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Abstract

The manipulation of objects held in a robotic hand or
gripper is accompanied by events such as making and
breaking contact and slippage, between the fingertips
and the grasped object and between the grasped ob-
ject and external surfaces. Humans can distinguish
among such events, in part, because they excite the
various mechanoreceptors in the hands differently. As
part of an effort to provide robots with a similar
capability, we propose two features that can be ex-
tracted from dynamic tactile array data and used to
discriminate between hand/object and object/world
slips. Both features rely on examining how slippage
affects an array of dynamic tactile sensors compared
to the way it affects individual elements of the array.
In comparison to approaches that require extensive
training with particular combinations of objects and
skin, the features work for a wide range of frequencies
and grasp conditions. The performance and general-
izability of the features are verified with testing on
three different kinds of sensors and for a range of ob-
ject textures, grasp forces and slip conditions. Both
features demonstrate greater than 85% accuracy in
identifying the location of slip.

1 Introduction

Human skill in grasping and manipulation relies
on remarkable tactile sensing capabilities. We can
quickly identify textures and fine features using our
fingertips, and while holding objects we subcon-
sciously control grip forces and prevent slippage.
When using tools we act as if they are extensions of
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our limbs, which requires not only dexterous manip-
ulation but sophisticated and implicit understanding
of how the sensations at our fingertips relate to the
interactions between the tool and the environment.

In comparison, robotic tactile sensing is impover-
ished. A sophisticated hand may have dozens or even
a hundred tactile sensors, but not tens of thousands;
and the sensors are typically of only one or two types.
Practical challenges include wiring and the need to
embed sensors in compliant skin materials which ex-
perience frequent impacts and deformation. In con-
sequence, the use of tactile information in robotics
has proceeded slowly in comparison to vision.

Notwithstanding these challenges, the need for tac-
tile sensing in robotics is steadily increasing. Robots
are being pushed to perform increasingly complex
tasks, often using human tools in unstructured en-
vironments. New developments in tactile sensing
are exploiting advances in flexible electronics with
shrinking sensors and microprocessors (often driven
by the smartphone industry) for local signal process-
ing and communication. With these advances we are
seeing robust tactile sensor arrays capable of deliv-
ering dynamic data into the kilohertz range (Ascari
et al, 2009; Aukes et al, 2014; Jentoft et al, 2013; Lin
et al, 2009; Mittendorfer and Cheng, 2011; Schmitz
et al, 2011), with recent reviews of the state of the art
in (Cutkosky and Ulmen, 2014; Dahiya et al, 2010;
Lucarotti et al, 2013; Tiwana et al, 2012; Yousef et al,
2011).

The work presented here is part of an effort to use
these improved tactile sensing capabilities to iden-
tify and distinguish between different kinds of contact
events, particularly those that occur between a hand
and a grasped tool or between a grasped tool and the
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environment. In routine tasks, autonomous robotic
systems will encounter both types of events. In iden-
tifying these events, we seek algorithms that do not
require extensive training, which work robustly for a
variety of sensor types, and which are not sensitive
to variations in grasp force and object texture.

The following sections start with a brief review
of relevant prior work, including studies of human
mechanoreception and manipulation event detection.
We then present two features that are based on how
events such as hand/object and object /world slippage
affect arrays of tactile sensors versus individual ele-
ments within an array. The corresponding algorithms
are suited for real-time implementation on hardware
with limited computational power, allowing for dis-
tributed computation to identify and classify these
events. The features are compared for three different
types of sensors and fingers, and a variety of grasp
forces and object textures. The results show bet-
ter than 85% identification of slip type across these
widely varying conditions. We conclude with a dis-
cussion of extensions that could further improve the
event detection and classification approach and with
areas for future work.

2 Related Prior Work

The work presented here draws inspiration from
human mechanoreception and event detection and
builds upon prior work in robotic slip detection and
texture identification.

2.1 Human Mechanoreception in Ma-
nipulation

An extensive body of research on human tactile sens-
ing has elucidated the roles of fast-acting and slow-
acting mechanoreceptors for detecting and distin-
guishing among various types of events during ma-
nipulation (Johansson and Flanagan, 2009). Fast-
acting mechanoreceptors are of particular importance
for detecting the formation and breaking of contacts
and the onset of slip. Meissner corpuscles are super-
ficial fast-acting mechanoreceptors mechanically cou-
pled to the dermal papillae (Fig. 1). They respond

strongly to events in the 10-60 Hz range that deform
the papillae, including deformations that occur as
fingers press upon an object and “plucking” of the
fingerprint ridges as an object starts to slide. Sens-
ing these events is important to human grasp force
modulation (Johansson and Flanagan, 2009; Johans-
son and Westling, 1984; Witney et al, 2004), because
they indicate incipient slip which occurs before gross
slip between the hand and a held object.

In contrast, when a held object vibrates, the many
individual Meissner corpuscles are not significantly
excited. As shown in (Hunt, 1961), the Pacinian cor-
puscles instead register significant neuronal activity.
More specific research by (Brisben et al, 1999) showed
that human perception of held object vibrations fol-
lows the response curves from individual Pacinian
corpuscles, indicating that these receptors are re-
sponsible for our perception of transmitted vibration.
Considering that the receptive fields of the Pacinian
corpuscle are large (Fig. 1) it is not surprising that
they are primarily responsible for sensing unlocalized
vibrations in the 50-300 Hz range.

The coding of tactile signals involves more than
the response spike-rate of certain mechanoreceptors.
Various studies have indicated that relative timing,
phasing, and even coherence of the responses of dif-
ferent mechanoreceptors may play a pivotal role in
conveying tactile information. In humans, Johansson
and Birznieks (2004) demonstrated that the relative
timings of the first intra- and inter-mechanoreceptor
neural spikes at the onset of stimulation are suffi-
cient to predict tangential force direction as a finger-
tip comes into contact with an object. Other stud-
ies of mechanoreceptors in cats’ paws (Greenstein
et al, 1987) and the halteres of flying insects (Fox and
Daniel, 2008; Fox et al, 2010) indicate that relative
phasing within populations of neurons carries impor-
tant information. Collectively, these results suggest
avenues for robotic sensing and perception which do
not rely simply on the amplitude of a given input sig-
nal but rather on more complicated, time-dependent
measures.



Figure 1: The depth of human mechanoreceptors and
their mechanical coupling to surrounding tissue gives
the fast-acting type I and II receptors very different
receptive fields. Receptive fields for Meissner corpus-
cles and Pacinian corpuscles are shown here, with the
area scaled to reflect actual receptive field measure-
ments from (Knibestol, 1973). Image adapted from
(Cutkosky and Ulmen, 2014).

2.2 Robotic Slip Detection

Slip detection is one of the earliest tactile sensing
problems discussed in robotics. Many of the demon-
strated solutions have focused on detecting the onset
of slippage, or even incipient slippage. Some of the
earliest work (Howe and Cutkosky, 1989) utilized ac-
celerometers embedded in the skin to measure the
small vibrations that accompany the onset of slid-
ing between an object and a finger. Embedded dy-
namic sensors, such as polyvinylidene-flouride stress
rate sensors, have continued to be a popular option
with a variety of working implementations (Fujimoto
et al, 2003; Howe and Cutkosky, 1993; Yahud et al,
2010; ?). These approaches directly measure vibra-
tions in the skin or finger medium that are produced
by the stick-slip phenomena occurring at the surface.

Other investigators have used less direct measure-
ments of these micro-vibrations, for example examin-
ing the variation of the center of pressure with respect
to the resultant forces to determine the onset of slid-
ing (Gunji et al, 2008; Ho and Hirai, 2014; Melchiorri,
2000). Still others have applied computer vision tech-
niques to the output of tactile sensing arrays, treat-
ing them as grayscale images, in order to track tactile
features moving across the array (Ascari et al, 2009;
7).

In addition, a wide variety of processing techniques

have been used to characterize and identify the dy-
namic force variations associated with slip, including
high-pass filtering, fast fourier transforms, extraction
of predefined features, and artificial neural networks
(Holweg et al, 1996; Jamali and Sammut, 2012; Ro-
mano et al, 2011; Teshigawara et al, 2011; Zhang and
Liu, 2012; 7). In most cases these require training
against a specific set of objects and grasp conditions,
or assumptions about the frequencies of vibrations
that occur as specific features of the robotic skin
slide on an object. However, there has been little
investigation of strategies to distinguish among slips
at different interfaces (e.g. finger/object versus ob-
ject/world) for a variety of grasping conditions.

2.3 Robotic Texture Recognition

Like slip detection, texture identification has been a
common application of tactile sensors in robotics. For
the present case, the interest is primarily to consider
how the skin and tactile sensors are affected by a
textured object so that slip detection can be made
relatively insensitive to object texture.

With a few exceptions (e.g. (Johnson and Adel-
son, 2009; Kim et al, 2005a; Maheshwari and Saraf,
2006)) most texture sensing uses dynamic signals gen-
erated as a skin with sensors passes over the surface
of an object. Indeed, the same sensors used for de-
tecting slip can generally be used for texture identifi-
cation. Approaches to texture discrimination vary
widely, from modeling of the sensor/skin response
(Howe and Cutkosky, 1993; Mazid and Russell, 2006),
to utilizing statistical or machine learning techniques
on features extracted from the time- or frequency-
space representations of the sensor signals (Decherchi
et al, 2011; Hosoda et al, 2006; Jamali and Sammut,
2011; Kim et al, 2005b; Lepora et al, 2010; Sinapov
et al, 2011). In a few cases, researchers have identified
signal features that are relatively insensitive to other
aspects of the surface interaction (e.g. sliding speed
or pressure). For example, Oddo et al (2011) used
relative phasing extracted from signal cross-spectra
as a speed-invariant feature for texture classification.



3 Classification Features

As noted in Section 1, there are increasing exam-
ples of tactile array sensors that, like fast-acting
mechanoreceptors, can respond to dynamic changes
in surface stresses, with bandwidths of 50Hz or
greater. In this section we present two methods to
use signals from such arrays to distinguish between
slips at two distinct interfaces: between the sensor
and a held object or between the held object and
the environment. The features are intended to be
relatively insensitive to variations in grasp force and
object characteristics such as texture.

We start with some definitions to frame the prob-
lem and limit its scope. The tactile array sensors
are modeled as N elements, or tazels, which are em-
bedded in the grasping surfaces of a robotic hand or
gripper. Often, the array elements are sampled by
microprocessors located within or near the array and
communicating over a digital line. The nth sample
from the discretized array signal is given as

(1)

where p; sample from the ith sensor. The array of
taxels is sampled at period T', while individual taxels
may be sampled with an individual constant delay &;.
Depending on the architecture, they may be sampled
sequentially, where each element is read one-by-one,
or simultaneously, where all elements are read at es-
sentially the same time:

T(i—1)
0; = N
0

Of the IV taxels of the array, there is an identifiable
subset, Scontact, Which are in contact with the held
object. For this work we assume that the sensor’s
surface texture does not vary significantly over this
contact patch and that slip, if it occurs, results in sim-
ilar relative velocity across the entire patch. In our
experiments this is true of the entire contact patch
and we therefore utilize all the taxels physically be-
neath it. In more complex situations this might not
be the case; however this initial work does not ex-
plore how to incorporate knowledge concerning areas
with significantly varying contact conditions.

Py = 1 (0T + 61), ... pn (0T + 8]

sequential sampling

Vi, simultaneous sampling

Rigid Object Contact Patch

Sensors

Figure 2: A cross section view of a contact patch,
including M individual contact points, and a set of
nearby sensors. The skin and finger medium form
a transduction path to the sensors, represented by
F(t). The sensors will pick up vibrations due to both
object vibrations and slip between it and the finger.

The taxels are assumed to be embedded in a lin-
early viscoelastic material forming the gripper skin or
body. It can be modeled as a linear, time-invariant
system transforming surface tractions (normal stress,
0..(t), and the two shear stresses, 7., (t) and 7.,(t))
to sensor outputs, similar to the model used in the
soft finger analysis by (Fearing and Hollerbach, 1985).

Most tactile sensors designed for dynamic sensing
applications have a textured surface. Textures have
been shown to produce greater high-frequency signals
and more consistent friction, and they have been in-
vestigated by a variety of researchers including (Fear-
ing and Hollerbach, 1985; Howe and Cutkosky, 1993;
Oddo et al, 2011). We assume the grasping surfaces
of the hand make contact with a held object in a finite
number of locations due to the surface features and
that surface traction inputs occur only at these M
locations. Therefore, the finger/sensor system maps
the traction input vector a(t) € R3M to the sensor
signal via the N x 3M linear system F'(t):

p(t) = (Fxo)(t) (3)

A schematic of an example sensor in contact with
a rigid object is shown in Figure 2 to illustrate these
assumptions.

Both features are extracted from the signals in fre-



quency space by computing spectral quantities over
a given frequency band. While there are many tech-
niques for spectral estimation from discretely sam-
pled signals, in this work we will rely on the Dis-
crete Fourier Transform, implemented via the Fast
Fourier Transform algorithm, and Welch’s algorithm
to improve estimation accuracy at the expense of fre-
quency resolution.

The frequency space representation of a signal will
be denoted with non-script text; e.g. the time sig-
nal z(t) becomes the spectral coeflicients x(k); the
time or frequency component arguments ¢ and k are
dropped where unambiguous. These spectral coeffi-
cients are complex quantities and * is used to rep-
resent the complex-conjugate, as in x*. The power
spectral density, generally a matrix quantity, is de-
noted P, ,, where the second subscript is omitted
when they are both the same.

3.1 Signal Power Ratio

As noted in Section 2.1, humans use different fast-
acting mechanoreceptors with small and large recep-
tive fields to characterize and distinguish among dif-
ferent contact events. In a similar way, the signals
from individual taxels of an array can be used to
measure local vibrations while the sum of the taxel
signals measures vibrations affecting the entire array
as an ensemble (Figure 3).

We hypothesize that classification can be made
based on the ratio of ensemble to local signal power.
When slip occurs between the object and the envi-
ronment we expect to see comparatively more signal
power in the ensemble signal than the local signal,
just as Pacinian corpuscles are more excited by such
events in humans. In contrast, when slip occurs be-
tween the hand and the object we expect to see com-
paratively more signal power in the local signal than
the ensemble signal, analogous to the increased ac-
tivity seen in Meissner corpuscles.

3.1.1 Definition

We begin by developing a measure of the local effect
of vibrations on the taxel array. The spectral coef-
ficients, p;(k), are estimated with a resolution of fy

(a) Receptive fields for each individual sensor

(b) Receptive field for the sensors as an ensemble

Figure 3: The data from tactile array sensors can
be processed to provide local and distributed recep-
tive fields as found in human biology. In (a) each
taxel is sampled and processed individually, produc-
ing smaller localized responses to stimuli at the sur-
face. When the taxels are sampled together, as if
they were one larger sensor, the response to surface
stimuli spreads out, as shown in (b).

for each discrete signal. The power contained in a
frequency band centered at f with width 2w is cal-
culated for each taxel, and then summed across all
taxels in contact with the held object

(f+w)/fo
o Y Y mwe| @
i€Scontact \k=(f—w)/fo

By summing power rather than the time-domain
signals p;(t) (or spectral coefficients) directly there
is no cancellation due to differences in phasing. The
signal at each taxel contributes to L(f, w) in the same
way, independent of the signals seen at any other
taxel. For this reason the measure more directly re-
flects how strongly the vibrations in the given fre-
quency range are affecting each of the sensor elements
locally.

In order to compute a similar indicator for the ef-
fect of vibrations on the array as an ensemble, the



signals from all the taxels in contact with the object
are combined in order to mimic a single virtual taxel
that covers the entire grasping surface and therefore
has a large receptive field. The power in this vir-
tual sensor signal is computed for the same frequency
range as in Equation (4)

(f+w)/ fo 2
E(fw)2 Y > pilk) (5)
k=(f—w)/fo li€Scontact

Here the formation of the single virtual taxel is per-
formed by summing the spectral coefficients, which
is equivalent to summing the individual signals in
the time domain. For some sensors, a more specific
method may be appropriate. For example, an ap-
proach for the BioTac®sensor presented in (Wettels
and Loeb, 2011) uses an artificial neural network to
extract the point-of-application and vector of applied
force from the array of signals. With any method it
will be possible for the signals from different taxels to
cancel one another at some frequencies while adding
constructively at others.

Finally, this biologically inspired feature is defined
as the ratio of the ensemble power measure to the
local power measure:

1 E(f,w)

L(f,w) =

= N L(f.w) ©)

where N, is the number of taxels in contact and nor-
malizes I'(f,w) such that it always lies in the range
[0, 1].

3.1.2 Sampling Delays

In order compute the ensemble power E(f,w) some
additional steps must be taken. Because the inten-
tion is to mimic a virtual sensor covering the grasp-
ing surface, the relative timing of the taxel samples,
given by §;, must be taken into account. If the array
is simultaneously sampled the individual signals can
simply be averaged as described above. For example,
if all sensors are experiencing the same input signal,
the relative phasing of the sequentially sampled sig-
nals will vary, causing cancellation in Equation (5).
However, if the same input were to be applied and

the sensors simultaneously sampled, there would be
no such cancellation.

If the samples p; of the ith taxel have been delayed
by §; relative to the ideal simultaneous sample time,
a resampled signal p; must be formed which estimates
the discrete sequence that would have been generated
by sampling the taxel with no delay. Because a simple
summation is used in Equation (5) to combine the
individual signals, the pure delay can be corrected
by applying a time advance to the original sample
signal directly in the frequency domain. With this
step added, Equation (5) becomes

(f+w)/fo 2

Z Z pi(k)eQTrjké,;fo

k=(f—w)/fo |i€Scontact

E(f,w) = (7)

where fy is the frequency resolution of the discrete
spectral estimate. We have used the fact that a pure
time delay manifests in frequency space as a pure
phase delay; the complex exponential term above.
This formula can be applied generally. In the simul-
taneous sampling case when d; = 0 the exponential
term from the pure delay becomes unity and may be
dropped.

This method can also be used to provide the resam-
pled time series in cases where a more complicated
procedure is necessary to combine individual taxels
into an ensemble, e.g. the artificial neural network
process mentioned above. The original signals can
be transformed to the frequency domain, the time
advance applied, and then transformed back to the
time domain.

3.2 Coherence

The second candidate classification feature is moti-
vated by considering the source of vibrations and
how those vibrations are transmitted to the individ-
ual taxels. Consider the case in which the finger is
in contact with a rigid object, as shown in Figure 2.
The surface tractions, o (t), are now due to the com-
bination of the motion of the held object and any
slip that occurs between the object and the finger.
We assume that over the sample duration, the ra-
tios of the components of linear and angular velocity



of the object with respect to the contact patch on
the finger remain constant. Therefore, the velocities
can be described with a single time sequence, v(t). In
addition, the stick-slip phenomena at each contact lo-
cation are assumed to generate surface tractions with
the same constraint: the three components are not in-
dependent and can be characterized by a single time
sequence, s;(t). Under these assumptions the surface
tractions can be defined as
o(t) = (B (bv)) (t) + Ts(t) (8)
where b € RS describes how the single degree of free-
dom of the body’s vibration is described relative to
the finger, B(t) € R3M*6 represents how that mo-
tion creates surface tractions at each contact loca-
tion, and T € R3M*M maps the single degree of
freedom of each stick-slip phenomenon to the pro-
duced surface tractions. Note that T' is block di-
agonal, reflecting the fact that the stick slip at each
contact location creates surface tractions at that loca-
tion. An expanded system block diagram with these
relationships is shown in Figure 4. Combining this
model with Equation (3) and transforming to fre-
quency space we have
p=F(bv+Ts) (9)

When the object vibrates, there is a common
source of vibrations being transmitted through the
finger medium to each sensor. Assuming those trans-
missions paths can be modeled as linear, the signals
at each sensor element should be coherent with one
another.

However, when the object slips against the finger
the vibrations at each contact region are due to the
local stick-slip behavior of the surface features. If
these stick-slip events are independent they will not
have consistent phase relationships. As indicated in
Section 3, we assume that the contact conditions do
not vary significantly across the contact patch, and
for these reasons we can assume each stick-slip event
has a similar power spectrum. Therefore the follow-
ing holds for the power spectrum of the set of all
signals:

Ps(k) = ¢l (10)

Surface Surface Finger
Slip Tractions Medium
N N T
510
7> (1) -
Obj o
ject
Vibration 2]
T 5:(0)
W0 > 20
—-@— 0! Sensor
Outputs

sult)
W o ay(t)
By

Figure 4: A block diagram representation of the ob-
ject/gripper/sensor model in Figure 2. Object vibra-
tion is transmitted to the system at each of the M
contact points where the individual signals due to slip
between the object and the gripper are also injected.

for some constants ¢, € C, and the identity matrix
I

For purposes of this initial development we will ad-
ditionally assume that the sensor is designed to min-
imize crosstalk between the taxels or that the surface
tractions at each contact location are sensed by a sin-
gle taxel. This implies that for an appropriate order-
ing of contact locations, F also has a block diagonal
structure and many of the f; ; blocks in Figure 4 are
identically zero.

3.2.1 Applying Signal Coherence: Two Sen-
sors

The complex coherence between two signals, denoted
Cz,y, is defined as the normalized cross-spectral den-
sity of those two signals with respect to the spec-
tral density of the individual signals, as in Equation
(11). The mean square or magnitude squared coher-
ence, Cg,u is also often used. As the name implies, it
is the mégnitude of the complex coherence squared,
and due to the relationships between cross-spectral

and auto-spectral density it lies in the range [0, 1]

Py

VPP,

A
Cx,y =

(11)



There are two physical interpretations of complex
and mean square coherence that are relevant to this
work. Firstly, Ciy measures the consistency of the
relative phase between the two signals at each fre-
quency; when the relative phase is constant Ciy =1,
and as it varies Cg’y — 0. Secondly, the complex
coherence values are related to the linear filter coeffi-
cients which minimize the power density of the esti-
mated signal when used to estimate one signal from
the other. Additionally, the mean square coherence
measures the fraction of the original signal power that
is present in the estimated signal using this filter; if
it is unity the signals can be perfectly reconstructed
from one another. A more thorough treatment of co-
herence and its interpretations can be found in most
spectral analysis texts, e.g. Marple (1987).

If we consider the filtering interpretation of coher-
ence, we can demonstrate how to apply it to the slip
interface classification problem using a simple two
sensor example (N = 2). In the case where the object
slips against the environment and not against the fin-
ger the surface tractions are due only to the vibration
of the object. Each taxel signal is a linear filtered ver-
sion of this underlying signal, and therefore of each
other, and we expect them to be completely coherent.
Equation (9) reduces to

p =Fbv (12)

and the power spectrum of p computed as
Pp = (Fb)* P, (Fb)" (13)

Because P, € C we know that rank (Pp) = 1.
When it is normalized per Equation (11) the mean
square coherence matrix is

, 11

%=l

This indicates that the two signals are perfectly co-

herent when the surface tractions are due only to vi-
bration of the held object.

In the second case we assume the object only slips

against the finger, and the surface tractions are due

only to the interaction between the finger and object.
In this case Equation (9) reduces to

p=FTs

(14)

(15)

with the power spectrum of p given by

Pp=FTP,TF’
=cF T TTF"

using the fact that the signals are identical and in-
coherent (Equation (10)). The no-crosstalk sensor
assumption, and the corresponding block-diagonal
structure of F and T, can be used to show that the

off-diagonal terms of P, are identically zero. The
mean square coherence in this case becomes
10
2 _
a-]b 9. a0

When we compare the results for the two cases we
see that the sensor signals in the object/world slip
case are completely coherent while the signals in the
object/hand slip case are completely incoherent. In
a real physical system this contrast is unlikely to be
as stark for a variety of reasons. First, it is possi-
ble that there will be aspects of both types of slip
at any given time, even in cases where only one is
dominant. It is also likely that the surface tractions
at the M locations due to object/hand slip will not
be completely incoherent, or will have slightly differ-
ent power spectra due to local differences in texture,
curvature, contact pressure, etc.

In practice, few tactile array sensors achieve zero
crosstalk, largely due to physical coupling in the fin-
ger medium. However, any practical array sensor ar-
ray must limit the crosstalk or coupling between tax-
els in order to generate useful information across the
array. As we relax the no-crosstalk assumption, there
will be an increase in the coherence of signals from the
taxels during object/hand slip, due to the fact that
each is partially sensing the vibrations occurring in
the other’s active area.

Nonetheless, despite anticipated violations of our
assumptions in practice, we expect to see significantly
higher coherence values between two sensors when
they experience object/world slip as compared to ob-
ject/hand slip. As seen in Section 4, this expectation
is borne out in the empirical results.



3.2.2 Extending Coherence

The example above used only two taxels and the co-
herence between them. In practice an array of NV
taxels will generate an N x N complex coherence ma-
trix. In order to simplify the feature space used in
classification we extend the concept of mean square
coherence to cover groups of N signals. Motivated
by the problem at hand, this will be accomplished
by extending the optimal filtering interpretation to
define the group square coherence, or GSC. The re-
sulting definition is similar to that found in Ramirez
et al (2008). However in this case there is a specific
physical interpretation of the derivation which pro-
vides insight into how and why it is appropriate for
this application.

The GSC, G2(w), measures the maximum normal-
ized fraction of signal power across the group that can
be estimated using a single underlying source signal
and a set of optimal linear filters. In this section we
show that the GSC thus defined can be efficiently
calculated via an eigenvalue analysis of the complex
coherence matrix.

We begin the derivation by calculating the normal-
ized total power in the error between the measured
signals @(t) and the signals produced by filtering a
single input signal u(t) through a filter bank h(t).
The error vector e(t) is given by

e(t) = z(t) — (h*u)(t) (17)

The power in each error signal is normalized by
the power of the original signal in order to prevent
signals with higher power from dominating the opti-
mization. If the errors are not normalized the optimal
filters and source signal, h,p: and wu,p: respectively,
will skew towards recreating the signals with more
power more accurately, even if the majority of the
signals are coherent but much lower power

N

. (18)
i=1 " i
=T (D;/*P.D;?) (19)

where D, is a matrix consisting of only the diagonal
entries of P,. We can then expand P, by using the

definition in Equation (17) to get

Pe = Pe +h Puh” — WPy — Peuh”.  (20)

Finally, P, is minimized with respect to the spec-
tral coefficients of the optimal filter bank, h, by tak-
ing partial derivatives and setting equal to zero:

T (D;”QPQD;W)

= —Tr (D;'Pe)

0

_p19

» 8hpe
=0

where we have used the properties that Tr(AB) =
Tr(BA) and 2 Tr(A) = 2 A. Substituting 57Pe
computed from Equation (20) and then solving for h
gives the optimal set of filters to minimize the sum
of normalized error powers.

PT P
ho — uLr — U 21
pt Pu P’u. ( )
m&nfe =N - 7%;;77:” (22)

In order to minimize P, with respect to u we first
note that the space of all square-integrable functions,
L?, can be represented by a Hilbert space, Hp with
the cross spectral density between two signals as the
inner product.

We can define the space X C Hp as the subspace
spanned by the individual signals, i.e. the rows of
x(t). Any source signal u(t) can be decomposed into
a linear combination of the signals which span X,
aTz(t), and an additional signal which is orthogonal
to the subspace, u, (t), such that

u(t) = ala(t) +uy (t). (23)

Using this decomposition into orthogonal sub-
spaces one can compute the power spectral density
matrices in Equation (22):



Py =2alPrat Py, (24)

Puz =2 Pe (25)

Pa:,u = Pma (26)

Combining these results with Equation (22) results

in
— al' P, D Pya
i N ‘r7x "~ x7 2
R Pe alPya+ Py, 27)

from which we can see that P, is minimized if and
only if P,, =0

Finally, using Equation (11) yields a simplified ex-
pression for Pe:

minP, = N — (D;/Qa)TCmCm (D;/za) (28)

where D, is a matrix with only the diagonal entries
of P,.

Equation (23) indicates that minimizing over the
source signal u(t) is equivalent to minimizing over
the coefficients a. This is an eigenvalue decomposi-
tion problem which is minimized when D}c/ 22 = kvy,
where v is the first eigenvector of C, associated with
the largest eigenvalue, A\;. The minimized value can
be expressed as

min P, = N — \3k2. (29)
h,u

Because u(t) and h(t) are convolved in Equation
(17) the optimal solution is only unique up to a scal-
ing factor between the two, i.e. if uop(t) and hop(t)
minimize Pe, 50 do 2uyp(t) and 1/2h,u(t). To find
a unique solution by fixing k, we restrict P, = 1 at
all frequencies:

P, =a’ Pya
= (Di/Qa)TCw (D}E/2a)

= M\ K2
=1

Applying this final scaling factor yields the results

of the optimization.

Iginfe =N-)\ (30)
hopt = Pwaopt (31)
CaDY %anp: = M1 (Co) DY anp: (32)

Equipped with the optimal source signal and fil-
ters we can define G2 and then simplify it. Let the
group square coherence be defined as the average of
the normalized power in each estimated signal.

N Pgz;(w) 2
(Z5 ) 1
N -1

Galw) =

(33)

We normalize to N — 1, including the —1 term in
the numerator, instead of N to reflect the fact that
the underlying signal u(t) can, at worst, perfectly
estimate one of our measured signals z;(t).

Following similar simplifications steps as for P,
above and substituting the optimal filters h,,; and
signal uepe, this definition can be reduced to

T — * 2
- (1)
x

N—-1
(a1
S \N-1
In Appendix A we demonstrate the following use-
ful properties that stem from this definition: that
Giw) = C2(w) for N = 2 and that the range and
extrema of G2(w) occur when all pairwise Cgiymj (w)
values are at the same extremes (0 or 1).

(34)

4 Slip Experiments

Three sets of experiments, each utilizing a different
setup and tactile array sensor technology, were per-
formed in order to generate examples of slip occurring
at both interfaces. While elements of the interaction
were held constant across these experiments for com-
parison purposes, a breadth of conditions were tested
to evaluate the ability to work with a range of tex-
tures from smooth to rough and at low and high grasp



forces and high and low sliding speeds typically used
in manipulating objects.

In all experiments, the held object consisted of a
specific texture sample taken from the set described
in Table 1 and Figure 5. The set includes smooth
surfaces, various grits of sandpaper, regular patterns
of holes or slats, and even a silicone mold of the skin
on the outer surface of the capacitive sensor (Sec-
tion 4.2). This last texture was chosen specifically to
present a difficult classification problem, especially
for the capacitive sensor, in that the same surface is
involved in both object-world and object-hand slip.

In this section we describe the sensors and the ex-
periments performed. Any sensor specific considera-
tions taken when extracting the features described in
the previous section are discussed with the results in
Section 5.2

Figure 5: The 8 textures plates used in experiments
(described in Table 1).

4.1 BioTacs™and MC Hand

The first set of experiments utilize the Syntouch Bio-
Tac ! sensor mounted on a manually controlled Mo-
tionControl MC 2 prosthetic hand.

The BioTac sensor is based on the the work of Wet-
tels and Loeb (Wettels, 2012) and consists of a rigid
central core surrounded by an elastic, fluid-filled skin
with fingerprint ridges like those of the human fin-

1www.syntouchllc.com

®http://www.utaharm.com

Table 1: Textures used in controlled manipulation
experiments (labels match samples in Figure 5)

description

smooth high-density fiberboard (HDF)
HDF with 1.59mm holes on 6.35mm grid
HDF with 3.18mm holes on 6.35mm grid
sensor skin (textured silicone rubber)
HDF with 6.35mm wide rectangular slats
60 grit sandpaper

150 grit sandpaper

400 grit sandpaper

T QD e

Hydro-Acoustic
Pressure Sensor
(Hydrophone)

Fingernail

(To Hold Skin
In Place) \

Elastomeric ="
Skin

Thermistor

Incompressible
Conductive Fluid

Impedance Sensing
Electrodes

Rigid Core

Figure 6: Crossection of a BioTac®sensor demon-
strates its construction and the location of various
sensing elements. The pressure sensor and impedance
electrodes are useful in slip discrimination, mimick-
ing the FA-IT and FA-I human mechanoreceptors, re-
spectively. Reproduced with permission of SynTouch
LLC

gertip (Figure 6). The sensor includes thermal, vi-
bration and skin deformation sensing capabilities, of
which the latter two are useful for slip and texture
classification.

Skin deformation is sensed via an array of 19 pas-
sive sensing electrodes distributed across the surface
of the inner core of the sensor. These electrodes mea-
sure the impedance through the fluid to 4 active ex-
citation electrodes at 100Hz. In addition, as the fin-
ger rubs across surfaces, vibrations are detected by
a hydro-acoustic pressure transducer with a filtered
bandwidth of 1040Hz. The signals from this dynamic
sensor, roughly akin to the human FA-IT mechanore-

ceptors, have been used to characterize surface tex-
tures (Fishel and Loeb, 2012).
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Figure 7: (Experiments with BioTac®sensors used a
passively loaded prosthetic MC Hand®equipped with
two opposing sensors.

A single embedded microcontroller performs se-
quential analog-to-digital conversions of the signals
described above, in addition to temperature informa-
tion and low frequency pressure measurements. The
different measurements are interleaved, such that ev-
ery high frequency pressure reading is followed by
a different electrode, low-frequency pressure, or tem-
perature measurement. This results in a 4400Hz sam-
ple rate for the pressure sensor and a 100Hz sam-
ple rate for each electrode. Up to three BioTacs can
be synchronized such that each pressure or electrode
measurement is simultaneous interfinger, while the
electrodes are sampled sequentially intrafinger.

A MotionControl MC prosthetic hand was instru-
mented with two BioTacs in the thumb and forefin-
ger positions as in Figure 7. The hand, statically
mounted on a stand, was closed upon objects pas-
sively with a grip force of ~2.5N using a pre-load
spring. Motion during the experiments was produced
manually by the experimenter.

Four separate motions were performed in order to
produce slip at the two interfaces (Table 2). In the
first, the MC hand was closed upon one of the texture
plates which was pulled through the grasp via exter-
nal weights, inducing slip between the fingers and the
texture plate. The other three motions produced slip

Table 2: Types of motions used to generate different
slip conditions on the BioTac®experimental system

No. | Description Slip

1 Held object drops with ad- | object/hand
ditional weights.

2 Stylus drags across surface | object/world
of held object.

3 Soft  secondary  gripper | object/world
grasps object and pulls.

4 Hard secondary gripper | object/world
grasps object and pulls.

between the held texture plate and an external ob-
ject. The second scenario consisted of bracing the
held texture plate against a vertical rod to prevent
large oscillations while a blunt aluminum stylus, ap-
proximately 15cm long with a tip radius of 3mm,
was dragged across it with a normal force of approxi-
mately 2N. The third and fourth motions were iden-
tical except for the contact surfaces involved. Both
utilized an additional passive gripper mounted on a
vertical shaft to pinch the texture plate. This addi-
tional gripper was manually drawn along the shaft,
slipping against the texture plate. In one case the
gripper’s surface was hard plastic while in the other
the gripping surface was covered with the same sili-
cone skin used for texture D.

In these experiments slip was produced at either a
low speed, of approximately 2cm/s or a high speed
of approximately 5cm/s. Each motion, texture, and
speed combination was performed 10 times for a total
of 640 trials. Data were recorded using custom soft-
ware provided by Syntouch from both BioTacs for a
period of 3 seconds, including the slip events of inter-
est. The data were manually cropped after collection
by visually observing the pressure signal to determine
when the trial occurred in that 3s window.

4.2 Capacitive Sensors and Adaptive-
Gripper

For the second set of experiments, capacitive sensors
were affixed to a Robotiq Adaptive Gripper®. The
suite, shown fully installed on the hand in Figure 8,



consists of 132 taxels arrayed across the grasping sur-
faces. The taxels have an average area of ~lcm? and
are covered with a silicone rubber skin textured with
1.6 mm tall posts with 2mm diameter hemispheri-
cal ends with a 77% packing ratio (same as texture
D in Figure 5). This configuration yields a sensor
and skin with stiffness of 300N/m and low force sen-
sitivity of 6mN. In addition to the capacitive tax-
els, each distal phalanx is further equipped with a
three-axis accelerometer for measuring vibrations of
the sensor package on that phalanx. The sensor de-
sign is covered in (Aukes et al, 2014; Heyneman and
Cutkosky, 2012). The sensors have a physical band-
width of > 200Hz and are sampled by an Analog De-
vices AD7147 capacitive to digital converter (CDC).
Each AD7147 sequentially samples up to 12 taxels at
a rate of 300Hz.

> Capacitive Pads

Accelerometer

Figure 8: The Robotiq AdaptiveGripper®with the
capacitive sensing suite installed (a). The full suite
includes 132 capacitive taxels and 3, 3-axis ac-
celerometers mounted on the back of each distal pha-
lanx. Insets show closeups of the outer skin texture
and the configuration of the capacitive pads on the
inner surface (b) and back (c) of the distal phalanx,
as well as the location of the 3-axis accelerometer.

The Robotiq AdaptiveGripper equipped with the
capacitive sensor suite was mounted on a position-
controlled AdeptOne 5-axis SCARA robot arm, (Fig-
ure 9) to move the gripper into position and pro-
duce manipulation primitives to generate both types

of slip conditions. The gripper was used at its lowest
strength setting producing grip forces of ~15N during
all trials.

Figure 9: Experiments using the capacitive sensor
suite for the AdaptiveGripper®were performed with
the gripper mounted on an AdeptOne robot arm.
Manipulation primitives were scripted via simple co-
ordinated motion of the arm and gripper, while data
were recorded from the tactile sensor suite.

Five motions were executed, as outlined in Table
3. Motion 4 was repeated twice; once with a rounded
hemispherical stylus and once with a sharp pointed
stylus. Motions 1 and 2 both produce slip between
the finger surface and the texture plate, while mo-
tions 3-5 produce slip between the held texture plate
and the environment. Motion 5 was specifically cho-
sen to be difficult. In this case the surfaces involved
at both interfaces are the same: texture plate and
silicone molded skin. The speed was held constant in
all trials and each motion/texture combination was
repeated 10 times for a total of 480 trials. Markers
were automatically inserted into the captured data
after the Adept had finished accelerating into its mo-
tion and after the motion had completed to allow for
automatic extraction of relevant slip data.



Table 3: Manipulation primitives used in experiments
with the AdeptOne

No. | Description Slip

1 Pinch stationary object and | object/hand
pull away

2 Rub single finger across a | object/hand
stationary object

3 Remove object wedged (but | object/world
not clamped) in a vise open-
ing

4 Drag stylus across station- | object/world
ary object

5 Drag object across patch of | object/world
silicone with skin texture

4.3 PVDF Sensors
Platform

and Benchtop

The final set of experiments utilized another custom
sensor design. These sensors incorporate embedded
strips of polyvinylidene-flouride, or PVDF, a piezo-
electric polymer often used for dynamic tactile sens-
ing (Cutkosky and Ulmen, 2014). The embedded
strips are thin and flexible, having little effect on the
elastomers in which they are embedded.

The fingertips are designed to be interchangeable
with those of the Robotiq Adaptive Gripper and con-
tain up to 8 strips of PVDF, along with an AnalogDe-
vices AD7608 digital acquisition chip. The chip pro-
vides variable sampling rates, matched analog anti-
aliasing prefilters, and simultaneous sampling on up
to 8 channels. Due to communication throughput
considerations in the rest of the acquisition system,
the sensors were sampled at 3.125kHz, with an anti-
alias filter with a cutoff at 1.5kHz.

Although they can be mounted to the Adaptive-
Gripper, the experiments with the PVDF sensors
were performed on a dedicated benchtop test plat-
form designed for controlled slip experiments. As il-
lustrated in Figure 11, the platform consists of three
engagement mechanisms arranged around a centrally
mounted texture sample. Each fingertip is brought
into contact with the sample via a spring loaded 4-bar
mechanism, and can then be moved vertically using

<«— PVDF Strip

Rivet
Connections

Sensor with
8 PVDF strips

Rigid Backing

Inner Core /

Circuit Board Outer Skin
Figure 10: An exploded view of a PVDF sensor fin-
gertip shows the basic construction. A two step mold-
ing process with both an inner core and outer skin al-
lows the position of the PVDF strip(s) to be tightly
controlled. Rivets connect the strip(s) to the circuit
board, which is bonded to a 3D printed finger back-
ing. The inset shows a completed sensor.

a linear slider. The texture sample is mounted on a
commercial 6-axis JR3 force/torque sensor with 1kHz
bandwidth. This sensor provides an initial contact
signal for calibration as well as total shear force dur-
ing experiments and an independent measure of the
vibrations experienced by the sample. An infrared
position sensor is mounted inside each engagement
mechanism to measure motion of the samples before,
during, and after slip.

As in the BioTac experiments, slip was produced
manually by the experimenter. While the system al-
lowed for much more sensing of the entire process,
the breadth of motions was much more limited. Two
fingertips with sensors, and a third dummy finger-
tip with no sensors, were brought into contact with
the sample. Then either the dummy or the two fin-
gertip sensors were manually slid along the vertical



Engagement
mechanism

Sensor or
dummy

u

JR3 F/IT
sensor
(beneath
object)

X
y
z

Figure 11: (Left) A top view of the test platform
shows the arrangement of engagement mechanism
around the JR3 force/torque sensor where the tex-
ture samples are mounted. (Right) A side view of the
engagement mechanism highlights the parallel four-
bar mechanism which is used to bring sensors or inert
objects into contact with the texture samples and the
vertical slider track which allows them to slip against
it.

Vertical
track

.............................

tracks. Sliding the passive dummy fingertip produces
object/world vibrations that are transmitted through
the object to the sensor fingertips; sliding the sensor
fingertips produces object/finger slippage.

For these experiments the texture samples were
limited to the three sandpapers used in the other
tests. Contact forces of ~5.5N and ~10N were pro-
duced by varying the preload springs in the engage-
ment mechanisms. To reduce abrasive wear, the ob-
ject samples were covered with a thin sprayed-on rub-
ber film. Each experiment was repeated 10 times,
resulting in a total of 120 trials.

5 Classification Results

Once relevant features are extracted from raw sen-
sor data there are many algorithms that can be ap-
plied in order to make classifications. Since the focus
of this research is on the design of physically moti-
vated and extendable features we evaluate their per-

formance using a simple naive-Bayes maximum like-
lihood estimator (MLE). The features are extracted
from each trial and grouped based on their slip type:
object/hand vs. object/world. Using a 10-fold val-
idation scheme each group is split in to 10 sets and
each used as the validation set in turn. The remain-
ing 9 sets not used for validation are instead used to
fit the features from each class to a normal distribu-
tion. The features from the validation trials are then
assigned slip classes to maximize the likelihood of the
measured features, given the probability distributions
inferred from the test sets.

The performance of a feature is simply the num-
ber of trials that were correctly identified using this
procedure. While this is certainly not the most so-
phisticated method for using these features, it does
provide an equal footing for comparison.

5.1 General Feature Performance

Either of the features can be computed over any fre-
quency range, including the entire signal spectrum.
While the results from the naive-Bayes MLE serve as
a quantitative comparison, performance can be qual-
itatively demonstrated by graphing the classifiers for
a range of frequencies. In Figure 12a, the feature G2
(eq. 34) is computed for the BioTac sensor experi-
ments in frequency bands of 10Hz. The 10 trials for
a given experiment are averaged to produce each data
point in the figure. In this plot, as well as Figures 15,
17, and 18, unfilled data points indicate object/hand
slip while filled indicate object/world slip trials. To
simulate the action of the naive-Bayes MLE, Figure
12b shows the regions bounded by one standard de-
viation for the sets of all trials for both classes of
slip. In this example one can see very good separa-
tion of these two groups, suggesting that the MLE
will adequately classify examples.

In order to investigate the general performance of
these features the naive-Bayes MLE is used in two
ways. First, the features are computed using the
entire spectrum. Second, the frequency band which
gives the maximum accuracy is determined by com-
paring the performance of the features when com-
puted across all possible bands. The latter approach
corresponds to the case where a sufficient body of
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Figure 12: A visual comparison of feature perfor-
mance for the average G? value across the 10 trials
for each BioTac experiment at a variety of frequen-
cies (a). The Object/Hand slip trials (Manip. 1 from
Table 2) are shown as unfilled circles; Manip. 2,3,4
denote Object/World slips. The regions describing
the examples of each type of slip can then be de-
fined by the average (solid line) and standard devi-
ation (dotted line) at each frequency (b). The G2
value is generated using the two pressure sensors in
the BioTac fingers, an example of interfinger feature
analysis.

data can be collected such that the features are
trained based on that body.

Tables 4-6 show the quantitative performance us-
ing the naive-Bayes MLE as described above. The
feature G2 has been calculated from a single finger, as
well as for multiple fingers. In the case of the BioTac,
the single-finger G2 utilizes the array of impedance
electrodes while the multi-finger G2 uses the high-
frequency pressure signals from the two fingers.

While some combinations of sensors and features
work across the entire spectrum, others do not; for
example computing the single-finger G2 with the Bio-

Tac electrode data is only marginally better than
randomly guessing. For combinations with poor per-
formance it is important to consider how knowledge
about the sensor may help in preprocessing the data
or choosing a frequency band to use, without resort-
ing to the generation of a large learning set.

5.2 Augmenting with Sensor Specific
Knowledge

Although the two features are meant to be generaliz-
able across sensors, they are not required to be sen-
sor agnostic. In this section we examine properties
of each of the sensors that can be used to improved
performance.

There are two general categories of sensor-specific
preprocessing that were discussed in Section 3;
sequential-sampling correction and contact estima-
tion. For the BioTac and capacitive sensors, which
sample arrays sequentially, the taxel data are trans-
formed into the frequency domain and a pure time-
delay applied to each signal individually with the ap-
propriate sampling delay. This yields a new set of
signals which estimate a simultaneously sampled sys-
tem. Note that this correction only affects the cal-
culation of T, since signal coherence, including G2, is
insensitive to constant phase shifts due to time de-
lays. Contact estimation is covered in the sections



Table 6: Multi Finger Group Coherence G2 Perfor-
mance

Sensor Full Best (f,w) [Hz]
spectrum | band

BioTac 75.78% | 86.72% | (5.0, 5.0)

Capacitive | 59.49% | 75.9% | (146.5, 2.5)

PVDF 99.16% | 100% | (22.55, 2.5)

below for each type of sensor.

5.2.1 BioTacs

The fluid-filled skin construction of the BioTacs in-
troduces physical coupling between measurements
across the electrode array. Because the fluid is in-
compressible, as the skin compresses in one area it
bulges away from the core in others (Figure 13), lead-
ing to increased impedance at the contact location
and decreased impedance away from it. A simple
method for contact estimation is to look for electrodes
which have an impedance above the nominal by some
threshold amount. In this case, that threshold is de-
termined by the noise on the sensor estimated from
the standard deviation of the signals seen from the
sensor at rest with no contact.

F,
Nl FN‘ Fr Fingernail
—-
Electrode
Core
Fluid
Skin

(a) (b)

Figure 13: The fluid-filled elastomeric skin results in
strong coupling between impedance measurements.
A contact force with a significant shear component
causes the skin to compress on one side and bulge
on the other (b), while a purely normal contact force
causes both sides to bulge as the contact area com-
presses (b). Modified from (Wettels and Loeb, 2011)

After accounting for both sequential sampling and
contact estimation, the new performance values for
the features on the BioTac data are shown in Fig-

ure 14. In all cases the corrected data either shows
improvement in classification performance or is indis-
tinguishable from the uncorrected versions.

Biotac Performance with and without Correction
Full Spectrum Best Band

B 10 correction

I with correction

100 100

86.7 86.9
79.8 79.6

0 758 756

Accuracy [%]

20

Multi-
Finger G

Multi-
Finger G

Single-
Finger G2

Figure 14: The classification performance of the var-
ious features are shown for the BioTac sensors using
both original, uncorrected data as well as data that
has been corrected for sequential sampling and uses
the estimated contact location. These sensor specific
processing steps result in significant improvements
for some features and negligible changes for others,
while none are negatively affected.

5.2.2 Capacitive Sensors

The capacitive sensors have little coupling between
taxels. However, they are affected by being mounted
on a hard, flat surface in contact with flat objects.
Upon examining the qualitative results of the fea-
ture T' (Figure 15) it is clear that the examples of
object/hand slip have generally higher values than
object/world slip, in contrast to what one might ex-
pect based on human mechanoreception and what is
seen in the other two sensors.

This result can be explained by considering the
flat-on-flat nature of the AdaptiveGripper/object
contacts. Figure 16 demonstrates the different mech-
anisms at work in this scenario. When an object slips
against an external object (Figure 16a) it predomi-
nantly rotates in the fingertip grasp of the Adaptive-
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Figure 15: The visual comparison for the capaci-
tive sensors demonstrates that I" for object/world slip
(Manip. 1, 2 from Table 3) is generally smaller than
for object/hand (Manip. 3-5), unlike what is pre-
dicted from human mechanorecption. This inversion
is likely due to the fact that the capacitive sensor ex-
periments consisted primarily of flat-on-flat contact
conditions.

Gripper. This rotation causes relatively large, out-
of-phase signals on the taxels near the tip of the fin-
ger relative to those at the base. These signals sig-
nificantly cancel when calculating P (w) resulting in
small values of I'. In contrast, when the object slips
in the grasp this cancellation is not nearly as domi-
nant, meaning the magnitudes of P.(w) and L(w) are
of a similar scale, and T is closer to 1.

5.2.3 PVDF Sensors

For the PVDF sensor, the vibration frequencies of
the surface texture elements are of importance when
objects slide over the surface of the finger. Using a fi-
nite element model and sliding tests, it was confirmed
that the fundamental vibration frequency of individ-
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Figure 16: Because the surfaces of both the capacitive
sensor fingertips and the texture plates used in the ex-
periments are globally flat, they exhibit pathological
responses to the vibrations caused by object/world
(left) and object/hand (right) slip. This is com-
pounded by the fact that the taxels are relatively
large compared to the surface texture features.

ual texture elements was at approximately 1360Hz.
The classification features also show the largest sepa-
ration for frequencies in this approximate range (Fig-
ure 17).

Slip between the object and hand will excite vi-
brations at this frequency as individual surface tex-
ture elements experience stick-slip and resonate at
this fundamental frequency, generating significant in-
coherent signal content. In contrast, slip between the
object and environment will not generally exhibit sig-
nificant content at this frequency. By focusing on fre-
quencies that are indicated by properties of the sen-
sor itself, like the fundamental frequency of vibration
of surface features, the signal processing and classifi-
cation will operate on data which best captures the
inherent differences between slip at the two different
interfaces.
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Figure 17: The visual comparison G? between the

two PVDF sensors highlights the utility of charac-
terizing important frequencies in a sensor design.
The largest separation between object/world and ob-
ject/hand slip examples occurs above 1300Hz. This
corresponds very closely to the first mode frequencies
of the texture elements on the sensor surface, which
are primarily excited during object/hand slip.

5.3 Biomimetic Sensors vs. Bioin-

spired Processing

The power-ratio classification feature, I', presented
in Section 3.1 can be computed for any tactile array
sensor. While inspired by the function of the two rel-
evant human mechanoreceptors it does not require,
and may not produce comparable results with, a het-
erogeneous bio-inspired sensing suite.

Sensing suites described as biomimetic often use
two or more types of sensors, each measuring a differ-
ent quantity through different transduction methods
and/or placement, in order to more directly mimic
the FA-I and FA-IT mechanoreceptors in the human
hand. In the classification feature I" presented here
we have relied upon the ratio taken in Equation (6)

to cancel common-mode amplitude effects on both
the individual and ensemble measures due to differ-
ent slip conditions. While this is likely to be true
when both measures are calculated from a single ar-
ray, it may not be true when the signals are generated
by diverse sensors. Similarly, for the coherence fea-
ture using two different sets of sensors invalidates the
modeling used in its derivation and makes a relative
comparison of group coherence less meaningful. For
example, one sensor may generally have higher co-
herence than the other due to the mechanics of the
transduction, regardless of the type of slip involved.

As an example, if we compute the I' feature for
a combination of electrode and pressure sensors in
the BioTac sensor, Figure 18, it is readily apparent
that there is no region in which the two types of slip
demonstrate reasonable separation. Indeed, when the
classifier is qualitatively evaluated, the classification
accuracy drops by 8.9%.
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Figure 18: When using two separate sensors to more
directly mimic FA-I and FA-II mechanoreceptors, the
effectiveness of the classification feature I' decreases,
as indicated by the significant overlap between trials
of different types of slip.



6 Conclusions and Future

Work

This work focused on a new tactile classification prob-
lem relevant to advanced grasping and manipulation
in real world environment: determining whether slip-
page has occurred between the hand and the held ob-
ject or between the held object and the environment.
By considering the function of human mechanorecep-
tors in the same scenarios and the mechanics of tactile
sensors we proposed two simple, frequency-based fea-
tures that can be extracted from tactile array signals.

These features have been evaluated using three dif-
ferent tactile array sensors in three different experi-
mental setups. With appropriate sensor-specific pro-
cessing steps, such as contact estimation and sequen-
tial sampling correction, a simple naive-Bayes maxi-
mum likelihood estimator using 10-fold cross valida-
tion was able to achieve > 85% classification accuracy
for the majority of the feature and sensor combina-
tions.

Some of the experiments included manually gener-
ated motions, producing only moderately controlled
and repeatable trajectories, as typically experienced
in manipulating objects. We believe the variations
in slip speed, contact force, or other contact condi-
tions caused by this manual process are beneficial in
demonstrating the insensitivity of these classification
features to those factors. As an example, when sen-
sors with regular surface textures slip they generate
frequency content based on the texture’s spatial fre-
quency and the slip speed. If slip speed were con-
trolled tightly from trial to trial the result could be
a misapprehension that a certain frequency range is
particularly useful.

We discussed the utility of sensor characterization
for improving the generalizability of these features for
use with other sensors. For example, understanding
how to perform contact estimation, and which fre-
quencies will be preferentially excited will help gen-
erate the most discriminating features. Our results
demonstrate that these features can be used to dis-
tinguish between object/world and object/hand slip
even when using broad-spectrum data. However, as
discussed for the PVDF sensors, we expect they will

be most effective when the sensor mechanics, sensor
electronics, and signal processing methods are work-
ing together: the surface texture should naturally
generate signals at the frequency of peak sensitivity
for the electronics, and the methods described here
should use the signal content around that frequency.

The data presented here were post-processed. In
implementing a real-time system the processing re-
quired to generate these features is not prohibitive.
For example, the process of computing the the co-
herence feature for an array of 20 sensors using 1024
sample points and Welch’s algorithm (256 sample
windows, 128 sample overlap) takes 23.9ms, domi-
nated by the time required to compute the largest
eigenvalue. This benchmark is taken using unopti-
mized python code running on a 2.5GHz i7 proces-
sor. Instead, the main trade-off will be between the
time required for an accurate spectral estimate and
the acceptable latency in the system. Considering
a goal similar to human reaction times on the order
of 200ms, sensors with a lower sample-rate like the
BioTac impedance array at 100Hz will have trouble
making this trade-off, as there will not be enough new
samples (20 in this example) from which to make a
robust spectral estimate.

The classification features presented here are not
intended to be used in isolation. To reduce the inci-
dence of false positive and false negative errors in slip
detection it will be important to take advantage of ad-
ditional information from joint-torque sensors, con-
tact sensors, low-frequency tactile arrays, and even
vision systems. These sensors can be used to estimate
the contact state of the hand/arm/object system in
order to inform the use of any event classification
algorithms. For example, when manipulating an ob-
ject, knowledge about the proximity of other items
in the environment may generate a prior probability
distribution for use with classification methods like
the naive-Bayes MLE used here; if there are no ex-
ternal objects in the vicinity of the hand it is quite
unlikely that sensed vibrations in the tactile arrays
are due to object/world slip.

Although not explicitly tested in this work, there
are two situations in which a constant slip classifi-
cation will generate false-positives when neither slip
is occurring and noise or other vibrations in the sys-



tem or environment are sensed by the tactile arrays.
Because noise sources are typically common to all
channels (e.g. power supply noise, EMF coupling,
etc.) and therefore coherent, we would expect false
object/world slip detection. In order to alleviate this
issue, characterizing the noise floor of the array is nec-
essary so that classification is not performed when the
sensor signals lie below it. The second situation could
occur in a variety of scenarios such as a task being
performed on a mobile base (vibrations of the moving
base are picked up by all the sensors) or if another ob-
ject slips along a nearby, but unsensorized surface of
the hand. In these cases we expect the classification
to identify object/world slips more often. Correctly
identifying periods of no slip in these conditions will
likely require more general system knowledge, as dis-
cussed above.

Finally, this work has explored the use of data from
multiple fingers in order to classify slip by computing
the G? feature across fingers. In real manipulations
slip may occur at any of the many interfaces between
the object and the multiple fingers and the environ-
ment. A further extension to coherence, following the
same principles as the G2, may be helpful in deter-
mining the coherence between populations of sensors
relative to the coherence within those groups in order
to identify all interfaces at which slip is occurring at
any given moment.
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A Properties of G?

This definition of G2 can be checked for four basic
properties which indicate it is a useful extension of
classical coherence:
e it has the same range as C%; G2 € [0, 1]
e it is equivalent to C? when N = 2
e it takes on the extreme G2 = 0 iff Cii’wj = 0 for
i F
e it takes on the extreme G3 = 1 iff C7,
i 7]
The first property follows from the fact that Cp is
a normalized hermitian matrix. As a hermitian ma-
trix, all its eigenvalues are non-negative real values.
Because it is normalized, its diagonal entries are all
1’s and therefore its eigenvalues sum to N. These to-
gether bound \; € [1, N], which leads to G2 € [0, 1].
The second property can be verified by examining
Cyp for N = 2:

1 Cay 25
=l o1

Z1,T2

=0 for

and the eigenvalues of this matrix are A = 1£|Cy, 4, |-
Plugging into Equation (34) yields |Cy, 4,]?, as ex-
pected.

To prove that G2 only attains the extreme value of
0 when all individual signals are pair-wise incoherent
we simply note that the only normalized hermitian
matrix with eigenvalue Ay = 1 is the identity matrix.
If C, = I, then all the off-diagonal terms, the pair-
wise coherence between signals, are 0 as expected.

The proof for the conditions under which G2 =
is slightly more involved. First we note that Ay = NV
from Equation (34). This implies that A\; = 0 for
i # 1 and therefore that rank (C) = 1. From this
rank constraint we know that we can decompose the
complex coherence matrix as

Cp = v*0T
vivl vl viv
vl il vivk
x T x T x T
UNUT VN3 VNUN

for some vector v. From the constraint that all di-
agonal elements of C, must be 1, we have |v;| = 1.

Therefore all elements of C, have magnitude 1, and
we have

1 1 1

1 1 1
- .

1 1 1

as desired.

To prove the reverse direction, first note that for a
set of completely coherent signals, x(t), each signal
can be defined as a filtered version of the first signal:

x;(t) = (hy xx1) (1), or
z(t) = (h+21) (1), with
h(t) =[1,ho, ..., hn]"

This set of signals has the complex coherence ma-
trix

Cr = h*hT

This shows that rank (C,) = 1, and therefore \; =
N, \; =0 for i # 1. Finally, from Equation (34) this
yields g,i =1, as desired.



