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Dynamically Reconfigurable Tactile Sensor for
Robotic Manipulation

Tae Myung Huh, Hojung Choi, Simone Willcox, Stephanie Moon, and Mark R. Cutkosky

Abstract—We present a tactile sensor intended for manipula-
tion by mobile robots, e.g., in the home. The surface consists of
an array of small, rounded bumps or “nibs,” for reliable traction
on objects like wet dishes. When the nibs contact a surface they
deflect, and capacitive sensors measure the corresponding local
normal and shear stresses. A feature of the sensor is the ability
to reconfigure dynamically depending on which combinations of
sensing elements it samples. By interrogating different combina-
tions of elements the sensor can detect and distinguish between
linear and rotational sliding, and other dynamic events such
as making contact. These dynamic events, combined with the
sensed grasp and load forces, are useful for acquiring objects
and performing simple in-hand manipulations. A proposed slip
detection method estimates minimum required grasping force
with an error less than 1.5 N and uses tactile controlled rotational
slips to reorient an unknown weight/surface object with 78 %
success rate.

Index Terms—Force and Tactile Sensing, Perception for Grasp-
ing and Manipulation, Dexterous Manipulation

I. INTRODUCTION

ONSIDER robots working at home. A quintessential

task is preparing meals and cleaning up dirty dishes.
Robots will handle delicate or slippery items, such as food and
dirty dishes, in a cluttered environment originally designed for
humans.

Humans achieve such manipulation tasks effortlessly using
multimodal information from tens of thousands of mechanore-
ceptors in their hands [1]. Ensembles of diverse slowly adapt-
ing (SA) and fast adapting (FA) mechanoreceptors play a
pivotal role for tasks such as object recognition, grasp force
control, and response to contacts [1], [2]. The processing of
large number of mechanoreceptors is achieved partially from a
convergence of neural connections; tens of mechanoreceptors
may be connected to a single neuron [3]. The receptive fields
associated with these neural bundles are intermingled, allowing
hyper-acuity [3].

In robotic manipulation, multimodal sensing has also been
studied to respond to diverse combinations of contact events
and to combine mechanical and thermal sensing, with exam-
ples dating from the 1980s [4] to recent years [S]-[11]. In most
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Fig. 1: Sensing pad is coated with bumps to grip in wet
conditions and measure normal and shear pressures. Different
dynamic interrogation schemes allow the robot to distinguish
between linear and rotational sliding.

cases, these multimodal sensors utilize different transducers
for static or dynamic quantities; however with sufficiently fast
sampling and sensor bandwidth it is also possible to use a
single transduction approach [5], [12].

An additional interest for manipulation in cluttered environ-
ments is to permit in-hand manipulation, which can increase
the dexterity available with an under-actuated hand. Examples
include rotational sliding and compliant accommodation to
forces from external contacts [13]-[16]. Tactile sensing can be
useful for such manipulations, especially if it can distinguish
among types of events.

In this paper, we present a new tactile sensor aimed at
meeting the needs of home robots. It provides a multimodal
tactile signal for detecting dynamic contact events as well
as monitoring the grasp and load forces. It can also distin-
guish between linear and rotational sliding. Drawing some
inspiration from the way in which multiple mechanoreceptors
may be connected to a single neuron, the sensor clusters
electrodes to achieve different goals. In the following sections,
we describe the design and fabrication of our sensor and
explain the method of dynamic reconfiguration. The sensing
elements measure localized normal and shear forces and
vibratory signatures for slip detection. Using the proposed
slip detection methods, a robot was able to estimate minimum
required grasping forces of different surface objects within a
1.5 N error. By using rotational slips controlled only by tactile
sensing features, the proposed algorithm could reorient and
release objects of various mass and surface properties with
78% success rates (Fig. 1).
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Fig. 2: Cross sectional and isometric view of the proposed
design. (a) Idle state. (b) Under normal compression. (c) Under
shear force. (d) Vibration under slippage. (e) Overall design
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Fig. 3: FEA simulation results for normal and shear loads.
Shear load cases are simulated with an initial 4N normal force.

II. DESIGN AND FABRICATION
A. Working Principle and Design

The proposed sensor has silicone nibs on the skin (Fig. 1),
which can displace in compression and bending for a combina-
tion of normal and shear sensing. Previous work on multiaxial
tactile sensing has adopted a similar approach (e.g. [17]-[19]).
The nibs also vibrate when they slip, as do other textures in
[12], [20]-[22]. Similar skin patterns have been shown to be
good for grasping wet objects [23].

As shown in Fig. 2, a grounded conductive fabric is embed-
ded throughout the nibs. Deflections of the nibs are measured
by changes in capacitance in the electrodes beneath. Each nib
houses four electrodes, labeled W,N,E,S. The sum of four
capacitance values measures normal force (b) and pairs of
differentials measure directional shear forces and vibrations
(c,d).

We explored how the geometry of nibs affects the sensitivity
using a 3D finite element model in COMSOL. We focused es-
pecially on nib diameter, D,,;;, because it represents the unique
geometry of our sensor. We fixed the lower body diameter
to I mm for robust bonding strength and nib center distance
to 3.8 mm for reasonable density while maintaining adequate
capacitance at each electrode. We fixed nib heights to 3.4 mm
for sufficient shear load sensitivity; taller nibs increase the
sensitivity while decrease the linearity. We assumed uniform
loading from a flat surface contact with friction. As a typical
result, Fig. 3 shows that a larger D,,;; produces greater normal
sensitivity but lower shear sensitivity. As a compromise, we
chose 2.8 mm for D,,;p,.

(a) Fill connecting pillar mold

with silicone (b) Fill nib mold with silicone

d) R 1d
(c) Stack the two and cure (d) Remove molds

|
(f) Place nibs on PCB and cure
TAP silicone RTV Acryl plate . PCB

(e) Spin coat silicone on PCB

3D printed mold .Conductive Fabric

Fig. 4: Sensor fabrication process

Our initial prototype consists of a 6x6 array. The nibs are
molded from silicone rubber (TAP, Silicone RTV). To reduce
the number of wires yet maintain adequate spatial resolution,
electrodes on the same sides of 2x2 clusters of nibs are
connected together; in total there are 9 taxels of 2x2 nibs
and 4 electrode connections per taxel. On a 4-layer PCB, we
wire all connections to each channel input of a capacitance-to-
digital converter (CDC) (Cypress, PSoc4200L). In Section III,
we discuss how the internal rerouting of electrodes in the CDC
enables multimodal sensing from a single device. The overall
PCB dimension is 27x41 mm.

B. Fabrication

As shown in Fig. 4, molds for the connecting pillars and
nibs are prepared separately. The mold for the pillars is a sheet
of acrylic and a polyimide mask (0.254 mm thick) etched and
cut with a UV laser (DPSS, Series 3500 UV). A sheet of
conductive fabric is primed (Dow, PR-1200 primer red 309G)
on both sides and aligned using dowel pins.

The nib mold is 3D printed (Stratasys, Objet30) using
VeroWhite resin. Silicone RTV is cast into the mask, through
the conductive fabric, and into the nib mold. Next, the silicone
is thoroughly degassed to remove microbubbles. Then, the
conductive fabric side of the connecting pillar mold is attached
on the nib mold and cured to create the nib array. The high
viscosity of TAP silicone RTV prevents it from spilling in
this process. When the molds are removed after curing, the
nib array is ready. To attach the nib array to the sensor, the
PCB surface is first primed and spin coated to create a thin
layer of silicone. The nib array is aligned with the PCB using
dowel pins and placed on the surface. Once the silicone cures,
the conductive fabric is connected to the ground electrode of
the PCB using silver epoxy and the sensor prototype is ready.

III. DYNAMIC RECONFIGURATION OF SENSOR CLUSTERS

As noted in the Introduction, multiple human mechanore-
ceptors are often clustered on a single neuron. With this
inspiration we implemented dynamic clustering. Our sensor
has an embedded microcontroller (PSoc 4200L, Cypress)
which connects capacitive sensor electrodes to its CDC mod-
ule via internal analog switches [24]. By controlling these
switches, we customize the electrically connected clusters of
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Fig. 5: Reconfigurable sensing modes: (a) Slow Individual
sensing (SI), (b) Fast Linear motion sensing (FL), (c) Fast
Rotational motion sensing (FR), (d) Sensing modes are dy-
namically reconfigured within each sample.

the electrodes for each scanning sequence. As an example
we demonstrate three different clustering schemes in Fig. 5(a-
c¢) for different modalities: slow individual electrode sensing
(SI), fast linear motion (FL), and fast rotational motion (FR).
We alternate dynamically among these modes, performing the
FL and FR modes more frequently than the SI mode. In SI
mode, the sensor scans individual electrodes to monitor local
normal and shear stress, which requires a 36 scan sequence.
In fast modes (FL, FR) we reduce the number of scans by
clustering 9 or 12 electrodes; each mode requires a two scan
sequence to produce a differential, as color-coded in Fig. 5.
We consider the direction of overall shear stress vectors and
cluster electrodes accordingly. The tradeoffs between static
and dynamic modes are the sampling bandwidth and spatial
resolution. This approach opens a possibility to customize the
cluster for different required bandwidths and information.

We present an example of switching three different cluster
modes in Fig. 5d. Each sample consists of 8 capacitance scans:
2 of FL, 2 of FR, and a subset of 4 in SI. Because the SI
mode has 9 subsets, the effective sampling rate is 1/9 of the
others. In this work, the embedded microcontroller is in 13-bit
resolution CDC mode, achieving 300 Hz for FL and FR modes
and 33.3 Hz for SI; the fast mode sampling rate is chosen at the
mechanical bandwidth of the sensor found by an impulse test.
The SI mode noise due to the small electrodes is suppressed
by a moving average filter with window size 5, still allowing a
wider bandwidth than human SA mechanoreceptor [1]. Using
this approach, we demonstrate multimodal functionality in the
following sections.
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Fig. 6: Normal pressure distribution when a hex wrench (31g)
rests on the sensor.

TABLE I: RMS error of sensor calibration (1000 test data).
(Input ranges F ,: £3.5, F,: 0 ~ -15N, M, , .: £50 mNm)
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Fig. 7: Distribution of calibrations (4000 train data) in z (left)
and x (right). Solid lines are means and shades are error bars.

-10-
154

Force (N)

0L —— Sensor Calibration
— 7 | ATI Sensor
-25 1 1 1 1 1 L L i
0 1 2 3 4 5 6 7 8
Time (sec)

(a) Force Calibration

0.05

-0.05

Moment (Nm)

— ATI Sensor

-0.15

0 1 2 3 4 5 6 7 8
Time (sec)

(b) Moment Calibration
Fig. 8: Sensor calibration (uniform loads) compared to ATI.

IV. SENSOR CHARACTERIZATION
A. Individual mode, quasi static response

In slow Individual mode, our sensor can measure localized
normal and shear stress from compression and bending of nibs
on different taxels. From 36 individual capacitance measures,
localized normal and shear force are estimated as follows:

Fni = Ci(W) + Ci(N) + Ci(E) + Ci(5) ey

Fs; = [Ci(E) — C;(W)]a + [C(N) = Ci(S)]i ()
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Fig. 9: Linear (a) and Rotational (b) slip test results on Masonite surface. For each slip, normalized shear force field (left) and

STFT of FL(top), FR(bottom) are depicted.

where Fly ;, 1357@ are localized normal and shear force esti-
mates, and C;(W, N, E, S) is a capacitance measure of each
electrode at the i*" taxel. Fig. 6 shows the measured local
normal pressures when the sensor has light normal force (31 g
weight). This is useful to locate where contact is made, which
may be critical to grasp quality. We demonstrate the use of
shear force distributions in the following section.

Because our sensor can measure local stress distributions,
it can estimate the overall force and moment from 36 channel
readings. To calibrate the sensor, we mounted it on a commer-
cial ATT Gamma F/T load cell and applied randomized forces
and moments manually with input ranges as shown in Table L.
We applied two load cases: uniform loads with a flat plate and
partial loads with a cylinder of 18 mm diameter. A second
order polynomial fit results in Table I. Figure 7 shows that
calibration without partial loads tracks the resultant F/T input
closer than calibration with partial loads. Due to friction and
the ability of the nibs to bend in any direction when a surface
is pressed against the sensor in the pure normal direction, the
repeatibility of the estimated normal force is poorer under
large compression, especially with the partial contact and a
cylindrical object. However, Fig. 8 shows calibration without
partial loads tracks the force/torque load cell readings closely.

Our sensor can distinguish linear and rotational slip in two
ways: using the individual mode for estimating load cases and
fast sampling modes for vibratory signals. In the individual
mode sensing, the shear force vector distribution (ﬁg,i) pro-
duces parallel vector fields in a linear loading cases (Fig. 9a).
However, we see vortex-like vector fields in rotational loading
cases (Fig. 9b). The vector field can be quantified by the curl
(V x ﬁs) about the center taxel. For a dimensionless quantity
we take the z,y distance between taxels as a unit length. We
use the curl as an initial indicator to distinguish load cases.

B. Linear and Rotational Slip

Using all three modes in Fig. 5, we test differentiating linear
and rotational slip. To apply different slip modes, we built
a testing apparatus using a muscle lever (Aurora Scientific,
309C), 3 axis linear stage (Zaber, T-LSM50A, T-LSM100A)
and a reference F/T sensor (ATI, Gamma SI-32) (Fig. 10). We
applied an initial normal grasping force with a linear stage,
ranging from 2 to 8N for linear slip and from 5 to 12N
for rotational slip. A ramped pull force was applied with the
muscle lever; four end loads (1, 2, 5, 8 N) and two ramping

Linear stage
Muscle lever

ATI sensor

Fig. 10: Test setup for various slip tests

1mm

1 5 0.658;

(b) Masonite (c) Wavy Acrylic
Fig. 11: Microscopic view of test surfaces.

periods (2, 5sec) were used. For the object, we used three
flat plates with different friction coefficients and textures as
in Fig. 11. For the linear slip test, we aligned our sensor
to the muscle lever axis, while for the rotational slip test,
we placed the sensor with a 31.75mm offset; we did not
control the moment arm carefully because the ATI F/T sensor
measures the applied moments. Slip distance and velocity were
measured by the muscle lever.

Another approach to distinguish among slip types is to
measure the vibrations of nibs using FL. and FR modes. When
an object is slipping, we expect a stick/slip motion, resulting
in vibrations, as shown in Fig. 2. To monitor the vibration,
we implemented a customized short time Fourier Transform
(STFT) analysis on the differential signals using a fast Fourier
Transform (FFT):

Dm =Um,1 — C'777,,2
STFT[t1,ta] = FFT{(Dn[t1,t2] — fit(Dm[t1,t2]))

x Hamming([t1,t2])} 3)

where D,, is the difference of the capacitance measures of
two clusters (Cy, 1, Chy2) in mode m (FL or FR), t; and ¢y
are the time interval of STFT, and Hamming is a Hamming
window with a size of the same interval. fit is a first order
polynomial fit; we suppressed the effect of ramping pull forces
by subtracting a line that is linearly fitted to the signals in the
current time window. From experiments, we found that the
effective frequency responses of the nib vibrations reside in
the range from 0-8 Hz; thus we chose the time interval of STFT
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Fig. 12: Slip type distributions with sensor features.

to be 500ms (a period of 2Hz sinusoid) and the overlap in
the STFT series to be 400 ms, making the STFT output rate
close to 8Hz.

From the STFT of the FL and FR modes, our sensor can
measure directional vibrations when linear or rotational slip
occurs. Fig. 9 shows spectrograms of the STFT from the FL
and FR modes while slipping. Because the linear and rotational
slips are not completely isolated, there are some frequency
responses in both FL and FR caused by both slips. However,
the STFT magnitude of FL is significantly greater than FR
in linear slip, while FR mode shows a noticeably greater
frequency response in rotational slip.

Using the three features, the curl from SI mode and STFT of
FL, FR mode, we demonstrate that it is feasible to distinguish
among linear slip, rotational slip and no slip. Fig. 12 shows
the average magnitude of STFT in the 0-6Hz for slip and
non-slip cases; the slipping pull displacements (~2mm) for
given normal forces were recorded and used as slip criteria.
Regardless of the surface type, rotational slips show greater
V x F. s and STFT magnitude of FR mode, while linear slip
shows less V x F' s and greater STFT magnitude in FL. mode.
Non-slip cases show lower STFT magnitude in both FL and
FR modes. Machine learning is beyond the scope of this paper
but it is visually clear that the data are highly distinguishable.

When differentiating slip from non-slip, unlike the average
magnitude of STFT, the temporal STFT magnitudes may not
be as useful because the vibration is on and off from the
stick/slip behavior, which is seen in Fig. 9. We address this
issue in the following section.

V. SLIP DETECTION FOR REGRASP

Applying appropriate grasping force is important for many
tasks, for example, handling delicate objects. Humans control
and adjust grasping loads using cutaneous tactile sensations,
especially for estimating the surface friction coefficient and
detecting small slips [2]. For robotic manipulation, studies
have included detecting incipient or gross slips to estimate
surface properties [22], [25] and readjust grasping loads [5],
[9], [25], [26]. When tactile sensors have nibs, detecting
and responding to incipient slip is sometimes challenging as
the rearrangement of a few nibs could be considered as an
incipient slip (requiring more grasp force) when it actually
results in an improved grasp force distribution with better
contact.

Here, we propose a control algorithm to detect incipient or
early stage gross slip using the vibratory signal and stationary
normal and shear force measures. We surmise that if Fis/Fy

Algorithm 1: Linear slip detection

flagCounter = 0;

CounterMax = f (I%i)’

while flagCounter < CounterMax do

Update CounterMax;

if Mag(STFT) > SLIP_THRES then
‘ flagCounter++;

end

if Time after last flag > TIME_THRES then
| flagCounter——;

end

end
Slip Detected;

Paper Masonite Wavy Soaped Wavy
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Fig. 13: Grasping forces"dopPrafdM\lip distances (bottom)
when slip is detected from Algorithm 1. Solid lines in the top
graphs are the minimum required grasping forces (F req)-

TABLE II: Slip Detection results

Paver Smooth Wavy Soaped
P Masonite  Acrylic Wavy
Mean ((|FG,5lip - FG&eq') (N)

All Detection  0.77 1.06 0.84 3.44
Gross Slip 0.55 1.05 0.51 3.22
Detection

Success % 3—1 % %
(<6mm)

is high, the grasp is more susceptible to gross slips; therefore,
even short vibratory signals appeared in STFT should corre-
spond to slip. Conversely, if Fs/Fy is small, Coulomb friction
may be sufficient to hold the object, in which case momentary
vibratory signals may correspond to a local rearrangement of
nibs.

To test this approach, we used the setup of Fig. 10 to apply a
decreasing normal force while keeping the pull force constant,
finding the normal force level when the plate is about to slip.
We used a set of plates as in Table II adding one very slippery
surface of a soaped wavy acrylic sheet (us: 0.07). The initial
normal load was set to hold the test plate tightly and release the
compression by 0.03 mm/s which decreases the normal force
by approximately 0.3 N/s. While reducing the normal force,
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we ran a slip detection algorithm as shown in Algorithm 1.
For proof of concept, we only applied the algorithm to the
linear slip mode, which can be extended in similar manner
to rotational slip. In Algorithm 1, the STFT threshold flag is
accumulated up to a positive integer C'ounter Max where it
claims detection of slip; C'ounter Max is negatively propor-
tional to the ratio between shear and normal force sensing as
follows:

Fs

CounterMax = f(—=—) =M — «
Fn

Fs,
> Fny

where M is maximum of CounterMax and « is a weight
of the shear-normal force ratio. Pull force is assumed to be
aligned to the y axis. We tuned M and « as 9 and 10 from
experiments. The pull force range was 1-5N and the grasping
force was measured using the ATI F/T sensor.

Fig. 13 shows the measured grasp force and slip distance
when slip distance is less than 6 mm, which is assumed a safe
detection. The safe detection success rate is 94.6% as shown
in Table II. The grasping forces at slip detection (Fi s1ip)
are close to the minimum required grasping force(Fg req)
estimated from the static friction coefficients (us, measured),
resulting in overall 1.5N of difference between them (Ta-
ble II). For readjustment of grasping force, we considered
gross slip detection cases, where F gp is less than Fg req;
their average difference is 1.3 N. This result suggests that a
controller could increment grasping force of minimum 1.3 N
to stop slips if it detects slip using Algorithm 1. We showed
an example of recovery control using the current setup in
the supplementary video; however, the response time of our
gripper is not sufficient to demonstrate a complete solution,
which we leave as future work.

The variance of slip distance and force on smooth masonite
fiberboard and wavy acrylic are somewhat larger due to the
lack of a smooth microtexture. We believe that with a more
conservative parameter tuning, Algorithm 1 should perform

“)

Algorithm 2: Reorientation - Adjust Grasping Force

Start closing Gripper;
if both Sensor A,B Z?Zl Crri+Crr, >
CONTACT_THRES then
| Stop closing Gripper;
end
Start lifting robot arm;
while Lifting to MidPoint do
if Mag(STFTry, 0-6Hz) > FL_SLIP_THRES then
Increment Grasping force;

Wait for TIME SETTLE
end

end
Grasping Force Adjusted;

Algorithm 3: Reorientation - Lift-Rotate Object

Start lifting robot arm;

while Lifting to TargetPoint do

if Mag(STFTrRr 0-6Hz) < FR_SLIP_THRES then
‘ Decrement Grasping force;

end

if Mag(STFTrpr 6-8Hz) > FR_UPRIGHT_THRES
then
| Stop Lifting Robot Arm;

end

end
Upright Orientation Detected;

better when dealing with smooth objects. The algorithm per-
forms acceptably on the soaped wavy surface with higher
slip distances, which should be attributed to the macroscopic
texture. In the case of paper surfaces, a pull force of 3N shows
much higher variance in slip distance; we think the current
parameter for Algorithm. 1 is too forgiving for this load case.
A more sophisticated method for tuning the parameters, such
as machine learning, should find more appropriate parameters.

VI. OBJECT REORIENTATION USING ROTATIONAL SLIP

The ability for a robot to reorient grasped objects can sig-
nificantly expand its dexterity in confined spaces. For humans,
a common strategy is to use rotational slip while keeping the
grasping force sufficient to prevent or minimize linear slip.
Grasp control for rotational slip and reorientation has been
studied (e.g. [13], [15], [16]) and a specified gripper design
for such tasks has been demonstrated [27]. We propose control
algorithms for reorienting an object as shown in Fig. 1, using
the fast linear and rotational (FL and FR) signals. Because it
relies on directional slip sensing, the algorithm is relatively
insensitive to the inertia of the object. For the following
experiment descriptions, we used an industrial 2 finger gripper
(Robotiq, 2F-85) and a 6 DOF robot (Universal UR5-CB2).
Our sensors were attached to the finger pads. For the object,
we made an acrylic box (155x33x54 mm, 118 g) with 3 bins
in which to place weights for different inertias and centers of
mass. The surface was covered with paper as in Table II for
increased friction.
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The algorithm consists of three parts: applying an appropri-
ate grasping force, maintaining rotational slip and detecting
an upright position, and releasing the object gently. When
applying the grasping force, we assumed that a force that
just prevents linear slip will allow rotational slips. We use
(Algorithm 2) to induce linear slips from a gentle initial touch,
gradually increasing the grasping force until no linear slip is
detected. For gentle initial contact, we relied on the capaci-
tance sum of FL and FR clusters rather than the calibrated
SI mode because of its faster response and sharper change
(Fig. 14). While lifting the gripper slowly (2 to 5 mm/s) after
initial touch, the STFT of the FL mode produces a signal
to increment the grasping force if its magnitude exceeds a
threshold (Fig. 15a). For simplicity we used slip detection
of Algorithm 2 rather than using the algorithm introduced in
Section V.

After the gripper reaches the midpoint, the robot arm lifts
the gripper faster (10 mm/s) until the object reaches the upright
position (Algorithm 3). While lifting, the controller checks
the STFT of FR mode to maintain rotational slip; if it does
not rotate, the controller decrements the grasping force. An
upright position can be detected from simple kinematics of
the supported object. When the contact point lifts at constant
speed, v, the angular speed of the object, 9, is

v

®)

~ lcos0

where 6 is the angle between the object and the support surface

TABLE III: Reorientation-Release Success Rate

Different Weights with 100g 200g 300g

COM at 5L (Paper) 9/11 10/11  7/11

Different COM with 200g | 1L iL 2L

with the Paper surface /11 10/11 3711

Different surfaces with Paper Masonite ~ Wavy
1

200g at 5L 10/11 10/ 11 10/ 11

and [ is the distance between the gripper and the object-surface
contact point, as shown in Fig. 15a. As 6 approaches to 90 deg,
the angular speed becomes higher, which appears in strong
magnitude of STFT in a higher frequency band (6-8 Hz).

After the object reaches an upright position, we show that
the controller can gently release the object by moving the
gripper forward while decrementing grasping forces until the
calibrated normal force and torsional moment diminish as
shown in Fig. 16. It is also possible to regrasp the object
firmly after reaching the upright position for a subsequent
manipulation task.

Table III shows that the proposed algorithm can reorient the
object decently without knowing its weight, center of mass
(COM), and surface; overall success rate is 78%. The poorest
success rate occurs when COM is above the geometric center;
the reorientation mostly succeeded but the object tips over
when the gripper releases it. The success rate will increase
if more sophisticated release control is used, for example a
vision-tactile control [28].

VII. CONCLUSION

We present a dynamically reconfigurable tactile sensor that
enables directional multimodal sensing. For sensing multiaxis
forces and vibratory signals, and potentially for better grip on
wet or slippery objects, our sensor is covered with rounded
silicone nibs. Deflections of each nib change capacitance
between the embedded conductive fabric and four electrodes
underneath; sums and differences of capacitance measure local
normal and shear pressures, and directional nib vibrations. The
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electrode connections are rerouted inside the CDC chip, which
allows clustering multiple electrodes for fast compressed
sampling and selectivity of directional signals. We propose
three modes, corresponding to electrode clusters (SI, FL, FR),
for sensing static local pressures and fast linear/rotational
motion; our subsampling method switches modes dynamically.
Although this sensor is not intended to replace a force/torque
load cell, it is convenient to compare its resultant force and
moment to those from a commercial 6-axis sensor. The results
match relatively well (Fig. 8), but variability in how the nibs
bend in response to a normal load affects the repeatability,
especially in contact with curved objects.

We demonstrate that features of the modes can be used
to distinguish among nonslip, linear slip, and rotational slip.
Using linear slip signals and static force measures, we present
a controller to detect onset of slip for readjusting grip forces;
the controller detects slips on different surface types with 1.5N
of grasping force margin from the minimum required amount.
We also demonstrate a controller to reorient an object using
rotational slips controlled only by the tactile sensor features;
the success rate of reorient-release is 78% for different inertia
and surface types.

As future work, larger arrays of sensing elements can be
implemented on flexible multilayer circuits to cover curved
robotic surfaces. The dynamic reconfiguration can also create
a customized first-order neural network for effective event
detection [3] and object recognition [29]. The proposed tactile
sensing method also can be integrated with other type of
sensors, such as inertial measurement units (IMU) or vision
[28], to provide data sets for machine learning, which may
allow grasp force control on various objects without hand
tuning.
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