position. Similar
to Eqn. 4, K

p

and p
p

denote tile spring stiffness and preload
force on each phalanx. The above equations can be rewritten
as:
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Matrix A is square and invertible, therefore contact forces
f
c

can be easily solved. It is the fundamental of our grasp
model, which is enabled by the prismatic phalanx design.
In addition to its better efficiency than optimization-based
contact force solver for regular hand designs, solutions of
the model does not depend on structural stiffness of the hand
that is hard to characterize, thus is likely to provide better
predictions.
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SpinyHand grasp model: wrench space
• Fixed-wrist failure

- Finger tendon force control 
- Polyhedral spanned by n finger 

wrench vectors 
• Floating-wrist failure

- Wrist F/T control 
- Fixed finger tendon 
- Loading at the wrist
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SpinyHand grasp model: wrench space
• Inefficiency: gradient descent search 
• Instability (sensitive to step size): ill-conditioned A

84

Contact 
ForcesWrench

Sweep along a unit wrench vector until spine failure

Sweep over every unit wrench vector (3D/6D sphere)

Gradient descent search
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SpinyHand grasp model: wrench space
1) Finger wrench spaces (points cloud x n) 
2) Finger position search space (6n) -> wrist position search space 

(6), search for valid sets 
3) Compute grasp wrench space point cloud based on valid sets 
4) Find the boundary

85

2-3 orders improvement: 12s / wrench limit (4200s / wrench space)  
   -> 6s / wrench space 
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Experimental validation: setup
• Adjustable spring for finger tendon actuation 
• Contact force sensing: capacitive tactile sensor
• External loading force (sync)

86
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Experiment results: loading process
• Similar trend
• Non-linearity

87

10

8

6

4

2
0

-2

10
8

6

4

2
0

-2

Model Experiment

Sh
ea

r
No

rm
al

External Pulling Force (N) External Pulling Force (N)

External Pulling Force (N) External Pulling Force (N)



Introduction SupraPed SpinyPalm ConclusionSpinyHand

Experiment results: wrench space
• Mountain shape symmetric about Fz
• avg. 12% error (2 surfaces & 2 grasping forces)

88
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Model discussion
• Key design parameters: 

joint pulley radius
• Design guidelines
• Dual pulley chain

- Pulleys with different 
radii

- Select with motor 
direction

89

2) Finger Frictions: The above model considers only
frictionless case. On the actual SpinyHand implementation,
there are frictions mainly caused by tile pulleys. Note that
these frictions can be mostly eliminated by using bulkier ball-
bearing-supported pulleys. Along with finger closing motion,
the friction on every pulley acts along consistent direction
and gradually reduce the tendon force f

t

from proximal to
distal. The magnitude of friction is proportional to tendon
force. This factor can be modeled by modifying b:

b =


K

r

q + p
r

� f

t

Mr
K

p

d+ p
p

� Mf
p

(c, f

t

)

�
(8)

where M is friction matrix with diagonal elements of [1 (1�
µ) . . . (1�µ)n�1]. µ is lumped coefficient of friction between
adjacent phalanges.

When the finger has settled on the surface, any change of
load on the finger base will cause tendon to transmit around
pulleys if no friction exist. However, in frictional cases the
transmission is resisted by frictions and fails to satisfy Eqn.
5. Before tendon starts to slide on any of the tile pulleys,
frictions along the tendon should balance any change of the
tangential contact force (along local x axis) �f

ci

on each
phalanx i. Therefore the friction matrix in Eqn. 8 should be
modified, with each diagonal element (ith) replaced by (1+
�f

ci

/f

pi

), which is bounded by (1±µ) when the tendon starts
to slide. Details about solving �f

ci

are in the appendices
(Section VI).

3) Finger and Grasp Stiffness: When finger settles on the
surface, wrench of the finger wf with respect to the global
coordinates can be easily computed with a wrench matrix
W

f

(transformation from 2D forces on the finger plane to
6D wrench in the palm coordinates):

w
f

= W

f

f
c

(9)

The wrench changes along with displacement of the 6D
finger position x

f

(finger base, origin of finger coordinates).
The finger stiffness matrix K

f

= dw
f

/dx
f

is a superpo-
sition of two components contributed by finger motion and
structural stiffness orthogonal to the finger plane. The finger
motion stiffness component can be numerically computed
based on resulted change on f

c

and w
f

(using Eqn. 6 and
Eqn. 9) with finger position x

f

infinitesimally shifted along
different DOFs respectively on the finger plane (x, z and
✓

y

in finger coordinates). Depends on which tendon control
method is used, tendon force f

t

may be a function that
depends on x

f

when computing K

f

. The structural stiffness
component along the rest three DOFs in finger coordinates
are simplified with linear beam elasticity.

Wrench of a grasp w
g

is defined as the sum of all finger
wrenches, which should be balanced by the wrist:

w
g

=
nX

i

w
fi

(10)

where w
fi

is wrench of the i

th finger in a n-finger hand.
The grasp stiffness matrix K

g

is defined similarly to K

f

,
with grasp position x

g

being the palm position (origin of
palm coordinates).

4) Grasp Wrench and Wrist Motion: Given position
of a grasp x

g

(6D for 3D grasping), it is straightforward
to compute corresponding positions and wrenches of each
finger, finally the grasp wrench w

g

with Eqn. 6, 9 and 10
(forward approach). However, solving in reverse from w

g

to x
g

(backward approach) is more complicated. If J

fi

is
the Jacobian matrix from palm coordinates to coordinates of
the ith finger:

dx
fi

= J

fi

dx
g

(11)

and based on the previous section, gradient on w
g

with
respect to x

g

can be represented with numerical estimation
of K

f

and J

fi

:

dw
g

=
nX

i=1

K

fi

J

fi

dx
g

= K

g

dx
g

(12)

Therefore the problem can be solved with a gradient descent
search. The increment of x

g

in each iteration is computed
by simply inverting a 6 by 6 grasp stiffness matrix K

g

that
can be numerically estimated. Finger positions and contact
forces can all be obtained from the solutions.

When running backward approach, the gradient descent
search may not converge for certain hand configurations but
can be resolved with smaller search step in most of the cases.
This is caused by ill-conditioned property of matrix A in
Eqn. 6 when solving for K

f

(cond(A) > 270 in all trials).
It reveals that any change of the finger condition (e.g. finger
base position x

f

) may result in significant change of the
contact forces f

c

(which will be verified with experiments
in Section IV-B). Therefore, backward approach is much less
efficient than forward approach due to its search-based solver
and step size constraint.

5) Grasp Failure and Wrench Limit: Grasp failure for
SpinyHand is defined as occurrence of spine adhesion failure
on any of the finger contact patches. A 3D adhesion model
has been well established in REFs to estimate the loading
limit of a linearly-constrained spine array, based on a few
number of data characterized on a single spine. In this work
we linearize the spine model for better efficiency, which is
turned into a function about loading direction:

f

s

= s(v) (13)

where f

s

is the magnitude of failure force and v is the unit
loading direction vector. Details of the model is described in
the appendices (Section VI). The approach will be empiri-
cally verified in Section IV-B. For conciseness , the condition
for grasp failure is denoted by f

c

> f
s

.
There are two types of grasp failures for SpinyHand. When

wrist position is fixed, increasing finger tendon forces will
eventually cause some of the prismatic phalanx to exceed its
adhesion limit and start to slide (fixed-wrist grasp failure).
By linearizing f

p

(c, f

t

) as f

t

f
p

(f
p

is a column vector of
2 if joint and tile pulleys have the same radii), Eqn. 6 can
be rewritten into:

f
c

= A

�1


K

r

q + p
r

K

p

d+ p
p

�
� f

t

A

�1


r
f

p

�

= c
sys

+ f

t

c
act

(14)
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Simulation platform
• SimGrasp

- https://bitbucket.org/shiquan/
sim-grasp/overview 

- Built upon dynamic engine 
Klamp’t 

- Grasp simulator for generic 
hand design (in batch)
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SimGrasp for SpinyHand

91

SpinyHand
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SimGrasp for SpinyHand
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Normal Hand
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Rock climbing analysis
• RoboSimian: 108kg

[286  -15  47] 
[273   -9  -42] [353   7  -62]

[593  28  54]
[368  -14  -96] 
[367   -9  100]

[Shear(N)  Moment(Nm)  Normal(N)]

Upper
Lower

Foot
Off

Hand
Off
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Future work
• Test SpinyHand in the field!
• Compliant-base spine tile 

and spine retraction
• Grasping strategy
• SpinyHand II
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Contributions
• SupraPed: point contact

- Design solutions of the smart staff 
- Sensing methods for terrain information 

• SpinyPalm: contact patch
- New spine design for higher adhesion density 
- Spine contact model 
- Scaled-up contact patch (70 kg) 

• SpinyHand: hierarchical contact patches
- Hand design (108kg Robosimian) 
- Grasp model with spine contact (non-convex) 
- SimGrasp: a convenient hand/grasping simulator 

Spring

Spine


