
Leveraging Non-Prehensile Tactile Data for Object Retraction in
Constrained Clutter Using Imitation Learning

Dane Brouwer, Joshua Citron, and Mark Cutkosky

Abstract— Retracting objects from dense collections of mov-
able objects can be difficult for humans, let alone robots. A
key sensing modality that assists humans during these tasks
is the tactile sensing present on the non-prehensile surfaces
of our hands and arms. We propose an investigation of the
role of non-prehensile tactile sensing for training robots to
retract objects in constrained clutter. We have built hardware
and simulation environments that closely mimic each other and
utilize custom triaxial tactile sensors. We use imitation learning
to train policies both with and without tactile information on
259 demonstrations gathered in simulation and compare their
performance. Preliminary results indicate that non-prehensile
tactile information assists navigating to the target object despite
object jamming. Implementing these learned policies on the
hardware setup is ongoing work.

I. INTRODUCTION

Robots typically struggle when reaching through dense,
constrained clutter since visual occlusions and nonlinear
contact phenomena make it difficult to predict how the scene
will evolve.

Prior work has demonstrated that slender end-effectors
equipped with suction cups at the tip are effective at re-
tracting objects at the back of cluttered lateral-access scenes
[1]. This approach, however, relies on single object inter-
actions and requires iterative pushes and retraction, since
vision and proprioception are the sole sensing modalities. In
comparison, other recent work uses tactile sensing on a robot
arm to reach toward target locations through dense scenes of
movable obstacles, without vision [2].

Other work has highlighted the value of tactile, force-
torque, and audio data to augment vision for contact-rich ma-
nipulation using imitation learning [3, 4]. These approaches,
however, do not use non-prehensile tactile information—
despite experiencing many non-prehensile contacts.

More generally, we anticipate that imitation learning is a
promising candidate for contact-rich, non-prehensile tasks to
(1) improve a strategy’s use of features of tactile information
and (2) provide an agnostic evaluation of how much the
tactile information improves performance in comparison to
other sensor modalities. In particular, we investigate whether
non-prehensile tactile information is crucial for learning
strategies to reach and retract objects in constrained clutter.

II. METHODS

To investigate this hypothesis, we built a hardware setup
consisting of a dense collection of movable obstacles with
various physical and visual properties (Fig. 1a). We reach
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Fig. 1: Example constrained clutter scenes a) on hardware
and b) in MuJoCo. The normal force of the tactile sensors is
represented by the diameters in the top left inset and the shear
forces correspond to the arrow direction and magnitude.

into these scenes using a 7DOF industrial robot arm, an ex-
ternal isometric camera, an eye-in-hand fisheye camera, and
a slender paddle-like end-effector equipped with a suction
cup. We also incorporate suction pressure sensing and non-
prehensile triaxial tactile sensing, as presented in [5]. We
gather demonstrations using a 3Dconnexion SpaceMouse®

Compact to command the desired pose of the arm and the
suction state.

We have replicated the scenes in MuJoCo, as seen in
Fig. 1b. As others have asserted, there is a potential to train
in sim and have results carry over, low-shot, to hardware
with a sufficiently accurate simulation [6].

We randomize obstacle locations throughout the simulated
scene and define a task of retracting a red target object
located at a random location at the back of the scene. We
similarly gather demonstrations with the simulated robot and
sensors. We use an adhesion actuator to mimic the suction
cup behavior and only allow the adhesion force to turn on
when the suction cup is aligned with the target object surface.
We approximate the suction cup pressure sensing with a
binary signal corresponding to this contact alignment.

For initial validation of the proposed investigation, we
gathered 259 demonstrations in simulation on unique, ran-
domly generated scenes. We then trained two policies for
equivalent durations on the same demonstrations but with
access to different subsets of data. We used a diffusion policy
[7] imitation learning framework. The first policy we call



vision only, which has access to only proprioceptive and
eye-in-hand visual data. The second policy we call full info,
which has access to proprioception, eye-in-hand visual data,
non-prehensile tactile data, and the binary suction pressure
approximation. To maintain the same data structure between
the policies, the vision only policy contains zero matrices
corresponding to the additional information in the full info
policy. We evaluated the performance of the two trained
policies for 5 attempts each on 10 unseen scenes.

III. RESULTS

The process of training policies to effectively complete
this task is ongoing work, but we have several interesting
preliminary findings.

The task is difficult: Even an expert human demonstra-
tor often requires several attempts to successfully generate an
adequate demonstration. Especially when the target is a rect-
angular solid, aligning the end-effector to enable effective use
of the suction cup can be challenging. This is complicated by
the fact that impeding obstacles are densely distributed and
may jam, constraining robot motion. The maximum duration
of 90 s (chosen to make trials relatively short) also makes it
difficult to retract and re-enter if the initial approach angle
was not suitable to complete the task. We hypothesize that
a lack of haptic feedback to the demonstrator contributes
to the task difficulty. When training, it means that any
reactions to tactile information will be learned implicitly by
the policy rather than from explicit reaction strategies by the
demonstrator.

Approaching the target: A preliminary evaluation indi-
cates that the inclusion of non-prehensile tactile information
can improve a policy’s ability to approach target obstacles.
This is shown in Fig. 2. The vision-only policy generally
fails to get within one object diameter and makes little
final progress toward the goal, which is in part due to
object jamming. Policies with access to tactile information
consistently do better.

Retracting the target: We also have a preliminary indi-
cation that adding information from the suction contact state
improves the success of acquiring an object and being able
to remove it from the scene. This is demonstrated through
a 0% overall success rate for the vision only policy whereas
the full info policy successfully completes the entire task 6%
of the time.

IV. DISCUSSION

As robots begin to work in homes and offices, robust
interaction with unstructured environments becomes crucial.
We hypothesize that non-prehensile tactile information is
important to accomplish this goal and have built environ-
ments and experiments to investigate this hypothesis. Despite
the substantial difficulty of the task—as witnessed by the
difficulty in gathering successful demonstrations and the very
low early success rates for trained policies—the impact of
the tactile and suction pressure information shows an en-
couraging trend. These results indicate that an understanding
of contacts, not only on the nominal grasping surfaces but

Fig. 2: Preliminary simulated results of distance to the
target object (normalized by average object diameter) as a
function of reaching time (normalized by maximum allowed
duration, 90 s). Each distribution consists of 50 data points
corresponding to the 5 attempts each on 10 unseen scenes.

anywhere that contacts may occur, is likely important for
operating in cluttered and contact-rich environments.

It remains to be seen whether demonstrating the task in
hardware will be harder or easier than in simulation. In
particular, we are interested in the specific benefits from
tactile data and suction data alone. To this end, we intend to
conduct additional ablation studies to elucidate the relative
merits. We are also interested in exploring how best to relay
the robot’s sensed tactile data, including contacts on the arm,
to the human demonstrator via haptic feedback.

The preliminary results of this work raise several research
questions: Will the earlier reported results concerning sim-
to-real transfer hold for our task? Does force-torque in-
formation provide a comparable benefit to distributed non-
prehensile tactile information? Is normal tactile sensing alone
sufficient, or does shear information substantially improve
performance? Does the quality of the demonstration data
improve when (simplified) haptic feedback is displayed to the
human demonstrator? Will task decomposition into phases
(such as “reach”, “acquire”, and “retract”) enable satisfactory
success rates? We are addressing these questions in our
ongoing work.
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