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Abstract— The manipulation of objects in a hand or gripper

is typically accompanied by events such as slippage, between the

fingers and a grasped object or between the object and external

surfaces. Humans can identify such events using a combination

of superficial and deep mechanoreceptors. In robotic hands,

with more limited tactile sensing, such events can be hard to

distinguish. This paper presents a signal processing method that

can help to distinguish finger/object and object/world events

based on multidimensional coherence, which measures whether

a group of signals are sampling a single input or a group of

incoherent inputs. A simple linear model of the fingertip/object

interaction demonstrates how signal coherence can be used for

slip classification. The method is evaluated through controlled

experiments that produce similar results for two very different

tactile sensing suites.

Index Terms— tactile sensing, slip, manipulation

I. INTRODUCTION

When manipulating a grasped object, events such as
making or breaking contact, and slippage, can occur between
the fingers and the object or between the object and external
surfaces. These events are ubiquitous in human manipulation
and provide us with important information about how a
task is proceeding. In many tasks, such as when assembling
or disassembling parts, or inserting a key into a lock, one
event signals success while another indicates failure. In
order to implement manipulation strategies that react to these
events quickly and appropriately, robots must have a way to
distinguish between them.

The majority of research in robotic tactile sensing has
focused on finger/object interactions. Recent reviews include
[1], [2], [3]. Numerous methods have been proposed for
detecting slips, and the small vibrations that accompany
incipient slippage between a finger and an object, in order
to react to or control slip during manipulation [4], [5], [6],
[7]. Other related work has focused on using information
obtained by sliding a finger or instrument over a surface to
recognize different textures as part of exploration, [8], [9],
[10], [11], [12].

Humans easily distinguish between finger/object and ob-
ject/world slips because they have different effects on
mechanoreceptors in the skin. In particular, FA-I (fast-acting,
type one) mechanoreceptors are strongly responsive to lo-
calized slips produced by interactions between the dermal
papillae and the surface of an object, while deeper FA-
II mechanoreceptors are particularly receptive to vibrations
propagating through the tissues of the hand, such as those
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Fig. 1: Two BioTac fingertip sensors are mounted on op-
posing fingers of a Motion Control Hand. The fingers are
passively loaded to provide grip force on objects while
various slip conditions are produced between the BioTacs and
the held object or between the object and external stimuli.

produced by a tool interacting with the environment [13],
[14].

Our prior work on slip classification [15] used a measure
of relative power between individual tactile sensors in an
array (localized events) and the entire array as an ensemble
(large receptive field). This paper presents a new signal
processing method for tactile array sensors aimed at distin-
guishing hand/object slippage from object/world slippage for
a variety of textures, conditions, and sensor technologies.
It is motivated by additional observations from biology
concerning relative timing and phasing of neural activity:

• the coincidence of initial neural spikes from mechanore-
ceptors in the human hand encodes information about
object properties such as friction or texture [16];

• neural activity during the deformation in halteres of
flying insects is phase-locked to wing flapping [17];

• coherence of pacinian corpuscle activity encodes vibra-
tory information in a cat’s footpad [18].

The new approach is based on a multidimensional version
of the classical definition of signal coherence which indi-
cates the degree to which individual sensors are sampling
a common underlying signal (e.g. the vibration of a held
object). The applicability of the method to different sensing
technologies is investigated in experiments using two very
different sensors: a custom piezo-film-based tactile array and
the BioTacTM sensor (SynTouch LLC) [19].
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II. TACTILE SIGNAL COHERENCE

To distinguish between hand/object and object/world slip
events, we begin by considering how the vibration source
differs in the two cases, and how that difference affects the
tactile array. During hand/object slippage, vibrations are gen-
erated by complex stick-slip phenomena. These vibrations
originate first at the edge of the contact patch between the
hand and object during “incipient slip” [4] and then across
the entire contact patch during gross slip. Because the relative
timing of the individual stick slip events depends on local
contact geometry, contact pressure, surface roughness, etc.,
the sensor array measures multiple independent vibration
sources. In contrast, object/world slippage causes vibration
of the held object. This single source then excites the sensor
array.

In this section we briefly review the properties of complex
coherence and mean square coherence (a full treatment can
be found in e.g. [20]) and show how those properties can be
used in slip classification. A generalization of mean square
coherence to n signals is derived by determining how much
of the group signal content can be explained by a single
underlying signal. This derivation is consistent with the
classical definition in the n = 2 case and can be used with
practical arrays of tactile sensors (n > 2).

A. Power Spectra and Coherence

A multivariate signal x has a power spectral density
matrix Px (ω) defined for each frequency ω, with the power
spectrum of individual signals xi on the diagonal and the
cross spectral density between individual signals on the off-
diagonals. The complex coherence between two signals xi

and xj is defined as the cross spectral density normalized
with respect to each signal’s power spectrum; therefore the
entries in the complex coherence matrix, Cx (ω) are given by

Cij(ω) =
Pij(ω)�

Pii(ω)
�
Pjj(ω)

(1)

From this definition, and because Px is a Hermitian
matrix, Cx has the following properties:

• the diagonals are 1, Cii = 1
• off diagonal magnitude is bounded, |Cij (ω) | ≤ 1
• the eigenvalues are positive reals, λ(Cx) > 0,∈ R.
In general use, “coherence” typically refers to the mean

square coherence between the signals, C2
ij

, defined as |Cij |2.
This quantity lies in the range [0, 1] and can be interpreted
as:

• the correlation between signals at each frequency,
• the constancy of relative phasing between signals at

each frequency,
• the degree to which one signal is a linearly filtered

version of the other, at each frequency.
In this analysis we make use of the following result. When

a multivariate signal y is a linearly filtered version of another
multivariate signal x, with y(t) = (H ∗ x) (t), then the
power spectral density matrix of y is given by
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Fig. 2: A full system model including motion/vibration of a
held object, the interface between that object and a finger,
and the mechanics of the finger.

Py(ω) = H(ω)Px(ω)H
H(ω) (2)

B. Two Sensor Model

We begin by constructing a simple linear model of the
world, object, hand, and sensor array system. A rigid object is
in contact with both an external, world object and a textured
tactile sensor with two embedded sensors. It is convenient
to consider the sensors as measuring surface strain because
many existing tactile sensors follow this model and strain is
additive. Formally, we make the following assumptions:

1) The held object is rigid.
2) The surface of the skin is textured and makes contact

with the object in a finite number of locations, m.
3) The variation of interface conditions (texture, contact

pressure, etc) between locations is negligible.
4) The transduction path from surface strain at contact

location i to sensor j can be modeled as a linear, time
invariant system with transfer function Fij .

The expanded block diagram for this system is shown
in Fig. 2 with individual single-input-single-output transfer
functions shown. Vibrations caused by slip between the
object and the world generate a single signal, u, which
propagates to the m contact locations through the body
transfer functions, bi. The strain at those locations is then
added to any strain due to slippage at the object/hand
interface, vi. Finally, the finger mechanics are modeled as the
transfer functions Fij , which determine the sensor outputs.

This model can be greatly simplified using multi-input-
multi-output transfer functions, yielding

s = F
T (bu+ v) (3)

where F ∈ Cm×2 describes the finger dynamics, b ∈ Cm

describes the coupling between object and finger, s ∈ C2

is the array output, and u ∈ C and v ∈ Cm are the input



vibrations due to the object/world slippage and object/hand
slippage, respectively.

Next we investigate how the two slippage cases affect the
coherence between the two sensor signals.

1) Object/World Slippage: In the case where there is only
object/world slippage the v term drops out of Eqn. (3) and
we are left with s = F

T
bu. Using Eqn. (2) we can compute

the spectral density matrix for the sensor output as

Ps =
�
F
T
b

�
Pu

�
F
T
b

�H

(4)

= Pu

�
F
T
b

��
F
T
b

�H

(5)

where we have used the fact that Pu ∈ R.
Because F

T
b ∈ C2 we have rank (Ps) = 1; therefore

when Ps is normalized per Eqn. (1) it yields

Cs =

�
1 1
1 1

�
(6)

Cs1s2 = 1 (7)

This indicates that the two sensor signals are maximally
coherent when they are both filtered versions of a single sig-
nal. The result is entirely in keeping with the interpretations
of coherence outlined above.

2) Object/Hand Slip: When there is only object/hand
slippage the u term drops out of Eqn. (3), leaving s = Fv.
Some additional assumptions about the signals and transfer
functions are required:

• Zero Cross-Talk: The column vectors of F representing
the transfer functions from contacts to each sensor are
orthogonal; FH

1 F2 = 0.
• Identical and Independent: Each vibration signal vi is

due to independent stick-slip events subject to identical
contact conditions. Therefore each vi has the same
power spectrum but has zero coherence with any other
signal vj ; Pv = pvI.

Using these assumptions and Eqn. (2) leads to the follow-
ing expression for the sensor spectral density matrix.

Ps = F
HPvF (8)

= pvF
H
F (9)

The off-diagonals of FH
F are zero due to the zero cross-

talk assumption, such that normalizing the matrix results in

Cs =
�
1 0
0 1

�
(10)

Cs1s2 = 0 (11)

This indicates that when the sensors measure multiple inco-
herent input signals with zero crosstalk between them, the
sensor outputs are minimally coherent.

The assumptions made for this model will be violated
in practice. During real manipulations slip may occur at
both interfaces. Soft robot fingers may undergo large strains
which violate simple linear elastic models of the transduction

paths from contact strain to sensor readings. The contact
conditions will not be identical at every location, nor will
the vibrations generated be completely incoherent. Finally,
while zero sensor crosstalk is always desired, it is very rarely
achieved in the design of tactile sensing arrays due to the
physical coupling induced by the finger medium.

However, this analysis does demonstrate that during ob-
ject/world slip, when there is primarily one source of vi-
bration, the coherence between sensor signals should be
large relative to that during object/hand slip, when there are
multiple sources of vibration.

C. Generalized Coherence
The preceding two-sensor example leads to a different

interpretation of mean square coherence which generalizes
to n sensors: the maximum fraction of normalized observed
signal power explained by a linear systems model with a
single input.

In this section we derive this result in the general case
and show that it can be computed with a simple eigenvalue
analysis of the complex coherence matrix. We then verify
that it is equivalent to the classical definition in the n = 2
case and verify its results for some limiting cases.

The n signals, si(t) are estimated by filtering a common
input signal, x:

ŝi(t) = (hi ∗ x) (t) (12)

with hi(t) being the impulse response of the ith filter. The
error signal ei(t) is given by

ei (t) = si (t)− ŝi (t) (13)
= si (t)− (hi ∗ u) (t) (14)

We seek to maximize the following objective function at
all frequencies, ω

max
u,h

J(ω) =

�
1− 1

n− 1

n�

i=1

Pei(ω)

Psi(ω)

�2

(15)

The terms within the summation are normalized error
powers; they are averaged by a factor of n − 1 instead
of n because there always exists a signal and filter pair
which makes one error term identically zero; e.g. x(t) =
si(t), hi(t) = δ(t) results in ei(t) = 0. This normalized
and averaged error is then subtracted from 1, leaving a
normalized measure of signal power explained by the linear
model.

Maximizing Eqn. (15) is equivalent to minimizing the
sum of the normalized error, Jeq . Because there is no
restriction on x or h, this optimization can be performed
independently at each frequency; subsequent ω arguments
have been omitted for clarity.

Jeq =
n�

i=1

Pei

Psi

(16)

=
n�

i=1

Psi − hH
i
Pxhi

Psi

(17)



Without loss of generality we can assume that x is a white-
noise input with unit power at all frequencies. If we let
Ds = diag(Ps) be the matrix with each signal power on
the diagonals, the objective can be expressed as

Jeq = Tr
�
D

−1
/2

�
Ps − h

H
h

�
D

−1
/2

�
(18)

=
n�

i=1

λ
�
Cs −D

−1
/2
h
H
hD

−1
/2

�
(19)

where we have used the fact that the trace of a matrix
is the sum of its eigenvalues. Jeq is minimized when
hD

−1
/2 = λ

1
/2v1, where λ1 is the largest eigenvalue of

the complex coherence matrix Cs and v1 is the corresponding
eigenvector. This yields

min
h

Jeq =
n�

i=2

λ (Cs) = n− λ1 (20)

Substituting Eqn. (20) into Eqn. (15) and simplifying we
find a new, generalized definition for mean square coherence:

C2
s
≡ max

h

J =

�
1− 1

n− 1

�
min
h

Jeq

��2

=

�
λ1 − 1

n− 1

�2

(21)

1) Verification for n = 2 Case: The general form of the
complex coherence matrix for n = 2 is

Cs =
�
1 c
c∗ 1

�
(22)

where c and c∗ are the complex coherence values between
the two signals and C2

s1s2
= |c|2 as per Eqn. (1).

The eigenvalues of Cs are λ1 (Cs) = 1 + |c| and λ2 =
1− |c|. Substituting λ1 into Eqn. (21) yields

C2
s
=

�
1 + |c|− 1

2− 1

�2

= |c|2 (23)

which is identical to the classical definition.

2) Performance in Extremes: There are two interesting
extreme cases we can investigate:

• Maximal Coherence: when all n signals have pairwise
mean square coherence values of 1.

• Minimal Coherence: when all n signals have pairwise
mean square coherence values of 0.

Those cases correspond to Cs matrices of 1 and I, respec-
tively, with eigenvalues λ1 = n, 1, respectively. Substituting
those values into Eqn. (21) yields C2

s
= 1, 0, respectively.

These results are consistent with the the new interpretation of
mean square coherence: a set of signals that are completely
coherent can all be perfectly explained by a single input
while signals that are are incoherent cannot be explained by
a single input.

TABLE I: Textures used in manipulation experiments.

texture description
A smooth masonite
B masonite with 1.59mm holes, 6.35mm grid
C masonite with 3.18mm holes, 6.35mm grid
D silicone sensor skin texture (1.6mm dia. x 2mm tall)
E masonite with 6.35mm wide rectangular slats
F 60 grit sandpaper
G 150 grit sandpaper
H 400 grit sandpaper

Fig. 3: Eight texture plates used in slip classification exper-
iments. Descriptions included in Table I

III. EXPERIMENTAL VALIDATION

In order to analyze and compare the performance of
generalized mean square coherence as a basis for slip clas-
sification, we performed a variety of manipulations designed
to evince different slip conditions. The experiments used two
tactile array sensing suites with different transduction mech-
anisms in order to investigate the method’s generalizability
to other sensor arrays. In this section the sensor suites and
the corresponding experiments are described.

A. BioTacTM

The first sensor system used is the commerically available
BioTacTM fingertip from Syntouch, LLC. A full discussion
of the sensor is beyond the scope of the paper; more informa-
tion can be found at [21]. For the puproses of this analysis,
the sensor array consists of the high-frequency pressure
signals available from two BioTacs mounted on opposing
fingers of a Motion Control Inc. hand (Fig. 1). The pressure
signal, Pac, is sampled at 2.2kHz with an integrated 10Hz
high-pass filter. These signals are synchronized between
fingers by the included sampling electronics.

Four manipulations using eight different texture plates
(Table I and Fig. 3) were performed using the BioTac
sensors. The Motion Control hand with attached sensors was
rigidly mounted on a stand (Figs. 1 and 4) and passively
closed on various texture plates. The following actions were
performed under two different speeds:

• passively pulled through the fingertips using added
weight;

• rubbed by an external gripper manually actuated along
a vertical slide as in Fig. 4a, with both soft and hard



(a) (b)

Fig. 4: Two of the four BioTac experiments: (a) a passively
loaded manual gripper slips against the held plate and (b) a
stylus is rubbed across the held textured plate.

interfaces;
• braced against a vertical shaft while vibrations were

produced by manually rubbing with an aluminum stylus
(Fig. 4b).

B. PVDF experiments
The second sensor system is a custom designed polyvinyli-

dene flouride (PVDF) piezoelectric system integrated into
a soft fingertip (Fig. 5). Each fingertip has an embedded
digital acquisition chip (Analog Devices AD7608) which
is capable of simultaneously sampling up to eight analog
channels at up to 250kHz. Due to bandwidth limitations
of the entire sampling system, each AD7608 is set sample
at 6.25kHz using a built-in anti-aliasing filter at 3.125kHz.
Eight separate PVDF strips are attached directly to the high
impedance inputs of the AD7608 in a voltage measurement
configuration, and arranged as shown in Fig. 5a. Up to
three fingertips are connected via SPI to a microcontroller
(Microchip dsPIC33FJ32MC304) which controls and syn-
chronizes sampling and communicates via USB to a PC for
data collection.

(a) (b)

Fig. 5: Tactile array sensor with eight embedded PVDF strips
in a) isometric view and b) profile. The sensor package can
be mounted on the benchtop slip test apparatus in Fig. 6

The PVDF-based sensor fingertips are mounted to the
bench-top test apparatus shown in Fig. 6. The apparatus

(a) Side view of the slip-classification testbed

xy
z Engagement

JR3 F/T
Sensor

xy
z

4-bar

Sensor/
Dummy

Vertical
Track

(b) Details of the slip testbed

Fig. 6: a) The benchtop slip-classification testbed used in
PVDF sensor experiments. Slippage may be produced be-
tween a test object and up to three prototype tactile sensors
and/or external “environment objects”. b) Schematic top- and
side-views show the arrangement and motion of engagement
mechanisms.

includes three engagement mechanisms arranged at 0◦, 90◦,
and 180◦ around a JR3 6-axis force/torque sensor (JR3
Inc, Woodland Ca) (Fig. 6b). Each engagement mechanism
consists of a vertical track mounted on a parallel four-bar
mechanism and is used to bring a PVDF fingertip or an
unsensorized “environment” object into contact with a “held”
object mounted to the force/torque sensor (Fig. 6b inset). A
spring loaded mechanism allows passive variations in the
generated contact force.

The data presented here are from two experiments, each
performed at two contact forces. A sensorized fingertip and
an unsensorized polyurethane blank (hardness shore 90D)
are mounted and brought into contact with a textured “held”
object. Then,

• the sensor fingertip is manually moved along the vertical
track, producing object/hand slip;

• the polyurethane blank is manually moved along the
vertical track, producing object/world slip.

The sandpaper textures (F-H) were used for the PVDF
benchtop tests. They were modified by adding a light layer of
spray-on rubber coating (PlastiDip SprayTM) to dull the sharp
edges of the sandpaper grit. This prevents excessive wear
of the sensors without significantly affecting the sample’s
roughness.
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Fig. 7: Coherence values for each experiment/texture combination averaged over all trials for a range of frequencies.

IV. RESULTS

Each experiment and texture combination was performed
10 times. BioTac experiments were additionally performed at
two speeds and PVDF experiments performed at two levels
of passive contact loading, resulting in a total of 640 BioTac
trials and 120 PVDF trials.

The complex coherence matrix for each trial was estimated
using the FFT and Welch’s algorithm [20], from which the
mean squared coherence value was computed using Eqn. (21)
at each frequency available from the FFT. The result was
averaged across the 10 trials to get an expected coherence
for a particular experiment/texture/speed/force combination.

Fig. 7 shows all the trial average results for the two sensors
and the associated experiments. Each point is the average
across all trials for a particular experiment with color/shape

indicating the experiment. Although the distributions of
results from the two sensors are noticeably different, in both
cases instances of object/world slip have higher coherence
values than instances of object/hand slip.

This trend is made clearer in Fig. 8. The regions defined by
the mean and standard deviation of the examples of each type
of slip are displayed instead of trial averages. The amount
of overlap is indicative of how well coherence values can be
used to classify slip. In the BioTac data (Fig. 8a) there is
significantly more overlap at higher frequencies in contrast
to very good separation in the 200-300Hz region. There is
also a frequency dependence in the PVDF data (Fig. 8b),
with better separation at higher frequencies and the worst
separation occurring at 900-1100Hz.
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Fig. 8: Regions generated by plotting the mean and standard deviation of the coherence for all trials of the given slip type
(object/hand or object/world). The trend of higher coherence values during object/world slip is clear and present in the data
from both sensors.



Fig. 9: A simple two-sensor test block. Two PVDF strips
are embedded in silicone 4.5mm below a textured surface
consisting of 1mm×0.8mm dia. posts with hemispherical
ends.

V. DISCUSSION

As expected based on the coherence analysis presented
in Section II, the examples of object/world slip produce
coherence that is generally higher than that produced dur-
ing object/hand slip. In the data from each sensor there
are frequency ranges which have good separation between
object/world slip and object/hand slip coherence values and
could therefore be used for classifying slip interface. How-
ever, the separation is dependent on frequency, and the well-
separated frequency ranges are different for the two sensors.

A goal of this research is to develop physically motivated
signal features for slip classification which generalize across
sensors and contact conditions. For this reason frequency
dependent results are undesirable unless they can be pre-
dicted based on the sensor design and are not functions of
the contact conditions, which may be unknown or uncertain
during manipulation tasks.

Because coherence values are large at frequencies that
have consistent relative phasing between signals, sensors
embedded in soft polymers may experience artificially high
coherence values at frequencies corresponding to bulk vibra-
tion modes of the sensor. This phenomenon was observed in
early tests using PVDF strips embedded in blocks of silicone
(Fig. 9). An FEA analysis performed in Solidworks indicated
that first the 5 bulk vibration modes of cuboid test blocks
of the same dimensions were clustered around 500Hz and
1250Hz. Simple tests in which a texture plate was manually
dragged across a test block (object/hand slip) or held against
the test block and rubbed with a stylus (object/world slip)
were performed. High coherence values were observed in
both cases near the bulk vibration frequencies (Fig. 10) indi-
cating that those frequency ranges do not provide information
pertaining to slip interface classification.

When this method is applied to other sensors suites, a
knowledge of modes common to all sensors in the array,
whether from bulk vibration modes of the finger material
or other sources, can be used to exclude certain frequency
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Fig. 10: Power spectral density and coherence for two-sensor
test arrays. Top: data from an object/world slip condition.
Bottom: data from an object/hand slip condition. Note the
relatively high coherence near 450Hz and 1200Hz during
both slip conditions. These frequencies correspond closely
to the bulk vibration modes of a block of silicone.

ranges from coherence calculations. This result also suggests
that certain frequency ranges corresponding to interactions
with a textured sensor surface may be especially useful
for coherence analysis. However, this has not yet been
experimentally confirmed and is a further avenue of work.

The method presented here supports a very liberal def-
inition of “sensor array.” Typically a tactile sensor array
is a physically contiguous set of sensors embedded in or
mounted to a single block of material. These coherence
methods can use distributed arrays of tactile sensors, such
as the Pac signals from two separate BioTac sensors. The
only requirement is that distributed sensors all be in physical
contact with the held object. While there is no specific
evidence of this inter-finger sensor fusion in human biology,
robotic systems using this method are able to take advantage
of vibrations picked up on all surfaces containing tactile
sensors that are in contact with a held object.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an analytical generalization of mean
square coherence, previously only defined for two signals,
which extends to populations of n sensors. This generaliza-
tion is a result of examining the degree to which individual
sensors are sampling a common underlying signal. It is
consistent with the classical definition when n = 2 and
can be calculated via eigenvalue analysis of the complex
coherence matrix of the population.

Using a linear system model of the interaction between the
environment, a held object, and an array of tactile sensors
in a robot hand we have demonstrated how mean square
coherence values can be used to determine slip interface. The
efficacy of this method was investigated using two different
sensor suites and a variety of textures and slip conditions.
Results from these experiments indicate that coherence based



measures can be used to classify slip type and should
generalize well to other sensors and situations.

The bench-top testbed used with the PVDF sensors has
many additional capabilities, including a variety of witness
sensors and the ability to generate slip independently on two
fingers and a third object/world interface. Future work will
explore the ability of coherence based methods to determine
which interfaces are experiencing slip in more complex
situations, e.g. slip at one object/finger interface at the
same time as slip at the object/world interface. Additionally,
extending these methods to a real-time system will require
investigating how much data is needed to reliably classify
slip, and what delays are introduced between the onset of
slip and a reliable classification.
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