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ABSTRACT

Research has shown that being able to vary the effective limb stiffness of legged robotics
can aid in efficient locomotion. This is especially true when considering a variety of terrains
and payloads. Recent developments have lead to multiple solutions for implementing variable
compliance mechanisms, including mechanically actuated methods as well as smart materials.
These methods have typically been directed toward moderately large, dynamic running
platforms. Less work has been performed on small scale robotics.

This work presents the design of a a new robotic leg mechanism for a variable stiffness
application. The design utilizes dielectric elastomer (3M VHB 4910) pre-stretched into a
diaphragm to rapidly control stiffness changes for enhanced mobility and agility of a field
demonstrated, small scale hexapod robot, iSprawl. The diaphragms developed are modular
in nature to allow for fine tuning of the permissible stiffness range. A set of electro-mechanical
test are utilized to obtain up to 92% reduction in stiffness that is controlled by an electric
field. Preliminary transient tests are used to characterize the response time of the system
when exposed to sudden field application. The device achieves a full transition to a decreased
stiffness approximately 66ms post field application. This work demonstrates a functional
mechanism for exhibiting tunable compliance on a reduced scale architecture and outlines

the necessary methods for future implementation.
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CHAPTER 1

INTRODUCTION

1.1 Goals

This work is devoted to developing a platform inspired mechanism for integrating variable
compliance into the limbs of a small scale robot. To keep pace with the rapid evolution of
robotic platforms, the mechanism will implement a next generation actuator using smart
materials. The addition of smart materials would aid in the advancement of robots built
for multi-terrain applications while providing a lightweight, robust versatility not currently
found in systems with fixed compliance. This research proposes a design for implementation
on a small scale dynamic running robot and further characterizes its capabilities as a variable

stiffness mechanism.

1.2 Background

1.2.1 Variable Stiffness

Robotics tend to look toward biology as a model for performance. Animals frequently
demonstrate a level of adaptability that is unmatched by current robotic designs. While
a system may be constructed for a certain task on a certain terrain, slight deviation from
those preset parameters can result in a drastic decrease in performance. When locking into
the mechanisms utilized by animals running over various terrains, passive stiffness rises as a
modifiable factor. Animals have been shown to rely on properly tuned leg springs in order to
achieve effective running (1, 2]. Furthermore, studies show that humans adapt their overall
leg stiffness when confronted with surfaces of varying compliance [3]. Similar research on
humans has been performed focusing on the the natural adaption of leg compliance when

landing on differing surfaces, demonstrating that rapid adjustment occurs in an attempt to




aid in the dissipation of energy [4]. In order for robotic system to emulate these types of
adaptations of their passive leg compliance, a variable stiffness mechanism is required. A
wide range of possibilities exist for implementing such a mechanism. One possible solution

is the inclusion of mechanical actuation to change the passive limb parameters.

1.2.2 Mechanical Solutions

Multiple approaches have been taken for fabrication of a mechanically varied mechanism
including the combination of motor driven pulleys and springs [5] and a system implementing
geometric constraints to control limb compliance [6]. The robotic platform Edubot,depicted
in Figure 1.1, implemented a novel mechanical design for varying the passive leg compli-
ance [6]. This platform is of particular interest due to both the experimental and simulation
data available on variable stiffness. The mechanism, seen in Figure 1.2 uses a worm gear and
motor attached to each leg as the actuator. Rotation of the worm gear adjusts the location

of a slider which acts to adjust the approximate bending location along the C-leg.

Figure 1.1: Hexapedal robotic platform, EduBot. The legs utilize a mechanically actuated
variable stiffness mechanism. The worm gears located in each leg adjust the position of a
slider which controls the effective bending location on each C-leg, changing the relative limb
compliance. [7]

Tests were performed on the platform to develop a knowledge of the ideal stiffness for

various terrains and weight constraints [7]. All experiments were performed with respect
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Figure 1.2: Diagram depicting variable stiffness leg mechanism implemented onto the
edubot platform. The slider-guide combination allow for the effective stiffness variation.
A mechanical stop is in place to prevent over compression of the C-leg when in its most
compliant state. [7]

to a single relative stiffness, which corresponded to approximately 12802, Using this
method an achievable stiffness range of 640% to 1113.6% was found to be desirable. This
ranges were determined through a fractional multiplier to the relative stiffness. The values
correspond to 0.5 and 0.87 multiplier for the lower and upper bounds, respectively. This work
demonstrated that by decreasing the effective leg stiffness can yield similar efficiencies when
traveling at varving speeds. For the purpose of this work the efficiency was quantified using
specific resistance. The tests were performed on carpet, padding, and grass surfaces, while
attempting to optimize forward velocity. Another parameter varied within this work was

the presence of a 0.91kg payload. A variation in stiffness when carrying the payload caused



a specific resistant drop to below that seen in the unburdened system on the same terrain.
The overall conclusions of the work support the theory that a variation of leg stiffness can
be used to optimize efficiencies when traversing terrain with varying compliance with and
without a payload. While this unique design helped to provide studies into the required
stiffness ranges for a dynamic running robot, the mechanism itself has drawbacks that would
prevent its implementation onto smaller scale platforms. The required single motor and
gear box per leg would overburden smaller hexapedal robots. Other restrictions arise with
the actuation time required for compliance variation. Typically the platform pauses to
perform the reconfiguration and resumes locomotion once the procedure is complete. This
would inhibit a robot from performing rapid, in-situ variations to accommodate sudden
environmental changes. Other designs have also proven themselves relatively bulky and
fragile [5].

1.2.3 Material Solutions

More preferable traits of a variable stiffness mechanism would be demonstrated in a design
that could exhibit rapid adaptability in addition to a robust construction. The mechanism
should also be compact and unobtrusive for implementation onto the limbs of smaller
platforms. The mechanism should also be lightweight, as to not hinder locomotion or detract
from the overall potential payload. Because of these requirements, a smart material solution

presents itself as a viable option for a variable compliance structure.

Shape Memory Polymer

Shape Memory Polymers (SMPs) show great potential for variable stiffness structures due
to their inherrent physical properties. In general they demonstrate the capability to undergo
large amounts of deformation while remembering the original pres-set shape. The process
experienced by a deformed SMP composite can be seen in Figure 1.3. These materials can
be designed to respond to a range of stimuli including magnetic, electrical, water/solvent,
thermal, and light [8, 9]. The most common of these tend to be the thermally actuated
SMPs. The mechanism is first designed by presetting the "original shape”. In the case of
fiber composites, this involves the development of the SMP in a resin-like form and infusion
into a fiber weave. Once the initial shape is set, the system can be heated past its transition

temperature which causes the cross-linking agent to enter an amorphous liquid phase. This
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provides the means to achieve great flexibility with limited resistance. Upon cooling in
a deformed state (referred to as storage in Figure 1.3), internal stresses arise due to the
reconfiguration of the cross linking agent. When heated past the transition temperature
once more, the stresses promote a self realignment of the material to its original shape

(referred to as recovery in Figure 1.3).

Storage

Recovery

Figure 1.3: A depiction of the SMP recovery process. The process moves from left to right,
top to bottom. The upper left picture represents the the deformed state with stored internal
stresses. As heating occurs the cross-linking agent liquefies and allows the reconfiguration
of the material to is original, zero stress state. [8]

Recent developments have utilized SMP as an alternative solution to a variable stiffness
C-leg design [10]. In this work a section of SMP composite was integrated into C-leg
architecture at a primary flexure point. The composite leg design is depicted in Figure
1.4a. The design was constructed with a length of heating element molded onto the surface
of the SMP section along with a thermocouple. Controlled by a Pololu Baby-Orangutan
microprocessor, the SMP segment was heated to increase compliance. A depiction of the leg
with the necessary wiring can be seen in Figure 1.4b. The achievable stiffness range included
the maximum value of 2310%, which corresponded to no heating, and a minimum stiffness

of approximately 600%.



SMP Section miie

Composite Leg

(a) The construction of an SMP inte- (b) The SMP leg with the associ-
grated C-leg design. The SMP section ated circuitry. Attached to the leg
fits into the inner portion of the c-leg is a thermocouple for measuring the
to maintain compression on the segment current temperature of the SMP sec-
throughout a loading cycle. This helps to tion, wires connected to the heating
prevent delamination during cyclic load- element integrated into the surface
ing. of the leg, and the Baby Orangutan

microcontroller for heating control.

Figure 1.4: The multiple stages of construction for the SMP C-Leg design. [10]

Since the actuation methods simply involved a current supply, the transition could be
performed in motion as compared to the mechanical design. Furthermore, the necessary
components for each leg are a heating element and thermocouple, while a centrally mounted
microcontroller could govern all the legs, the amount of weight added to the system could be
relatively negligible. The downfalls of this system arise during activation. The actuation time
required for the system demonstrated a certain degree of hysteresis due to the thermodynamic
properties of the material. Heating, and therefore an increase in compliance, could be
performed relatively quickly, but the increase in stiffness was directly dependent upon
the temperature of the SMP section. This yielded a system that was effectively hindered
by its capacity for heat dissipation. Mechanical problems were also experienced during

experimental testing of the composite legs. The high impact load associated with the bipedal



runner used for testing resulted in small amounts of delamination at the SMP-leg interface.
However, the design was susceptible to fatigue loading and needed further improvement
to increase durability. For systems operating with a higher frequency, it would be more

favorable to remove the time required for cooling.

Dielectric Elastomers

Dielectric Ilastomers represent a collection of materials which could offer both lightweight
mechanisms as well as decreased actuation times. There are multiple types of dielectric
elastomers available for use, the most commonly used are Dow Corning HS3 silicone, Nusil
CF 19-2186 silicone, and 3M VHB 4910 acrylic [11]. For the purpose of this work, VHB 4910
was the primary candidate due to its high breakdown strength, availability, and its relatively
low cost. The dielectric elastomers utilize an electric stimuli to promote a physical response.
If a flexible electrode is spread over the surface of the elastomer, a geometric reconfiguration
oceurs when an electric field is applied. This is demonstrated visually in Figure 1.5. The
high potential fields create an attractive force between the two electrodes. When this force is
coupled with both the natural compliance of the system and a tendency to retain a constant
volume, the electrostatic forces compress the membrane in a direction parallel to the applied
voltage field. This compression results in an overall expansion in the planar directions. If
the boundaries of the membrane are constrained to a predetermined size, as the specimen
displaces it produces an effective stiffness change. The magnitude of the voltage required to
induce a significant compression is typically greater than 15V [12]. VHB is capable of 100%
or greater deformation under a field on the order of 10-100MV/m. However, if the field is
too great, it motivates dielectric breakdown of the membrane. The maximum allowable field
is on the order of 35022 for silicone and 44022~ for VHB[11]. The induced expansion can be
altered by implementing a prestrain into the system, typically perpendicular to the electric
field. The addition of a unidirectional prestrain can constrain the majority of the expansion
in the unstrained axis, allowing for a greater level of control [13]. The presence of prestrain
can both aid and hinder the membrane configuration. With increasing prestrain, the required
field to manifest a reaction decreases, however it also shares a inverse relationship with the
dielectric breakdown regime. Further incrementation of the prestrain reduces the maximum
allowable field application. The actuation speed of VHI presents itself as a reasonable

candidate for relatively rapid applications, being on the order of 10’s of Hz. The VHB
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membrane is reliable under stresses up to 1 MPa {11], but it is best suited for lightweight

applications as the uncompressed thickness tends toward the scale of millimeters or less.

No Voltage Voltage Applied

Low stiffness conducting ———
coatings (top and boltom) ‘

Figure 1.5: A depiction of VHB before prior (left) and post(right) field application. The
surface is coated with a flexible electrode and once a electric field is present, an out of plane
compression occurs. This compression induces an planar expansion of the material. [11]

VHB is capable of being implemented in numerous configurations, allowing for a wide
variety of potential applications. Some examples of these are the "Spring Roll” design from
Figure 1.6, wherein a section of VHB is wrapped around the circumference of a helical
spring {13]. Depending on how the system is actuated, bending occurs in a prescribed
direction. Similar designs have also been created to act as a linear actuator for legged
robotics, while more planar configurations have yielded designs intended as serpentine
manipulators and flapping wing mechanisms [14]. A configuration that is more applicable to
the present work is a suspended membrane contained within a diaphragm. Further discussion

on this design and its capabilities is provided in Chapter 2.
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Figure 1.6: The Spring Roll configuration of the dielectric elastomer, VHB 4910. The
membrane encompasses the outer surface of a helical spring and when activated, results in
a controllable bending motion. The left figure shows the unactuated mechanism where the
right figure captures the deformed state. [13]

1.2.4 iSprawl Platform

Little work has been performed on adapting the iSprawl platform for variable compliance.
iSprawl, depicted in Figure 1.7, is a biomimetic hexapedal running robot which, like RHex,
is modeled using the dynamics found in cockroaches [15]. Since the iSprawl platform shares
similar characteristics with both RHex and EduBot, the previous research could be used
as a starting point for incorporating a variable stiffness mechanism with this robot. Even
though iSprawl may share inspiration with the previous hexapedal platforms, the physical
parameters are drastically different. It has an approximate mass of 0.3 kg and a top speed
of 2.3 m/s (15 body lengths/sec). The locomotion methods rely on the six leg wires being
thrust downward in an alternating tripod gate. The driving mechanism consisting of a
double crank assembly attached with a 180° phase shift. The leg wires are flexible in nature,
extending from the drive system through individual sections of low friction tubing which
help to reorient the driving motion in the necessary direction. A visual representation of the
driving mechanism and routing path for the leg wires can be seen in Figures 1.7a and 1.7b.
The wires are attached through the center of shape deposition manufactured (SDM) legs to
provide a rigid mounting surface, thereby constraining the direction of the locomotive forces.

The SDM legs incorporate sections of both rigid and compliant geometries. The compliant,



portions allow the the leg to passively rotate during extension, aiding in forward propulsion.
Upon exiting the inner portions of the leg, the wire is affixed with a section of rigid casing
to prevent bending of the limb. It was found that the introduction of an axial spring was
essential for high speed running. Because of this, a section of rubber tubing was connected
to the upper hip of each leg in order to act as a prismatic spring. The effective stiffness of the
spring is approximated at 1.7%. This stiffness value has yielded appreciable improvement
in performance, but the optimal value has yet to be determined. Examination of the drive
system during locomotion shows the linear deflection of the leg spring to be approximately
4 mm.

In the following sections the design, manufacturing methods, and characterization for
the dielectric elastomer based variable stiffness robotic mechanism is presented. Section 2
describes the physical architecture of the mechanism and its assembly. Section 3 establishes
the experimental setup for the quasi-static electro-mechanical as well as transient tests.
Section 4 concludes the results found in this work and establishes the futures goals of the

project.
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(a) The drive system for iSprawl. It uses a slider crank
mechanism with a 180° phase offset between the two
tripods.

(b) The wire routing path for iSprawl. The low friction
tubing can be seen as it gunides the wires from the drive
system in large loops and toward the legs of the robot.

Figure 1.7: A depiction of the iSprawl platform and its drive system and wiring paths.
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CHAPTER 2

DESIGN AND MANUFACTURING

Previous work on variable stiffness running suggests that small changes in stiffness have a
large impact on performance[7]. This work demonstrated that a robotic platform utilizing
compliant legs could achieve a higher efficiency by reducing its effective leg stiffness by
13% if it had a payload and up to 50% without payload. These ranges also encompassed
the desired stiffness modifications for varying types of terrain. Using these ratios, and
previous experiments[15], the relative stiffness for iSprawl was set at 1.7 N/mm and the
desired stiffness range was estimated to be 0.85% to 1.921280%. Since the desired stiffness
should never approach 0, the integration of a variable stiffness mechanism in parallel with the
current tubing design would allow for a platform that is not limited to a single ideal terrain
for satisfactory performance while minimizing the size of the variable stiffness mechanism. A
section of tubing with a reduced spring constant would act as the constraint for the minimum
stiffness, allowing the maximum achievable stiffness to be the value gained from the tubing
in addition to the number of modules connected in parallel with the tube. Each structure
was required to fit within the clearance provided between the legs of iSprawl, restricting the
module to have a total width less than 2.5 cm. The design also needed to permit the use of
electrodes in a way to provide an electric potential to the VHB and still allow a simple and
reliable electrical attachment point. In order to allow for out-of-plane deflection, maximum
area for larger deflections, and to allow elastic recovery forces to act equally in all directions,
the device was developed using a suspended ring methodology. The overall architecture of
a single module is illustrated in Figure 2.1, and a depiction of the methods for assembly is

portrayed in Figure 2.3.
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2.0.5 Early Iterations

The early designs of the system consisted primarily of ABS plastic cut in a circular
orientation. Initially, two symmetric sections would compress the layer of VHB from either
side using the natural adhesive tendencies of the membrane. Multiple attempts lead to
the realization that the bond formed between the VHB and ABS was not robust enough
to maintain any desired prestrain without experiencing slipping. To combat this problem,
the frames were redesigning to incorporate four mounting holes for 1.5 mm machine screws
as seen in Figure 2.2.. This addition permitted the prestrain to be maintained and but
presented the danger of conduction points during voltage application. Precautions were
taken to prevent conduction through the use of liquid insulation coated around the bolt
surface. Even with the addition of insulation methods, the design was deemed undesirable
and risky for any type of platform implementation. A second design was required that did
not involve puncturing the VHB with a conductive bolt.

The second iteration was designed with a similar geometry, except it was fabricated out
of thin aluminum in hopes of providing a better bond with the VHB. This assembly demon-

strated the capability to maintain a prestrain without requiring any clamping mechanism.

(b)

Figure 2.1: VHB 4910 prestretched and mounted to an aluminum frame. The inner ring
acts as the mounting point for the leg wire of iSprawl while the outer frame will be held
stationary. The semi-circular tab on the side acts as an external attachment point for the
electrical connections. Not pictured here is the insulating Kapton film between the membrane
and the frame. Pictures (a) and (b) shows an upper and lower view, respectively.
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The problems for this design occurred during field application testing. When connecting the
lead wires to the design, the original methods involved a direct placement of the stranded wire
to the membrane surface. This caused multiple problems during testing, including undesired
detachment of the wire from the membrane and more commonly marring of the VHB surface.
The micro-lacerations in the material from the wires added stress concentrations during field
application and resulted in frequent electrical arcing and membrane destruction. To limit
the burning of samples, a modification needed to be made to acconmmodate the wire leads.

The final design is described in detail in section 2.1

Figure 2.2: Early iteration of module design with inclusion of mounting holes. The holes
were fabricated to allow machine screws to clamp two frames together around the VHB
membrane. This design held the potential for electrical arcing through the mounting screws.

2.1 Diaphragm Design

The structure was designed to allow for modular implementation; permitting a range of
stiffness characteristics to be achieved. Due to the potential application for the iSprawl
platform, all designs were based around the constraints mentioned previously. The outer
frame was a square with 2.286 c¢m lengths on all sides. A circular section with a diameter

of 1.905 cm was removed from the center for membrane deflection. The small inner ring,
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approximately (.762 cm in diameter, was designed to be attached to the VHB membrane
allowing a contact point for manual deflection, while maintaining the biaxial pre-stretch of the
membrane. The center of the inner ring was drilled through to allow mounting of the iSprawl
leg. Both the inner and outer rings of the system were fabricated from 0.15875 ¢cm (liﬁ.”) thick
aluminum and polished to prevent abrasive features. With these design parameters, a single
modular frame, including both inner and outer rings, added only 1 g to the mass. In order to
allow for propagation of the applied field, compliant carbon grease electrodes were painted to
the entire exposed area of the VHB using a soft bristled brush to minimize surface damage to
the VHB. When coated with the carbon grease electrode, the design allowed for a total active
area of 9.576 cm?. The electrodes were extended to the aluminum frames so that wire leads
could be applied to the frame as opposed to directly contacting the VHB. The outer frame was
built with a semi-circular hoop onto the outer rim to allow for wire connections. To prevent
electric arcing during field application, layers of insulating Kapton film were placed between
the VHB membrane and the aluminum frame. The diaphragm mechanism described here
is essentially the same design developed by Dastoor and Cutkosky [16}. Implementation of
their methods could further decrease the weight and increase the durability for high frequency
variable stiffness applications such as the legs for the iSpraw! platform.

When stacking modules, the inner rings can be connected together via the leg shaft of
the robotic platform. The outer rings could be attached to the input and output leads of
an amplifier in an alternating fashion. This is graphically depicted in Figure 2.4a. This
methodology would result in the modules behaving similar to springs in parallel, thereby
allowing the overall stiffness on the system to be determined by a simple summation of
effective spring constants. Series implementation could be achieved by connecting the inner
frame to the outer frame of an adjacent module as seen in Figure 2.4. This configuration
allows the permissible deflection distance per module to be doubled at the expense of stiffness.
Standard spring equations for series implementation would apply for calculating the resulting
stiffness.

The assembly as it would be integrated onto the isprawl leg design can be seen in Figures
4.1a and 4.1b. This configuration depicts two modules connected in parallel around the
primary leg wire of iSprawl. The presents the concept of having both the variable stiffness
mechanism and a tube of constant stiffness connected in parallel to reduce the necessary

number of modules. The modules used are an early prototype utilizing the ABS design.
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Insulating Kapton
Filrm VHE? 4910
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/
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Aluminum Frame

Figure 2.3: Assembly of variable stiffness modular structure. The two aluminum frames are
first placed onto kapton thin film as a preventative measure for arcing. The frames are then
aligned onto a prestretched membrane of VHB. The inner frame is placed onto a section
of unstrained VHB cut to a matching diameter. This is used to provide a soft interface
between the sharp edge of the frame and the stretched membrane. Finally, the exposed
VHB is painted with carbon grease electrodes on both sides paying special attention to
connect the electrode to the inner surface of the frames. The wire leads can then be placed
onto the upper and lower frames for voltage application.
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Membrane +
— — B Modules
+
Leg
(a) Schematic of modular structures on iSprawl’s leg (b) Schematic of modular structures
wire attached in parallel on iSprawl’s leg wire attached in se-

ries

Figure 2.4: A depiction of the two ways of implementing the variable stiffness modules.
Figure (a) represents the parallel formation. The inner rings and outer frames are attached to
similar components on adjacent modules. This set up allows for the summation of individual
membrane stiffnesses to achieve a more rigid structure. The downfall of this orientation is
the reduction in achievable displacement. The maximum displacement is still limited by
the possible deflection of a single membrane. Figure (b) shows the series configuration for
the modules. The inner frame of a membrane is rigidly attached to the outer frame of the
adjacent mechanism. This system presents itself as the most compliant assembly. With
increasing number of modules per assembly the overall stiffness will continue to decrease,
but the maximum displacement will will sum linearly.
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Figure 2.5: Implementation of an early ABS diaphragm design onto an iSprawl leg. Only
two modules are shown connected to the leg. The outer frames are connected together via a
section of rigid wire. This design was never tested during running, It was only implemented
for feasibility purposes.
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CHAPTER 3

CHARACTERIZATION

3.1 Experimental Setup

In order to identify the capabilities of the modules the constitutive behavior of the VHB
material was characterized. All testing took place using an MTS Insight 1 kN load frame
and a 5 N load cell illustrated in Figure 3.1b. The act of loading the sample out of plane is
further referred to as transverse loading. Experiments were performed at varying prestrains
to determine its effect on both the stiffness and transient properties. The samples examined
incorporated three distinet prestretches, 200%, 300%, and 400%. All of which were done in
a manner to promote biaxial strains, with uniform stresses throughout the membrane. The
experimental testing for this work was performed by Jason Newton and Jeffrey Morton. The

modeling utilized for comparison was completed by Jeffrey Morton[17].

3.1.1 Quasi-Static Electromechanical

In order to quantify the stiffness characteristics of the system, transverse load versus
transverse deflection curves were measured. The specimen was held in a custom fabricated,
non-conductive 3-D printed mount. The specimen, shown in Figures 3.1a and 3.1h, was held
in a manner to allow a deflection out-of-plane in a downward direction. The magnitude
of the effective stiffness change was determined by measuring the transverse deflection
simultaneously as the maximum loading on the inner ring of the specimen. During the
tests, the voltage was applied to the specimen prior to loading and held constant throughout
the subsequent loading repetitions. While the frequency of loading was vastly less than what
would be observed in the iSprawl platform, this still allowed for a cyclic loading to monitor
if any failure had occurred. The specimen was then deflected and allowed to return to the

natural position. These experiments were performed at a constant deflection rate of 1.44 =2
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MTS

High Voltage £ Kapton
B Film

Aluminum -

Frame
(a) A photograph of speciment used for testing. (b) Experimental setup of the MTS Insight machine.
The leads from the amplifier are connected to The machine is equipped with two custom made parts.
the tabs of the upper frame and the lower frame The first being a 3-D printed mount to hold the
(not visible). specimen. The other being a delrin plunger to depress

the inner ring of the module.

Figure 3.1: An individual module used for testing is shown in (a) and the testing apparatus
is depicted in (b).

to a maximum deflection of 5 mm. The sampling rate of the data acquisition system was
approximately 50 Hz. Once the load-deflection data was measured, the effective stiffness for
cach induced field was determined using a least square fit method in MATLAB™. The fit
was performed from the starting point with an initial deflection of 0 mm and extended to the
maximum load on the system. The voltages tested for all experiments ranged from the control
(no voltage) and incrementally increased up till failure occurred. For membranes exhibiting
higher degrees prestrains, the voltage increment was minimized during regions of potential
failure. The response of the system due to the varying conditions was characterized by
manipulating the applied voltages from 0 kV to a maximum of 9kV for the 200% prestrained
sample. These voltages were obtained by amplification through a Trek model 10 kV /40 mA

high voltage amplifier.
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3.1.2 Transient Electromechanical

The transient testing was focused on investigating the response time of the system given a
sudden field application or removal. The physical parameters of the system were practically
identical to that seen in the quasi-static electromechanical experiments. The sample was
held in place using the same non-conductive mount and tested using the MTS Insight. The
difference arises during the voltage application. Rather than apply a constant field to the
membrane then record the load-deflection data, the field was applied post-deflection. The
sample plunger was moved through the downstroke to reach the maximum sample deflection
of 5mm and was held stationary at this point for an extended time to prevent any load
fluctuations during field application. The holding time was approximately 3 seconds. The
field was then applied to the system, hell for a period of time, and removed. During this
process the data acquisition rate was approximately 500 Hz. This process was performed on

a 400% prestrained sample with a field application of 5%/-.

3.2 Results and Discussion

3.2.1 Quasi-Static Electromechanical Results

The curves illustrated in Figure 3.2 show the 400% pre-stretched membrane as it is extended
through the range of displacements measured on the MTS system. This is a representation
of the raw data acquired prior to stiffness calculations. The upper line of each data set
corresponds to the downstroke of the MTS pushrod and the lower line represents the upstroke
or return to the zero load state. Over the downstiroke section, a trendline was fitted to
examine the linearity and illustrate field dependence on the stiffness change. With no applied
field the data holds an R? correlation of 0.99. If the transverse load is related to the transverse
stiffness using the relation P = m(E)D where P is the load, D is the diplacement, and m(E)
is the slope as a function of the electric field, we measure a slope change of 92% between zero
volts and a 6‘—‘-’?‘%’: applied nominal field. When examining the sample exposed toa 7 % field,
it can be seen the downstroke does not seem to begin until the plunger had already displaced
approximately 3.5mm. This is due to the occurrence of buckling. Upon field application the
effective stiffness change was large enough that the elastic forces present in the membrane
were not great enough to withstand the weight of the inner ring and unprovoked deflection

occurred.
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Figure 3.2: Load-Displacement curves for 400% pre-strained sample. It should be noted
that over higher electric fields, the magnitude of the slope change increases with smaller
field increments. The highest field application (7%) only shows a force measurement after
3.5mm of deflection. This is due to buckling of the membrane.

To verify the results found, the experimental data was compared to expected stiffness
values of the samples undergoing a zero field application. The expected values were obtained
through the use of a Non-linear finite deformation membrane model. The correlation can
be seen in Figure 3.3. In this Figure, the A represents the stretch rate of the membrane.
The stretch rate refers to the actual rate of deformation experienced by the membrane as
compared to the rate of deflection experienced by the inner ring. The stretch rate varies

radially along the prestretched membrane with the highest rate located at the boundary
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of the inner ring. Because of this, an estimation was performed to approximate boundary
encompassing the rate at which the membrane was actually being deformed. The upper and
lower bounds, denoted by a A of 9.4 % 107571 and 5.64 * 107 s}, respectively, act as the
extreme values for the system. The experimental results can be associated with a stretch
rate falling within this range. The figure clearly shows that the initial stiffness values of the
various prestretches fit within the expected bounds predicted by the model.

The range of measured stiffnesses found from different field applications is illustrated in
Table 3.1. Since each pre-stretch can affect dielectric breakdown, the voltage was incremented
up to the field at failure. The reliability of higher prestrains is much lower than that of the
less strained samples. In addition, smaller field increments tend to produce greater effects
on the 400% sample as compared to the 300% and 200%. This results in a tendency for it
to fail sooner and from smaller field increments. This led to the varying increments found
in the 400% sample. The dashes in Table 3.1 represent values not tested for a particular
reason. Prior experiments aided in providing information on the approximate failure points
of the various prestrained membranes. For this reason, certain values were overlooked
during testing because they did not represent a likely point of breakdown. For members
demonstrating a higher degree of prestrain, the lowest stiffness value depicted represents
the point after which failure occurs. For example, the final stable points for the 300%
and 400% samples were approximately 0.06479-2L and 0.01413-2- respectively. Further
testing is necessary to determine if higher fields are capable using smaller increments. From
Table 3.1 and Figure 3.4, the overall change in effective stiffness can be calculated. The
200% specimen showed a maximum drop of approximately 30%. The percentage change
increased with the amount of pre-stretch applied to the specimen, while the 300% and 400%
pre-stretched modules exhibited approximate changes of 62% and 92% respectively. This
suggests a linear relationship of 30% decrease in stiffness per 100% increase in prestretch.

The electro-mechanical tests were performed on each specimen while increasing voltage
until dielectric breakdown oceurred. With increasing pre-stretch the maximum achievable
nominal field, applied voltage over original thickness (1 mm), decreases. The 200% specimen
was capable of bearing the largest nominal field, failing at 94X, The 300% and 400%
samples failed at 7.5% and 7%, respectively. It is important to note, however, that due
to decreasing membrane thickness with increasing pre-stretch, the true electric field over the

400% sample is nearly twice as large as the electric field over the 300% sample, and 4 times
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Figure 3.3: comparison of the model

the field over the 200% sample. The true fields can be estimated assuming incompressibility
such that the actual thicknesses for the 200%, 300% and 400% pre stretches are 1, % and
1

Lmm respectively. The resulting true fields are 3642, 724V and 1124V These do not

correspond exactly to the true field because the thickness changes as the field is applied.

3.2.2 Transient Electromechanical Results

In order to quantify the response time of the systems, the settling time was calculated
from the load-displacement curve. It should be noted that the use of "settling time” infers
the amount of time necessary to transition from the static load immediately prior to field
application to within 1% of the final steady state value under electrostatic loading. The data

acquired for 400% prestrain can be seen in Figure 3.5. The settling time was found to be in
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Table 3.1: Plot representing the various stiffnesses experimentally determined based on
amount of prestretch and field magnitude.

Field (#£-) | 200% Prestretch | 300% Prestretch | 400% Prestretch
Stiffness (N/mm) | Stiffness (N/mm) | Stiffness (N/mm)
0 (0.17882 0.16883 0.17044
1 - - 0.16779
2 0.17848 0.16027 0.15942
3 0.17387 0.15355 0.14773
4 0.16830 0.14214 0.12962
5 0.16290 0.12582 0.10563
5.5 - - 0.09087
6 0.15538 0.10677 0.06826
6.5 - 0.09573 0.04372
6.8 - - 0.02066
7 0.14720 0.08216 0.01413
7.5 0.14180 0.06479 -
8 0.13594 - -
8.9 0.13152 - -
9 0.12604 - -

the range of 66ms. Further characterization showed the module to have a natural frequency of
approximately 55Hz. Notice should be taken to the amount of oscillation present within the
system. Its behavior mimics that seen in an underdamped mass spring-damper system. Due
to the vertical orientation of the sample, it is believed that the oscillatory motions could
be caused by gravitational effects on the inner ring coupled with the drastically reduced
compliance of the 400% sample. In order to counteract this, further testing should be
performed in a horizontal orientation where gravity is no longer collinear with the direction
of deflection. The relationship between system response and the field magnitude and amount

of prestrain present could also be determined through more comprehensive testing.
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Figure 3.4: Average stiffness from various applied voltages
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Transient Response - 400% Prestretch (5kV)
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Figure 3.5: The transient response of a module prestrained to 400% and exposed to 5kV.
The time required to transition from an unactuated state to the final load under a 5“’7‘:/ field
is approximated at 66ms.
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CHAPTER 4

SUMMARY

4.1 Conclusion

A variable stiffiness robotic leg mechanism was designed utilizing modules constructed from
the dielectric elastomer VHB. It incorporated a diaphragm with suspended mounting rings
to permit isolated attachment to the leg wires of iSprawl as well as modular implementation
for highly tunable compliance. The system is the smallest VHB architecture developed for
implementation onto a running robot. The design was characterized to identify its feasibility
for robotic implementation. Stiffness changes of up to 92% were observed for individual
models during electro-mechanical experiments using an applied voltage up to 9 kV. The
stiffness of the design was dependent on prestiretch, but it did not increase linearly. In fact,
for modules prior to electric field exposure, it decreased from 0.20 ﬁ; at 200% prestretch to
0.17 % at 300% and 400% pre-stretches. The electromechanical transient tests performed
on the module showed an approximate response time of 66ms.

The implementation onto iSprawl is bounded by two primary constraints; the deflection
distance and the required stiffness range. The relative stiffness for iSprawl was set at 1.7-2-
and a desired leg stiffness variation of up to 1.1 range was estimated from 0.85-
to 1.921%. With the results from the quasi-static electromechanical tests, the 400%

sample demonstrated the greatest range and one of the highest initial stiffness values of
N

mar

approximately 0.17 This suggests that approximately 6 modular elements pre-stretched
to 400% could exhibit the required range of stiffness if connected in a parallel configuration.
In order to achieve the minimum stiffness value, all 6 modules would he connected in parallel
with a section of tubing approximating a spring constant of 0.85%. The deflection distance
of 4 mm is encompassed by the test parameters established in this work, therefore series

implementation should not be required for this application.
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4.2 Future Work

In order to verify the designs viability for use in real world applications further testing
is necessary. The design should be evaluated and optimized to enhance the stiffness
characteristics with respect to the size and weight parameters. Furthermore, a more in depth
investigation should be performed into the optimum stiffness for the iSprawl platform. Also,
the design should be implemented in a parallel configuration and retested to investigate
any unforeseen difficulties with multi-module integration. Cyclical loading tests are also
needed to determine its lifespan and robustness. The transient results are questionable
due to the possible dynamic influences of gravity on the inner ring of the system. Further
quantification of the dynamic response due to field application is necessary to determine its
frequency dependent limitations for the iSprawl platform. Upon determining the response
time of the system, the designs capability to vary compliance mid stride will be analyzed.
Upon completion of these tests, the design can be fully developed and tested on iSprawl to
evaluate the level to which variable stiffness legs could improve its performance in running
over various terrain types. The future form of the mechanism as it would be implemented

onto iSprawl is shown in Figures 4.1a and 4.1b.
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VHB Membrane _J —«—Inner Frame

Fixed Tubing ———

\ /LegWire

(a) Depiction of assembled iSprawl leg utilizing VHB
modules

Figure 4.1: iSprawl Leg design with variable stiffness assemblies. The modules shown are
connected in a parallel orientation with a total of 6 membranes. 3 connected in parallel on
the top and 3 on bottom. The leg wire routed through the center of the mechanism acts
to deflect only the inner rings. Not shown here is the mounting system to isolate the outer

(b) Lower view of assembled leg design

frames.
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