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Motivation

Animal Locomotion
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‘¢ Biomimetics
A specific motivation “{#manipulation

Laboratory

How much could we enlarge
the range of possible landing
conditions with a dynamically
variable suspension?
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Motivation

How do you choose compliance?

Cyclic Locomotion Transient Event

Fixed compliance

|

System Environment Task
Mass (payload) Surface stiffness Gait
Geometry External disturbances Grasping

|

What if these change?
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Background

Tunable Stiffness

« Series Elastic Actuation
* Pratt (1995)

» Variable Geometry
* Hollander (2004)
» Seki (2000)
« Kawamura (2002)
* Galloway (2009)

« Antagonistic Systems
* Hurst (2004)
» Migliore (2005)
* Tonietti (2005)
* Verrelst (2005)

« Variable Mechanism

» Sardellitti (2011)
* Van Ham (2007)
»  Wolf (2008)
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 Mechanical Complexity

» Scalability

* Weight

e Volume
 Energy Density

* Mechanical Time Constant
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Background

Electroactive Polymers

* Principle of Operation

* Pelrine and Kornbluh (2000)
Geometry and Design

» Choi (2003)

* Rosenthal (2000)
Modeling

* Wissler (2005)
Scalable Manufacturing

» Carpi (2007), Kovacs (2007)
Suspensions

* Pelrine (2008)
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Background

Electroactive Polymers

C} Dielectric &

Electrode
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Background

Electroactive Polymers

On
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Background

Electroactive Polymers
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Background

Electroactive Polymers

Off
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Background

Electroactive Polymers

Dielectric Electrode Frame
High Voltage - Compliant - Easy to fabricate
Low,Uniform Thickness - Low Modulus - Insulating (HV)
High Dielectric Constant - Low Resistance - Stiff, lightweight

Low Elastic Modulus

v v v

Soft, uniformly thin, Very soft, thin, Rigid, light,
strong insulator stretchy, conductive strong insulator
3M VHB 4910 Carbon + silicone oil Fiberglass
. Y
16
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Electroactive Polymers
Edge Treatment

Mechanical film stress Empirical failure locations

Electrical arcing failure Eventual Mechanical Failure
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Sanjay’s EAP Questions

+  Why would anyone choose to
work with thin films that are
stretchy, sticky, and easily torn?

*  And cover them with a goopy
combination of carbon powder
and oil?

* And energize them to 6000
volts?

Typical failures...

Monday, January 28, 2013
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Manufacturing Process

Fabricate in batches:
e UseVHB film stretched 400%.

e Lasercut acrylic fixtures maintain
tension and alignment.

* Use masks to add silicone anti-
tear layers at inner, outer edges.

e Actuator frames are lasercut
fiberglass

e Spray carbon grease through
additional masks.

Monday, January 28, 2013
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% Biomimetics

. 21 Dext s
Module Design *{f* manipulation’
~ | Laboratory

Fiberglass Frame

‘mr Coating
o

o
Prestrained VHB
Acrylic Dielectric

Compliant Electrode

/

Carbon electrode coating

Anti-tear coating

Fiberglass frame
Prestrained VHB4910 acrylic
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Electroactive Polymers

Edge Treatment

Electrode Frame

l % Dielect\ric \ .
m. .

Edge coating

21

Before electrode
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Electroactive Polymers

Manufacturing Process

1 hour build time
~100% yield
Reliable (>10,000 cycles)

Consistent across batch

Status of January 23 2013:

M.S. student Shiquan Wang has been
learning this process from Sanjay
Dastoor and Hannah Stuart

22
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Modeling and Measurement

—— EAP A

Apply Measure Analyze
Force \/ —_— Displacement \/ > Force /
Time Time Displacement
23
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Modeling

2.5 |
2 |
z |
~5 15 ¢
0s |
From Kofod 2001
0.5 1.5 2 2.5 3
Strain &, [rel.]
Model Hooke Neo-Hookean | Mooney-Rivlin Ogden
Strain 0.10 0.40 1.4 3.0+
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Tunable Stiffness
Physical Module

Apply Measure Analyze
Displacement[ E ! m—p Force m—  FOrce /
Time Time Displacement
1 T ) T 06’ . :
VHB Acrylic Diaphragm
0.4t
0.5¢
—~ —_ 0.27
=3 =3
(o) of ©
o O i
: g 7
—0.5} —0.2
-0.4
13 1 0 1 2 5 0 5
Displacement (mm) Displacement (mm)
25
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Modeling

Quasi-Linear Viscoelastic (QLV) Model

mn
Ko o(t) =00 + ¥ 0i(t)
Wal —
J\/\{<\/\/_B_ oi(t) = Cie(—%)
~ANATH—~
° B, E: ks

Fung 1972
Captures viscoelastic effects
Linear time-invariant transfer function

26
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Modeling

Quasi-Linear Viscoelastic (QLV) Model

1. Relaxation test (Step input in displacement, measure force)
2. Fit sum of decaying exponentials + constant to force data
3. Measure goodness of fit

4. Repeat for increasing n until good fit

3 |
2-8:' o Experimental N
2 6H —AQLV Fit _
I 7 n | R?value

1 0.874
2 0.931
3 0.987
4 0.999

Time (sec)
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Tunable Stiffness

Principle of Operation

Constrain deformation to induce change in stiffness

G —
prestrain / |

Single EAP -
Terminal
Rigid Frame — . - = Rigid Frame
Electrode —
Terminal —

28
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Tunable Stiffness

Principle of Operation

Constrain deformation to induce change in stiffness

4:--- cee P

prestrain
minus

electrical
effect

Terminal

Rigid Frame —

- - = Rigid Frame

Electrode —

Terminal —
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Tunable Stiffness

Stiffness Range

Apply Measure Analyze
Displacement[ E ! — Forcei E { m—  FOrce /
Time Time Displacement
0.4h . . .
—OoV .+ Maximum stiffness = 102 N/m
0.35( 3KV y
—4 kV
0.3 5 kV
—5.5kV
8 02
g
0.15¢
0.1
0.05. Minimum stiffness = 15 N/m
0 ﬁ""’:’" o T I
0 1 2 3

Displacement (mm)
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Tunable Stiffness

Linearization

0.06}
0.04;

0.02-

Force (N)
o

|
o
o
\S)

Disp (mm)

e Changing offset of inner ring spacing
relative to outer ring spacing will bias
films out-of-plane

e Combined (parallel) stiffness will be
shifted and linearized as a result

Stack
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Tunable Stiffness

Response Time
Apply Measure/Analyze

Displacement —)  Force

Time Time

! 1.5

6f f———————————————————

5,
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S 3 Stiffness commanded =
= . = = o
S o| from maximum to minimum 5

© 05
1,
oH
Time (ms) Time (ms)
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Tunable Stiffness

Response Time

0.5W Power Supply
, Input: 5VDC @ 250mA
Output: 6kV @ 50pA

HV Relay
oo
‘ EAP
= HV Supply
Buffer
| Capacitor
Power Supply Cont. Current (mA) Peak Current (mA)
Trek 610B 2 2
Emco Q101 0.05 0.05
Buffered Q101 0.05 2000
33
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% Biomimetics
| Dexterous
“Manipulation

Using variable stiffness in workloops

~ | Laboratory
.
Animals use muscles as motors,
brake motor .
g . brakes and springs,
adding, removing or storing
length P energy, depending on how

stiffness is varied at different

points in a work cycle.
. g i & We have the same opportunity,
i o with an ability to vary stiffness
strut by up to 10x in <5ms.

I L

A

force
force

- -

length length

Dickinson et al., Science, 2000 34
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Applications to Tunable Dynamics

Experimental Hopper

High voltage control signal

High Voltage |HV i t _MS lacemont Data Acquisition System
inpu . :
Power Supply Hopper vﬁgv > (Matlab XPC)
—_—p

Tunable Suspension

35
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Applications to Transient Dynamics

Motivation

A’ leads to failure.
A to B to C leads to failure.

A to B, switch stiffness to B’, to C’ leads to success.
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'\i;f Biomimetics
! Dexterous "

Conclusions % manipulationSL

Laboratory

Electroactive polymers are well
suited for use in dynamically variable
suspensions in small, light robots:

* low weight

* low power consumption

- fast response

- augment useful passive properties via control

Batch manufacturing of modular

units provides acceptable yield &
durability.

A particularly interesting application is
landing from jumps and glides.

Thanks to ARL Robotics CTA and Bio-X fellowship for support.
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